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Abstract

Conformal prediction is an emerging technique for uncertainty quantification that constructs
prediction sets guaranteed to contain the true label with a predefined probability. Previous
works often employ temperature scaling to calibrate classifiers, assuming that confidence cali-
bration benefits conformal prediction. However, the specific impact of confidence calibration
on conformal prediction remains underexplored. In this work, we make two key discover-
ies about the impact of confidence calibration methods on adaptive conformal prediction.
Firstly, we empirically show that current confidence calibration methods (e.g., temperature
scaling) typically lead to larger prediction sets in adaptive conformal prediction. Secondly,
by investigating the role of temperature value, we observe that high-confidence predictions
can enhance the efficiency of adaptive conformal prediction. Theoretically, we prove that
predictions with higher confidence result in smaller prediction sets on expectation. This
finding implies that the rescaling parameters in these calibration methods, when optimized
with cross-entropy loss, might counteract the goal of generating efficient prediction sets. To
address this issue, we propose Conformal Temperature Scaling (ConfTS), a variant of
temperature scaling with a novel loss function designed to enhance the efficiency of prediction
sets. This approach can be extended to optimize the parameters of other post-hoc methods
of confidence calibration. Extensive experiments demonstrate that our method improves
existing adaptive conformal prediction methods in both image and text classification tasks.

1 Introduction

Ensuring the reliability of model predictions is crucial for the safe deployment of machine learning such as
autonomous driving (Bojarski et al., 2016) and medical diagnostics (Caruana et al., 2015). Numerous methods
have been developed to estimate uncertainty and incorporate it into predictive models, including confidence
calibration (Guo et al., 2017) and Bayesian neural networks (Smith, 2013). However, these approaches lack
theoretical guarantees of model performance. Conformal prediction, on the other hand, offers a systematic
approach to construct prediction sets that contain ground-truth labels with a desired coverage guarantee
(Vovk et al., 2005; Shafer & Vovk, 2008; Balasubramanian et al., 2014; Angelopoulos & Bates, 2021). This
framework thus provides trustworthiness in real-world scenarios where wrong predictions are dangerous.

In the literature, conformal prediction is frequently associated with confidence calibration, which expects
the model to predict softmax probabilities that faithfully estimate the true correctness (Wei et al., 2022;
Yuksekgonul et al., 2023; Wang, 2023; Wang et al., 2024). For example, existing conformal prediction methods
usually employ temperature scaling (Guo et al., 2017), a post-hoc method that rescales the logits with a
scalar temperature, for a better calibration performance (Angelopoulos et al., 2021; Lu et al., 2022; 2023;
Gibbs et al., 2023). The underlying hypothesis is that well-calibrated models could yield precise probability
estimates, thus enhancing the reliability of generated prediction sets. However, the rigorous impacts of
current confidence calibration techniques on conformal prediction remain ambiguous in the literature, which
motivates our analysis of the connection between conformal prediction and confidence calibration.

In this paper, we empirically show that existing methods of confidence calibration increase the size of
prediction sets generated by adaptive conformal prediction methods. Moreover, we find that predictions with
high confidence (rescaled with a small temperature value) tend to produce efficient prediction sets while
maintaining the desired coverage guarantees. However, simply adopting an extremely small temperature
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value may result in meaningless prediction sets, as some tail probabilities can be truncated to zero due to the
finite-precision issue. Theoretically, we prove that a smaller temperature value leads to larger non-conformity
scores, resulting in more efficient prediction sets on expectation. This highlights that rescaling parameters of
post-hoc calibration methods, optimized by the cross-entropy loss, might counteract the goal of generating
efficient prediction sets.

To validate our theoretical findings, we propose a variant of temperature scaling, Conformal Temperature
Scaling (ConfTS), which rectifies the optimization objective through the efficiency gap, i.e., the deviation
between the threshold and the non-conformity score of the ground truth. In particular, ConfTS optimizes
the temperature value by minimizing the efficiency gap. This approach can be extended to optimize the
parameters of other post-hoc methods of confidence calibration, e.g., vector scaling and Platt scaling. Extensive
experiments show that ConfTS can effectively enhance the efficiency of existing adaptive conformal prediction
techniques, APS (Romano et al., 2020) and RAPS (Angelopoulos et al., 2021). Notably, we empirically
show that post-hoc calibration methods optimized by our loss function can also improve the efficiency of
prediction sets in both image and text classification (including large language models), which demonstrates
the generality of our method. In addition, we provide an ablation study of loss functions to show that the
proposed loss function can outperform the ConfTr loss (Stutz et al., 2022). In practice, our approach is
straightforward to implement within deep learning frameworks, requiring no hyperparameter tuning and
additional computational costs compared to standard temperature scaling.

We summarize our contributions as follows:

• We discover that current confidence calibration methods typically lead to larger prediction sets in
adaptive conformal prediction, while high-confidence predictions (using small temperatures) can
enhance the efficiency of prediction sets. We further identify a practical limitation where extremely
small temperature values cause numerical precision issues.

• We provide a theoretical analysis by proving that applying smaller temperature values in temperature
scaling results in more efficient prediction sets on expectation. This theoretical insight explains the
relationship between confidence calibration and conformal prediction.

• We validate our theoretical findings by developing Conformal Temperature Scaling (ConfTS), a
variant of temperature scaling that exploits the relationship between temperature and set efficiency.
Extensive experiments demonstrate that ConfTS enhances the efficiency of prediction sets in adaptive
conformal prediction and can be extended to other post-hoc methods of confidence calibration.

2 Preliminary

In this work, we consider the multi-class classification task with K classes. Let X ⊂ Rd be the input space
and Y := {1, 2, · · · , K} be the label space. We represent a pre-trained classification model by f : X → RK .
Let (X, Y ) ∼ PX Y denote a random data pair sampled from a joint data distribution PX Y , and fy(x) denote
the y-th element of logits vector f(x) with an instance x. Normally, the conditional probability of class y is
approximated by the softmax probability output π(x) defined as:

P{Y = y|X = x} ≈ πy(x; t) = σ(f(x); t)y = efy(x)/t∑K
i=1 efi(x)/t

, (1)

where σ is the softmax function and t denotes the temperature parameter (Guo et al., 2017). The temperature
softens the output probability with t > 1 and sharpens the probability with t < 1. After training the model,
the temperature can be tuned on a held-out validation set by optimization methods.

Conformal prediction. To provide theoretical guarantees for model predictions, conformal prediction
(Vovk et al., 2005) is designated for producing prediction sets that contain ground-truth labels with a desired
probability rather than predicting one-hot labels. In particular, the goal of conformal prediction is to construct
a set-valued mapping C : X → 2Y that satisfies the marginal coverage:

P(Y ∈ C(x)) ≥ 1 − α, (2)
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where α ∈ (0, 1) denotes a user-specified error rate, and C(x) ⊂ Y is the generated prediction set.

Before deployment, conformal prediction begins with a calibration step, using a held-out calibration set
Dcal := {(xi, yi)}n

i=1. We calculate the non-conformity score si = S(xi, yi) for each example (xi, yi), where
si is a measure of deviation between an example and the training data, which we will specify later. Then, we
determine the 1 − α quantile of the non-conformity scores as a threshold:

τ = inf
{

s : |{i : S(xi, yi) ≤ s}|
n

≥ ⌈(n + 1)(1 − α)⌉
n

}
. (3)

For a test instance xn+1, we first calculate the non-conformity score for each label in Y, and then construct
the prediction set C(xn+1) by including labels whose non-conformity score falls within τ :

C(xn+1) = {y ∈ Y : S(xn+1, y) ≤ τ}. (4)

In this paper, we focus on adaptive conformal prediction methods, which are designed to improve conditional
coverage (Romano et al., 2020). However, they usually suffer from inefficiency in practice: these methods com-
monly produce large prediction sets (Angelopoulos et al., 2021). In particular, we take the two representative
methods: APS (Romano et al., 2020) and RAPS (Angelopoulos et al., 2021).

Adaptive Prediction Set (APS). (Romano et al., 2020) In the APS method, the non-conformity score
of a data pair (x, y) is calculated by accumulating the sorted softmax probability, defined as:

SAP S(x, y) = π(1)(x) + · · · + u · πo(y,π(x))(x), (5)

where π(1)(x), π(2)(x), · · · , π(K)(x) are the sorted softmax probabilities in descending order, and o(y, π(x))
denotes the order of πy(x), i.e., the softmax probability for the ground-truth label y. In addition, the term u
is an independent random variable that follows a uniform distribution on [0, 1].

Regularized Adaptive Prediction Set (RAPS). (Angelopoulos et al., 2021) The non-conformity
score function of RAPS encourages a small set size by adding a penalty, as formally defined below:

SRAP S(x, y) = π(1)(x) + · · · + u · πo(y,π(x))(x) + λ · (o(y, π(x)) − kreg)+, (6)

where (z)+ = max{0, z}, kreg controls the number of penalized classes, and λ is the penalty term.

Notably, both methods incorporate a uniform random variable u to achieve exact 1−α coverage (Angelopoulos
et al., 2021). Moreover, we use coverage and average size to evaluate the prediction sets. A detailed description
of the metrics is provided in Appendix A.

3 Motivation

3.1 Adaptive conformal prediction with calibrated prediction

Confidence calibration (Guo et al., 2017) expects the model to predict softmax probabilities that faithfully
estimate the true correctness: ∀p ∈ [0, 1], P{Y = y|πy(x) = p} = p. To measure the miscalibration, Expected
Calibration Error (ECE) (Naeini et al., 2015) averages the difference between the accuracy acc(·) and
confidence conf(·) in M bins: ECE =

∑M
m=1

|Bm|
|Itest| |acc(Bm) − conf(Bm)|, where Bm denotes the m-th bin.

