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Abstract

Recent advances toward foundation models for
routing problems have shown great potential of
a unified deep model for various VRP variants.
However, they overlook the complex real-world
customer distributions. In this work, we advance
the Multi-Task VRP (MTVRP) setting to the
more realistic yet challenging Multi-Task Multi-
Distribution VRP (MTMDVRP) setting, and in-
troduce SHIELD, a novel model that leverages
both sparsity and hierarchy principles. Build-
ing on a deeper decoder architecture, we first
incorporate the Mixture-of-Depths (MoD) tech-
nique to enforce sparsity. This improves both effi-
ciency and generalization by allowing the model
to dynamically select nodes to use or skip each
decoder layer, providing the needed capacity to
adaptively allocate computation for learning the
task/distribution specific and shared representa-
tions. We also develop a context-based clustering
layer that exploits the presence of hierarchical
structures in the problems to produce better local
representations. These two designs inductively
bias the network to identify key features that are
common across tasks and distributions, leading to
significantly improved generalization on unseen
ones. Our empirical results demonstrate the supe-
riority of our approach over existing methods on
9 real-world maps with 16 VRP variants each.
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1. Introduction

Combinatorial optimization problems (COPs) appear in
many real-world applications, such as logistics (Cattaruzza
et al., 2017) and DNA sequencing (Caserta & VoB3, 2014),
and have historically attracted significant attention (Bengio
etal., 2021). A key example of COPs is the Vehicle Routing
Problem (VRP), which asks: Given a set of customers, what
is the optimal set of routes for a fleet of vehicles to minimize
overall costs while satisfying all constraints? Traditionally,
they are solved with exact or approximate solvers. However,
these solvers rely heavily on expert-designed heuristic rules
which limit its efficiency. Recently, the emerging Neural
Combinatorial Optimization (NCO) community has been
increasingly focused on developing novel neural solvers for
VRPs based on deep (reinforcement) learning (Kool et al.,
2018; Kwon et al., 2020; Bogyrbayeva et al., 2024). These
solvers learn to construct solutions autoregressively, improv-
ing efficiency and reducing the need for domain knowledge.

Motivated by the recent breakthroughs in foundation mod-
els (Floridi & Chiriatti, 2020; Touvron et al., 2023; Achiam
et al., 2023), a notable trend in the NCO community is the
push towards developing a unified neural solver for han-
dling multiple VRP variants, known as the Multi-Task VRP
(MTVREP) setting (Liu et al., 2024; Zhou et al., 2024; Berto
et al., 2024). These solvers are trained on multiple VRP
variants and show impressive zero-shot generalization to
new tasks. Compared to single-task solvers, unified solvers
offer a key advantage: there is no longer a need to construct
different solvers or heuristics for each specific problem vari-
ant. However, despite the importance of the MTVRP setup,
it does not fully capture real-world industrial applications,
as the underlying distributions are assumed to be uniform,
lacking the structural properties of real-world data.

This work extends the MTVRP framework to real-world
scenarios by incorporating realistic distributions (Goh et al.,
2024). Consider a logistics company operating across mul-
tiple cities/countries, each with a fixed set of M locations
governed by its geographical layout. When a subset of V'
orders arises, the problem is reduced to serving only those
customers. To model this, we generate realistic distribu-
tions by selecting smaller subsets of V' from the fixed set
of M locations such that the geographical characteristics
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of M are retained. This transforms MTVRP into the Multi-
Task Multi-Distribution VRP (MTMDVRP), a novel and
challenging setting that, to our knowledge, has not been
explored in the literature.

Nevertheless, MTMDVRP poses unique challenges for
learning unified neural VRP models. First, beyond man-
aging the diverse constraints of MTVRP, the model must
further learn to handle arbitrary, distribution-specific lay-
outs. Unfortunately, task-related contexts are often interde-
pendent with distribution-related contexts during decision-
making (e.g., selecting the next node), adding further com-
plexity. Meanwhile, beyond traditional cross-distribution
setups, our approach samples instances from an underlying
distribution that captures more practical, real-world patterns.
To perform well in the MTMDVRP setting, the model must
capture both task-specific and distribution-related contexts
when selecting the next node. One promising way to achieve
this is to enable the model to dynamically process nodes, al-
lowing it to allocate computational focus to the most critical
nodes. Additionally, to be generalizable, the model must be
sufficiently regularized to prevent over-fitting.

