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Abstract
Vision Transformer (ViT) architectures represent
images as collections of high-dimensional vector-
ized tokens, each corresponding to a rectangular
non-overlapping patch. This representation trades
spatial granularity for embedding dimensional-
ity, and results in semantically rich but spatially
coarsely quantized feature maps. In order to re-
trieve spatial details beneficial to fine-grained in-
ference tasks we propose a training-free method
inspired by “stochastic resonance.” Specifically,
we perform sub-token spatial transformations to
the input data, and aggregate the resulting ViT
features after applying the inverse transforma-
tion. The resulting “Stochastic Resonance Trans-
former” (SRT) retains the rich semantic informa-
tion of the original representation, but grounds
it on a finer-scale spatial domain, partly miti-
gating the coarse effect of spatial tokenization.
SRT is applicable across any layer of any ViT
architecture, consistently boosting performance
on several tasks including segmentation, classi-
fication, depth estimation, and others by up to
14.9% without the need for any fine-tuning. Code:
https://github.com/donglao/srt.

1. Introduction
The Transformer architecture (Vaswani et al., 2017), orig-
inally designed for modeling language which is naturally
quantized into discrete objects (sub-word “tokens”), is a
poor fit for vision tasks due to the lack of a natural scale
for spatial discretization: The same object can disappear
within a pixel or fill the entire image plane depending on
its distance from the camera. In theory, one could create to-
kens for patches of all sizes and positions, but at significant
computational expense due to the complexity of transform-
ers, which is quadratic in the number of tokens. Despite
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the counter-intuitive nature of spatial quantization, Vision
Transformers (ViTs) (Dosovitskiy et al., 2020) achieve state-
of-the-art performance in many vision tasks. So we focus on
developing methods to harness pre-trained ViTs and over-
come their limitations in representing spatial details at fine
granularity due to the fixed spatial quantization of tokens.

The standard remedy for quantization artifacts is anti-
aliasing. In one-dimensional digitized signals such as au-
dio, anti-aliasing refers to weighted averaging of nearby
samples in the discrete topology, or equivalently averag-
ing versions of the signal translated by integer multiples
of the original sampling interval. For images, in addition
to sampling the translation group, one also has to sample
the scale group, so as to capture the varying size of the
projection of objects onto the image plane. Various network
architectures comprise spatial average pooling, which is
translational anti-aliasing, whereas the notion of domain-
size pooling and domain anti-aliasing has been championed
by (Dong & Soatto, 2015). Anti-aliasing is typically per-
formed by convolving the discrete signal with a generic (not
data-dependent) kernel. The optimal kernel is unbounded,
so any finite implementation is necessarily lossy and cannot
“recreate information” lost in the sampling process. Simi-
larly, super-resolution algorithms hallucinate missing details
either using generic priors or data other than the signal in
question (Buades et al., 2005).

“Stochastic Resonance” (Benzi et al., 1981) is a qualitatively
different process whereby the limitations imposed by a fixed
quantization threshold can be overcome simply by shifting
the signal by sub-threshold additive perturbations. This
results in sampling beyond the Nyquist limit otherwise im-
posed by the quantizer. We extend this process, originally
employed in cochlear implants, to translation not of the
value of the signal (additive perturbations) but its domain
(translation). The same process can also be applied to do-
main size (scale). Stochastic resonance can be thought of as
a form of data augmentation or adaptive quantization. We
further simplify it by choosing deterministic, rather than
randomly sampled, perturbations. The perturbed token em-
beddings are aggregated statistically to first-order (mean or
median) to yield a sub-token embedding. First-order statis-
tics can be used for visual tasks, for instance, unsupervised
object segmentation, and second-order statistics as a weight
for adaptive regularization.
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Figure 1. High-resolution ViT features computed by stochastic resonance. Stochastic Resonance enables enhancing tokenized ViT
features during inference without the need for additional training or modifying ViT forward pass. Here we present enhanced features
from different pre-trained ViT models, visualized via Principal Component Analysis: CLIP (Radford et al., 2021) captures major image
components. Interestingly, although Supervised (Dosovitskiy et al., 2020) and DINO (Caron et al., 2021) are trained by different pipelines
and training loss, they prioritize similar regions. This may be due to they are trained on the same dataset and thus capture similar inductive
bias. In contrast, SAM (Kirillov et al., 2023) and MAE (He et al., 2022) capture local features over high-level semantics.

This simple approach is well suited to pre-trained trans-
formers since it only requires acting on inputs and outputs
without modifying (or even knowing) the weights or the
forward pass of the model. We call the resulting method
“Stochastic Resonance Transformer” although we do not
modify the transformer nor do we use artificial noise, to
reflect closer proximity of our method to Stochastic Reso-
nance than to traditional super-resolution or anti-aliasing
methods. The simplicity of the method allows us to leverage
ViTs, pre-trained on large datasets, such as CLIP (Radford
et al., 2021) and DINO (Caron et al., 2021), to improve their
handling of spatial quantization. This may help attenuate
some of the biases of certain training procedures, for in-
stance, the object-centric nature of contrastive learning, e,g,
DINO, which biases the representation towards centered
objects that occupy a large portion of the visual field.