In conformal prediction, previous work claims that deep learning models are often badly miscalibrated, leading
to large prediction sets that do not faithfully articulate the uncertainty of the model (Angelopoulos et al.,
2021). To address the issue, researchers usually employ temperature scaling (Guo et al., 2017) to process
the model outputs for better calibration performance. However, the precise impacts of current confidence
calibration techniques on adaptive conformal prediction remain unexplored, which motivates our investigation
into this connection.

To figure out the correlation between confidence calibration and adaptive conformal prediction, we incorporate
various confidence calibration methods to adaptive conformal predictors for a ResNet50 model (He et al.,

3



Under review as submission to TMLR

Table 1: The performance of APS and RAPS on CIFAR-100 dataset with ResNet50 model, using various
calibration methods. In particular, we apply label smoothing (LS), Mixup (Mixup), Bayesian methods
(Bayesian), vector scaling (VS), Platt scaling (PS), and temperature scaling (TS). We do not employ
calibration techniques in the baseline (Base). We repeat each experiment for 20 times. “↓” indicates smaller
values are better. “ ” and “ ” indicate whether the performance is superior/inferior to the baseline. The
results show that existing confidence calibration methods deteriorate the efficiency of APS and RAPS.

Method Base LS Mixup Bayesian TS PS VS
Accuracy 0.77 0.78 0.78 0.77 0.77 0.77 0.77
ECE ↓ 8.79 4.39 2.96 4.30 3.62 3.81 4.06

α
=

0.
1 APS Coverage 0.90 0.90 0.90 0.90 0.90 0.90 0.90

Avg.size ↓ 4.91 11.9 12.5 7.55 6.69 7.75 7.35

RAPS Coverage 0.90 0.90 0.90 0.90 0.90 0.90 0.90
Avg.size ↓ 2.56 9.50 10.2 6.46 3.58 3.72 3.85

α
=

0.
05 APS Coverage 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Avg.size ↓ 11.1 19.8 20.1 15.6 12.8 13.9 11.3

RAPS Coverage 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Avg.size ↓ 6.95 14.5 15.5 9.34 10.4 11.0 8.70

2016) on CIFAR-100 dataset (Krizhevsky et al., 2009). Specifically, we use six calibration methods, including
four post-hoc methods – vector scaling (Guo et al., 2017), Platt scaling (Platt et al., 1999), temperature
scaling (Guo et al., 2017), Bayesian methods (Daxberger et al., 2021), and two training methods – label
smoothing (Szegedy et al., 2016), mixup (Zhang et al., 2018). More details of calibration methods and setups
are presented in Appendix B and Appendix C.

Confidence calibration methods deteriorate the efficiency of prediction sets. In Table 1, we present
the performance of confidence calibration and conformal prediction using APS and RAPS with various
calibration methods for a ResNet50 model. The results show that the influences of those calibration methods
are consistent: models calibrated by both post-hoc and training calibration techniques generate
large prediction sets with lower ECE (i.e., better calibration). For example, on the ImageNet dataset,
temperature scaling enlarges the average size of prediction sets of APS from 9.06 to 12.1, while decreasing the
ECE from 3.69% to 2.24%. This finding demonstrates an inverse relationship between calibration performance
and prediction set efficiency. In addition, incorporating calibration methods into conformal prediction does
not violate the 1 − α marginal coverage as the assumption of data exchangeability is still satisfied: we use a
hold-out validation dataset for conducting confidence calibration methods. In addition, we present the results
of the LAC score (Sadinle et al., 2019) in Appendix D.1, where we observe no clear correlation between
confidence calibration methods and conformal prediction.

Overall, we empirically show that current confidence calibration methods negatively impact the efficiency of
prediction sets, challenging the conventional practice of employing temperature scaling in adaptive conformal
prediction. While confidence calibration methods are primarily designed to address overconfidence, we
conjecture that high confidence may enhance prediction sets in efficiency.

3.2 Adaptive Conformal prediction with high-confidence prediction

In this section, we investigate how the high-confidence prediction influences the adaptive conformal prediction.
In particular, we employ temperature scaling with different temperatures t ∈ [0.4, 0.5, · · · , 1.3] (defined in
Eq. (1)) to control the confidence level. The analysis is conducted on the ImageNet dataset with various
model architectures, using APS and RAPS at α = 0.1.
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Figure 1: (a) & (b): The performance of APS and RAPS with different temperatures on ImageNet. The
results show that high-confidence predictions, with a small temperature, lead to efficient prediction sets. (c):
The performance of APS for ResNet18 on ImageNet with extremely low temperatures. In this setting, APS
generates large prediction sets with conservative coverage due to finite precision.

High confidence enhances the efficiency of adaptive conformal prediction. In Figures 1a and 1b,
we present the average size of prediction sets generated by APS and RAPS under various temperature values
t. The results show that a highly-confident model, produced by a small temperature value, would decrease
the average size of prediction sets. For example, using VGG16, the average size is reduced by four times –
from 20 to 5, with the decrease of the temperature value from 1.3 to 0.5. There naturally arises a question:
is it always better for efficiency to take smaller temperature values?

In Figure 1c, we report the average size of prediction sets produced by APS on ImageNet with ResNet18,
using extremely small temperatures (i.e. t ∈ {0.12, 0.14, · · · , 0.2}). Different from the above, APS generates
larger prediction sets with smaller temperatures in this range, even leading to conservative coverage. This
problem stems from floating point numerical errors caused by finite precision (see Appendix E for a detailed
explanation). The phenomenon indicates that it is non-trivial to find the optimal temperature value for the
highest efficiency of adaptive conformal prediction.

3.3 Theoretical explanation

Intuitively, confident predictions are expected to yield smaller prediction sets than conservative ones. Here, we
provide a theoretical justification for this by showing how the reduction of temperature decreases the average
size of prediction sets in the case of non-randomized APS (simply omit the random term in Eq. (5)). We start
by analyzing the relationship between the temperature t and the APS score. For simplicity, assuming the logits
vector f(x) := [f1(x), f2(x), . . . , fK(x)]T satisfies f1(x) > f2(x) > · · · > fK(x), then, the non-randomized
APS score for class k ∈ Y is given by:

S(x, k, t) =
k∑

i=1

efi(x)/t∑K
j=1 efj(x)/t

. (7)

Then, we can derive the following proposition on the connection of the temperature and the score:
Proposition 3.1. For instance x ∈ X , let S(x, k, t) be the non-conformity score function of an arbitrary
class k ∈ Y, defined as in Eq. 7. Then, for a fixed temperature t0 ∈ R+ and ∀t ∈ (0, t0), we have

S(x, k, t0) ≤ S(x, k, t).

The proof is provided in Appendix F.1. In Proposition 3.1, we show that the APS score increases as
temperature decreases, and vice versa. Then, for a fixed temperature t0 ∈ R+, we further define ϵ(k, t) =
S(x, k, t) − S(x, k, t0) ≥ 0 as the difference of the APS scores. As a corollary of Proposition 3.1, we conclude
that ϵ(k, t) is negatively correlated with the temperature t. We provide the proof for this corollary in
Appendix F.2. The corollary is formally stated as follows:
Corollary 3.2. For any sample x ∈ X and a fixed temperature t0, the difference ϵ(k, t) is a decreasing
function with respect to t ∈ (0, t0).
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In the following, we further explore how the change in the APS score affects the average size of the prediction
set. In the theorem, we make two continuity assumptions on the CDF of the non-conformity score (see
Appendix F.3), following prior works (Lei, 2014; Sadinle et al., 2019). Given these assumptions, we can derive
an upper bound for the expected size of C(x, t) for any t ∈ (0, t0):
Theorem 3.3. Under assumptions in Appendix F.3, there exists constants c1, γ ∈ (0, 1] such that

E
x∈X

[|C(x, t)|] ≤ K −
∑
k∈Y

c1[2ϵ(k, t)]γ , ∀t ∈ (0, t0).

Interpretation. The proof of Theorem 3.3 is presented in Appendix F.3. Through Theorem 3.3, we show
that for any temperature t, the expected size of the prediction set C(x, t) has an upper bound with respect
to the non-conformity score deviation ϵ. Recalling that ϵ increases with the decrease of temperature t, we
conclude that a lower temperature t results in a larger difference ϵ, thereby narrowing the prediction set
C(x, t). Overall, the analysis shows that tuning temperature values can potentially enhance the efficiency of
adaptive conformal prediction. In practice, we may employ grid search to find the optimal T for conformal
prediction, but it requires defining the search range of T and cannot be extended to post-hoc calibration
methods with more parameters, like Platt scaling and Vector scaling. Thus, we propose an alternative solution
for automatically optimizing the parameters to enhance the efficiency of conformal prediction.

3.4 An alternative method for improving efficiency

In the previous analysis, we empirically and theoretically demonstrate that standard temperature scaling
optimized by negative log-likelihood often leads to degraded efficiency, while searching for a relatively small
temperature can potentially address this issue. In this work, we propose an alternative method, Conformal
Temperature Scaling (ConfTS), to automatically optimize the parameters of post-hoc calibration methods.
This is a variant of temperature scaling that directly optimizes the objective function toward generating
efficient prediction sets, and it can be extended to other post-hoc calibration methods.

For a test example (x, y), conformal prediction aims to construct an efficient prediction set C(x) that contains
the true label y. Thus, the optimal prediction set meeting this requirement is defined as:

C∗(x) = {k ∈ Y : S(x, k) ≤ S(x, y)}.