To this end, we introduce Sparsity & Hierarchy in Efficiently
Layered Decoder (SHIELD) to address the above challenges
with two key innovations. First, SHIELD leverages sparsity
by incorporating a customized Mixture-of-Depths (MoD)
approach (Raposo et al., 2024) to the NCO decoders. While
adding more decoder layers can improve predictive power,
the autoregressive nature of neural VRP solver significantly
hampers efficiency. In contrast, our MoD is designed to
dynamically adjust the proper computational depth (number
of decoder layers) based on the decision context. This al-
lows it to adaptively allocate computation for learning the
task/distribution specific and shared representations while
acting as a regularization mechanism to prevent over-fitting
by possibly reducing redundant computations. Secondly,
we employ a clustering mechanism that considers hierarchy
during node selection by forcing the learning of a small set
of key representations of unvisited nodes, enabling sparse
and compact modelling of the complex decision-making
information. Together, these two designs encourage the
model to learn compact, simple, generalizable representa-
tions by limiting computational budgets, effectively enhanc-
ing generalization across tasks and distributions. This paper
highlights the following contributions:

* We propose Multi-Task Multi-Distribution VRP (MT-
MDVRP), a novel, more realistic, yet challenging sce-
nario that better represents the real-world industry.

* We present SHIELD, a neural solver that leverages
sparsity through a customized NCO decoder with MoD
layers and hierarchy through context-based cluster rep-
resentation. Both contributions reduce computation
and parameters, acting as effective regularizers, thereby

leading to a more generalizable neural VRP solver.

* We demonstrate SHIELD’s impressive in-distribution
and generalization benefits via extensive experiments
across 9 real-world maps and 16 VRP variants, achiev-
ing state-of-the-art performance compared to existing
unified neural VRP solvers.

2. Preliminaries

CVRP and its Variants. The CVRP is defined as an in-
stance of N nodes in a graph G = {V, £}, where the de-
pot node is denoted as vy, customer nodes are denoted as
{vi}, € V, and edges are defined as e(v;,v;) € & be-
tween nodes v; and v; such that ¢ # j. Every customer
node has a demand §;, and each vehicle has a maximum
capacity limit (). For a given problem, the final solution
(tour) can be presented as a sequence of nodes with multiple
sub-tours. Each sub-tour represents a vehicle’s path, starting
and ending at the depot. As a vehicle visits a customer node,
the demand is fulfilled and subtracted from the vehicle’s
capacity. A solution is considered feasible if each customer
node is visited exactly once, and the total demand in a sub-
tour does not exceed the capacity limit of the vehicle. In
this paper, we consider the nodes defined in Euclidean space
within a unit square [0, 1], and the overall cost of a solution,
¢(+), is calculated via the total Euclidean distance of all sub-
tours. The objective is to find the optimal tour 7* such that
the cost is minimized, given by 7* = argmin, cgc(7|G)
where ® defines the set of all possible solutions.

We define the following practical constraints that are inte-
grated with CVRP: (1) Open route (O): The vehicle is no
longer required to return to the depot after visiting the cus-
tomers; (2) Backhaul (B): The demand on some nodes can
be negative, indicating that goods are loaded into the vehi-
cle. Practically, this mimics the pick-up scenario. Nodes
with positive demand §; > 0 are known as linehauls, and
nodes with negative demand J; < 0 are known as back-
hauls. Routes can have a mixed sequence of linehauls and
backhauls without strict precedence; (3) Duration Limit (L):
Each sub-tour is upper bounded by a threshold limit on the
total length; (4) Time Window (TW): Each node v; is defined
with a time window [w?, w§], signifying the open and close
times of the window, and s; the service time at a node. A
customer can only be served if the vehicle arrives within
the time window, and the total time taken at the node is the
service time. If a vehicle arrives earlier, it has to wait until
wg. All vehicles have to return to the depot before wyg.

Neural Constructive Solvers. Neural constructive solvers
are typically parameterized by a neural network, where
a policy, 7y, is trained by reinforcement learning to con-
struct a solution sequentially (Kool et al., 2018; Kwon et al.,
2020). Generally, these solvers employ an encoder-decoder
architecture and are trained as sequence-to-sequence mod-
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els (Sutskever, 2014). The probability of a sequence can
be factorized as py(7|G) = Hthl po(7¢|G, T1.4—1). The en-
coder stacks multiple transformer layers to extract node em-
beddings, while the decoder generates solutions autoreges-
sively using a contextual embedding h(.y. To decide on
the next node, the attention mechanism produces attention
scores used for decision-making (Vaswani, 2017). The con-
textual vectors h() serves as query vectors Q, while the
keys, K, is the set of N node embeddings. This is mathe-
matically represented as

4
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where U is a clipping function and DIM the dimension of
the latent vector. These attention scores are then normal-
ized using a softmax function to generate the probability

distribution: p; = po(re = i|s, T1.4—1) = Ze'aéaj. In-
J

valid moves, such as previously visited nodes, are man-
aged using a mask during this process. Finally, given a
baseline function b(-), the policy is trained with the RE-
INFORCE algorithm (Williams, 1992) and gradient as-
cent, with the expected return J and the reward of each
solution R (i.e., the negative length of the solution tour):

VoJ(0) = E[(R(Ti) — bi(s))Valog pe(Ti|s)|. We leave
additional details about the architecture in Appendix C.

