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ABSTRACT

Molecular property prediction plays a crucial role in various fields such as chemin-
formatics and artificial intelligence. Despite its wide applicability, current models
still struggle in the presence of activity cliff, in which molecules with similar chem-
ical structures display remarkable different properties. This hinders the model’s
ability to learn distinctive representations for molecules with similar chemical
structures, resulting in inaccurate predictions on molecules with activity cliff. In
this paper, we first present empirical evidence demonstrating the ineffectiveness of
standard training pipelines on these molecules. We then propose a novel approach
that reformulates molecular property prediction as a node classification problem,
and introduce both node-level and edge-level tasks to improve the learning for
these challenging molecules. The proposed method is versatile, and can be seam-
lessly integrated into a variety of pre-trained or randomly initialized base models.
Extensive evaluation on various molecular property prediction datasets validate the
effectiveness of our approach.

1 INTRODUCTION

(a) Retinol.

(b) Retinal.
Figure 1: Examples of two
molecules with AC

Molecular property prediction aims to determine the properties
of molecules directly from their chemical structures. It plays a
crucial role in various fields, including drug discovery (Stokes
et al., 2020), material science (Chanussot et al., 2021; Tran et al.,
2023) and bioinformatics (Narayanan et al., 2002; Zhou et al.,
2023). Despite its broad applicability, recent studies (van Tilborg
et al., 2022; Deng et al., 2023) show that current models often
fail to generate sufficiently discriminative molecular representa-
tions. sometimes, they can even perform worse than models using
fixed representations (e.g., molecular fingerprints). This problem
arises as existing machine learning models tend to produce sim-
ilar representations for structurally similar molecules. When two
such molecules exhibit different properties, accurately predicting
their properties becomes challenging due to their indistinguish-
able representations. This phenomenon, referred as activity cliff
(AC) (Stumpfe et al., 2019; Tamura et al., 2023; Dablander et al.,
2023), is prevalent across various molecular property datasets. Fig-
ure 1 shows an example from the Tox21 data set (Wu et al., 2018). Here, the two molecules have only
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minor differences (the two yellow boxes), but their responses to the ER, ATAD5 and HSE receptors
are all different.

While numerous studies (Maggiora, 2006; van Tilborg et al., 2022; Graff et al., 2023; Deng et al.,
2023) have verified that AC causes difficulties for existing molecular property prediction models,
their analysis focus only on the inference stage. It remains unclear why these models fail to learn
discriminating molecular representation during training. Similar to inference, training a model to
differentiate structurally similar molecules with distinct properties inherently presents challenges.
Nevertheless, no existing work considers how to address this challenge. Standard training pipelines
only lead to models that are incapable of distinguishing molecules with AC.

Motivated by the shortcoming of existing training algorithms in obtaining discriminative molecular
representations, in this paper, we propose a novel training algorithm to enhance learning from
molecules with AC. Through empirical analysis, we first demonstrate that standard training algorithms
struggle to accurately fit molecules with AC during training, and this challenge persists across
different model backbones and pre-training tasks. To alleviate this problem, we propose a new
training algorithm that focuses on improving the model’s discriminative power by effectively learning
from molecules with AC. We first reformulate molecular property prediction as a node classification
problem on graphs, where each node represents a molecule, and edges are defined by similarities in
their chemical structures. We then introduce two tasks at the node and edge levels respectively. For the
node-level task, we employ curriculum learning that considers both the loss and AC information in the
selection of informative molecules for model training. For the edge-level task, we introduce a novel
pairwise modeling task to align the model directly with AC on different molecular properties. The
proposed method can be integrated with different base models, pre-trained . or randomly initialized.
Empirical results on various molecular property prediction data sets demonstrate effectiveness of the
proposed method.

Our contributions can be summarized as follows:

• We are the first to investigate why existing molecular property prediction models fail to produce
discriminative molecular representations. Using molecules with AC as representatives, we show
that standard training pipelines struggle to accurately fit these molecules, a limitation observed in
both randomly-initialized and pre-trained models.

• We propose to reformulate molecular property prediction as a node classification problem. We then
introduce two novel tasks at the node and edge levels, so as to learn from molecules with AC more
effectively and produce models with good discriminative ability.

• Empirical results on various molecular property data sets demonstrate that the proposed method
improves the performance of both random-initialized and pre-trained models.

2 RELATED WORKS

2.1 MOLECULAR PROPERTY PREDICTION WITH GRAPH NEURAL NETWORKS

Molecular property prediction predicts the molecular properties from a molecular graph, in which
each node is an atom and each edge is a chemical bond between atoms. Naturally, various graph
learning architectures can be applied. Pioneering works (Merkwirth & Lengauer, 2005; Gilmer et al.,
2017) use the message-passing graph neural networks (GNN) (Veličković et al., 2018; Xu et al., 2019).
However, the GNN may not be able to capture long-range dependencies (Rampášek et al., 2022).
Instead, recently, transformer models (Vaswani et al., 2017) are used to model long-range interactions
between nodes (Ying et al., 2021; Rampášek et al., 2022). For example, EGT (Hussain et al., 2022)
uses global self-attention to update both the node and edge representations for quantum-chemical
regression. This allows unconstrained dynamic long-range interactions between nodes, and results in
better performance.

