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ABSTRACT

Differentially Private Synthetic Data Generation (DP-SDG) is a key enabler of pri-
vate and secure tabular-data sharing, producing artificial data that carries through
the underlying statistical properties of the input data. This typically involves
adding carefully calibrated statistical noise to guarantee individual privacy, at the
cost of synthetic data quality. Recent literature has explored scenarios where a
small amount of public data is used to help enhance the quality of synthetic data.
These methods study a horizontal public-private partitioning which assumes ac-
cess to a small number of public rows that can be used for model initialization,
providing a small utility gain. However, realistic datasets often naturally consist
of public and private attributes, making a vertical public-private partitioning rele-
vant for practical synthetic data deployments. We propose a novel framework that
adapts horizontal public-assisted methods into the vertical setting. We compare
this framework against our alternative approach that uses conditional generation,
highlighting initial limitations of public-data assisted methods and proposing fu-
ture research directions to address these challenges.

1 INTRODUCTION

Due to increasing demand for privacy-preserving data sharing, differentially private synthetic data
generation (DP-SDG) has emerged as a powerful tool for sharing sensitive tabular data. By gen-
erating “artificial” data that retains the statistical properties of the real data and adhering to formal
privacy constraints, DP-SDG allows organizations to share, analyze and train models on data without
exposing sensitive information (Assefa et al., 2020; van Breugel & van der Schaar, 2023). Differen-
tial Privacy (DP) outlines a formal framework for individual privacy, providing SDG methods with
quantifiable privacy guarantees, often at the expense of synthetic data quality (Dwork et al., 2006;
Hardt et al., 2012). State-of-the art (SOTA) methods for private tabular synthetic data use DP to
offer strong privacy guarantees. These methods typically involve taking low-dimensional measure-
ments of the dataset, such as marginal queries, and adding calibrated statistical noise to ensure DP.
A model is trained over these noisy measurements to learn a synthetic data representation that can
be sampled from, such as a graphical model (Zhang et al., 2017; McKenna et al., 2019) or generator
neural networks (Liu et al., 2021b).

Many real-world datasets naturally contain a mix of public and private information which can be
leveraged to improve synthetic data quality (utility). In the context of differentially private learning,
the concept of public-data assisted algorithms is well-studied (Bie et al., 2022; Ganesh et al., 2023;
Ullah et al., 2024). Most existing DP-SDG algorithms treat the input data as entirely private (Zhang
et al., 2017; 2021; McKenna et al., 2022). However, real-world tabular datasets often contains a
natural partition of public and private information. For example, demographic statistics like age
may be publicly available from census information, while sensitive attributes related to financial
or medical data require strict privacy protections. In many industry applications, companies that
collect sensitive information have subsets of data that can be freely used, e.g., information users have
explicitly consented to be used for improving products which can be used by the SDG algorithm.

Recent research has introduced methods for synthetic data generation in public-data assisted settings,
primarily focusing on a horizontal partitioning (Liu et al., 2021a;b). In this setting, a subset of rows
over the entire dataset is considered public while the remainder is private. These methods adapt
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existing marginal-based DP-SDG algorithms to make use of the public rows in order to improve
synthetic data quality (Wang et al., 2023). In several cases, the essence of these methods is to simply
initialize the synthetic data model with public data, then proceed with training on the private dataset
under DP. Leveraging the public subset in this way has been shown to enhance the utility of DP
synthetic data (Liu et al., 2021b). While this approach can improve synthetic data quality, it ignores
the public data after initialization (risking forgetting), and so there is potential for more closely
integrating public data into the private algorithm. Furthermore, it is often unrealistic to assume that
the public subset is identical in distribution to the private dataset: in many scenarios the public subset
will be small and from a biased population, so may result in a poor model initialization. Meanwhile,
if it were the case that the public subset does represent the private distribution accurately, then there
is little benefit to be gained from fine tuning on the private data.

In this work, we study an equally important but unexplored problem of a vertical public-private
partitioning. Here, some subset of columns in the dataset are considered public, while the rest
are treated as private. This vertical partitioning is common in practice, as organizations frequently
handle datasets with well-defined public and private features. In addition, these applications often
involve scenarios where the number of private columns are much smaller than the number of pub-
lic columns, necessitating the use of public-data assisted DP-SDG in order to obtain high utility.
Despite its practical relevance, the vertical setting remains under-explored in the literature. Our
contributions are as follows:

• Vertical Public-Private Setting: We propose a framework for the adaptation of horizontal
public-assisted DP-SDG methods to the vertical setting. We find our methods achieve
good utility whilst existing baselines often fail to improve over fully private methods, even
in settings where the percentage of public columns is large.