Mixture-of-Experts. Previous work (Liu et al., 2024)
demonstrated the ability of state-of-the-art transformers
such as POMO (Kwon et al., 2020) to generalize across
MTVRP instances. More recently, Zhou et al. improved
upon this architecture using Mixture-of-Experts (MoE).
An MoE layer consists of m experts {E1, Ea, ..., E;, },
whereby each expert is a feed-forward MLP. A gating net-
work G produces a scalar score based on an input token
x, which decides how the inputs are distributed to the ex-
perts. The layer’s output can be defined as MOE(z) =
Z;nzl G(z);E;(x). The gating network selects the top-k
experts to prevent computation from exploding. For MV-
MOoE, MoE layers are inserted in each transformer block,
allowing each token to use k experts. Additionally, a hierar-
chical gate is introduced in the decoder at the problem level
to learn whether or not to use experts at each decoding step.

3. Methodology
3.1. MTVRP and MTMDVRP Setup

Formally, the optimization objective of an MTVRP instance
is given by

min(c(X)) = Exox

> d(pipin )1 ©)

sES pi€s

where IC is the set of all tasks, S the set of all sub-tours
in an instance, p; the ¢-th node in the sequence of s, and
d(-,-) the Euclidean distance function. For the MTMDVRP
in this paper, we expand on the MTVRP scenarios in (Liu
et al., 2024; Zhou et al., 2024). The z; and y; coordinates
for the instances are now sampled from a known underlying
distribution of points. This enables the samples to mimic
most of the structural distributions and patterns available in
the problem. The optimization objective is now given by

Er~x [Z > d(Pi,piH)H 3

SESpi€s

min(e(X)) = Egmo

where Q is the set of all distributions. The following prac-
tical scenario can visualize our MTMDVRP: assume a lo-
gistics company X deploys a deep learning model to solve
multiple known variants for its current business. In an ideal
world, it would have access to all forms of logistics prob-
lems generated across all possible structured distributions
in the world, whereby a country map ¢ € Q. Realistically,
company X only has historical data in some tasks and pres-
ence in a handful of countries, such that ¢’ € Q’, whereby
Q' C Q, meaning that it only has data drawn from a subset
of distributions in Q. Likewise, it has only faced a subset
of tasks such that ¥’ € X', K’ C K. Based on this historical
data, company X can train a single model using Q' and K'.
Now, if company X wishes to expand its presence to other
parts of the world, it would see new data samples from new
distributions and meet new tasks that were not present in
the training set. Thus, it would be highly beneficial for com-
pany X to be able to apply its model readily. To do so, the
model has to be robust to the task and distribution deviation
simultaneously, suggesting strong generalization properties
across these two aspects.

Challenges of MTMDVRP. While adding distributions may
seem straightforward, it introduces significant complexity.
The model must learn representations that capture task and
distribution contexts when selecting the next node to visit.
Unfortunately, these are often interdependent, which compli-
cates decision-making. For example, in a skewed map such
as EG7146 in Figure 4 of Appendix S, the task complexity
is closely tied to the geographic layout. The depot’s position
significantly impacts the solution; a depot near clustered
customer nodes is less complex to solve than one located
in a sparse region with distant customer nodes. Balancing
shared and task/distribution-specific representations is more
complicated, as the model must generalize across a broader
space to be useful across tasks and distributions.

For our setup, we adopt the following feature set. At each
epoch, we are faced with a problem instance ¢ such that
Si = {zi, yi, §i, w2, we}, where x; and y; are the respective
coordinates, §; the demand, w{ and w the respective open-
ing and closing times of the time window. This is passed
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Figure 1. Overall proposed approach for MTMDVRP. First, in-distribution maps are sampled uniformly, and a set of points is sampled
from the map. Next, a task is sampled uniformly from the in-task set. These form a batch of problem instances and are passed to
the network. SHIELD encompasses an MoE encoder, a context-based clustering layer, and the MoD decoder. The decoder is applied
autoregressively to in-task/out-task out-distribution instances where the optimality gap is calculated using known solvers.

through the encoder, resulting in a set H of d-dimensional
embeddings. At the ¢-th decoding step, the decoder receives
this set of embeddings H, the clustering embeddings C,
and a set of dynamic features D; = {z, ly, tt, 0; }, where z;
denotes the remaining capacity of the vehicle, /; the length
of the current partial route, ¢; the current time step, and oy
indicates if the route is an open route or not.