Besides using various deep learning architectures, another approach improves performance by using
different graph pre-training tasks. Most of these works consider how to effectively use the geometric
information contained in the 3D conformers of different molecules (Townshend et al., 2019; Axelrod
& Gomez-Bombarelli, 2022). For example, Klicpera et al. (2020) uses the relative 3D information
(such as bond length and bond angle) derived from the absolute Cartesian coordinates. GemNet
(Gasteiger et al., 2021) further captures information from the dihedral angle to uniquely define all
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relative atom positions. SphereNet (Liu et al., 2021) proposes a generic framework for the 3D graph
network, and designs a spherical message passing mechanism. 3D Infomax (Stärk et al., 2022)
proposes to maximize mutual information between the 3D structures and representations from the
GNN, enabling the model to produce implicit 3D information that can be useful for the downstream
tasks. 3D-PGT (Wang et al., 2023b) proposes a multi-task 3D pre-training framework that predicts
bond length, bond angle and dihedral angle from molecular graphs. UniMol (Zhou et al., 2023)
proposes to jointly use the 3D position recovery task and masked atom prediction task for pre-training,
and achieves state-of-the-art performance on various molecular property prediction benchmarks.

The negative impacts of AC to molecular property prediction have long been investigated (Maggiora,
2006; van Tilborg et al., 2022; Graff et al., 2023; Deng et al., 2023). However, they focus on the
inference stage, while we propose to confront its negative impacts with a novel training algorithm.
Some other works (Horvath et al., 2016; Iqbal et al., 2021; Park et al., 2022; Zhang et al., 2023; Wu,
2024) predict whether a given pair of molecules have AC, which differs from our focus on solving
molecular property prediction.

2.2 CURRICULUM LEARNING

Curriculum learning (CL) (Wang et al., 2022) first trains a learning model with easier training samples
so that the model can easily obtain a coarse decision boundary. The model is then refined by harder
samples later in the training process. As an easy-to-use plug-in, curriculum learning has shown
improved generalization performance of various models in a wide range of scenarios, including
computer vision (Guo et al., 2018), natural language processing (Platanios et al., 2019; Liu et al.,
2020) and reinforcement learning (Narvekar et al., 2017).

Curriculum learning has also been applied to graph learning (Wei et al., 2022; Wang et al., 2023a).
CLNode (Wei et al., 2022) proposes to jointly consider the loss and node labels in the curriculum
learning of node classification. MotifNet (Wang et al., 2023a) uses curriculum learning for motif-
based graph learning, and orders the various motifs based on their difficulty levels. CurrMG (Gu et al.,
2022) further considers using curriculum learning in molecular property prediction. Nevertheless,
their approach only yields limited improvements as they consider the prediction error and molecular
structure for each molecule separately, while the proposed method considers the pairwise relationship
between molecules.

3 CASE STUDIES ON MOLECULES WITH ACTIVITY CLIFF

To see how existing models suffer from limited abilities in distinguishing molecules with similar
chemical structures, we take the set of molecules with AC as an example. Loosely speaking, AC
refers to a pair of molecules with similar structures but distinct properties. Its precise definition
depends on how we characterize structural similarity. In the following, we build upon the definition
of matched molecule pairs (Dablander et al., 2023).

Definition 3.1 (Matched Molecule Pair: Dablander et al. (2023)). A matched molecule pair is a
pair of molecules that share a common structural core (which contains at least twice as many heavy
atoms1 as in the variable parts) but differ by small variable parts (which contains no more than 13
heavy atoms) from the chemical transformation of bond cutting on exocyclic bonds.

The definition of AC can then be given as follows:

Definition 3.2 (Activity Cliff (AC)). Activity cliff refers to a matched molecule pair with different
labels with respect to a given property.

Note that the definition of AC depends on the property being considered. For a pair of molecules
with similar chemical structures, it may exhibit activity cliff on one property but not another.

While many works have demonstrated the difficulty of making accurate predictions on molecules with
AC (Maggiora, 2006; van Tilborg et al., 2022; Graff et al., 2023; Deng et al., 2023), it remains unclear
why such difficulty arises, and why existing models cannot produce discriminating representations on
these molecules. To empirically investigate these issues, we consider four tasks from the Tox21 data

1Heavy atoms are atoms other than hydrogen.
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set (Wu et al., 2018) which predict a molecule’s response to different receptors (NR-AhR, NR-ER,
SR-ARE and SR-MMP). We use two graph neural network models that have been commonly used
for molecular property prediction: (i) GIN (Xu et al., 2019) as a representative for message-passing
neural networks, and (ii) GraphGPS (Rampášek et al., 2022) as a representative for attention-based
graph learning models. Besides training the GIN or GraphGPS models from scratch, we also include
two recent state-of-the-art pre-trained models: 3D-PGT (Wang et al., 2023b) and Uni-Mol (Zhou
et al., 2023), both of which use attention-based graph learning models similar to GraphGPS.