• Conditional Generation: We propose an alternative approach based on conditional gen-
eration, adapting marginal-based methods that use Private-PGM. We find this approach
greatly improves synthetic data quality in a vertical setting and achieves best utility overall.

• Re-thinking public-private SDG: We enumerate the current limitations and propose fu-
ture directions to help advance public-assisted private synthetic data generation in the ver-
tical setting.

2 RELATED WORK

A key class of methods for generating private synthetic data are marginal-based methods (Liu et al.,
2021b). These methods primarily focus on learning a synthetic data distribution by measuring
low-dimensional statistics, such as marginal queries, under DP noise. Examples include PrivBayes
(Zhang et al., 2017), which learns a Bayesian network from noised mutual information, and Private-
PGM, which trains a graphical model over noisy marginals (McKenna et al., 2019). Approaches
using neural networks have gained popularity with methods like DP-CTGAN (Fang et al., 2022),
PATE-GAN (Jordon et al., 2018), and DP-VAE (Weggenmann et al., 2022) which employ deep
learning techniques to directly model synthetic data and are trained privately via DP-SGD (Abadi
et al., 2016). Our focus in this work is on private marginal-based methods, as they are shown to
outperform their neural network counterparts on tabular data (Liu et al., 2022; Ganev et al., 2023).

Recent advances in marginal-based methods follow the “select-measure-generate” paradigm (Liu
et al., 2021b). The goal is to generate synthetic data that preserves the answers to a given workload
of queries. The approach is iterative and involves a number of steps. In each iteration, the query that
is worst-approximated under the current synthetic model is selected under DP. This marginal is mea-
sured and perturbed with DP noise, and is used to update the synthetic model. The MWEM (Hardt
et al., 2012) algorithm was the first to adopt such an approach, but its synthetic data representation
directly models the entire joint distribution leading to poor scalability as the number of columns
increase. Alternative methods like GEM (Liu et al., 2021b) replace the inefficient representation in
MWEM with a generator neural network that is trained directly on noisy measurements. The cur-
rent SOTA is AIM (McKenna et al., 2022), which combines Private-PGM (McKenna et al., 2019),
a graphical model inference procedure on noisy measurements, with a more sophisticated selection
algorithm in order to achieve high utility and scale to a larger number of columns.
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The integration of public data for improving the utility in DP-SDG algorithms has been explored un-
der a horizontal partitioning. In such settings, a small subset of rows is assumed to be public. These
methods either pretrain the synthetic data model on public data before using the (fully) private algo-
rithm or augment the training process of the private SDG algorithm with statistics from the public
subset. Liu et al. (2021a) propose PMW, a public-data assisted version of MWEM. They initialize
both the synthetic data distribution and its support using public data, then proceed as normal with
MWEM. They show the use of public data can help bridge the gap between the fully private setting
and perfectly fitting the training data. However, their focus is restricted to a horizontal partitioning
and uses MWEM, which is a method that suffers on high-dimensional data. Liu et al. (2021b) pro-
pose a public-data assisted version of GEM. The idea is analogous to PMW: the generator network
in GEMPub is pretrained on all marginals in the public dataset, then the GEMPub algorithm pro-
ceeds as normal on the private dataset, using the pretrained model as initialization. This brings both
added utility and scalability over PMW. Wang et al. (2023) propose a post-processing scheme that
can be applied to the output of any SDG to help improve utility, including the public-data assisted
setting. Finally, Fuentes et al. (2024) propose JAM-PGM, a public-data assisted version of the AIM
algorithm. The selection step of AIM is extended to decide at each iteration whether to measure a
private marginal (with DP noise) or use a public (noise-free) marginal. This more closely involves
the public data in the training process and helps achieve better utility than GEMPub in practice.

The only other work we are aware of that addresses a vertical partitioning for public-assisted DP-
SDG is due to Liu et al. (2021b), who outline extensions to GEMPub that allow a vertical partitioning.
In essence, since GEMPub trains a generator network over marginals, it can be pretrained on any set
of public measurements, computed from either a horizontal or vertical partitioning.