3.2. Regularization by compute and generalization

To further address the generalization aspect of foundation
models for NCO, we present the perspective of adaptive
computing motivated by the Vapnik-Chervonenkis (VC) di-
mension concept. The VC dimension is a traditional analysis
in statistical learning that aims to quantify the complexity
of an algorithm (e.g. a neural network) and its learning
capacity. In particular, a high VC-dim indicates a more
complex model, allowing for greater capacity for represen-
tation at the expense of greater sample complexity and a
higher tendency for over-fitting. Likewise, a low VC-dim
indicates a simpler model, suggesting inadequate represen-
tation power or possibly more substantial generalization due
to its simplicity.

Theorem. Let {Cy, ,, : k,n € N} be a set of concept classes
where the test of membership of an instance c in a concept
C consists of an algorithm Ay, ,, taking k + n real inputs
representing C' and ¢, whose runtime is t = t(k,n), and
which returns the truth value ¢ € C. The algorithm Ay, ,
is allowed to perform conditional jumps (conditioned on
equality and inequality of real values) and execute the stan-
dard arithmetic operations on real numbers (+, —, X, /) in

constant time. Then VC-dim(Cy,,,) = O(kt).

The above theorem (taken from Theorem 2.3 (Goldberg &
Jerrum, 1993)) shows that for algorithms consisting of mul-
tivariate polynomials, such as neural nets, the VC-dim of
the algorithm Ay, ,,, where k is the number of parameters
and n the number of input features, is polynomial in terms
of its compute runtime ¢ and number parameters, giving us
a complexity of O(kt). While the Theorem is not strictly
applicable to networks containing exponential functions, it
suggests that the amount of compute can potentially serve
as a regularizer. Based on these observations, we hypothe-
size that one can alter the generalization performance of a
neural network by adjusting the number of parameters and
the total computation used (and hence its runtime).

We propose an adaptive learning approach that regulates
the complexity of the network as an appropriate architec-
ture for generalization. Our customized MoD approach en-
forces sparsity through learning reduced network depths and
lighter computation per token. We regularize the model to
learn generalizable representations across tasks/distributions
by constraining the network’s total compute. Additionally, a
clustering mechanism forces the network to condense infor-
mation. By limiting the number of parameters (and hence
the number of clusters) to a handful, we enforce sparsity the
mechanism. In a Multi-Task Multi-Distribution scenario,
we posit that these encourage the network to efficiently
generalize by balancing the computational budget for task-
specific information while leaving common information to
be learned across other tasks or distributions, allowing for
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Figure 2. Token is routed differently for each agent depending on
the router.
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efficient generalization across tasks and distributions.

3.3. Going deeper but sparser

Our proposed architecture is shown in Figure 1. To increase
the predictive power of the MVMOE, one can easily hypoth-
esize that increasing the number of parameters would be
necessary. However, due to the autoregressive nature of de-
coding, this quickly becomes computationally expensive. In-
stead, we propose the integration of the Mixture-of-Depths
(MoD) (Raposo et al., 2024) approach into the decoder.
Given a dense transformer layer and N tokens, MoD se-
lects the top (3-th percentile of tokens to pass through the
transformer layer. In contrast, the remaining unselected
tokens are routed around the layer with a residual connec-
tion around the layers, avoiding the need to compute all N
attentional scores. Formally, the layer can be represented as

nit! = rifi(H') +hi ifr; > Ps(r') @

h! if rl < Pg(r!)
where r; = W h! is router score given for token 7 at layer
l, Wy is learnable parameters in the router that converts a
d-dimensional embedding into a scalar score, ! the set of all
router scores at layer [, Pg(r!) the 3-th percentile of router
scores, and H the subset of tokens in the 3-th percentile.
In this work, we apply token-level routing on contextual
vectors h(,), whereby each token is passed through the
router, and the top -th percentile tokens are selected and
form the query embeddings. Each transformer layer still
receives all N node embeddings that serve as key and value
embeddings, and a mask to determine whether a node has
been visited. By controlling 3, we control the sparsity of
the architecture by limiting the total number of query tokens
that are processed. This means that the network must learn
to identify which current locations are more important to be
processed, as shown in Figure 2.

3.4. Contextual clustering

Apart from sparsity in compute, we introduce hierarchy and
sparsity in the form of representation. Goh et al. (2024)
first showed that one can apply a form of soft-clustering

to summarize the set of unvisited cities into a handful of
representations. This is then used to guide agents, providing
crucial information about the groups of nodes left in the
problem, which is highly useful for structured distributions.