Figure 2 shows the proportion of molecules with AC among molecules with the top-n% training
loss values. While only about 40% of all samples in the Tox21 data set have activity cliff (Table 8
in Appendix B), molecules with AC make up a significantly higher proportion of large-loss
molecules (about 60% in samples with the top-10% loss). In other words, activity cliff is a critical
source for samples that are not accurately learnt. This also indicates the inability of current models in
distinguishing structural similar molecules.
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(b) GraphGPS.
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(c) Pre-trained 3D-PGT.

0.0 0.2 0.4 0.6 0.8 1.0
Quantile of large-loss samples

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n 
of

 sa
m

pl
es

 w
ith

 A
C

NR-AhR
NR-ER
SR-ARE
SR-MMP

(d) Pre-trained Uni-Mol.

Figure 2: Proportion of molecules with AC among molecules with top-n% loss values.

Figure 3 shows the training loss curves for the top 10%-loss molecules with and without AC. We can
see that even for these “hard” molecules, molecules with AC have significantly larger training
losses than those without AC. Moreover, even at the end of the training process, the average loss on
molecules with AC is still much larger than zero, indicating that the four models do not learn these
molecules well with standard training pipelines.
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(b) GraphGPS.
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(c) 3D-PGT.
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Figure 3: Training losses of large-loss molecules with and without activity cliffs in four model
training setups.

In order to accurately distinguish a pair of molecules with activity cliff, the model’s decision
boundary is expected to separate them even though they have very similar chemical structures. In
this experiment, we learn two models, one uses only molecules with AC (denoted “AC”) as training
samples, while the other uses only molecules without AC (denoted “non-AC”). The randomly-
initialized GraphGPS model and pretrained 3D-PGT model are used as base models. Table 1 shows
the ROC-AUC values of the two models on various data sets. As expected, using only molecules
without AC for training yields worse performance than training on all molecules. Using molecules
with AC for training leads to some improvements on the Tox21 and ToxCast data sets. However, the
improvements are still limited, as we ignore information from molecules without AC.

Since molecules with AC are both difficult and useful for model training, in the next section, we
propose a more effective approach to learn from molecules with activity cliff and obtain a molecular
property prediction model with discriminating molecular representation.

4 EFFECTIVE LEARNING FROM SAMPLES WITH ACTIVITY CLIFF

Since molecules with AC are both difficult and useful for model training, in this section, we propose
a novel training algorithm to effectively learn from molecules with AC for more discriminative
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Table 1: ROC-AUC on different molecular property prediction data sets when only using molecules
with/without AC for training.

Method Tox21 ToxCast Sider MUV Bace BBBP ClinTox HIV

GraphGPS (all samples) 71.5 68.5 56.4 66.9 76.9 67.0 71.1 77.0
GraphGPS (AC only) 71.8 69.2 56.5 68.8 77.6 67.0 67.8 72.2
GraphGPS (non-AC only) 67.8 66.9 56.3 69.2 75.8 66.3 67.4 74.8

3D PGT (all samples) 73.8 69.2 60.6 69.4 80.9 72.1 79.4 69.4
3D PGT (AC only) 74.0 70.1 59.7 67.3 79.9 68.6 69.1 68.7
3D PGT (non-AC only) 68.6 68.9 58.6 64.6 79.1 65.7 77.3 69.1

molecular representations. We first reformulate molecular property prediction as a node classification
problem, with the graph structure induced by the structural similarity in Section 4.1. In Section 4.2, we
propose a novel sample selection method that gradually selects hard molecules with AC for training.
We further propose a novel edge-level task to align the model with AC on different properties in
Section 4.3.

4.1 MOLECULAR PROPERTY PREDICTION AS NODE CLASSIFICATION

Given a set of molecules, the definition of matched molecule pairs (Definition 3.1) naturally induces a
graph G = (V, E). Each molecule corresponds to a node, whose features correpond to the molecular
representation obtained by the pre-trained models. Two nodes (molecules) are connected if they are
a matched molecule pair. Figure 4 shows an example subgraph for seven molecules on two property
prediction tasks (responses to ARE and MMP receptors) from the Tox21 data set. As mentioned in
Section 3, a matched molecule pair may have activity cliff on one property (dashed edges in Figure 4)
but not on the other (solid edges). The graph G allows us to formulate molecular property prediction
as a node classification problem, where the node labels describe the properties of different molecules.
This graph formulation is different from those proposed by Zhuang et al. (2023) and Zhao et al.
(2024), as they do not consider the AC information inside the graph (reflected by the different types
of edges in Figure 4).

(a) Responses to ARE receptors. (b) Responses to MMP receptors.

Figure 4: An example graph. Molecules with similar structures (as defined by Definition 3.1) are
connected by edges. The edge is dashed (resp. solid) when the two molecules involved have different
(resp. the same) properties.