Stochastic Resonance can be used as a form of sub-token
ensembling, to enhance feature maps in ViTs and reveal
some of the local fine-grained underlying structure. SRT
can be applied to any ViT layer, on any task, without altering
network architecture or pre-trained network weights. We
can use SRT to visualize fine-grained features, or optionally
map them back to the original ViT feature scale by pool-
ing to be used for inference, where we notice performance

increases on a wide range of vision tasks. Additionally,
fine-tuning pre-trained ViTs by distillation from ensembled
features maintains their original inference time and cost.
To the best of our knowledge, SRT is the first approach to
recoup spatial granularity from embedding dimensions in
ViT feature maps. Unlike conventional ensemble methods
that augment model inputs and combine outputs, SRT oper-
ates at the feature level, allowing seamless integration into
any ViT pipelines, including for tasks that demand inter-
mediate features or attention maps. Our contributions are
summarized as follows:

• We introduce a novel technique, namely the Stochas-
tic Resonance Transformer (SRT), that computes fine-
grained ViT embeddings at test time without additional
training or modifications to the ViT’s forward pass.

• SRT can be seamlessly integrated into any task that uti-
lizes ViT as a feature extractor, serving as a test-time
augmentation and ensemble method.

• We provide an efficient implementation of SRT, including
parallelization and recursive aggregation, which reduces
computational and memory requirements.

• We showcase the effectiveness of SRT by consistent im-
provement on a range of diverse vision tasks. Notably, it
demonstrates significant enhancements on dense predic-
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Figure 2. Schematic for SRT. SRT applies controlled perturbations to input images, extracting features through Vision Transformers
(ViTs). These features are then upsampled to higher resolution and aligned using the inverse of the applied perturbations. Statistical
aggregation, including mean and median, along the perturbation dimension, produces fine-grained feature representations. These features
find utility in visualization and can also be seamlessly integrated back into the network for enhanced performance in downstream tasks.

tion tasks, of up to 14.9% on depth prediction.
• SRT also yields a versatile visualization tool that can be

applied to any layer of any pre-trained ViT model, offering
valuable insights into ViT model characteristics.

2. Stochastic Resonance Transformer
2.1. Method

Given an image x with N ×M resolution, a Vision Trans-
former (ViT) divides it into tokens, where each token rep-
resents a n × m rectangular patch. While tokens can
technically overlap, practical ViT models often use non-
overlapping tokens for efficiency due to the quadratic com-
plexity of transformers with respect to the number of tokens.
Consequently, in a certain layer of ViT, this approach yields
a feature map with dimensions N

n × M
m ×C, where C is the

size of the feature vector determined by architecture, down-
sampled from the original image and subsequently losing
sub-token spatial information.

Given a trained ViT model, we aim to obtain features in a
higher resolution that preserve the spatial information on a
pixel level, ideally matching with the original image input.
Fig. 2 illustrates our proposed pipeline of SRT. To enhance
the features, we introduce sub-token perturbations to the
input, i.e. transforming the coordinates of the input and
resampling onto a new image plane, and extract embeddings
from the resulting perturbed image. Note that any group
transformation (translation, rotation, flipping, etc.) and a
combination of them (e.g. (Wu et al., 2023)) can be chosen
as the perturbation, provided that its inverse transformation
is available. However, our specific interest lies in intro-
ducing perturbation through translation. This preference
arises from several factors: 1) translation preserves the ob-
ject’s scale, unlike zooming; 2) translation can be applied
at the pixel level grid, eliminating interpolation artifacts,
as opposed to rotation; 3) translation allows an efficient
implementation of SRT (Section 2.3).

We then upsample the resulting low-resolution embeddings
back to the original image resolution N ×M and apply an
inverse of the perturbation to the spatial coordinates of the
embeddings, and through an inverse warp, align it with the
original input image. By repeating this process on different
sub-token perturbations for t times, we generate a collection
of embeddings, denoted by N×M×C×t, that are spatially
aligned to the input frame of reference. We can then com-
pute statistics, e.g. mean or median, along the t dimension.
Consequently, we obtain a feature field N ×M × C, with
the same spatial resolution as the original image. As show-
cased in Fig. 1, the embeddings are enhanced to sub-token
resolution. This process is similar to Stochastic Resonance,
where introducing white noise to the input signal enhances
a signal beyond the native resolution. These embeddings
offer promising downstream applications, as in Section 3.

For any task that utilizes ViT as a feature extractor, we can
take an additional step by applying average pooling to again
tokenize this high-resolution feature, to map it to N

n ×M
m×C.