Specifically, the optimal prediction set is the smallest set that allows the inclusion of the ground-truth label.
Recall that the prediction set is established through the τ calculated from the calibration set (Eq. (3)), the
optimal set can be attained if the threshold τ well approximates the non-conformity score of the ground-truth
label S(x, y). Therefore, we can measure the redundancy of the prediction set by the differences between
thresholds τ and the score of true labels, defined as:
Definition 3.4 (Efficiency Gap). For an example (x, y), a threshold τ and a non-conformity score function
S(·), the efficiency gap of the instance x is given by:

G(x, y, τ) = τ − S(x, y).

In particular, a positive efficiency gap indicates that the ground-truth label y is included in the prediction set
y ∈ C(x), and vice versa. To optimize for the optimal prediction set, we expect to increase the efficiency gap
for samples with negative gaps and decrease it for those with positive gaps. We propose to accomplish the
optimization by tuning the temperature t. This allows us to optimize the efficiency gap since S(x, y) and τ
are functions with respect to the temperature t (see Eq. (7)).

Conformal Temperature Scaling. To this end, we propose our method – Conformal Temperature Scaling
(dubbed ConfTS), which rectifies the objective function of temperature scaling through the efficiency gap.
In particular, the loss function for ConfTS is formally given as follows:

LConfTS(x, y; t) = (τ(t) − S(x, y, t))2, (8)
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where τ(t) is the conformal threshold and S(x, y, t) denotes the non-randomized APS score of the example
(x, y) with respect to t (see Eq. (7)). By minimizing the mean squared error, the ConfTS loss encourages
smaller prediction sets for samples with positive efficiency gaps, and vice versa.

The optimization of ConfTS. To preserve the exchangeability assumption, we tune the temperature to
minimize the ConfTS loss on a held-out validation set. Following previous work (Stutz et al., 2022), we split
the validation set into two subsets: one to compute τ(t), and the other to calculate the ConfTS loss with the
obtained τ(t). Specifically, the optimization problem can be formulated as:

t∗ = arg min
t∈R+

1
|Dloss|

∑
(xi,yi)∈Dloss

LConfTS(xi, yi; t), (9)

where Dloss denotes the subset for computing ConfTS loss. Trained with the ConfTS loss, we can optimize
the temperature t for adaptive prediction sets with high efficiency without violating coverage. Since the
threshold τ is determined by the pre-defined α, our ConfTS method can yield different temperature values
for each α.

Extensions to other post-hoc calibration methods. Noteworthy, our ConfTS loss is a general method
and can be easily incorporated into existing post-hoc calibration methods such as Platt scaling (Platt et al.,
1999) and vector scaling (Guo et al., 2017). Formally, for any rescaling function ϕθ with parameters θ, we
can formulate the method as follows. First, we define the k-th softmax probability after rescaling as:

πk(x; θ) = σ(ϕθ · f(x))k = e[ϕθ·f(x)]k∑K
i=1 e[ϕθ·f(x)]i

The corresponding non-conformity score for each class k ∈ Y is given by S(x, k; θ) =
∑k

i=1 πk(x; θ). With
the threshold τ(θ), we rewrite the ConfTS loss by

LConfTS(x, y; t) = (τ(θ) − S(x, y, θ))2,

Then, the optimization objective can be formulated as:

θ∗ = arg min
θ

1
|Dloss|

∑
(xi,yi)∈Dloss

LConfTS(xi, yi; θ).

4 Experiments

4.1 Experimental setup

Datasets. We evaluate ConfTS on both image and text classification tasks. For image classification, we
employ CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Deng et al., 2009), and ImageNet-V2 (Recht et al.,
2019). For text classification, we utilize AG news (Zhang et al., 2015) and DBpedia (Auer et al., 2007)
datasets. For ImageNet, we split the test dataset containing 50,000 images into 10,000 images for calibration
and 40,000 for testing. For CIFAR-100 and ImageNet-V2, we split their test datasets, each containing 10,000
figures, into 4,000 figures for calibration and 6,000 for testing. For text datasets, we split each test dataset
equally between calibration and testing. Additionally, we split the calibration set into two subsets of equal
size: one subset is the validation set to optimize the temperature value with ConfTS, while the other half is
the conformal set for conformal calibration.

Models. For ImageNet and ImageNet-V2, we employ 6 pre-trained classifiers from TorchVision (Paszke
et al., 2019) – ResNet18, ResNet50, ResNet101 (He et al., 2016), DenseNet121 (Huang et al., 2017), VGG16
(Simonyan & Zisserman, 2015) and ViT-B-16 (Dosovitskiy et al., 2021). We also utilize the same model
architectures for CIFAR-100 and train them from scratch. For text classification, we finetune a pre-trained
BERT (Devlin, 2018) and GPT-Neo-1.3B (Black et al., 2021) on each dataset. The model architecture consists
of a frozen pre-trained encoder followed by a trainable linear classifier layer. For each dataset, we employ the
AdamW optimizer with a learning rate of 2e-5. The training is conducted over 3 epochs with a batch size of
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Table 2: Performance of ConfTS using APS and RAPS on ImageNet dataset. The tuned T is the temperature
value optimized by our loss function. We repeat each experiment for 20 times. “↓” indicates smaller values
are better. Bold numbers are superior results. Results show that our ConfTS can improve the performance
of APS and RAPS, maintaining the desired coverage rate.

Model Error rate Tuned T
APS RAPS

Coverage Average size ↓ Coverage Average size ↓
Base / ConfTS

ResNet18 α = 0.1 0.593 0.900 / 0.900 14.09 / 7.531 0.900 / 0.900 9.605 / 5.003
α = 0.05 0.591 0.951 / 0.952 29.58 / 19.59 0.950 / 0.950 14.72 / 11.08

ResNet50 α = 0.1 0.705 0.899 / 0.900 9.062 / 4.791 0.899 / 0.900 5.992 / 3.561
α = 0.05 0.709 0.950 / 0.951 20.03 / 12.22 0.950 / 0.951 9.423 / 5.517

ResNet101 α = 0.1 0.793 0.900 / 0.899 6.947 / 4.328 0.900 / 0.899 4.819 / 3.289
α = 0.05 0.785 0.950 / 0.950 15.73 / 10.51 0.950 / 0.950 7.523 / 5.091

DenseNet121 α = 0.1 0.659 0.900 / 0.899 9.271 / 4.746 0.900 / 0.900 6.602 / 3.667
α = 0.05 0.675 0.950 / 0.949 20.37 / 11.47 0.949 / 0.949 10.39 / 6.203

VGG16 α = 0.1 0.604 0.901 / 0.901 11.73 / 6.057 0.901 / 0.900 8.118 / 4.314
α = 0.05 0.627 0.951 / 0.951 23.71 / 14.78 0.950 / 0.950 12.27 / 8.350

ViT-B-16 α = 0.1 0.517 0.900 / 0.901 14.64 / 2.315 0.902 / 0.901 6.889 / 1.800
α = 0.05 0.482 0.951 / 0.950 36.72 / 9.050 0.950 / 0.950 12.63 / 3.281

32. The models are trained for 100 epochs using SGD with a momentum of 0.9, a weight decay of 0.0005,
and a batch size of 128. We set the initial learning rate as 0.1 and reduce it by a factor of 5 at 60 epochs.

Conformal prediction algorithms. We leverage three adaptive conformal prediction methods, APS
and RAPS, to generate prediction sets at error rate α ∈ {0.1, 0.05}. In addition, we set the regularization
hyper-parameter for RAPS to be: kreg = 1 and λ ∈ {0.001, 0.002, 0.004, 0.006, 0.01, 0.015, 0.02}. For the
evaluation metrics, we employ coverage and average size to assess the performance of prediction sets. All
experiments are repeated 20 times with different seeds, and we report average performances.

4.2 Main results

ConfTS improves current adaptive conformal prediction methods. In Table 2, we present the
performance of APS and RAPS (λ = 0.001) with ConfTS on the ImageNet dataset. A salient observation
is that ConfTS drastically improves the efficiency of adaptive conformal prediction, while maintaining the
marginal coverage. For example, on the ViT model at α = 0.05, ConfTS reduces the average size of APS by 7
times - from 36.72 to 5.759. Averaged across six models, ConfTS improves the efficiency of APS by 58.3% at
α = 0.1. We observe similar results on CIFAR-100 and ImageNet-V2 dataset in Appendix H and Appendix G.
Moreover, our ConfTS remains effective for RAPS across various penalty terms on ImageNet as shown in
Appendix I. Furthermore, in Appendix J, we demonstrate that ConfTS can lead to small prediction sets for
SAPS (Huang et al., 2024), a recent technique of adaptive conformal prediction. In addition, we find that the
tuned temperature values are generally smaller than 1.0 and different for various settings, which demonstrates
the importance of the automatic method. Overall, empirical results show that ConfTS consistently improves
the efficiency of existing adaptive conformal prediction methods.

Our method can work with other post-hoc calibration methods. We extend the application of
ConfTS loss (Eq. (8)) to other post-hoc calibration methods. We introduce conformal Platt scaling (dubbed
ConfPS) and conformal vector scaling (dubbed ConfVS), where the parameters are optimized using ConfTS
loss. We employ ResNet50 and VGG16 models on the ImageNet dataset for thimage task, as well as BERT
and GPT-Neo-13B on the DBpedia dataset for the text task. The error rate is α = 0.1. Table 3 shows
that both ConfPS and ConfVS can help construct efficient prediction sets. This indicates that replacing
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Table 3: The average size of APS and RAPS using ConfPS and ConfVS. ConfPS and ConfVS are the variants
of Platt scaling and vector scaling, optimized by our ConfTS loss. “ ” and “ ” indicate the performance is
superior/inferior to the baseline. The results show that by rescaling the logits with ConfPS and ConfVS, the
algorithm can construct efficient prediction sets, demonstrating the generality of our loss function.