4.2 NODE-LEVEL TASK FOR MOLECULES WITH ACTIVITY CLIFF

Since molecules with AC are more difficult to learn (Section 3), we consider the use of curriculum
learning (Wang et al., 2022), which first selects easier samples and then harder samples to gradually
train a better model. However, from Figure 3, even for molecules with similar losses, molecules
with AC are still more difficult to learn than molecues without AC. As such, we propose a weighted
curriculum learning algorithm that jointly considers AC and the molecule’s training loss. Specifically,
for a given molecule i, we define its weighted loss as ℓ̂i(w) = piℓi(w), where ℓi(w) is the original
loss on molecule i (e.g., cross-entropy loss for classification tasks, or squared loss for regression

5



Published as a conference paper at ICLR 2025

tasks), and pi is the weight on molecule i defined as:

pi =

{
1 molecule i has activity cliff
p molecule i does not have activity cliff

(1)

with p < 1. In other words, molecules with AC have higher weights than those without AC. Thus,
when two samples have the same loss values (i.e., equally difficult for the model), we select molecules
with AC first. At iteration t, let the sampled mini-batch be B. We select a subset B̂ of large-loss
samples from B:

B̂(w) = {i|i ∈ B, ℓ̂i(w) ≥ R(t) percentile of loss in B}.

In other words, R(t) controls the percentage of easy molecules that are discarded at iteration t, as we
focus more on hard molecules that cannot be learned well. The loss on B̂, namely, L(w; B̂(w)) =

1
|B̂(w)|

∑
i∈B̂(w) ℓ̂i(w), is then used to update the model. This allows the model to gradually focus

more on the difficult molecules with AC that are more useful for making accurate prediction.

4.3 EDGE-LEVEL TASK FOR ACTIVITY CLIFF PAIRS

While the aforementioned sample selection method can better learn from molecules with AC, it only
considers the molecules separately. However, AC is defined for a pair of molecules, and they may
affect the predictions of each other. As such, we introduce an edge-level task. Specifically, for each
edge eij = (vi, vj) in G, we define the loss:

ℓeij (w) = −(yi − yj)(ŷi(w)− ŷj(w)), (2)

where yi (resp., yj) is the binary label for molecule i (resp., j), and ŷi(w) (resp., ŷj(w)) is the
prediction for molecule i (resp., j) with model parameter w. For a classification task, yi = yj
indicates that molecules i and j have the same label and do not form an AC pair. On the other hand,
when yi ̸= yj , we have AC and yi − yj = ±1. When yi = 1 (which implies yj = 0), equation
(2) minimizes −(ŷi − ŷj), which corresponds to maximizing ŷi and minimizing ŷj . When yi = 0
(which implies yj = 1), equation (2) minimizes (ŷi − ŷj), which corresponds to minimizing ŷi and
maximizing ŷj . Similar deduction can be obtained for regression tasks as well, and we also draw the
predictions of both molecules with activity cliff towards the ground truth. The total edge-level loss
over all matched molecule pairs is then:

Le(w;A) =
1

|A|
∑

eij∈A
ℓeij =

1

|A|
∑

eij∈A
−(yi − yj)(ŷi(w)− ŷj(w)), (3)

where A ⊂ E is the set of all matched molecule pairs. The following Proposition shows the gradient
of the edge-level loss in terms of the ∂ŷi(w)

∂w for each molecule i.

Proposition 4.1. ∂Le(w)
∂w = 1

|A|
∑

i −ni(2yi − 1)∂ŷi(w)
∂w , where ni is the number of AC pairs

involving molecule i.

Proof is in Appendix A. In other words, the gradient of Le is a weighted sum of ∂ŷi(w)
∂w ’s. The

weight on each ∂ŷi(w)
∂w depends on the number of AC pairs involving molecule i, which does not

change throughout training. However, not all AC pairs are equally important for the learning of
discriminative molecular representations. Some pairs can be easily separated, while other pairs may
be more difficult to distinguish. Thus, we also employ curriculum learning into this edge-level task,
and change the edge loss in (3) to:

Le(w; Â) =
1

|Â|

∑
eij∈Â

ℓeij (w) =
1

R(t)|A|
∑

eij∈Â
ℓeij (w), (4)

where Â = {eij |eij ∈ A, ℓeij ≥ R(t) percentile of loss in A}. Using Â instead of A allows us to
focus more on AC pairs eij ∈ A with larger loss ℓeij , which correspond to less well-separated pairs
that are more important for model update.
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Algorithm 1 Learning with Activity Cliff (LAC).
1: Initialize prediction model f with parameter w (random initialization or pre-trained weights);
2: for t = 0, . . . , T − 1 do
3: Draw a mini-batch B from molecule data set D;
4: Obtain the set A of molecule pairs in B with activity cliff;
5: Determine R(t);
6: Select R(t)× |B| large-loss samples B̂ from B based on network f ’s predictions;
7: Select R(t)× |A| pairs of molecule Â with activity pairs and compute Le in (4);
8: Update w = w − η∇w(L(w; B̂) + αLe(w; Â));
9: end for

4.4 COMPLETE ALGORITHM

The complete algorithm, which will be called Learning with Activity Cliff (LAC), is shown in
Algorithm 1. Compared with standard curriculum learning algorithms (Wang et al., 2022) that may
be applied to training molecular property prediction models, it has the following two key differences:
(i) Algorithm 1 involves training on two different tasks, combined together with a hyper-parameter α,
while existing works only consider curriculum learning on one task (namely the node-level task);
(ii) We propose a novel design of the curriculum in Algorithm 1 based on AC information, which is
unique for molecular property prediction. Note that the proposed method can be used with various
(randomly-initialized or pre-trained) base models. It also introduces a hyper-parameter R(t) to
control the number of large-loss samples. Its effect on model performance will be studied in detail in
Section 5.4.