It’s important to note that this feature differs from the one
obtained from one single forward pass of ViT, as it is an
aggregate of multiple perturbed inputs. This process can
be viewed as test-time augmentation and ensemble. Since
this feature is compatible with the original ViT architecture,
it can be seamlessly integrated back into the layer from
which we perturbed the features, and applies to any model
at any layer, regardless of pre-training, without requiring
additional learned modules or altering the forward pass.
Such a pipeline improves performance on diverse computer
vision tasks, as validated by Section 3. Next, we formalize
the aforementioned pipeline.

2.2. Formalization

x ∈ RN×M×K is a K-channel signal (e.g., K = 3 for a
color image.) Let π : RN×M → Rn×m;x 7→ x a projection
(subsampling, n ≪ N,m ≪ M ), with the corresponding
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inverse (interpolation) map π−1 : Rn×m → RN×M ;x 7→ x
be piecewise constant. This is a trivial form of subsampling
and interpolation with a constant kernel.

Now, let ϕ : RNMK → RnmC be a trained model with
C channels of feature maps, typically C ≫ K. Finally,
let T : RN×M → RN×M ;x 7→ Tx be a compact and
invertible transformation, for instance, edge-padded shift by
a number of pixels smaller than (N −n)/n× (M −m)/m.
We consider uniform random padded shifts (translation) and
consider the following measurement process:

yt = ϕ(Ttx) (1)

for all random transformations Tt. We wish to enhance
the output of ϕ from n × m to N × M . We call this pro-
cess immersion since each point x maps to z = ϕ(x) but
z ̸= T−1ϕ(Tx). In other words, x is mapped injectively
but not bijectively, since there are as many (vector)-valued
embeddings as sampled value of T . We do so iteratively by
averaging (or by a linear transformation Kt) with respect to
the innovation process:

ϵt = π
(
T−1
t π−1yt

)︸ ︷︷ ︸
ŷt

−Ktϕ(x) (2)

now the fine-grained features which we call x̂t are obtained
by an observer architecture, which implements a closed-loop
dynamical system of the form:{

x̂t+1 = x̂t + T−1
t π−1yt x̂0 = 0;

yt = ϕ(Ttx)
(3)

This is just a moving average in higher resolution, whereby
the variance of x̂ will decrease to a steady state (by Cen-
tral Limit Theorem), following the practice of stochastic
resonance. It is a mixture of upsampling/interpolation and
inference-time data augmentation, or ensembling.

2.3. Efficient Implementation

In theory, there is no limitation on the types of sub-token
transformations that can be employed. We opt for a straight-
forward approach by applying translations (with padding)
and this practice demonstrates effective results. We sample
translations at the pixel level, avoiding the need for sub-pixel
interpolation, which could introduce unwanted artifacts.

For a ViT utilizing token sizes of m× n, we impose a con-
straint on the maximum magnitude of translation, limiting
it to m

2 × n
2 . This constraint allows the model to explore

all possible token selections within the image. It is worth
noting that excessive translation can be counterproductive
when applied to downstream vision tasks, as it can result
in information loss at the image boundaries. A detailed
discussion can be found in Section 3.2, where we study the
relation between perturbation level and model performance.

While naive implementation can lead to significant compu-
tational drawbacks, running inference on each augmented
image can be trivially parallelized. Greater implementation
speed-ups can also be achieved by bypassing the upsam-
pling step (which is computationally expensive), since the
aggregated result can be deterministically computed from
the original feature maps of each augmented image when
average pooling is used. With ViT-16/S architecture, on
DAVIS-2017 (Pont-Tuset et al., 2017) our implementation
of SRT runs at 1.0 seconds per image on a Nvidia 3090
GPU using a perturbation level of 3 pixels. To further speed
up, one may optionally fine-tune the ViT model by distilling
utilizing SRT, so that the inference time and cost remain, as
demonstrated in Section 3.2.

3. Experiments
3.1. Visualization of SRT Features

SRT demonstrates significant promise in visualizing fea-
tures of ViT models. It achieves this without necessitating
modifications to the ViT’s forward pass. In Fig. 1, we
present visualizations of the final layer features from five
popular ViT models, all employing the ViT-B/16 architec-
ture. Notably, all visualizations are computed by a standard
consumer laptop. We employ SRT with a turbulence level
of 7 pixels to traverse non-overlapping augmented tokens
extensively. The resultant high-dimensional features then
go through Principal Component Analysis (PCA), with the
top three components mapped to RGB channels to facilitate
effective visualization. Despite sharing the same architec-
ture, the five models exhibit distinct characteristics owing
to variations in their pre-training supervision. For instance,
CLIP (Radford et al., 2021) is trained through contrastive
visual-language pre-training and captures major image com-
ponents in the displayed examples. The Supervised model
(Dosovitskiy et al., 2020) is trained for ImageNet classifica-
tion, while DINO (Caron et al., 2021) undergoes contrastive
learning. Interestingly, despite their diverse training regimes,
both models prioritize similar image regions, potentially
due to their shared dataset and resulting common inductive
bias. In contrast, SAM (Kirillov et al., 2023) is trained
on massive segmentation masks without semantic labels or
object-centric priors, and MAE (He et al., 2022) is trained
through inpainting of randomly masked image regions. Both
methods emphasize local image features over high-level se-
mantics. Our versatile visualization tool provides valuable
insights into the characteristics of ViT models, offering sub-
stantial potential for practical applications.