Dataset Model APS RAPS
Baseline ConfTS ConfPS ConfVS Baseline ConfTS ConfPS ConfVS

ImageNet
ResNet50 9.062 4.791 2.571 4.564 5.992 3.561 2.446 3.303

DenseNet121 9.271 4.746 3.169 5.345 6.602 3.667 3.224 3.683
VGG16 11.73 6.057 3.729 7.020 8.118 4.314 3.558 4.745

ViT-B-32 14.64 2.315 1.743 4.797 6.899 1.800 1.575 2.549

AG news BERT 2.105 1.886 1.808 1.979 2.004 1.802 1.794 1.949
GPT-Neo-1.3B 2.022 1.911 1.749 1.897 2.018 1.909 1.728 1.884

Dbpedia BERT 3.557 2.905 2.96 3.869 3.458 2.908 2.837 3.744
GPT-Neo-1.3B 3.171 2.178 1.826 1.884 3.137 2.144 1.768 2.415

Average 13.89 6.697 4.889 7.839 9.557 5.526 4.733 6.068

Table 4: The average size of APS and RAPS with various post-hoc calibration methods optimized by our loss
and ConfTr loss. “ ” and “ ” indicate the performance is superior/inferior to the baseline. Bold numbers are
superior results between two loss functions. The results show that ConfTS loss achieves better performance
than ConfTr loss in most cases.

Model Baseline ConfTS ConfPS ConfVS
Our loss ConfTr loss Our loss ConfTr loss Our loss ConfTr loss

ResNet50 APS 9.062 4.719 / 8.864 2.571 / 2.657 4.564 / 4.471
RAPS 5.992 3.561 / 5.980 2.446 / 2.500 3.303 / 3.333

VGG16 APS 11.73 6.057 / 9.822 3.729 / 4.193 7.020 / 6.757
RAPS 8.118 4.314 / 6.825 3.558 / 3.921 4.745 / 4.742

Average 8.726 4.663 / 7.873 3.076 / 3.318 4.908 / 4.826

cross-entropy loss with ConfTS loss in post-hoc calibration methods consistently enhances the efficiency of
adaptive conformal prediction. Overall, these results validate the effectiveness of ConfTS loss across different
calibration methods.

ConfTS maintains the adaptiveness. Adaptiveness (Romano et al., 2020; Angelopoulos et al., 2021;
Seedat et al., 2023) requires prediction sets to communicate instance-wise uncertainty: easy examples should
obtain smaller sets than hard ones. In this part, we examine the impact of ConfTS on the adaptiveness of
prediction sets and measure the instance difficulty by the order of the ground truth o(y, π(x)). Specifically,
we partition the sample by label order: 1, 2-3, 4-6, 7-10, 11-100, 101-1000, following (Angelopoulos et al.,
2021). Figure 2a and Figure 2b show that prediction sets, when applied with ConfTS, satisfy the adaptiveness
property. Notably, employing ConfTS can promote smaller prediction sets for all examples ranging from easy
to hard. Overall, the results demonstrate that APS with ConfTS succeeds in producing adaptive prediction
sets: examples with lower difficulty obtain smaller prediction sets on average.

Ablation study on the size of validation and calibration set. In the experiment, ConfTS splits the
calibration data into two subsets: validation set for tuning the temperature and conformal set for conformal
calibration. In this part, we analyze the impact of this split on the performance of ConfTS by varying the
validation and conformal dataset sizes from 3,000 to 8,000 samples while maintaining the other part at 5,000
samples. We use ResNet18 and ResNet50 on ImageNet, with APS at α = 0.1. Figure 2c and 2d show that
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Figure 2: (a)&(b): Average sizes of examples with different difficulties using APS on ResNet18 and ResNet50
respectively. Results show that ConfTS can maintain adaptiveness. (c)&(d) Average sizes of APS employed
with ConfTS under various sizes of (c) conformal dataset (d) validation dataset. Results show that our
ConfTS is robust to variations in the validation and conformal dataset size.

Table 5: The performance of ConfTS using various non-conformity scores to compute the efficiency gap.
We consider standard APS and RAPS score as well as their non-randomized variants. Each experiment
is repeated 20 times. “Avg.size” and “Cov.” represent the results of average size and coverage, and ’Base’
presents the results without ConfTS. “↓” indicates smaller values are better. “ ” and “ ” indicate the
performance is superior/inferior to the baseline. Bold numbers are superior results.

Model Score Base APS_no_random RAPS_no_random APS_random RAPS_random
Avg.size ↓ Cov. Avg.size ↓ Cov. Avg.size ↓ Cov. Avg.size ↓ Cov. Avg.size ↓ Cov.

ResNet18 APS 14.09 0.900 7.531 0.900 7.752 0.900 13.67 0.900 13.97 0.900
RAPS 9.605 0.900 5.003 0.900 5.346 0.900 11.36 0.900 11.58 0.900

ResNet50 APS 9.062 0.900 4.791 0.900 5.201 0.900 12.92 0.900 16.43 0.900
RAPS 5.992 0.900 3.561 0.900 3.782 0.900 9.838 0.900 11.70 0.900

the performance of ConfTS remains consistent across different conformal dataset sizes and validation dataset
sizes. Based on these results, we choose a calibration set including 10000 samples and split it into two equal
subsets for the validation and conformal set. In summary, the performance of ConfTS is robust to variations
in the validation dataset and conformal dataset size.

Our loss function outperforms ConfTr loss. Previous work (Stutz et al., 2022) proposes Conformal
Training (ConfTr), which enhances prediction set efficiency during training through a novel ConfTr loss
function. In this part, We compare the performance of ConfTS, ConfPS, and ConfVS when trained with both
ConfTr loss and our proposed ConfTS loss. Using ResNet50 and VGG16 models on ImageNet, we generate
prediction sets with APS and RAPS at an error rate α = 0.1. The results in Table 4 demonstrate that while
both loss functions improve prediction set efficiency, our loss normally achieves better performance than
ConfTr loss. For example, with the ResNet50 model, ConfTS loss reduces the average size of APS to 4.791,
compared to 8.864 when using ConfTr loss. Overall, the proposed loss function is superior to the ConfTr loss
in optimizing the calibration methods.

Ablation study on the non-conformity score in ConfTS. In this ablation, we compare the performance
of ConfTS trained with various non-conformity scores in Eq. (8), including standard APS and RAPS, as well
as their non-randomized variants. Table 5 presents the performance of prediction sets generated by standard
APS and RAPS (λ = 0.001) methods with different variants of ConfTS, employing ResNet18 and ResNet50
on ImageNet. The results show that ConfTS with randomized scores fails to produce efficient prediction sets,
while non-randomized scores result in small prediction sets. This is because the inclusion of the random
variable u leads to the wrong estimation of the efficiency gap, thereby posing challenges to the optimization
process in ConfTS. Moreover, randomized APS consistently performs better than randomized RAPS, even in
the case of using the standard RAPS to generate prediction sets. Overall, our findings show that ConfTS
with the non-randomized APS outperforms the other scores in enhancing the efficiency of prediction sets.
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5 Related Work

Conformal prediction. Conformal prediction (Papadopoulos et al., 2002; Vovk et al., 2005) is a statistical
framework for uncertainty qualification. Some methods leverage post-hoc techniques to enhance prediction
sets (Romano et al., 2020; Angelopoulos et al., 2021; Ghosh et al., 2023; Huang et al., 2024). For example,
Adaptive Prediction Sets (APS) (Romano et al., 2020) calculates the score by accumulating the sorted softmax
values in descending order. However, the softmax probabilities typically exhibit a long-tailed distribution, and
thus those tail classes are often included in the prediction sets. To alleviate this issue, Regularized Adaptive
Prediction Sets (RAPS) (Angelopoulos et al., 2021) exclude tail classes by appending a penalty to these
classes, resulting in efficient prediction sets. These post-hoc methods often employ temperature scaling for
better calibration performance (Angelopoulos et al., 2021; Lu et al., 2022; Gibbs et al., 2023; Lu et al., 2023).
In our work, we show that existing confidence calibration methods could harm the efficiency of adaptive
conformal prediction.

Some works propose training time regularizations to improve the efficiency of conformal prediction (Colombo
& Vovk, 2020; Stutz et al., 2022; Einbinder et al., 2022; Bai et al.; Correia et al., 2024). For example,
uncertainty-aware conformal loss function (Einbinder et al., 2022) optimizes the efficiency of prediction sets by
encouraging the non-conformity scores to follow a uniform distribution. Moreover, conformal training (Stutz
et al., 2022) constructs efficient prediction sets by prompting the threshold to be less than the non-conformity
scores. In addition, information-based conformal training (Correia et al., 2024) incorporates side information
into the construction of prediction sets. In this work, we focus on post-hoc training methods, which only
require the pre-trained models for conformal prediction. ConfTS is easy to implement and requires low
computation resources.

Confidence calibration. Confidence calibration has been studied in various contexts in recent years. Some
works address the miscalibration problem by post-hoc methods, including histogram binning (Zadrozny &
Elkan, 2001) and Platt scaling (Platt et al., 1999). Besides, regularization methods like entropy regularization
(Pereyra et al., 2017) and focal loss (Mukhoti et al., 2020) are also proposed to improve the calibration
performance of deep neural networks. A concurrent work (Dabah & Tirer, 2024) also investigates the effects
of temperature scaling on conformal prediction. However, they only focus on the temperature scaling and
do not extend the conclusion to other post-hoc and training methods of confidence calibration. In this
work, we provide a more comprehensive analysis with both post-hoc and training methods of confidence
calibration. In addition to the analysis, we also provide a theoretical explanation and introduce a novel
method to automatically optimize the parameters of post-hoc calibrators.