Table 2: ROC-AUCs on various molecular property prediction classification data sets. The best
performance for each task is marked in bold.

Method Tox21 ToxCast Sider MUV Bace BBBP ClinTox HIV

GIN 74.9 61.6 58.0 71.0 72.6 65.4 58.8 75.3
GIN+LAC 75.6 62.2 58.3 72.4 74.8 65.9 61.6 76.1

GraphGPS 71.5 68.5 56.4 66.9 76.9 67.0 71.1 77.0
GraphGPS+LAC 74.0 73.7 60.4 71.3 82.5 67.7 72.4 77.6

GraphMVP 75.9 63.1 63.9 77.7 81.2 72.4 79.1 77.0
GraphMVP+LAC 76.7 70.1 64.5 78.1 81.6 72.9 80.2 77.8

3D-PGT 73.8 69.2 60.6 69.4 80.9 72.1 79.4 69.4
3D-PGT+LAC 75.2 74.0 61.0 75.1 84.5 72.4 79.6 69.5

UniMol 79.6 69.6 65.9 82.1 85.7 72.9 91.9 80.8
UniMol+LAC 80.2 72.5 66.2 82.7 86.4 73.6 92.2 80.9

5 EXPERIMENTS

In this section, we demonstrate the performance of the proposed method on both classification data
sets (Section 5.1) popularly used in existing works (Stärk et al., 2022; Wang et al., 2023b; Zhou et al.,
2023) and regression data sets (Section 5.2) that are more common in real-world application (van
Tilborg et al., 2022). Section 5.3 presents ablation studies to verify the effectiveness of each
component in the proposed method. The effect of the hyper-parameters that define R(t) are studied
in Section 5.4. Section 5.5 further visualizes the loss distribution on molecules. Section 5.6 presents
case studies to better understand the proposed method.

5.1 EXPERIMENTS ON CLASSIFICATION DATA SETS

In this section, we perform experiments on eight classification tasks from the MoleculeNet (Wu
et al., 2018): Tox21, ToxCast, Sider, MUV, Bace, BBBP, ClinTox and HIV. The proposed LAC
is combined with the following baseline methods: (i) training from scratch with GIN (Xu et al.,
2019) and GraphGPS (Rampášek et al., 2022) models, and (ii) using model initializations from the
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following pre-training methods: GraphMVP (Liu et al., 2022), 3D-PGT (Wang et al., 2023b) and
UniMol (Zhou et al., 2023). Statistics of the data sets used and detailed experimental setups can be
found in Appendix B.

The ROC-AUCs on various molecular property data sets are shown in Table 2. LAC improves the
performance of all the models considered. With LAC, the pre-trained UniMol model achieves the
best performance on all data sets except ToxCast, where 3D-PGT pre-trained model performs the
best. Moreover, performance improvement depends partially on the proportion of AC samples in the
data set. For example, the improvement on Tox21 is generally larger than that on MUV, and activity
cliff is more commonly encountered in Tox21, as is shown in Table 8.

5.2 EXPERIMENTS ON REGRESSION DATA SETS

Table 3: MAE on various molecular property prediction regression data
sets. The best performance for each task is marked in bold.

Target 5-HT1A MOR D3R FXR HRH3
ChEMBL ID 214 233 234 2047 264

MLP(ECFP) 0.692 0.845 0.669 0.796 0.672
MLP(ECFP)+LAC 0.656 0.827 0.635 0.762 0.657

While the definition for
activity cliff is straight-
forward for classification
tasks, recent works (van
Tilborg et al., 2022; Deng
et al., 2023) also consider
activity cliff on regression
data sets. Following (van
Tilborg et al., 2022), we se-
lect five data sets from the ChEMBL database (Zdrazil et al., 2023), which describe the (continuous)
bioactivity values of molecules to a specific target. We train a MLP with ECFP molecular finger-
prints (Rogers & Hahn, 2010) as it performs best on these data sets in (van Tilborg et al., 2022), with
more experimental details in Appendix B. Table 3 shows the obtained mean absolute error (MAE).
The proposed LAC can also improve model performance on regression tasks.