In Figure 3 we offer additional visualization of ensembled
SRT features across various network layers. The visualiza-
tion indicates a noticeable trend: deeper layers reveal clearer
high-level semantic boundaries, while shallower layers high-
light more local features than deeper ones.
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Figure 3. Visualization of ensembled SRT features in different ViT layers. Architecture: ViT-S/16. Deeper layers reveal clearer
high-level semantic boundaries, while shallower layers highlight more local features compared to high-level ones

Figure 4. Relative improvement on DAVIS-2017 dataset vs dif-
ferent noise levels. There exists an inherent trade-off between
perturbation level and performance gain. Smaller perturbation
ranges result in weaker improvements from the baseline model due
to lower input diversity, while larger perturbations are susceptible
to greater information loss. 3 pixels is found to be the optimal
perturbation level on both ViT-S/16 and Vit-B/16.

3.2. Semi-supervised Video Object Segmentation

We apply SRT to evaluate its performance using the DAVIS-
2017 video instance segmentation benchmark (Pont-Tuset
et al., 2017). We adhere to the experimental methodol-
ogy established in (Jabri et al., 2020), which employs a
”semi-supervised” video object segmentation approach on
the original 480p resolution. Provided with the initial anno-
tation of the objects of interest in the first frame, this method
subsequently propagates the segmentation between consec-
utive frames. Notably, the method utilizes the last layer
feature of the Vision Transformer (ViT) to guide this seg-
mentation propagation process. Consequently, the quality
of the ViT features directly impacts the final segmentation
results. For optimal outcomes, these features must possess
discriminative and semantically meaningful characteristics

to effectively support this segmentation task.

In our study, we evaluate various Vision Transformer (ViT)
models pre-trained using the DINO (Caron et al., 2021)
contrastive scheme. We adopt three different architectures,
specifically ViT-S/16, ViT-B/16, and ViT-S/8, each varying
in their spatial patch size (16x16 pixels and 8x8 pixels). Our
results in Tab. 1 indicate that, on average, SRT enhances the
original baseline models by a relative 2.4% in terms of the
F&J score. The most significant improvement is observed
with ViT-S/16, where we achieve 4.1%. Importantly, these
enhancements are achieved without any modifications to
the model or pre-trained weights. However, we address a
potential criticism of our approach, which could be seen as
trivial test-time augmentation combined with feature-level
ensemble. To counter this concern, we perform a heuristic
by naively augmenting images by color jitter and performing
feature-level ensemble (1, Naive ensemble), and we find that
this method is, in fact, detrimental to performance. We also
reproduce the approach proposed by (Amir et al., 2021) that
uses overlapping tokens at inference time, which negatively
impacts the results. We investigate whether inference costs
induced by SRT can potentially be mitigated via distillation.
To this end, we attempt to learn the ensembled SRT repre-
sentations using the following self-distillation objective:

min
w

∑
x∈D

||ϕw(x)− SRT (x,w0)||, (4)

where ϕ and (w0) w are the ViT and its (original) parameters,
and x the image in the target dataset. Our preliminary
results on DINO-ViT/16 improve from the baseline by 1.3%
after the self-distillation step. Note that Eq. (4) is task
agnostic and requires no label, thus effectively adapts pre-
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Method F&J J-mean J-recall F-mean F-recall
DINO-ViT-S/16 0.617 0.602 0.740 0.634 0.764
+ SRT 0.642 0.632 0.783 0.653 0.819
Distill by SRT 0.625 0.609 0.745 0.642 0.780
+ Overlapping tokens 0.591 0.577 0.706 0.605 0.741
+ Naive ensemble 0.477 0.455 0.468 0.500 0.542
DINO-ViT-B/16 0.622 0.608 0.748 0.637 0.760
+ SRT 0.630 0.623 0.766 0.637 0.795
DINO-ViT-S/8 0.706 0.675 0.815 0.737 0.846
+ SRT 0.720 0.688 0.827 0.752 0.868

Table 1. Results on DAVIS-2017 video object segmentation. Ap-
plying SRT improves over the baseline models uniformly over all
metrics, as measured across 3 variants of ViTs trained using the
DINO (Caron et al., 2021) contrastive learning objective. SRT
yields significant improvements even for ViT-S/8 trained with finer
patch sizes (8x8). One may optionally fine-tune the original ViT
model by distilling by SRT, which increases performance while
inference time and cost remain one single forward pass.

trained ViT features to any given target dataset. We leave
the investigation of this to future work.