3 METHODS

We assume access to a dataset D over n individuals, vertically partitioned into a private dataset
Dpriv ∈ Nn×dpriv and a public dataset Dpub ∈ Nn×dpub with d := dpriv + dpub being the total number
of columns in D1. We are mainly interested in the setting where dpriv < dpub. The goal is to
generate a synthetic dataset D̂ ∈ Nn×d under differential privacy. In this work we are concerned
with guaranteeing (ε, δ)-DP.

Definition 3.1 ((ε, δ)-DP) A randomized algorithm M is (ε, δ)-DP if for any neighboring datasets
D,D′ and any subset of outputs S we have P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ

The parameter ε is the privacy budget and determines how strong the privacy guarantee is. Using
a large ε will decrease the noise in “Select-Measure-Generate” algorithms but in turn reduces the
formal privacy guarantees. The parameter δ determines a probability that the DP guarantee fails and
is usually set to be cryptographically small. Alternative definitions seeks to improve composition
results such as zero-Concentrated Differential Privacy (zCDP) (Bun & Steinke, 2016). All methods
in our experiments use zCDP. See Appendix A for full details. In the vertical public-assisted setting
we consider in this work, the DP guarantee of M is applied to Dpriv and we assume M has access
to Dpub for no additional privacy cost (as it is public information).

The general vertical public-assisted DP-SDG framework is summarised in Algorithm 1. Here we
adapt the adaptive measurements framework proposed by Liu et al. (2021b) to our vertical public-
assisted setting. There are two key areas that differ. Firstly, model initialization may depend on
Dpub i.e., for public pretraining. Secondly, the measurement step may also depend on Dpub e.g., for
measuring a public marginal which requires no DP noise.

3.1 ADAPTING PRETRAINING METHODS TO THE VERTICAL SETTING

Existing DP-SDG methods can be adapted to the vertical public-assisted setting by fitting them into
the framework outlined in Algorithm 1.

vGEMPub (Liu et al., 2021b): The GEM method uses a generator neural network to model the
synthetic data distribution. No pre-processing of the workload is used, so W ∗ = W . The model

1We assume the dataset is discrete as in prior work. In practice, numerical features can be binned.
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Algorithm 1 Vertical Public-assisted Adaptive Measurements (vPAM)
Input: Private dataset Dpriv, public dataset Dpub, workload of queries W , training steps T , privacy

parameters (ε, δ)
Output: Synthetic data D̂

1: Pre-process the workload W ∗ := PROCESS-WORKLOAD(W )

2: θ0 := MODEL-INIT(Dpub), D̂0 ∼ θ0
3: for t = 0, . . . , T − 1 do
4: Select: via the Exponential mechanism qt+1 ∈ W ∗ using SCORE(q;Dpriv, Dpub, D̂t)

5: Measure: selected marginal query qt+1 i.e., M̃t+1 := MEASURE(qt+1;Dpriv, Dpub, σ
2)

6: Update: synthetic model θt+1 := TRAIN-MODEL(θt, {M̃1, . . . , M̃t+1})
7: Generate: D̂t+1 ∼ θt+1

8: end for
9: Output D̂ ∼ f({θt}Tt=1)

initialization in the vertical setting pre-trains the generator neural network on all 3-way marginals
in W that contain only public features in Dpub. Next, the error scores for query selection simply
measure the error between the current synthetic data model and the private dataset at step t, with
SCORE(q;D, D̂t) := ∥Mqt(D) − Mqt(D̂t)∥. TRAIN-MODEL(·) performs a number of SGD
steps on the current GAN θt to produce θt+1. The gradients for these updates are computed from the
average L1 loss between the current marginals produced by θt and the observed noisy measurements
{M̃1, . . . , M̃t}. Finally, the post-processing function f(·) performs an Exponential Moving Average
(EMA) over the last T/2 generator networks, and the final synthetic dataset D̂ is sampled from this.

vPMW: PMW can be adapted to the vertical setting in a similar way to vGEMPub. The pretraining
process for MODEL-INIT is the same as in vGEMPub, where the initial model θ0 is initialized over
all 3-way marginals in W ∗ that only contain columns in Dpub. All other steps remain the same as
vGEMPub except for TRAIN-MODEL(·), which replaces the generator neural network via direct
modelling using multiplicative weights i.e., θt+1 := θt · exp(qt+1(x) · (M̃t+1 − qt+1(θt))/2n).
Finally, the post-processing function averages all T synthetic distributions, f(·) := 1

T

∑
t θt.