6 Conclusion

In this paper, we investigate the relationship between two uncertainty estimation frameworks: confidence
calibration and conformal prediction. We make two discoveries about this relationship: firstly, existing
confidence calibration methods would lead to larger prediction sets for adaptive conformal prediction;
secondly, high-confidence prediction could enhance the efficiency of adaptive conformal prediction. We
prove that applying a smaller temperature to a prediction could lead to more efficient prediction sets on
expectation. Inspired by this, we propose a variant of temperature scaling, Conformal Temperature Scaling
(ConfTS), which rectifies the optimization objective toward generating efficient prediction sets. Our method
can be extended to other post-hoc calibrators for improving conformal predictors. Extensive experiments
demonstrate that our method can enhance existing adaptive conformal prediction methods, in both image and
text classification tasks. Our work challenges the conventional wisdom of utilizing confidence calibration for
conformal prediction, and we hope it can inspire specially-designed methods to improve the two frameworks
of uncertainty estimation.

Limitations. In this work, the conclusions of our analysis are mostly for adaptive conformal prediction
methods, without generalizing to the LAC score. In addition, the proposed method only focuses on enhancing
the efficiency of prediction sets and may not help in conditional coverage, similar to current training methods
for conformal prediction. We believe it can be interesting to design loss functions specifically tailored for
improving conditional coverage, in future works.

11



Under review as submission to TMLR

References
Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and distribution-

free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

Anastasios Nikolas Angelopoulos, Stephen Bates, Michael I. Jordan, and Jitendra Malik. Uncertainty sets for
image classifiers using conformal prediction. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. Dbpedia:
A nucleus for a web of open data. In international semantic web conference, pp. 722–735. Springer, 2007.

Yu Bai, Song Mei, Huan Wang, Yingbo Zhou, and Caiming Xiong. Efficient and differentiable conformal
prediction with general function classes. In International Conference on Learning Representations.

Vineeth Balasubramanian, Shen-Shyang Ho, and Vladimir Vovk. Conformal prediction for reliable machine
learning: theory, adaptations and applications. Newnes, 2014.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. Gpt-neo: Large scale autoregressive
language modeling with mesh-tensorflow. If you use this software, please cite it using these metadata, 58
(2), 2021.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelligible models
for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730, 2015.

Nicolo Colombo and Vladimir Vovk. Training conformal predictors. In Conformal and Probabilistic Prediction
and Applications, pp. 55–64. PMLR, 2020.

Alvaro HC Correia, Fabio Valerio Massoli, Christos Louizos, and Arash Behboodi. An information theoretic
perspective on conformal prediction. arXiv preprint arXiv:2405.02140, 2024.

Lahav Dabah and Tom Tirer. On calibration and conformal prediction of deep classifiers. arXiv preprint
arXiv:2402.05806, 2024.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp
Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information Processing
Systems, 34:20089–20103, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255.
Ieee, 2009.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Bat-Sheva Einbinder, Yaniv Romano, Matteo Sesia, and Yanfei Zhou. Training uncertainty-aware classifiers
with conformalized deep learning. Advances in Neural Information Processing Systems, 35:22380–22395,
2022.

12



Under review as submission to TMLR

Subhankar Ghosh, Taha Belkhouja, Yan Yan, and Janardhan Rao Doppa. Improving uncertainty quantification
of deep classifiers via neighborhood conformal prediction: Novel algorithm and theoretical analysis. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 7722–7730, 2023.

Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional guarantees.
arXiv preprint arXiv:2305.12616, 2023.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International Conference on Machine Learning, pp. 1321–1330. PMLR, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–
4708, 2017.

Jianguo Huang, HuaJun Xi, Linjun Zhang, Huaxiu Yao, Yue Qiu, and Hongxin Wei. Conformal prediction
for deep classifier via label ranking. In Forty-first International Conference on Machine Learning, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Jing Lei. Classification with confidence. Biometrika, 101(4):755–769, 2014.

Charles Lu, Syed Rakin Ahmed, Praveer Singh, and Jayashree Kalpathy-Cramer. Estimating test performance
for AI medical devices under distribution shift with conformal prediction. CoRR, abs/2207.05796, 2022.
doi: 10.48550/ARXIV.2207.05796.

Charles Lu, Yaodong Yu, Sai Praneeth Karimireddy, Michael Jordan, and Ramesh Raskar. Federated
conformal predictors for distributed uncertainty quantification. In International Conference on Machine
Learning, pp. 22942–22964. PMLR, 2023.

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Dokania.
Calibrating deep neural networks using focal loss. Advances in Neural Information Processing Systems, 33:
15288–15299, 2020.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated probabilities
using bayesian binning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence machines
for regression. In Machine Learning: ECML 2002: 13th European Conference on Machine Learning Helsinki,
Finland, August 19–23, 2002 Proceedings 13, pp. 345–356. Springer, 2002.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems, 32, 2019.

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey E. Hinton. Regularizing neural
networks by penalizing confident output distributions. In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net,
2017.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. Advances in Large Margin Classifiers, 10(3):61–74, 1999.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize
to imagenet? In International Conference on Machine Learning, pp. 5389–5400. PMLR, 2019.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive coverage.
Advances in Neural Information Processing Systems, 33:3581–3591, 2020.

13



Under review as submission to TMLR

Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with bounded error
levels. Journal of the American Statistical Association, 114(525):223–234, 2019.

Nabeel Seedat, Alan Jeffares, Fergus Imrie, and Mihaela van der Schaar. Improving adaptive conformal
prediction using self-supervised learning. In International Conference on Artificial Intelligence and Statistics,
pp. 10160–10177. PMLR, 2023.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning Research,
9(3), 2008.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Ralph C Smith. Uncertainty quantification: theory, implementation, and applications, volume 12. Siam, 2013.

David Stutz, Krishnamurthy Dvijotham, Ali Taylan Cemgil, and Arnaud Doucet. Learning optimal conformal
classifiers. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2818–2826, 2016.

Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes, Tanmoy Bhattacharya, and Sarah Michalak. On
mixup training: Improved calibration and predictive uncertainty for deep neural networks. Advances in
Neural Information Processing Systems, 32, 2019.

Vladimir Vovk. Conditional validity of inductive conformal predictors. In Asian Conference on Machine
Learning, pp. 475–490. PMLR, 2012.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world, volume 29.
Springer, 2005.

Cheng Wang. Calibration in deep learning: A survey of the state-of-the-art. arXiv preprint arXiv:2308.01222,
2023.

Shuoyuan Wang, Jindong Wang, Guoqing Wang, Bob Zhang, Kaiyang Zhou, and Hongxin Wei. Open-
vocabulary calibration for fine-tuned CLIP. In Forty-first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural network
overconfidence with logit normalization. In International Conference on Machine Learning, pp. 23631–23644.
PMLR, 2022.

Mert Yuksekgonul, Linjun Zhang, James Zou, and Carlos Guestrin. Beyond confidence: Reliable models
should also consider atypicality. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees and naive
bayesian classifiers. In International Conference on Machine Learning, volume 1, pp. 609–616, 2001.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification.
Advances in neural information processing systems, 28, 2015.

14



Under review as submission to TMLR

A Conformal prediction metrics

In practice, we often use coverage and average size to evaluate prediction sets, defined as:

Coverage = 1
|Dtest|

∑
(xi,yi)∈Dtest

1{yi ∈ C(xi)}, (10)

Average size = 1
|Dtest|

∑
(xi,yi)∈Dtest

|C(xi)|, (11)

where 1(·) is the indicator function and Dtest denotes the test dataset. The coverage rate measures
the percentage of samples whose prediction set contains the true label, i.e., an empirical estimation for
P{Y ∈ C(X)}. The average size measures the efficiency of prediction sets. For informative predictions (Vovk,
2012; Angelopoulos et al., 2021), the prediction sets are preferred to be efficient (i.e., small prediction sets)
while satisfying the valid coverage (defined in Eq. (2)).

B Confidence calibration methods

Here, we briefly review three post-hoc calibration methods, whose parameters are optimized with respect to
negative log-likelihood (NLL) on the calibration set, and three training calibration methods. Let σ be the
softmax function and f ∈ RK be an arbitrary logits vector.

Platt Scaling (Platt et al., 1999) is a parametric approach for calibration. Platt Scaling learns two
scalar parameters a, b ∈ R and outputs

π = σ(af + b). (12)

Temperature Scaling (Guo et al., 2017) is inspired by Platt scaling (Platt et al., 1999), using a scalar
parameter t for all logits vectors. Formally, for any given logits vector f , the new prediction is defined by

π = σ(f/t).

Intuitively, t softens the softmax probabilities when t > 1 so that it alleviates over-confidence.

Vector Scaling (Guo et al., 2017) is a simple extension of Platt scaling. Let f be an arbitrary logit
vector, which is produced before the softmax layer. Vector scaling applies a linear transformation:

π = σ(Mf + b),

where M ∈ RK×K and b ∈ RK .

Label Smoothing (Szegedy et al., 2016) softens hard labels with an introduced smoothing parameter
α in the standard loss function (e.g., cross-entropy):

L = −
K∑

k=1
y∗

i log pi, y∗
k = yk(1 − α) + α/K,

where yk is the soft label for k-th class. It is shown that label smoothing encourages the differences between
the logits of the correct class and the logits of the incorrect class to be a constant depending on α.