Fig. 3.2 illustrates the relative improvement across different
perturbation levels of SRT applied to ViT-S/16 and ViT-B/16.
While higher perturbation levels offer greater input diversity,
they are also susceptible to information loss. We anticipate
a trade-off between perturbation level and performance gain
and empirically identify a perturbation level of 3 pixels as
the optimal point for both.

3.3. Depth Prediction and Semantic Segmentation

We extend the application of SRT to monocular depth es-
timation, a task that leverages ViT features from multiple
ViT layers, in contrast to video object segmentation which
primarily utilizes the last layer features. This choice of
task highlights the versatility of SRT, showcasing its seam-
less compatibility with various ViT layers and architectures.
Specifically, we evaluate three ViT architectures: ViT-S/14,
ViT-B/14, and ViT-L/14, each equipped with two prediction
heads (linear and DPT (Ranftl et al., 2021)). We adopt the
experimental settings provided by DINOV2, which offers
pre-trained backbones and corresponding prediction heads.
Our assessment utilizes the NYU-V2 dataset (Nathan Silber-
man & Fergus, 2012) under its original 640×480 resolution.

Tab. 2 presents the results, demonstrating consistent im-
provements over baseline methods. The most significant
enhancements are observed in the RMSE and RMSE log
metrics, where we achieve relative improvements of 4.7%
and 14.9% with linear heads, and 3.6% and 11.0% with DPT
heads, respectively. Notably, these metrics are sensitive to
outliers, highlighting the effectiveness of SRT in mitigat-
ing instability in ViT features and enhancing robustness.

On the other hand, SRT can reduce some of the bias intro-
duced by training procedures that puts more focus on global
representation (e.g. DINO). SRT re-introduces localized fea-
tures through aggregating local perturbations of each region,
leading to improvements in RMSE (often caused by lack
of details, e.g., over-smoothing across object boundaries)
while maintaining global coherence as measured by AbsRel.

For ablation, we compare our method with output-space
ensemble (marked as ”OE”), which employs the same per-
turbations as SRT, but aggregates the model output instead
of intermediate features. We find no significant improve-
ments, and in some cases, this method is even detrimental.
This underscores the robustness of SRT’s ensemble scheme
that operates on the feature level instead of the output.

Similar to depth prediction, we show results on semantic
segmentation by employing the protocol from DINOV2
and ADE20K dataset (Zhou et al., 2017). The results are
presented in Tab. 3. SRT consistently improves mIoU on
all three pre-trained ViTs, by as much as 1.7% in relative
improvement, but is less significant than depth estimation.
Depth comes in the form of positive real values; whereas,
segmentations are represented as integer categories (logits
quantized by choosing the max). Metrics measuring fidelity
of segmentation operate on the categorical level, where spu-
rious changes in logits do not affect the category they are
mapped to so long as it is the max. Hence, while SRT can
suppress spurious outputs in logits, the gain is less signifi-
cant than depth where any difference in value is penalized.

3.4. Unsupervised Salient Region Segmentation

We employ SRT in conjunction with TokenCut (Wang et al.,
2022) for unsupervised salient region segmentation tasks.
TokenCut is a graph-based approach that applies the Normal-
ized Cut algorithm to partition ViT tokens into two distinct
clusters, representing the salient foreground and the back-
ground respectively. The key challenge is to ensure that
the features are not only discriminative across clusters but
also consistent within clusters. We adopt three datasets:
ECSSD (Shi et al., 2015), DUTS (Wang et al., 2017), and
DUT-OMRON (Yang et al., 2013), following the TokenCut.

In Tab. 4, we report results both before and after post-
processing (bilateral solver) to assess both the raw quality
of ViT embeddings and final segmentation accuracy. Under
both settings, SRT improves the original ViTs pre-trained by
DINO, with an average increase in the maxF metric of 1.8%.
Notably, this improvement is constrained by the architec-
ture of TokenCut, as it operates at the coarse segmentation
level of ViT tokens. Directly applying TokenCut to the en-
hanced feature map is computationally impractical due to its
O(n2) complexity in constructing a fully connected graph
for graphcut. Given SRT’s capability to provide fine-grained
features, we anticipate future research on the effective lever-
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Backbone Head Method RMSE RMSE log AbsRel SqRel a1 a2 a3

DINOV2-ViT-B/14

Linear
Baseline 0.396 0.135 0.100 0.061 0.903 0.983 0.996
+OE 0.376 0.121 0.093 0.059 0.918 0.984 0.997
+SRT 0.349 0.108 0.087 0.052 0.930 0.990 0.998

DPT
Baseline 0.323 0.109 0.074 0.044 0.941 0.987 0.996
+OE 0.314 0.101 0.073 0.043 0.944 0.988 0.997
+SRT 0.305 0.096 0.073 0.043 0.945 0.989 0.997