Table 4: Ablation studies on different components in the proposed method LAC. The evaluation
metric is ROC-AUC (Larger is better).

base model node-level edge-level Tox21 ToxCast Sider MUV Bace BBBP ClinTox HIV
curriculum

GraphGPS

× × 71.5 68.5 56.4 66.9 76.9 67.0 71.1 77.0
× √ 72.0 69.8 58.6 67.2 79.3 66.6 71.6 77.1
√ × 73.8 73.0 59.3 69.5 81.3 67.1 72.1 77.4
√ √ 74.0 73.7 60.4 71.3 82.5 67.7 72.4 77.6

× × 73.8 69.2 60.6 69.4 80.9 72.1 79.4 69.4
× √ 74.0 70.2 60.2 69.1 81.8 69.4 77.4 68.6

3D PGT √ × 74.6 73.0 61.0 72.2 83.1 72.2 79.6 69.5
√ √ 75.2 74.0 61.0 75.1 84.5 72.4 79.6 69.5

5.3 ABLATION STUDIES

In this experiment, we study the effectiveness of curriculum learning in the node-level task (Sec-
tion 4.2) and the pairwise loss in the edge-level task (Section 4.3). Experiments are performed on the
GraphGPS model (randomly-initialized) and 3D-PGT model (pre-trained) as two representatives.

Table 5 shows the model performance with different values of p in (1). Setting p = 1 corresponds
to only using the original loss and does not distinguish molecules with/without AC, while setting
p = 0 corresponds to using only molecules with AC for training. As can be seen, using p < 1 usually
outperforms the baseline with p = 1, demonstrating the effectiveness of AC information in selecting
informative molecules for training. However, setting p too small can harm model performance as
we neglect the congtributions of molecules without AC. In this paper, we set p = 0.5 as it achievs
the best overall performance. Table 4 shows the ROC-AUCs obtained with or without the pairwise
(edge-level) task and curriculum learning on samples (node-level curriculum). Both the pairwise task
and curriculum learning on samples can generally improve the model performance, and curriculum
learning on samples often has more significant improvements. The only exception is the MUV data
set on 3D-PGT model, where only using pairwise task achieves slightly worse performances. That
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is because MUV data set contains fewer molecules with activity cliff, as is shown in Table 8 in
Appendix B. Combining both components achieves the best overall performances across all data sets.

Table 5: Ablation studies on the effect of activity cliff weights for curriculum learning on samples.
The evaluation metric is ROC-AUC (Larger is better).

base model p Tox21 ToxCast Sider MUV Bace BBBP ClinTox HIV

1.0 73.5 72.6 60.3 72.9 80.0 65.0 71.1 77.0
0.75 73.8 72.9 60.4 72.3 81.7 67.3 71.9 77.5

GraphGPS 0.5 74.0 73.7 60.4 71.3 82.5 67.7 72.4 77.6
0.25 71.6 70.3 57.9 69.8 77.4 67.1 70.1 73.4
0 67.8 66.9 56.3 69.2 75.8 66.3 67.8 72.2

1.0 74.2 73.0 60.7 72.9 81.5 70.5 79.4 69.4
0.75 74.7 73.7 60.9 74.6 83.8 72.1 79.6 69.2

3D PGT 0.5 75.2 74.0 61.0 75.1 84.5 72.4 79.6 69.5
0.25 72.4 71.9 59.2 70.4 81.3 71.8 73.6 69.1
0 68.6 68.9 58.6 64.6 79.1 65.7 69.1 68.7

Table 6: ROC-AUC on different data sets with different types of R(t) schedules. 3D-PGT pre-trained
model is used.

Schedule Tox21 ToxCast Sider MUV Bace BBBP ClinTox HIV

linear 75.2 74.0 61.0 75.1 84.5 72.4 79.6 69.5
root 74.5 73.2 59.5 71.0 83.5 70.0 79.3 69.2
geometric 75.0 73.7 60.5 75.0 85.0 71.2 79.6 69.3

5.4 IMPACTS OF R(t)

Table 7: ROC-AUC on Tox21 data set with different λ and γ
for LAC. 3D-PGT pre-trained model is used.

λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5

γ=0.1 75.1 75.2 75.1 73.8 75.2
γ=0.2 74.0 75.0 75.1 72.7 74.3
γ=0.3 73.0 75.0 75.0 72.3 72.2
γ=0.4 73.7 73.1 74.1 72.1 72.2
γ=0.5 74.6 72.5 72.3 72.6 73.5

In this section, we investigate how
different R(t) schedules (in Algo-
rithm 1) affects the performance
of LAC. We consider the follow-
ing three schedules: (i) linear:
R(t) = λmin(t/(γT ), 1), which
increases the difficulty of training
samples at a uniform rate; (ii) root:
R(t) = λmin(

√
t/(γT ), 1), which

introduces more hard samples in
fewer epochs; and (iii) geometric:
R(t) = λ(2min(t/(γT ),1) − 1), which
trains for a greater number of epochs on the subset of easy samples. We set γ = 0.1 and λ = 0.2 for
all schedules. Table 6 shows the ROC-AUCs obtained on the various data sets. In general, the linear
schedule achieves the best performance, and the root schedule achieves the worst performances.

Using the linear schedule, Table 7 shows the ROC-AUCs on the Tox21 data set with different
hyper-parameters γ and λ. The performance is stable on a wide range of γ and λ values.

5.5 LOSS DISTRIBUTIONS FOR MOLECULES WITH ACTIVITY CLIFF

In this section, we compare the training loss distributions on molecules with AC obtained with and
without the proposed LAC. Figure 5 (resp. Figure 6) shows the distributions with the randomly-
initialized GraphGPS model (resp. pre-trained 3D-PGT model) at the end of the training process.
Models trained by the baseline algorithm (blue columns) have inaccurate predictions on part of
molecules with AC, while the proposed method LAC (orange columns) can reduce the loss for these
samples. LAC improves the performance for both randomly-initialized model and pre-trained model.