3.2 ADAPTING JAM-PGM TO THE VERTICAL SETTING

JAM-PGM (Fuentes et al., 2024) : The original algorithm extends AIM to the horizontal public-
assisted setting. Firstly, JAM-PGM initializes a workload W ∗ that has two additional properties:
it contains the downward closure of W (i.e., all lower order marginals that can be formed from
queries in W are also added to W ∗) and all public-marginals that can be measured from Dpub
are added to W ∗ separately from those that can also be measured on D. The scoring functions
are adapted from PMW to take into account the predicted error of selecting a public or private
marginal. More specifically, the score for a private marginal is SCORE(q;D, D̂t) := ∥Mqt(D) −
Mqt(D̂t)∥ −

√
2/πσnqt which adapts the PMW score to include an expected error term based

on measuring qt under Gaussian noise. For the case of a public marginal, the score is adapted to
∥Mqt(D)−Mqt(D̂t)∥− |D|

|Dpub|∥Mqt(D)−Mqt(Dpub)∥ which replaces the expected error of Gaussian
noise with the expected error of measuring from the smaller public dataset. The measurement step
is changed to adapt to W ∗, where if qt is public, then the marginal is measured without noise on
Dpub i.e., M̃t := qt(Dpub) otherwise the measurement happens under Gaussian noise as normal,
M̃t := qt(D) + N(0, σ2). The initialization step for JAM-PGM uses a random graphical model
and does no public pretraining. Finally, the post-processing function f(·) returns the last model θT ,
since a new graphical model is estimated at each step with (potentially) different structures.

vJAM-PGM: When adapting JAM-PGM to the vertical setting, the augmented workload W ∗ still
includes both private and public marginals, except now the same marginal is only added to the work-
load once as it is either deemed private (contains at least one private column) or public (contained
within Dpub). This necessitates changing the score functions, since now the expected error of mea-
suring a public marginal is zero, as it is exact. When measuring a public marginal, we use the
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original MWEM scoring i.e., SCORE(qpublic;Dpub, D̂t) := ∥Mqt(Dpub)−Mqt(D̂t)∥. Furthermore,
we initialize the graphical model on all 1-way marginals as in the original AIM algorithm (McKenna
et al., 2022), except the public columns from Dpub are used as-is without any Gaussian noise.

3.3 CONDITIONAL GENERATION

In the vertical setting we have access to the public columns (Dpub) of the underlying dataset. We
can naturally use this to improve the synthetic data sampling process. We consider conditional
generation for marginal-based methods that utilize the Private-PGM algorithm (McKenna et al.,
2019), whose synthetic data representation is a graphical model. In this process, the graphical model
forms a factorisation of the joint probability distribution from which, given an elimination order, we
can sample synthetic data. To adapt this to a vertical partitioning, during the generation/sampling
phase we simply use the raw data for public columns (i.e., exact marginals) and only sample private
columns via the graphical model.

4 EXPERIMENTS

Methods. We compare (fully) private AIM (McKenna et al., 2022) against the closest baseline
GEMPub (Liu et al., 2021b) which we denote vGEMPub and our two vertical approaches: vPMW,
vJAM-PGM. We train these methods on a workload of all 3-way marginals. For methods using
Private-PGM (AIM, vJAM-PGM) we apply our conditional generation approach. For conditional
methods, since the public columns are generated as is, we remove them from the training workload
and instead use a workload of 3-way marginals that contain at least one private column.

Datasets. We focus on two public datasets. The first is Adult (Kohavi & Becker, 1996), used in
prior horizontal public-private work (Liu et al., 2021b; Fuentes et al., 2024) and also by GEMPub in
a vertical setting (Liu et al., 2021b). As PMW cannot scale to more than a few columns, we also
consider Adult (red.), a smaller version containing only the first 8 columns. The second dataset we
use is the Census-Income KDD dataset (cen, 2000) which we use as a proxy for a more practical
large-scale dataset allowing us to evaluate our methods across a larger range of public-private splits.
We filter out rows with missing values to obtain 95,130 rows and 40 columns.
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Figure 1: Varying ε on Adult (red.). with dpub = 6

Evaluation. We repeat experiments 3 times
and present the average L1 error over all k-
way marginals with k ≤ 3. See Appendix B.1
for full experiment hyperparameters and open-
source implementations used.