DINOV2-ViT-S/14

Linear
Baseline 0.471 0.162 0.125 0.084 0.853 0.972 0.994
+OE 0.486 0.153 0.126 0.095 0.858 0.974 0.994
+SRT 0.457 0.140 0.118 0.085 0.876 0.980 0.996

DPT
Baseline 0.336 0.114 0.080 0.048 0.933 0.986 0.996
+OE 0.347 0.114 0.080 0.053 0.932 0.985 0.996
+SRT 0.334 0.104 0.080 0.051 0.935 0.988 0.996

DINOV2-ViT-L/14

Linear
Baseline 0.373 0.127 0.093 0.054 0.916 0.985 0.996
+OE 0.401 0.131 0.097 0.062 0.908 0.982 0.996
+SRT 0.365 0.113 0.090 0.053 0.924 0.989 0.998

DPT
Baseline 0.311 0.105 0.070 0.042 0.946 0.988 0.997
+OE 0.317 0.103 0.072 0.044 0.942 0.987 0.996
+SRT 0.297 0.092 0.070 0.041 0.947 0.991 0.997

Table 2. Results on NYU-V2 depth prediction. Our method can be extended without modification to improve intermediate features
to yield improved performance on the downstream depth prediction tasks. While ensembling of outputs (OE) can often be detrimental
to performance, applying SRT on the features from pre-trained backbones (inputs to prediction heads) can improve performance over
baselines by 4.7% and 14.9% on RMSE and RMSE log, using the linear prediction head and by 3.6% and 11.0% using the DPT head.

Method head baseline d=1 d=2 d=3
ViT-S/14 linear 44.24 44.44 44.57 44.64
ViT-B/14 linear 47.28 47.63 47.85 47.98
ViT-L/14 linear 47.79 48.18 48.44 48.62

Table 3. Results on Semantic Segmentation on ADE20K in
mIOU Experiments run with evaluation pipeline from InternImage
(Wang et al., 2023) and DINOV2 (Oquab et al., 2023). d denotes
the translation in pixels, ranging from -d to d with respect to a
coordinate location across horizontal and vertical directions, when
ensembling with SRT. As the size of the ensemble grows, the seg-
mentation mIOU increases. d: perturbation level.

age of SRT’s high-resolution embeddings.

3.5. Image Retrieval and Unsupervised Object Detection

Incorporating SRT into vision tasks involves updating ViT
features based on fine-tuned high-resolution features. How-
ever, questions remain regarding whether the observed en-
hancements in dense prediction tasks are solely due to in-
creased awareness of semantic boundaries in images and
whether this method extends to non-dense prediction tasks.
To address these concerns, we conducted a sanity check us-
ing image retrieval and unsupervised object detection tasks.

For image retrieval, we applied a nearest-neighbor protocol
following DINO, using the Oxford image retrieval datasets
(Radenović et al., 2018) and ViT-S/16 trained on ImageNet.

Notably, our base model’s pre-training poses a substantial
domain gap to the target datasets. Note that, we do not
naively average the class tokens from augmented images,
but ensemble the features by SRT prior to the attention
mechanism in the last layer. In this way, the final class token
is computed from the ensemble SRT feature. Although
image retrieval primarily requires distinctive image-level
features (rather than pixel-level), aiming to match images to
queries at a higher level, SRT exhibited effective adaptation,
resulting in a notable 2.6% relative improvement.

Regarding unsupervised object detection, we utilized To-
kenCut and the VOC07 dataset (Everingham et al., 2010).
Unsupervised object detection focuses on region-level dis-
criminative features, utilizing bounding boxes instead of
segmentation masks for object shapes. Despite this, we
observed a 1.0% relative improvement in the detection rate,
reaffirming that SRT does not compromise the information
within the original ViT embeddings. These results serve as
a critical validation of SRT’s capacity to obtain fine-grained
ViT features without distorting their original information.

4. Related Work
Stochastic Resonance was proposed by (Benzi et al., 1981)
and first applied in climate dynamics (Benzi et al., 1982)
and later in signal processing (Wellens et al., 2003; Kosko
& Mitaim, 2001; Chen et al., 2007) and acoustics (Shu-Yao
et al., 2016; Wang et al., 2014). It is used to enhance a
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Datasets ECSSD DUTS DUTS-OMRON
Feature Extractor maxF IoU Acc. maxF IoU Acc. maxF IoU Acc.
DINO ViT-S/16 80.3 71.2 91.8 67.2 57.6 90.3 60.0 53.3 88.0
+SRT 82.4 71.7 92.1 68.8 58.5 90.7 61.0 54.0 88.2
DINO ViT-S/16 w/ bilateral solver 87.4 77.2 93.4 75.5 62.4 91.4 69.7 61.8 89.7
+SRT 88.4 77.0 93.6 76.5 62.4 91.7 70.6 62.4 89.9
DINO ViT-B/16 80.3 71.0 91.5 66.4 56.7 89.5 56.7 50.5 85.4
+ SRT 81.8 72.6 92.2 68.8 58.3 90.6 58.0 51.6 86.1
DINO ViT-B/16 w/ bilateral solver 86.8 76.6 93.0 74.1 60.9 90.6 65.6 58.4 87.1
+ SRT 88.2 78.0 93.7 68.8 58.3 90.6 67.2 59.7 87.8

Table 4. Results on unsupervised salient region segmentation. Despite architectural constraints, our method yields consistent improve-
ment on all three datasets, with an average increase of 1.8% in the maxF metric.