In addition to structured distributions, the MTMDVRP has
underlying commonalities among its tasks. As such, we
hypothesize that nodes and their associated task features
can be grouped. While spatial structure can typically be
measured in Euclidean space, it is not so straightforward for
tasks and its features. Thus, an EM-inspired soft clustering
algorithm in latent space provides a sensible approach to
this problem. We first define a set of C € R™V<*? represen-
tations, such that IV, of these denote the number of cluster
centers. The soft clustering algorithm poses the forward
pass of the attention layer as an estimation of the E-step,
and the re-estimation of C using the weighted sum of the
learnt attention weights as the M-step. Repeated passes
through this layer simulate a roll-out of a pseudo-EM algo-
rithm. Effectively, the network learns to transform the initial
cluster centroids into the final centroid embeddings.

In this work, we introduce context prompts to capture the
task dependencies for the soft clustering algorithm. Ideally,
for the same spatial graph, if the task at hand is different,
the clustering mechanism should be sufficiently flexible to
accommodate the various intricacies of the task. Prompts
are a reasonable approach, as they provide helpful task in-
formation for LLMs (Radford et al., 2019). Specifically, we
construct contextual prompts as latent representations given
by ap = W(;rv;C where Wy is a set of learnable parame-
ters that transform the constraints to latent representations,
and ~;, is a one-hot encoded vector of constraints for task
k, such that each feature corresponds to a constraint. In
this work, we have v, = [vi, 72,73, 7¢], where 7}, denotes
open, v} denotes time-window, v} denotes route length, and
i denotes backhaul constraints. By designing prompts to
operate in the latent space, we thus enable the model to
learn to stitch together these constraints, allowing for flex-
ible modeling of tasks that it has not seen during training.
Now, this vector is passed onto the clustering layer:

h; = Wyh;, ¢; = Welcj, adl, 5)

)i = tijhi  (6)

c T
hZ'Cj

v/ DIM

; j = SOFTMAX(

whereby W iy and W ¢ are weight matrices, [-] denotes the
concatenation operation, U the set of all mixing coefficients
1,5, €; the learnable initial cluster center representation, fli
the input node embeddings, and c; the final cluster represen-
tation as a weighted sum of input embeddings after multiple
passes. Essentially, Equation 5 is repeated B-times. The
overall process can be viewed in Algorithm 1 in Appendix
D. The output of these cluster centroids is fed to the decoder
and serves as additional information for the decoding pro-
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cess. At each step, we update clusters by taking a weighted
subtraction of visited nodes, given by

h() = Weomsive [thSTv C1,Cz, ..., CN,] + héfRSTv (7

ci =c; — (Yij*h;),Vje N, (8)

4. Experiments

We conform to a similar problem setup in (Liu et al., 2024;
Zhou et al., 2024), using a total of 16 VRP variants with 5
constraints, as described in section 2. All experiments run
on a single A100-80Gb GPU.

Datasets. We utilize nine country maps': USA13509,
JA9847, BMM33708, KZ9976, SW24978, EGT7146,
FI10639, GR9882. Dataset details are in Appendix E.

Task Setups. We define the following: (1) in-task refers
to the six tasks that the models are trained on: CVRP,
OVRP, VRPB, VRPL, VRPTW, OVRPTW, (2) out-task
refers to the ten tasks that the models are not trained
on: OVRPB, OVRPL, VRPBL, VRPBTW, VRPLTW,
OVRPBL, OVRPBTW, OVRPLTW, VRPBLTW, OVRP-
BLTW; (3) in-distribution refers to the three distribu-
tions that the models observe during training: USA13509,
JA9847, BM33708; (4) out-distribution refers to the six
distributions that the models do not observe during train-
ing: KZ9976, SW24978, VM22775, EG7146, FI110639,
GR9882.

Neural Constructive Solvers. We compare the follow-
ing unified solvers focused on generalization: (1) POMO-
MTVRP which applies POMO to the MTVRP setting (Liu
et al., 2024); (2) MVMOoE that extends POMO to include
MoE layers (Zhou et al., 2024); (3) MVMOoE-Light, a vari-
ant of MVMOoE with an additional hierarchical gate in the
decoder (Zhou et al., 2024); (4) MVMOoE-Deeper whereby
we increase the depth of MVMOoE to have the same number
of layers in the decoder as SHIELD so that both models
have similar capacity; (5) SHIELD-MoD where we train
our model only with MoD layers and without the clustering;
(6) SHIELD, our proposed model of MoD and clustering.