Mixup (Zhang et al., 2018) is another classical work in the line of training calibration. Mixup generates
synthetic samples during training by convexly combining random pairs of inputs and labels as well. To mix
up two random samples (xi, yi) and (xj , yj), the following rules are used:

x̄ = αxi + (1 − α)xj , ȳ = αyi + (1 − α)yj ,

where (x̄i, ȳi) is the virtual feature-target of original pairs. Previous work (Thulasidasan et al., 2019)
observed that compared to the standard models, mixup-trained models are better calibrated and less prone
to overconfidence in prediction on out-of-distribution and noise data.
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Bayesian Method (Daxberger et al., 2021). Bayesian modeling provides a principled and unified
approach to mitigate poor calibration and overconfidence by equipping models with robust uncertainty
estimates. Specifically, Bayesian modeling handles uncertainty in neural networks by modeling the distribution
over the weights. In this approach, given observed data D = {X, y}, we aim to infer a posterior distribution
over the model parameters θ using Bayes’ theorem:

p(θ|D) = p(D|θ)p(θ)
p(D) . (13)

Here, p(D|θ) represents the likelihood, p(θ) is the prior over the model parameters, and p(D) is the evidence
(marginal likelihood). However, the exact posterior p(θ|D) is often intractable for deep neural networks due
to the high-dimensional parameter space, which makes approximate inference techniques necessary.

One common method for approximating the posterior is Laplace approximation (LA). The Laplace approxi-
mation assumes that the posterior is approximately Gaussian in the vicinity of the optimal parameters θMAP,
which simplifies inference. Mathematically, LA begins by finding the MAP estimate:

θMAP = arg max
θ

log p(D|θ) + log p(θ). (14)

Then, the posterior is approximated by a Gaussian distribution:

p(θ|D) ≈ N (θMAP, H−1), H = −∇2
θ log p(θ|D)

∣∣∣∣
θ=θMAP

. (15)

The LA provides an efficient and scalable method to capture uncertainty around the MAP estimate, making
it a widely used baseline in Bayesian deep learning models.

C Experimental setups for motivation experiments

We conduct the experiments on CIFAR-100 (Krizhevsky et al., 2009). We split the test dataset including
10,000 images into 4,000 images for the calibration set and 6,000 for the test set. Then, we split the calibration
set into two subsets of equal size: one is the validation set used for confidence calibration, while the other half
is the conformal set used for conformal calibration. We train a ResNet50 model from scratch. For post-hoc
methods, we train the model using standard cross-entropy loss, while for training methods, we use their
corresponding specific loss functions. The training detail is presented in Section 4.1. We leverage APS and
RAPS to generate prediction sets at an error rate α = 0.1, and the hyperparameters are set to be kreg = 1
and λ = 0.001.

D Experiment results of LAC

D.1 How does confidence calibration affects LAC?

In this part, we investigate the connection between and confidence calibration methods. We employ three pre-
trained classifiers: ResNet18, ResNet101 (He et al., 2016), DenseNet121 (Huang et al., 2017) on CIFAR-100,
generating LAC prediction sets with α = 0.1. In Table 6, the results show that different post-hoc methods
have varying impacts on LAC prediction sets, while all of them can maintain the desired coverage rate. For
example, the original average size of ResNet18 with respect to THR is 2.23, increases to 2.40 with vector
scaling, 2.34 with temperature scaling, and decreases to 2.20 with Platt scaling.
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Table 6: The performance of LAC prediction sets employed with different calibration methods: baseline (BS),
vector scaling (VS), Platt scaling (PS), and temperature scaling (TS). ↓ indicates smaller values are better.

Model Metrics BS VS PS TS

ResNet18 Avg.size ↓ 2.23 2.42 2.26 2.34
Coverage 0.90 0.90 0.90 0.90

ResNet101 Avg.size ↓ 1.88 1.98 1.83 1.83
Coverage 0.90 0.90 0.90 0.90

DenseNet121 Avg.size ↓ 1.68 1.68 1.69 1.65
Coverage 0.90 0.90 0.90 0.90

D.2 LAC with high-confidence prediction

In Figure 3, we compare the performance of LAC prediction sets deployed with different temperatures. We
observe that when used with a small temperature, models tend to generate large prediction sets, while the
coverage rate stabilizes at about 0.9, maintaining the marginal coverage. Moreover, we observe that models
typically construct the smallest prediction set when the temperature approximates 1. Therefore, we cannot
search for an appropriate temperature that benefits LAC.
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Figure 3: The performance comparison of prediction sets with different temperatures.

E Why numerical error occurs under an exceedingly small temperature?

In Section 3.3, we show that an exceedingly low temperature could pose challenges for prediction sets. This
problem can be attributed to numerical errors. Specifically, in Proposition 3.1, we show that the softmax
probability tends to concentrate in top classes with a small temperature, resulting in a long-tail distribution.
Thus, the tail probabilities of some samples could be small and truncated, eventually becoming zero. For
example, in Figure 4, the softmax probability is given by π(x) = [0.999997, 2 × 10−5, 1 × 10−6, · · · ], and the
prediction set size should be 4, following Eq. (4). However, due to numerical error, the tail probabilities,
i.e., π5, π6 are truncated to be zero. This numerical error causes the conformal threshold to exceed the
non-conformity scores for all classes, leading to a trivial set. Furthermore, as the temperature decreases,
numerical errors occur in more data samples, resulting in increased trivial sets and consequently raising the
average set size.
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Figure 4: An example of softmax probabilities produced by a small temperature.

F Proofs

F.1 Proof for Proposition 3.1

We start by showing several lemmas: the Lemma F.1, Lemma F.2 and Lemma F.3.
Lemma F.1. For any given logits (f1, · · · , fK) with f1 > f2 > · · · > fK , and a constant 0 < t < 1, we have:

(a) ef1/t∑K
i=1 efi/t

>
ef1∑K
i=1 efi

,

(b) efK/t∑K
i=1 efi/t

<
efK∑K
i=1 efi

.

Proof. Let s = 1
t − 1. Then, we have

ef1/t∑K
i=1 efi/t

= e(1+s)f1∑K
i=1 e(1+s)fi

= ef1∑K
i=1 efies(fi−f1)

>
ef1∑K
i=1 efi

.

efK/t∑K
i=1 efi/t

= e(1+s)fK∑K
i=1 e(1+s)fi

= efK∑K
i=1 efies(fi−fK )

<
ef1∑K
i=1 efi

.

Lemma F.2. For any given logits (f1, · · · , fK) with f1 > f2 > · · · > fK , and a constant 0 < t < 1, if there
exists j > 1 such that

efj/t∑K
i=1 efi/t

>
efj∑K

i=1 efi

,

then, for all k = 1, 2, · · · , j, we have
efk/t∑K
i=1 efi/t

>
efk∑K
i=1 efi

. (16)

Proof. It suffices to show that
efj−1/t∑K
i=1 efi/t

>
efj−1∑K
i=1 efi

, (17)
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since the rest cases where k = 1, 2, · · · , j − 1 would hold by induction. The assumption gives us

efj/t∑K
i=1 efi/t

>
efj∑K

i=1 efi

.

Let s = 1
t − 1, which follows that

efj/t∑K
i=1 efi/t

= e(1+s)fj∑K
i=1 e(1+s)fi

= efj∑K
i=1 efies(fi−fj)

(a)
>

efj∑K
i=1 efi

.

The inequality (a) indicates that
K∑

i=1
efies(fi−fj) <

K∑
i=1

efi .

Therefore, we can have

efj−1/t∑K
i=1 efi/t

= e(1+s)fj−1∑K
i=1 e(1+s)fi

= efj−1∑K
i=1 efies(fi−fj−1)

>
efj−1∑K

i=1 efies(fi−fj)
>

efj−1∑K
i=1 efi

,

which proves the Eq. (17). Then, by induction, the Eq. (16) holds for all 1 ≤ k < j.

Lemma F.3. For any given logits (f1, · · · , fK), where f1 > f2 > · · · > fK , a constant 0 < t < 1, and for all
k = 1, 2, · · · , K, we have

k∑
i=1

efi/t∑K
j=1 efj/t

≥
k∑

i=1

efi∑K
j=1 efj

(18)

The equation holds if and only if k = K.

Proof. The Eq. (18) holds trivially at k = K, since both sides are equal to 1:

K∑
i=1

efi/t∑K
j=1 efj/t

=
K∑

i=1

efi∑K
j=1 efj

= 1, (19)

We continue by showing the Eq. (18) at k = K − 1. The Lemma F.1 gives us that

efK/t∑K
i=1 efi/t

<
efK∑K
i=1 efi

, (20)

Subtracting the Eq. (20) by the Eq. (20) directly follows that

K−1∑
i=1

efi/t∑K
j=1 efj/t

>

K−1∑
i=1

efi∑K
j=1 efj

, (21)

which prove the Eq. (18) at k = K − 1. We then show that the Eq. (18) holds at k = K − 2, which follows
that the Eq. (18) remains true for all k = 1, 2, · · · K − 1 by induction. Here, we assume that

K−2∑
i=1

efi/t∑K
j=1 efj/t

<

K−2∑
i=1

efi∑K
j=1 efj

, (22)

and we will show that the Eq. (22) leads to a contradiction. Subtracting Eq. (22) by the Eq. (21) gives us
that

efK−1/t∑K
i=1 efi/t

>
efK−1∑K
i=1 efi

. (23)
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Considering the Lemma F.2, the Eq. (23) implies that

efk/t∑K
i=1 efi/t

>
efk∑K
i=1 efi

(24)

holds for all k = 1, 2, · · · , K − 2. Accumulating the Eq. (24) from k = 1 to K − 2 gives us that

K−2∑
i=1

efi/t∑K
j=1 efj/t

>

K−2∑
i=1

efi∑K
j=1 efj

.