4.1 RESULTS

Comparison of methods on Adult (reduced).
We start by comparing all methods on Adult
(red.), taking 75% of the columns to be pub-
lic whilst varying the privacy budget ε, shown
in Figure 1. We observe, like in prior horizon-
tal work, that PMW has generally poor utility
across all values of ε. We also find vGEMPub

struggles to achieve good utility, performing
worse than (fully) private AIM across all set-
tings. For methods based on Private-PGM, we
see that when ε < 1, vJAM-PGM achieves consistently lower error than AIM but that as ε grows
large this gap starts to decrease, since the benefit of using public columns diminishes. We omit
vPMW from further experiments, due to poor scalability and utility.

Varying ε. In Figure 2, we vary ε on the full Adult dataset with 15 columns, taking [25%, 50%,
75%] of the columns to be public. When 25% of the columns are public, none of the vertical
public-assisted methods provide better utility than using (fully) private AIM except when ε < 0.1
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Figure 2: Varying ε on Adult with [25%, 50%, 75%] of the columns being public.
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Figure 3: Varying the percentage of public columns on Census data with p ∈
{10%, 25%, 50%, 75%, 90%} and ε = 1, 5

for vJAM-PGM. This changes as the number of public columns increases, and at 50% with ε < 1
vJAM-PGM achieves lower error than AIM. For 75% public, vJAM-PGM achieves lower error than
AIM across all values of ε. We note vGEMPub has consistently worse error than (fully private) AIM
across all settings.

Conditional Generation. In Figure 1 we plot conditional variations of AIM and vJAM-PGM. We
find both of these methods achieve superior utility, outperforming all other vertical methods. We
omit Conditional vJAM-PGM from further experiments, since it performs consistently worse than
Conditional AIM. Figure 2 and 3, further shows Conditional AIM achieving lowest error across
all settings, even beating AIM in scenarios where the number of public columns is small. The
advantage of conditional generation not only helps achieve zero error across all public-marginals
but consistently lowers private error as well.

Varying the public-private split (p). In Figure 3, we consider a high-privacy (ε = 1) and low-
privacy (ε = 5) setting on the Census dataset where we vary the percentage of public columns. We
find, as on Adult, that vertical methods only achieve lower utility than (fully) private AIM when the
number of public columns is > 50%. We continue to observe the benefit of conditional generation,
where the gap against vJAM-PGM is most striking when p ≥ 75%.
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5 DISCUSSION

Utility. A consistent finding from our experiments is that vertical public-assisted methods struggle
to remain competitive against (fully) private AIM. That is to say, the additional pretraining on public
data currently has little effect on the overall utility. The exception is vJAM-PGM, which integrates
public data more closely into the training of the model, but only beats AIM when either ε is small
or dpub is large. The only approach with consistently low error is Conditional AIM.

Scalability. Although Conditional AIM achieves best utility, we have found scenarios where con-
ditional sampling can require an intractable amount of memory when conditioning on a large number
of public columns. We have found that heuristic approaches based on restricting the size of pub-
lic marginals used in conditional sampling can alleviate these issues with no significant changes to
utility. We note these problems are inherent to methods based on Private-PGM which struggle to
scale to a large number of columns in both the fitting and generation step. This is prohibitive in
industry applications where high-dimensional data is ubiquitous and is an area where we hope to
make improvements in the future.

Future Directions. We have found that adaptations of existing methods do not always provide
sufficient benefit over (fully) private AIM, even when there are more public than private columns.
Instead, we observe that moving away from pretraining approaches and towards conditional genera-
tion can help achieve the best synthetic data quality in the vertical setting. We believe there are many
future directions for improving public-assisted methods. One such focus is enhancing both the scala-
bility and utility of conditional methods, by improving the elimination order for Private-PGM based
methods or adapting the generator networks in GEM to allow for conditional generation. Another
direction is to focus the design of future vertical public-assisted algorithms away from pretraining
and to instead make more use of public data during training such as in vJAM-PGM.
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A DIFFERENTIAL PRIVACY

In this work we are concerned with synthetic data methods that guarantee (ε, δ)-DP.

Definition A.1 ((ε, δ)-DP) A randomized algorithm M is (ε, δ)-differentially private if for any
neighboring datasets D,D′ and any subset of outputs S we have P(M(D) ∈ S) ≤ eεP(M(D′) ∈
S) + δ

We consider neighboring datasets to mean that D′ is formed from the addition or removal of a single
data-point in D. One useful property of DP is composition, that is the output of two DP algorithms
on D with privacy parameters ε1, ε2 is (ε1+ε2)-DP. Alternative DP definitions seek to improve these
composition results. One such approach is zero-Concentrated Differential Privacy (zCDP)(Bun &
Steinke, 2016).