Hyperparameters. We use the ADAM optimizer to train all
neural solvers from scratch on 20, 000 instances per epoch
for 1,000 epochs. All models plateau at this epoch, and
the relative rankings do not change with further training.
At each training epoch, we sample a country from the in-
distribution set, followed by a subset of points from the
distribution and a problem from the in-task set, as shown in
Figure 1. For SHIELD, we use 3 MoD layers in the decoder
and only allow 10% of tokens per layer. The number of
clusters is set to N, = 5, with B = 5 iterations of soft
clustering. The encoder consists of 6 MoE layers. We

'https://www.math.uwaterloo.ca/tsp/world/
countries.html

provide full details of the hyperparameters in Appendix 1.

Performance Metrics. We sample 1,000 test examples per
problem for each country map and solve them using tradi-
tional solvers. We use HGS (Vidal, 2022) for CVRP and
VRPTW instances and Google’s OR-tools routing solver
(Furnon & Perron) for the rest. For neural solving, each
sample is augmented 8 times following Kwon et al. (2020),
and we report the tour length and optimality gap (compared
to the traditional solver) of the best solution found across
these augmentations, whereby smaller values indicate better
performance. We provide details of solver settings, augmen-
tation, and optimality gap in Appendix H.

4.1. Empirical Results

Main Results. Table 1 presents the average tour length
(Obj) and optimality gap (Gap) across the respective tasks
(in-task/out-task) and distributions (in-dist/out-dist), with
details in Tables 14 to 22. SHIELD demonstrates signifi-
cantly stronger predictive capabilities and outperforms all
other neural solvers across all tasks and distributions.

We can view MVMOoE-Deeper as a model that processes
each token heavily with multiple layers, while MVMOE is
a model that processes each token only once. SHIELD is
thus a middle point that learns how to adapt the processing
according to the token and problem state. Consequently, this
suggests that overprocessing (MVMOoE-Deeper) and under-
processing (MVMOoE) nodes can be problematic in building
an efficient foundation model. As shown, increasing the
depth of the decoder to MVMOoE-Deeper improves its over-
all performance, especially in the in-task in-distribution case.
Unfortunately, the autoregressive nature quickly renders the
model untrainable on MTMDVRP100. Instead, if we re-
place these dense layers with sparse ones (as in SHIELD),
the model is now trainable on larger problems and sees
significant improvement in task and distribution generaliza-
tion. These aspects also highlight the positive effects of
regularization by reducing compute and parameters.

Table 1 also highlights the positive effect of contextual clus-
tering, particularly in problems with 100 nodes. The benefits
are most evident in the model’s generalization across tasks
and distributions. Summarizing the larger set of points helps
the model identify key points in route construction.

Model Complexities. Table 4 in Appendix F displays each
model’s total number of parameters. To quantify complex-
ity, we measure the average number of floating operations
(FLOPs) for a single-pass through the encoder and one de-
coding step. Note that we use only one decoding step as
inferior neural solvers will require more steps to solve the
problem and thus increase its overall compute budget. As
shown, MVMOoE has an increased number of FLOPs com-
pared to the original POMO-MTVRP. For our model, both
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Table 1. Overall performance of models trained on 50 node and 100 node problems. Bold scores indicate best performing models in their
respective groups. The scores and optimality gaps presented are averaged across their respective groups. Underlined results indicate the
SHIELD-equivalent model for MVMOE, while ifalicized results indicate the SHIELD-equivalent model of MVMOoE-Deeper.

MTMDVRP50 MTMDVRP100
Model In-dist Out-dist In-dist Out-dist

Obj Gap Time Obj Gap Time Obj Gap Time Obj Gap Time
Solver 5.8773 - 74.72s  6.1866 - 72.89s | 9.0468 - 194.00s  9.6506 - 187.89s

POMO-MTVRP | 6.0778 3.5079%  2.65s 6.4261 3.9911% 2.76s | 9.4123 4.0824%  8.13s  10.1147 5.0253%  8.20s
MVMOoE 6.0557 3.1479%  3.65s  6.3924 3.5071%  3.67s | 9.3722 3.5969%  10.97s  10.0827 4.6855%  11.30s
MVMOoE-Light | 6.0666 3.3595% 3.41s  6.4045 3.6860% 3.43s | 9.3987 3.9088%  10.04s 10.1027 4.8979%  10.46s
In-task ~ MVMoE-Deeper | 6.0337 2.7343%  9.03s  6.3677 3.1333%  9.03s | OOM ooM ooOM ooM ooM ooM
SHIELD-MoD | 6.0220 2.5041% 5.40s  6.2933 2.9517%  5.38s | 9.3453 2.5443% 17.59s  9.9800 3.5255%  17.66s
SHIELD-400Ep | 6.0597 3.1495%  6.14s  6.3830 3.2730%  6.11s | 9.3785 3.5993%  19.90s  10.0559 4.3562%  20.27s
SHIELD-600Ep | 6.0333 2.7089%  6.15s  6.3653 2.9993%  6.09s | 9.3194 2.9498%  19.88s 10.0113 3.8262%  20.28s
SHIELD 6.0136 2.3747%  6.13s 6.2784 2.7376%  6.11s | 9.2743 2.4397% 19.93s  9.9501 3.1638%  20.25s
Solver 54513 - 78.00s  5.7941 - 75.70s | 8.7852 - 160.90s  9.4545 - 160.44s