Task Metric Baseline d=1 d=2 d=3 d=4 d=5 d=6

Image Retrieval mAP (Medium) 34.6 34.8 35.1 35.2 35.3 35.3 35.5
mAP (Hard) 13.0 13.1 13.2 13.1 13.2 13.2 13.1

Object Discovery Detection Rate 68.7 68.9 68.9 69.2 69.4 69.3 69.2

Table 5. Results on Image Retrieval and Object Discovery. SRT generalizes to non-dense prediction tasks operating on higher-level
region/image features to yield equal or better performance compared to the standard inference baseline. On the Oxford image retrieval
task, SRT on the DINO-ViT-S/16 model yields up to 2.6% relative improvement from the baseline model. On the unsupervised object
detection task, SRT improves the detection rate by up to 1.0%. d: translation in pixels when ensembling with SRT. d: perturbation level.

signal beyond the native resolution of the sensor by adding
white noise. We use the same principle to adapt generic ViT
image features for dense prediction downstream tasks. By
randomly translating the images, (i.e. introducing noise in
the spatial dimension), we can enhance ViT features to be
smoother and better suited for dense prediction tasks. We
leave extensions to other groups or semi-groups of transfor-
mations (e.g., scale or domain size) to future work.

Test-time data augmentation involves aggregating model
predictions from augmented test input to a final prediction.
Applying such a technique increases the robustness of pre-
dictions (Prakash et al., 2018; Song et al., 2017; Cohen
et al., 2019) and prediction accuracy (Krizhevsky et al.,
2012; Szegedy et al., 2015; Simonyan & Zisserman, 2014;
Jin et al., 2018; Matsunaga et al., 2017) in a variety of tasks.
It can be used during adaptation of model weights at test-
time (Park et al., 2024). It can also used to estimate the
uncertainty of the model (Matsunaga et al., 2017; Smith &
Gal, 2018; Ayhan & Berens, 2022; Wang et al., 2019). Dif-
ferent transformations are used to target different potential
tasks: (Pang et al., 2019) linearly combines the testing input
and a randomly sampled clean image to generate classifi-
cation prediction. (Isensee et al., 2018) performs flipping
and rotation to the test input image to generate 64 different
inputs and finally aggregates the outputs to perform medical
image segmentation. (Krizhevsky et al., 2012) crops the
images into smaller patches and ensemble the results for
classification. Self-ensembling (Bousselham et al., 2021) is
also closely related to our work. (Bousselham et al., 2021)

leverages multi-scale features fed into multiple independent
decoders to create an ensemble within a single model. (Liu
et al., 2018) ensembles outputs from networks augmented
with random noise layers to improve model robustness. SRT
aggregates information via adding spatial translations as
noise and can be considered a general case of test-time aug-
mentation, where ensembling is performed at the feature
level at intermediate layers of a ViT, instead of the output
level, which is novel.

Knowledge distillation aims to transfer the knowledge
from stronger teacher models to weaker student models
to improve their performance. (Hinton et al., 2015) trains
a student model to mimic the soft output distribution of
the teacher model. (Romero et al., 2014) extends this idea
to distill the intermediate features learned by the teacher
models. We consider a form of self-distillation (Zhang et al.,
2019), in which the student itself is used as the teacher to
improve learned representations.

Dense ViT feature extractor. Our work is closely related
to (Amir et al., 2021),which employs ViT for generating
dense visual descriptors. To extract these fine-grained fea-
tures, (Amir et al., 2021) reduce the stride allowing for
overlapping tokens and performing a single forward pass
with ViT. In SRT, instead of a single pass, we conduct multi-
ple passes using perturbed inputs. This modification reduces
the computational complexity from quadratic to linear.