Definition A.2 (ρ-zCDP) An algorithm M is ρ-zCDP if for any two neighbouring datasets D,D′

and all α ∈ (1,∞) we have Dα(M(D)|M(D′) ≤ ρ · α, where Dα is Renyi divergence of order α.

We can convert an associated ρ-zCDP guarantee into (ε, δ)-DP via the following lemma.

Lemma A.3 (zCDP to DP (Canonne et al., 2020)) If an algorithm M satisfies ρ-zCDP then it sat-
isfies (ε, δ)-DP for all ε > 0 with

δ = min
α>1

exp((α− 1)(αρ− ε))

α− 1

(
1− 1

α

)α

Existing methods like AIM(McKenna et al., 2022) utilize zCDP accounting. We implement all
vertical “Select-Measure-Generate” methods in our framework with zCDP accounting, composing
the Exponential (“Select” step) and Gaussian (“Measure” step) mechanisms over T rounds. We
note the privacy accounting of vJAM-PGM following that of JAM-PGM spends some extra privacy
budget to decide whether to pick a public or private marginal at a given round under the framework
of the Exponential mechanism. We refer to the original work for full privacy details (Fuentes et al.,
2024).

Definition A.4 (Gaussian Mechanism) Let q : D → Rd be a sensitivity 1 query, the Gaussian
mechanism releases q(D) + ∆2(f) · N (0, σ2Id) and satisfies 1

2σ2 -zCDP.

Definition A.5 (Exponential Mechanism) Let s(c) : D → R be a score function defined over a
set of candidates C. The exponential mechanism releases c with probability P[M(D) = c] ∝
exp( ε

2∆ · s(c)), with ∆ := maxq ∆1(s(c)). This satisfies ε2

8 -zCDP.

Finally, we note that further accounting improvements can be made to improve composition when
then number of rounds T is large, using numerical accounting methods as in DP-ML (Mironov,
2017; Gopi et al., 2021) but is not a setting we consider.

B EXPERIMENT DETAILS

B.1 IMPLEMENTATION DETAILS

In our experiments we use the following methods:

• vPMW and vGEMPub: We use the open-source implementations of PMW and GEMPub by
the original authors2. We modify these methods to change the pretraining to only pretrain
on marginals that contain public columns as discussed in Section 3.1.

• vJAM-PGM: We use the open-source implementation of JAM-PGM3 by Fuentes et al.
(2024) with the modifications discussed in Section 3.2.

2https://github.com/terranceliu/iterative-dp
3https://github.com/Miguel-Fuentes/JAM_AiStats

9

https://github.com/terranceliu/iterative-dp
https://github.com/Miguel-Fuentes/JAM_AiStats


Published as a workshop paper at SynthData @ ICLR 2025

• AIM / Conditional AIM: For AIM, we use the original implementation by the original
authors4. For conditional AIM, we modify the Private-PGM algorithm to conditionally
sample based on the public vertical columns as discussed in Section 3.3.

B.2 DATASETS AND HYPERPARAMETERS

We use the following datasets:

• Adult (Kohavi & Becker, 1996): We use the Adult dataset with 32, 561 rows and 15 fea-
tures. For Figure 1, we use Adult (red.), a reduced version we form by using only the first
8 columns.

• Census-Income KDD (cen, 2000): We preprocess it by dropping all rows with missing
values and any columns that are constant values. This gives a final dataset with 95, 130
rows and 40 columns. We discretize numerical columns via (non-private) quantiles with a
maximum of 50 distinct values. We note that this process can be done privately but is not
the focus of our work.

Our experiments in Section 4 use the following hyperparameters:

• Privacy parameters (ε, δ): Whilst we vary ε in different experiments the privacy account-
ing is kept constant among methods in line with the discussion in Appendix A. We fix
δ = 1e− 6 in all experiments.

• Number of Rounds (T ): We fix this to T = 100 in all experiments. We varied T and did
not see any significant change to results.

• Pretraining Rounds: For vGEMPub, we pretrain on all public marginals for 10 rounds.
For vPMW the synthetic data is initialized directly from the public marginals.

For other method specific hyperparameters (e.g., GEM learning rates or the number of iterations
to optimize the graphical model in AIM) we use the same parameter defaults as the open-source
implementations noted in Appendix B.1. This applies to vGEMPub, vPMW, AIM (also Conditional
AIM) and vJAM-PGM.

4https://github.com/ryan112358/private-pgm
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