This contradicts our assumption (Eq. (22)). It follows that Eq. (18) holds at k = K − 2. Then, by induction,
the Eq. (18) remains true for all k = 1, 2, · · · K − 1. Combining with the Eq. (19), we can complete our
proof.

Proposition F.4 (Restatement of Proposition 3.1). For any sample x ∈ X , let S(x, k, t) be the non-
conformity score function with respect to an arbitrary class k ∈ Y, defined as in Eq. 7. Then, for a fixed
temperature t0 and ∀t ∈ (0, t0), we have

S(x, k, t0) ≤ S(x, k, t).

Proof. We restate the definition of non-randomized APS score in Eq. 7:

S(x, y, t) =
k∑

i=1

efi∑K
j=1 efj

Let α = t/t0 ∈ (0, 1) and f̃i = fi/t0. We rewrite the formulation of S(x, k, t0) and S(x, k, t) by

S(x, y, t0) =
k∑

i=1

ef̃i∑K
j=1 ef̃j

,

S(x, y, t) =
k∑

i=1

ef̃i/α∑K
j=1 ef̃j/α

.

Since the scaling parameter t0 does not change the order of (f̃1, f̃2, · · · , f̃K), i.e. f̃1 > f̃2 > · · · > f̃K and
α ∈ (0, 1), then by the Lemma F.3, we have S(x, y, t0) < S(x, y, t).

F.2 Proof for Corollary 3.2

Corollary F.5 (Restatement of Corollary 3.2). For any sample x ∈ X and a fixed temperature t0, the
difference ϵ(k, t) is a decreasing function with respect to t ∈ (0, t0).

Proof. For all t1, t2 satisfying 0 < t1 < t2 < t0, we will show that ϵ(k, t1) > ϵ(k, t2). Continuing from
Proposition 3.1, we have S(x, y, t2) < S(x, y, t1). It follows that

ϵ(k, t1) = S(x, k, t1) − S(x, k, t0)
> S(x, k, t2) − S(x, k, t0)
= ϵ(k, t2).
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F.3 Proof for Theorem 3.3

In the theorem, we make two continuity assumptions on the CDF of the non-conformity score following (Lei,
2014; Sadinle et al., 2019). We define Gt

k(·) as the CDF of S(x, k, t), assuming that

(1)∃γ, c1, c2 ∈ (0, 1] s.t. ∀k ∈ Y, c1|ε|γ ≤ |Gt
k(s + ε) − Gt

k(s)| ≤ c2|ε|γ ,

(2)∃ρ > 0 s.t. inf
k,s

|Gt0
k (s) − Gt

k(s)| ≥ ρ.
(25)

To prove Theorem 3.3, we start with a lemma:
Lemma F.6. Give a pre-trained model, data sample x, and a temperature satisfying t∗ < t0. Then, under
assumtion (25), we have

P{k ∈ C(x, t0), k /∈ C(x, t∗)} ≥ c1(2ϵ(k, t∗))γ .

Proof. Let Pt(·) be the probability measure corresponding to Gt
y(·), and Ct

y(s) = {x : S(x, y, t) < s}. Then,
we have

Pt0(Ct0
y (τ(t∗))) = Pt0(Ct∗

y (τ(t∗) + ϵ(k, t∗))
= Gt0

y (τ(t∗) + ϵ(k, t∗))
(a)
≥ Gt∗

y (τ(t∗) + ϵ(k, t∗)) + ρ.

(26)

where (a) comes from the assumption (2). Let τ∗ = τ(t∗) − ϵ(k, t∗) − [c−1
2 ρ]1/γ . Then, replacing the τ(t∗) in

Eq. (26) with τ∗, we have
Pt0(Ct0

y (τ∗)) ≥ Gt∗

y (τ(t∗) − [c−1
2 ρ]1/γ) + ρ

(a)
≥ Gt∗

y (τ(t∗))
(b)= α

(c)= Pt0(Ct0
y (τ(t0))).

(27)

where (a) is due to the assumption (1):

Gt∗

y (τ(t∗)) − Gt∗

y (τ(t∗) − [c−1
2 ρ]1/γ) ≤ c2|[c−1

2 ρ]1/γ |γ = ρ.

(b) and (c) is because of the definition of threshold τ : Ct∗

y (τ(t∗)) = Ct0
y (τ(t0)) = α. The Eq. (28) follows that

τ(t0) ≤ τ∗ = τ(t∗) − ϵ(k, t∗) − [c−1
2 ρ]1/γ . (28)

Continuing from Eq. (28), it holds for all y ∈ Y that

P{k ∈ C(x, t0), k /∈ C(x, t∗)} (a)= P{S(x, y, t∗) < τ(t∗), S(x, y, t0) ≥ τ(t0)}
(b)= P{τ(t∗) > S(x, y, t∗) ≥ τ(t0) − ϵ(k, t∗)}
≥ P{τ(t∗) > S(x, y, t∗) ≥ τ(t∗) − 2ϵ(k, t∗) − [c−1

2 ρ]1/γ}
(c)= Gt∗

y (τ(t∗)) − Gt∗

y (τ(t∗) − 2ϵ(k, t∗) − [c−1
2 ρ]1/γ)

(d)
≥ c1(2ϵ(k, t∗) + [c−1

2 ρ]1/γ)γ

≥ c1(2ϵ(k, t∗))γ .

where (a) comes from the construction of prediction set: y ∈ C(x) if and only if S(x, y) ≤ τ . (b) is because
of the definition of ϵ. (c) and (d) is due to the definition of Gt

y(·) and assumption (1).

Theorem F.7. Under the assumption equation 25, there exists constants c1, γ ∈ (0, 1] such that

E
x∈X

[|C(x, t)|] ≤ K −
∑
k∈Y

c1[2ϵ(k, t)]γ , ∀t ∈ (0, t0).
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Proof. For all t < t0, we consider the expectation size of C(x, t):

E
x∈X

[|C(x, t)|] = E
x∈X

[
∑
k∈Y

1{k ∈ C(x, t)}]

=
∑
k∈Y

E
x∈X

[1{k ∈ C(x, t)}]

=
∑
k∈Y

P{k ∈ C(x, t)}

=
∑
k∈Y

[1 − P{k /∈ C(x, t)}].

Due to the fact that
P{k ∈ C(x, t0), k /∈ C(x, t)} ≤ P{k /∈ C(x, t)},

we have
E

x∈X
[|C(x, t)|] ≤

∑
k∈Y

[1 − P{k ∈ C(x, t0), k /∈ C(x, t)}].

Continuing from Lemma F.6, we can get

E
x∈X

[|C(x, t)|] ≤ K(1 − c1(2ϵ(k, t))γ) = K −
∑
k∈Y

c1(2ϵ(k, t))γ .

G Results of ConfTS on ImageNet-V2

In this section, we show that ConfTS can effectively improve the efficiency of adaptive conformal prediction
on the ImageNet-V2 dataset. In particular, we employ pre-trained ResNet50, DenseNet121, VGG16, and
ViT-B-16 on ImageNet. We leverage APS and RAPS to construct prediction sets and the hyper-parameters
of RAPS are set to be kreg = 1 and λ = 0.001. In Table 7, results show that after being employed with
ConfTS, APS, and RAPS tend to construct smaller prediction sets and maintain the desired coverage.

Table 7: The performance comparison of conformal prediction with baseline and ConfTS under distribution
shifts. “*” denotes significant improvement (two-sample t-test at a 0.1 confidence level). “↓” indicates smaller
values are better. Bold numbers are superior results. Results show that ConfTS can improve the efficiency
of APS and RAPS on a new distribution.

Metrics ResNet50 DenseNet121 VGG16 ViT
Baseline ConfTS Baseline ConfTS Baseline ConfTS Baseline ConfTS

Avg.size(APS) ↓ 24.6 11.9* 50.3 13.3* 27.2 17.9* 34.2 10.1*
Coverage(APS) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

Avg.size(RAPS) ↓ 13.3 11.3* 13.7 9.67* 16.3 13.6* 14.9 4.62*
Coverage(RAPS) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

H Results of ConfTS on CIFAR-100

In this section, we show that ConfTS can effectively improve the efficiency of adaptive conformal prediction
on the CIFAR100 dataset. In particular, we train ResNet18, ResNet50, ResNet191, ResNext50, ResNext101,
DenseNet121 and VGG16 from scratch on CIFAR-100 datasets. We leverage APS and RAPS to generate
prediction sets at error rates α ∈ {0.1, 0.05}. The hyper-parameter for RAPS is set to be kreg = 1 and
λ = 0.001. In Table 8, results show that after being employed with ConfTS, APS, and RAPS tend to construct
smaller prediction sets and maintain the desired coverage.
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Table 8: The performance comparison of the baseline and ConfTS on CIFAR-100 dataset. We employ five
models trained on CIFAR-100. “*” denotes significant improvement (two-sample t-test at a 0.1 confidence
level). “↓” indicates smaller values are better. Bold numbers are superior results. Results show that our
ConfTS can improve the performance of APS and RAPS, maintaining the desired coverage rate.