POMO-MTVRP | 58611 7.6284%  2.83s 6.2556 8.0311%  2.70s | 9.4304 8.1068%  8.39s  10.2056 8.8907%  8.46s
MVMOoE 5.8328 7.1553%  3.81s 62196 7.5174% 3.73s | 9.3811 7.4092%  11.13s  10.1665 8.5140%  11.44s
MVMOoE-Light | 5.8466 7.4996%  3.46s 6.2346 7.8236% 3.50s | 94173 79110% 10.27s 10.1945 8.8620%  10.75s
Out-task MVMOoE-Deeper | 5.8207 6.7924%  9.40s  6.2136 7.2962%  9.45s | OOM ooM ooM ooM ooM ooM
SHIELD-MoD | 5.7902 6.2672%  5.47s 62238 6.6155% 5.48s | 9.2740 6.0296% 17.75s 10.0349 6.9029%  17.79s
SHIELD-400Ep | 5.8290 7.1064%  6.23s  6.2085 7.2927%  6.21s | 9.3499 6.9578%  19.88s  10.1202 7.8332%  20.15s
SHIELD-600Ep | 5.8039 6.6539%  6.19s 6.1823 6.8736%  6.22s | 9.3105 6.4308%  19.91s 10.0765 7.2549%  20.11s
SHIELD 57779 6.0810% 6.20s 6.1570 6.3520%  6.20s | 9.2400 5.6104% 19.92s  9.9867 6.2727%  20.18s

SHIELD-MoD and SHIELD have increased parameters and
FLOPs due to the number of decoder layers. Interestingly,
compared to MVMOoE-Deeper (which also has three layers
of decoder), we reduce the FLOP budget per step by impos-
ing sparsity on the network. By constraining the compute
budget, we effectively regularize the model and improve its
generalization capabilities.

Generalization of SHIELD. To further evaluate the gener-
alization capability of SHIELD, Table 1 shows its perfor-
mance at earlier checkpoints, epochs 400 (SHIELD-400Ep)
and epochs 600 (SHIELD-600Ep), that match the In-Task In-
Distribution performance of MVMoE and MVMoE-Deeper,
respectively. Our SHIELD counterparts show superior gen-
eralization across tasks and distributions, cementing its ca-
pability and flexibility as a general foundation model.

4.2. Ablation and Analyses

We discuss key observations and ablation studies here, and
provide full tables and further details in Appendices J to R.

Effect of Sparsity. To examine the effect of sparsity, we
train models with varying capacities of the MoD layer on
MTMDVRP50. The results are shown in Table 2. Specifi-
cally, as the sparsity moves from 10% to 20%, the model’s
bias improves—the in-task performance improves slightly,
while the out-distribution performs begins to degrade. In-
creasing the number of tokens further improves the in-task
in-distribution optimality gaps, but we see a decline in per-
formance for out-task and out-distribution settings. This

degradation continues with the 40% model, where overall
performance deteriorates. The results indicate that sparsity
is crucial in generalization across task and distribution.

Effect of Clustering. In the latent space, the soft clus-
tering mechanism facilitates information exchange among
dynamic clusters, enabling the model to capture high-level,
generalizable features from neighboring hidden representa-
tions. This improves the model’s understanding of the node
selection process and enhances decision-making. Limiting
the number of clusters reduces the number of parameters
and promotes abstraction, which encourages the model to
focus on broadly applicable patterns rather than overfitting
task-specific details. In contrast, too many clusters dilute
this effect, leading to over-segmentation and reduced gen-
eralization as the model prioritizes more complex patterns
over shared structures. Table 3 supports this, whereby we
vary the number of cluster centers in the model. Thus, main-
taining sparsity in this aspect is crucial as well.