Properties discovered by SRT. Additionally, our findings
underscore the segmentation capabilities of ViT embed-
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Method RMSE R log AbsRel SqRel a1 a2 a3
V

iT
-S Baseline 0.336 0.114 0.080 0.048 0.933 0.986 0.996

Bilinear 0.573 0.178 0.146 0.125 0.8 0.964 0.995
Bicubic 0.572 0.124 0.146 0.178 0.801 0.964 0.995

V
iT

-B Baseline 0.323 0.109 0.074 0.044 0.941 0.987 0.996
Bilinear 0.568 0.185 0.146 0.120 0.792 0.96 0.992
Bicubic 0.579 0.188 0.149 0.124 0.787 0.959 0.991

V
iT

-L Baseline 0.311 0.105 0.070 0.042 0.946 0.988 0.997
Bilinear 0.732 0.246 0.183 0.195 0.695 0.91 0.973
Bicubic 0.720 0.241 0.181 0.188 0.701 0.916 0.975

Table 6. Results on NYU-V2 depth prediction using interpo-
lated features For the interpolation method, we bilinearly or bicu-
bically interpolate the DINOV2 feature up to the image dimension
and perform an average pooling to return the feature to the original
dimension. The results are much worse than the baseline method,
which uses the original DINOV2 features without ensembling.

dings, aligning with recent claims in the field (Caron et al.,
2021; Yu et al., 2023). Enhanced features exhibit sharp, fine-
grained semantically relevant boundaries. Furthermore, SRT
method leverages the convexity properties (Park & Kim,
2022) of ViT embeddings, enabling convex combinations
(average pooling as a special case) during inference. SRT
is also related to (Darcet et al., 2024), which shows local
ViT tokens may be repurposed, possibly incurring decreased
performance on dense prediction tasks. SRT resolves this
issue by obtaining “localized” features by ensembling.

5. Discussion
Ensemble vs super-resolution. Although both increase
the spatial resolution, SRT achieves it by ensemble, which
differs from super-resolution: Given a signal x that is sub-
sampled to x̃, super-resolution aims to retrieve an approxi-
mation x̂ of x given x̃. Since information is lost in the sam-
pling, the reconstruction depends crucially on the choice of
prior. In this sense, super-resolution is a form of hallucina-
tion: Attribute details to x̂ that are not in x̃, in the hope that
they will somehow match those in x. This requires strong
faith in prior knowledge about x, P (x).

Given the same signal x, one could instead generate
multiple samples x̃i, each with a different kernel, and
then reconstruct a single estimate from the samples x̂ =
F (x̃1, . . . , x̃N ). Now, the estimator F has more informa-
tion available about x than in super-resolution: The sigma-
algebra spanned by the random variables x̃i is a superset of
the (trivial) sigma algebra spanned by the single sample x̃
in super-resolution. In other words, SRT which aggregates
different samples from a process contains more informa-
tion than any single sample about the process. To validate
this claim, we provide further ablation studies on compar-
ing with enhancing the features by spatial interpolation and
smoothing in Table 6 on NYU-V2 dataset with DINOV2

Architecture ResNet20 ResNet32 ResNet56
Accuracy 91.95 92.68 93.50
Accuracy w/ SRT 92.41 93.14 93.87
Relative error reduced 5.6% 6.3% 5.7%

Table 7. Results on Cifar-10 classification with ResNet. Stochas-
tic resonance consistently improves classification accuracy by an
average of 5.87% and as much as 6.3% on ResNet32, without
additional training.

backbone and DPT head, showing that simple feature inter-
polation is detrimental to the task.

Limitations. SRT has several limitations. The basic
embodiment increases inference cost and latency, as each
perturbed image necessitates a ViT forward pass. To ad-
dress this, one viable approach is knowledge distillation,
which involves fine-tuning the network to mimic the feature-
level output of SRT. We illustrate this process using the
DAVIS-2017 training dataset with DINO-ViT-S/16, achiev-
ing improved results (F&J-score 0.617 ⇒ 0.625) without
the use of labels or operations on the validation set. This
establishes a label-free, task-free transductive fine-tuning
scheme that adapts pre-trained ViT features to new target
datasets. Future directions may involve refining the distilla-
tion process on different layers and exploring the integration
of Stochastic Resonance directly into ViT architectures.

Conclusions. SRT offers a versatile feature-level ensem-
ble method that applies to any layer within any network
architecture that utilizes ViT as a feature extractor, eliminat-
ing the need for modifications to the model’s forward pass,
in contrast to most test-time augmentation and ensemble
methods that operate at the output level that require task-
specific designs. Compared with increasing token numbers,
SRT avoids the quadratic complexity related to the number
of ViT tokens, and is amenable to parallelization through
batching, ensuring computational efficiency. Furthermore,
the method allows ensembling without memory-intensive
resizing of all embeddings to full resolution, which can be
executed recursively, as described in Section 2.3. Practi-
cal implementations demonstrate smooth execution on even
laptop GPUs, confirming the efficiency of our approach.

It is worth noting that stochastic resonance is not limited
to ViT architectures, as demonstrated in Table 7, where we
apply the same stochastic resonance mechanism to ResNet
(He et al., 2016) on the image classification task, and on
average reduces error by a relative 5.87%. Stochastic reso-
nance also applies to other forms of quantization, such as
sale or domain size. However, our emphasis in this paper
is on ViTs that mostly use non-overlapping tokens, making
them particularly suited to our approach.
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