Model Score
α = 0.1 α = 0.05

Coverage Average ↓ size Coverage Average size ↓
Baseline / ConfTS

ResNet18 APS 0.902 / 0.901 7.049 / 6.547* 0.949 / 0.949 12.58 / 11.91*
RAPS 0.900 / 0.901 5.745 / 4.948* 0.949 / 0.949 8.180 / 7.689*

ResNet50 APS 0.901 / 0.900 5.614 / 5.322* 0.951 / 0.951 10.27 / 10.00*
RAPS 0.900 / 0.900 4.707 / 4.409* 0.951 / 0.950 7.041 / 6.811*

ResNet101 APS 0.900 / 0.900 5.049 / 4.917* 0.949 / 0.949 9.520 / 9.405*
RAPS 0.901 / 0.900 4.324 / 4.145* 0.950 / 0.950 6.515 / 6.450*

ResNext50 APS 0.900 / 0.900 4.668 / 4.436* 0.950 / 0.950 8.911 / 8.626*
RAPS 0.901 / 0.901 4.050 / 3.811* 0.951 / 0.951 6.109 / 5.854*

ResNext101 APS 0.900 / 0.900 4.125 / 3.988* 0.950 / 0.950 7.801 / 7.614*
RAPS 0.901 / 0.901 3.631 / 3.492* 0.950 / 0.950 5.469 / 5.253*

DenseNet121 APS 0.899 / 0.899 4.401 / 3.901* 0.949 / 0.949 8.364 / 7.592*
RAPS 0.898 / 0.898 3.961 / 3.434* 0.950 / 0.949 6.336 / 5.222*

VGG16 APS 0.900 / 0.900 7.681 / 6.658* 0.949 / 0.950 12.36 / 11.70*
RAPS 0.899 / 0.900 6.826 / 5.304* 0.949 / 0.949 10.32* / 11.70

I Results of ConfTS on RAPS with various penalty terms

Recall that the RAPS method modifies APS by including a penalty term λ (see Eq. (6)). In this section, we
investigate the performance of ConfTS on RAPS with various penalty terms. In particular, we employ the
same model architectures with the main experiment on ImageNet (see Section 4.1) and generate prediction sets
with RAPS (kreg = 1) at an error rate α = 0.1, varying the penalty λ ∈ {0.002, 0.004, 0.006, 0.01, 0.015, 0.02}
and setting kreg to 1. Table 9 and 10 show that our ConfTS can enhance the efficiency of RAPS across
various penalty values.

Table 9: The performance of ConfTS on RAPS with various penalty terms λ ∈ {0.002, 0.004, 0.006} at
ImageNet. “*” denotes significant improvement (two-sample t-test at a 0.1 confidence level). “↓” indicates
smaller values are better. Bold numbers are superior results. Results show that our ConfTS can enhance the
efficiency of RAPS across various penalty values.

Model
λ = 0.002 λ = 0.004 λ = 0.006

Coverage Average size ↓ Coverage Average size ↓ Coverage Average size ↓
Baseline / ConfTS

ResNet18 0.901 / 0.900 8.273 / 4.517* 0.901 / 0.901 6.861 / 4.319* 0.901 / 0.901 6.109 / 4.282*
ResNet50 0.899 / 0.900 5.097 / 3.231* 0.899 / 0.900 4.272 / 2.892* 0.899 / 0.900 3.858 / 2.703*
ResNet101 0.900 / 0.900 4.190 / 2.987* 0.901 / 0.899 3.599 / 2.686* 0.900 / 0.900 3.267 / 2.516*

DenseNet121 0.901 / 0.901 5.780 / 3.340* 0.900 / 0.900 4.888 / 3.014* 0.900 / 0.900 4.408 / 2.836*
VGG16 0.901 / 0.900 7.030 / 3.902* 0.901 / 0.900 5.864 / 3.514* 0.901 / 0.900 5.241 / 3.344*

ViT-B-16 0.901 / 0.900 5.308 / 1.731* 0.901 / 0.901 4.023 / 1.655* 0.901 / 0.901 3.453 / 1.611*
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Table 10: The performance of ConfTS on RAPS with various penalty terms λ ∈ {0.01, 0.015, 0.02} at
ImageNet. “*” denotes significant improvement (two-sample t-test at a 0.1 confidence level). “↓” indicates
smaller values are better. Bold numbers are superior results. Results show that our ConfTS can enhance the
efficiency of RAPS across various penalty values.

Model
λ = 0.01 λ = 0.015 λ = 0.02

Coverage Average size ↓ Coverage Average size ↓ Coverage Average size ↓
Baseline / ConfTS

ResNet18 0.901 / 0.901 5.281 / 4.449* 0.901 / 0.901 4.712 / 4.683* 0.900 / 0.900 4.452* / 4.917
ResNet50 0.899 / 0.900 3.380 / 2.505* 0.900 / 0.901 3.048 / 2.373* 0.901 / 0.901 2.860 / 2.321*
ResNet101 0.900 / 0.900 2.902 / 2.317* 0.900 / 0.899 2.643 / 2.168* 0.900 / 0.900 2.484 / 2.096*

DenseNet121 0.900 / 0.900 3.843 / 2.657* 0.900 / 0.900 3.452 / 2.587* 0.901 / 0.899 3.213 / 2.750*
VGG16 0.900 / 0.900 4.537 / 3.371* 0.900 / 0.900 4.060 / 3.423* 0.899 / 0.899 3.744 / 3.530*

ViT-B-16 0.901 / 0.900 2.872 / 1.564* 0.901 / 0.900 2.508 / 1.543* 0.900 / 0.900 2.285 / 1.535*

J Results of ConfTS on SAPS

Recall that APS calculates the non-conformity score by accumulating the sorted softmax values in descending
order. However, the softmax probabilities typically exhibit a long-tailed distribution, allowing for easy
inclusion of those tail classes in the prediction sets. To alleviate this issue, Sorted Adaptive Prediction Sets
(SAPS) (Huang et al., 2024) discards all the probability values except for the maximum softmax probability
when computing the non-conformity score. Formally, the non-conformity score of SAPS for a data pair (x, y)
can be calculated as

Ssaps(x, y, u; π̂) :=
{

u · π̂max(x), if o(y, π̂(x)) = 1,
π̂max(x) + (o(y, π̂(x)) − 2 + u) · λ, else,

where λ is a hyperparameter representing the weight of ranking information, π̂max(x) denotes the maximum
softmax probability and u is a uniform random variable.

In this section, we investigate the performance of ConfTS on SAPS with various weight terms. In particular,
we employ the same model architectures with the main experiment on ImageNet (see Section 4.1) and generate
prediction sets with SAPS at an error rate α = 0.1, varying the weight λ ∈ {0.01, 0.02, 0.03, 0.05, 0.1, 0.12}.
Table 11 and Table 12 show that our ConfTS can enhance the efficiency of SAPS across various weights.

Table 11: The Performance of ConfTS on SAPS with various penalty terms λ ∈ [0.005, 0.01, 0.02]. “*” denotes
significant improvement (two-sample t-test at a 0.1 confidence level). “↓” indicates smaller values are better.
Bold numbers are superior results. Results show that our ConfTS can enhance the efficiency of SAPS across
various penalty values.

Model
λ = 0.005 λ = 0.01 λ = 0.02

Coverage Average size ↓ Coverage Average size ↓ Coverage Average size ↓
Baseline / ConfTS

ResNet18 0.901 / 0.900 37.03 / 27.38* 0.901 / 0.902 19.91 / 14.81* 0.900 / 0.901 11.21 / 8.469*
ResNet50 0.899 / 0.899 27.13 / 21.37* 0.899 / 0.899 14.45 / 11.48* 0.899 / 0.899 8.016 / 6.510*
ResNet101 0.901 / 0.901 24.89 / 20.78* 0.901 / 0.901 13.21 / 11.16* 0.901 / 0.901 7.350 / 6.287*

DenseNet121 0.900 / 0.901 30.54 / 22.67* 0.900 / 0.901 16.28 / 12.30* 0.901 / 0.901 9.085 / 6.968*
VGG16 0.900 / 0.900 34.88 / 25.57* 0.900 / 0.900 18.56 / 13.71* 0.901 / 0.900 10.34 / 7.788*

ViT-B-16 0.901 / 0.900 18.90 / 11.51* 0.901 / 0.900 10.11 / 6.379* 0.900 / 0.900 5.669 / 3.784*
Average 0.900 / 0.900 28.89 / 21.54* 0.900 / 0.900 15.42 / 11.63* 0.900 / 0.900 8.611 / 6.634*
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Table 12: The performance of ConfTS on SAPS with various penalty terms λ ∈ {0.03, 0.05, 0.1}. “*” denotes
significant improvement (two-sample t-test at a 0.1 confidence level). “↓” indicates smaller values are better.
Bold numbers are superior results. Results show that our ConfTS can enhance the efficiency of SAPS across
various penalty values.

Model
λ = 0.03 λ = 0.05 λ = 0.1

Coverage Average size ↓ Coverage Average size ↓ Coverage Average size ↓
Baseline / ConfTS

ResNet18 0.900 / 0.900 8.206 / 6.269* 0.900 / 0.900 5.747 / 4.716* 0.901 / 0.901 4.143* / 4.581
ResNet50 0.899 / 0.899 5.853 / 4.838* 0.899 / 0.900 4.122 / 3.464* 0.899 / 0.900 2.753 / 2.460*
ResNet101 0.901 / 0.901 5.364 / 4.640* 0.901 / 0.901 3.756 / 3.293* 0.899 / 0.900 2.511 / 2.286*

DenseNet121 0.900 / 0.900 6.600 / 5.151* 0.900 / 0.900 4.601 / 3.672* 0.900 / 0.900 3.063 / 2.811*
VGG16 0.900 / 0.900 7.504 / 5.785* 0.900 / 0.900 5.225 / 4.173* 0.900 / 0.900 3.483* / 3.551

ViT-B-16 0.900 / 0.900 4.197 / 2.905* 0.900 / 0.900 2.995 / 2.212* 0.901 / 0.900 2.114 / 1.768*
Average 0.900 / 0.900 6.287 / 4.931* 0.900 / 0.900 4.407 / 3.588* 0.900 / 0.900 3.011 / 2.909*
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