5.6 CASE STUDIES
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Figure 5: Loss distributions obtained by the randomly-initialized GraphGPS model on molecules
with AC on 4 tasks in Tox21.
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Figure 6: Loss distributions obtained by 3D-PGT pre-trained GraphGPS model on molecules with
AC on 4 tasks in Tox21.

(a) Example 1: correctly classified
by both UniMol and UniMol+LAC

(b) Example 2: wrongly classified
by UniMol but correctly classified
by UniMol+LAC

Figure 7: Examples of molecules with AC. LAC improves upon ex-
isting methods to obtain more accurate predictions on molecules with
AC.

Finally, we choose some
examples to illustrate how
the proposed method LAC
can improve upon existing
molecular property predic-
tion model. We choose the
UniMol pre-trained model
as it achieves the best over-
all performance on vari-
ous data sets. As in Fig-
ure 7(b), without the pro-
posed LAC, UniMol cannot
correctly classify molecules
with AC when the structural
differences are very small,
even if it can handle eas-
ier pairs like in Figure 7(a).
With tasks from two levels,
LAC further improves the model performance to accurately classify two molecules in Figure 7(b)

6 CONCLUSION

In this paper, we propose to improve the performance of molecular property prediction models from
the perspective of activity cliff (AC). We first use empirical results with different tasks and models to
demonstrate that standard training pipeline cannot learn molecules with AC well. By reformulating
the original problem as a graph problem, we propose a novel training algorithm LAC that uses both
node-level and edge-level tasks to effectively learn from molecules with AC. Extensive empirical
results demonstrate that the proposed method significantly improves the performance of different
baseline methods.
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A PROOF OF PROPOSITION 4.1

Proof.

∂Le

∂w
=
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∂w

− ∂ŷj
∂w

)

Regarding yi − yj , since eij ∈ A indicates that molecule i and j have activity cliff, we consider the
following two cases:

• yi = 1, then we must have yj = 0, and yi − yj = 1 = 2yi − 1

• yi = 0, then we must have yj = 1, and yi − yj = −1 = 2yi − 1

Thus, we have yi − yj = 2yi − 1 always holds and:

∂Le(w)

∂w
=

1

|A|
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i:eij∈A
−(2yi − 1)

∂ŷi
∂w

=
1

|A|
∑

i
−ni(2yi − 1)

∂ŷi
∂w

.

B EXPERIMENTAL DETAILS

All experiments are run on a single NVIDIA RTX A6000 GPU. For all experiments in this work, we
use the Adam optimizer (Kingma & Ba, 2015), and follow its default hyper-parameters: learning rate
η is set 0.001, first-order momentum weight β1 is set to 0.9, and the second-order momentum weight
β2 is set to 0.99. The batch size is set to 256 for all data sets.

Unless otherwise specified, we set the R(t) schedule as R(t) = λmin(t/(γT ), 1) with λ = 0.2 and
γ = 0.1, and the weight α for pairwise loss Le is set to 0.1. For the classification experiments, the
data splits of all data sets in our experiments follow the scaffold split in (Wang et al., 2023b). For
the regression experiments, the data splits of all data sets in our experiments are the same as in (van
Tilborg et al., 2022), and we use an three-layer MLP model with input dimension 1024 and hidden
dimension 512 for all hidden layers.

All data sets used in our experiments are released under MIT license. Some statistics on data sets
used in experiments are in Table 8 (classification) and Table 9 (regression).

Table 8: Summary for the data sets used for classification tasks.
Tox21 ToxCast Sider MUV Bace BBBP ClinTox HIV

# molecules 7831 8521 1427 93087 1513 2039 1477 41127
# MMPs 3212114 3802710 11935 2243595 15894 24105 7080 20740266
# AC pairs 315841 381260 3183 2610 1470 1186 1912 2484912
AC ratio (%) 9.83 10.03 26.67 0.12 9.23 4.92 27.01 11.98

C ADDITIONAL EMPIRICAL RESULTS

C.1 ABLATION STUDY ON THE IMPACT OF CURRICULUM LEARNING FOR PAIRWISE TASK

Table 10 compares the model performances on whether to use curriculum learning for pairwise task.
We see that using curriculum learning for pairwise task further improves the performance than using
the naive pairwise task for most data sets.
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Table 9: Summary for the data sets used for regression tasks.
5-HT1A MOR D3R FXR HRH3

# molecules 3317 3142 3657 3097 2862
# MMPs 19240 17200 26707 21264 15652
# AC pairs 6734 6045 10418 9282 5913
AC ratio (%) 35.00 35.15 39.01 43.65 37.78

Table 10: Ablation studies on the effect of curriculum learning for pairwise task. The evaluation
metric is ROC-AUC (Larger is better).

Base model Pairwise curriculum Tox21 ToxCast Sider MUV Bace BBBP ClinTox HIV

GraphGPS × 73.0 73.2 59.7 70.6 81.6 67.8 71.9 77.5√ 74.0 73.7 60.4 71.3 82.5 67.7 72.4 77.6

3D PGT × 74.0 73.5 60.8 71.0 83.6 70.4 78.9 69.1√ 75.2 74.0 61.0 75.1 84.5 72.4 79.6 69.5

C.2 EFFECTS OF BATCH SIZE

Table 11 compares the performance with different batch sizes for LAC on both GraphGPS and
3D-PGT model. While we set the batch size to be 256 for all data sets in our experiments, we can
see that setting the batch size either too large (1024) or too small (64) may not lead to the best
performance. Setting the batch size too small cannot cover enough activity cliff pairs in the edge-level
loss of our method, hence cannot utilize this task well and may even leads to performance worse
than the standard training pipeline (e.g., the Tox21 data). While setting the batch size larger leads
to some improvement on large data sets like MUV or ToxCast, it leads to even worse performance
for other data sets with limited molecules like Sider or BBBP. Such observation agrees with existing
theoretical works on stochastic optimization for neural networks (Lin et al., 2018; 2020), as they
demonstrate that large batch sizes can lead to worse generalization performance. Therefore, although
setting the batch size to be larger can include more activity cliff pairs in a single batch, it may still
not lead to better performance on all data sets.

Table 11: Ablation studies on the effect of batch size. The evaluation metric is ROC-AUC (Larger is
better).

Method Batch size Tox21 ToxCast Sider MUV Bace BBBP ClinTox HIV

64 72.9 72.1 59.7 70.7 81.9 67.1 72.2 77.3
GraphGPS+LAC 256 74.0 73.7 60.4 71.3 82.5 67.7 72.4 77.6

1024 73.9 73.8 58.2 71.6 81.5 66.4 71.7 77.4

64 74.9 73.8 60.5 73.9 83.8 72.1 79.3 69.1
3D PGT+LAC 256 75.2 74.0 61.0 75.1 84.5 72.4 79.6 69.5

1024 75.0 74.0 60.1 75.2 81.3 71.8 76.6 69.2

C.3 TIME COST ON ACTIVITY CLIFF DETECTION

Table 12 compares the total time cost in fine-tuning for the standard training pipeline and our proposed
method LAC. Note that compared to standard training, LAC involves an additional process of finding
all activity cliff pairs, therefore we show its time cost in two parts in parenthesis, where the first
number represents the time cost of finding all activity cliff pairs and the second number represents the
time cost of fine-tuning in Algorithm 1. We can see that the time cost for our method is almost the
same as the standard training pipeline. In other words, the new node and edge-level tasks do not incur
much additional time cost. Also, the time cost of finding all activity cliff pairs is generally limited
compared to fine-tuning.
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Table 12: CPU time cost (in minutes) of standard training pipeline and the proposed method LAC
when fine-tuning 3D-PGT/UniMol model.

Data sets Tox21 Sider Bace BBBP

3D-PGT 156 54 62 69
3D-PGT+LAC 196 (37+159) 58 (3+55) 70 (5+65) 73 (4+69)

UniMol 208 77 83 91
UniMol+LAC 247 (37+210) 80 (3+77) 88 (5+83) 97 (4+93)

C.4 ENLARGED FIGURES IN SECTION 3 AND ADDITIONAL MOTIVATION RESULTS

Figure 8 shows the average training losses for molecules with AC and molecules without AC. As can
be seen, for all the four setups, molecules with AC have significantly larger training losses than
molecules without AC. This demonstrates that molecules with AC are more difficult to learn due to
their similar structures yet different properties. Moreover, from Figures 8(c) and 8(d), we can see
that this phenomenon also exists for the 3D-PGT and Uni-Mol pre-trained models. In other words,
molecules with AC are still more difficult to learn during fine-tuning of pre-trained models.
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(c) Pre-trained 3D-PGT.
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(d) Pre-trained Uni-Mol.

Figure 8: Training losses of molecules with and without activity cliffs in four model training setups.

Since a pair of molecules with activity cliff have large difference in their properties, they may have
larger influence on the prediction of each other during training. To demonstrate this, Figure 9 shows
the average difference of training losses (“loss gap”) between molecules with activity cliff. As can be
seen, AC leads to loss gaps between two molecules, which also indicates that all these models fail
to accurately classify both molecules, as in such cases the loss gap should be small (both with small
loss). Instead, current models make the same prediction for these two molecules with AC. Only one
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molecule is correctly classified with small loss, while another molecule has large loss that leads to
the large loss gap.
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(c) pre-trained 3D-PGT.
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(d) pre-trained Uni-Mol.

Figure 9: Loss gaps of molecules with AC for different tasks during model training.
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(c) Pre-trained 3D-PGT.
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(d) Pre-trained Uni-Mol.

Figure 10: (Larger version of Figure 2) Proportion of molecules with AC among molecules with
top-n% loss values.
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(c) pre-trained 3D-PGT.
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(d) pre-trained Uni-Mol.

Figure 11: (Larger version of Figure 3) Training losses of large-loss molecules with and without
activity cliffs in four model training setups.
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