Importance of Multi-Distribution. To verify that our ar-
chitecture improves overall, we trained and tested all models
on the conventional MTVRP setting using the uniform distri-
bution. Table 13 in Appendix Q showcases the performance
of all models. Here, we see that while the gaps between
the models are less significant once we remove the varied
distributions, SHIELD is still clearly the better-performing
model. This indicates the difficulty of a multi-distribution
scenario — having varied structures with multiple tasks is
more complex. Since our architecture is more flexible, it
generalizes better in the MTMDVRP scenario.
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Table 2. Performance of SHIELD with varying levels of sparsity
on MTMDVRP50. As more nodes are processed the model’s bias
improves, but generalization degrades.

In-dist Out-dist

Model Obj Gap Obj Gap
SHIELD (10%) 6.0136 2.3747% | 6.2784 2.7376%
SHIELD (20%) 6.0055 2.2268% | 6.3578  2.8442%
In-task SHIELD (30%) 6.0033 2.1948% | 6.3656 2.9608%
SHIELD (40%) 6.0131 2.3450% | 6.3718 3.0507%
MVMOoE-Deeper (100%) | 6.0337 2.7343% | 6.3677 3.1333%
SHIELD (10%) 57779 6.0810% | 6.1570 6.3520%
SHIELD (20%) 57772 6.0327% | 6.1671  6.4654%
Out-task SHIELD (30%) 5.7991 6.4241% | 6.1732  6.5603%
SHIELD (40%) 5.8068 6.5770% | 6.1862 6.7831%
MVMoE-Deeper (100%) | 5.8206 6.7924% | 6.2136  7.2962%

Next, we apply the trained models to the MTMDVRP test set
and tabulate the results in Table 11 in Appendix O. Since all
models are only trained on uniform data, they are unsuitable
to be applied to more structured forms of data. Instead, if
the model is exposed to some structure during training, it
performs better in generalization to new distributions.

Sparse Encoder. Table 7 in Appendix K studies the impact
of sparsity in the encoder. We replace encoder layers with
MoD layers of capacity of 10% and find that the model’s
performance degrades significantly, even after doubling the
number of layers.

This shows that the MoE encoder plays a crucial role in the
architecture. In MTMDVRP, the encoder processes diverse
multi-task contexts and learns meaningful representations
from various task contexts which feature combinations of
constraints. For example, CVRPTW combines capacity and
time window constraints, while CVRPBLTW further adds
backhaul and linehaul constraints. MoE is well-suited for
the encoder as it leverages specialized expert subnetworks to
handle the shared and combinatorial patterns in the inputs.

In contrast, the decoder in MTMDVRP focuses on sequen-
tial solution construction with adaptive computation. While
some node selections are straightforward, others require
finer granularity and greater computational/reasoning capac-
ity — especially when dealing with clustered distributions
or complex constraint-distribution interactions in MTMD-
VRP. Thus, dynamic control over depth and computation is
essential. MoD naturally addresses this need by adaptively
allocating resources across decoder layers. Together, their
synergy enhances the model’s ability to capture context-
dependent, adaptive fine-grained decisions for MTMDVRP.

Alternative Sparse Attention Approaches. Apart from
studying the effect of sparsity in the encoder, we investigate
similar sparse attention approaches such as INViT (Fang
et al., 2024). Essentially, INViT proposes to only attend
to the k-Nearest Neighbors (k-NN) during solution con-
struction, as attention to all nodes introduces an aliasing ef-

Table 3. Ablation study for the number of clusters in SHIELD on
MTMDVRP50. Keeping the number of clusters low, and thus
having a sparser approach, is beneficial to the model.

In-dist Out-dist

Model Obj Gap Obj Gap
SHIELD 6.0136  2.3747% | 6.2784 2.7376%
In-task ~ SHIELD (N, = 10) | 6.0100 2.3166% | 6.3400  3.7522%
SHIELD (N, = 20) | 6.0124  2.3272% | 6.3437 3.8127%
SHIELD 57779 6.0810% | 6.1570 6.3520%
Out-task  SHIELD (N, = 10) | 5.8019  6.9521% | 6.1740  7.0129%
SHIELD (N, = 20) | 59824 11.3453% | 6.3369 10.8044%

ur Model: 12 routes, total distance 8.9 MOE: 13 routes, total distance 10.44

Demand fulfilled in route

Figure 3. Left two panels: Plot of routes for OVRPBTW between
SHIELD (left) and MVMOoE (middle). Points denoted with a star
are the top few points that SHIELD identified for more processing.
Note that the initial routes from the depot are masked away for a
better view. Right panel: Average number of layers used as the
demand is being met for CVRP.

fect, which confuses the decoder, resulting in poor decision-
making. Only attending to the k-NN nodes effectively re-
duces the number of interactions amongst the nodes and
thus introduces sparsity into the attention mechanism, a
somewhat similar approach to SHIELD. A key difference
between the approaches is that INViT’s reduction is based
on a heuristic, the k-NN, while in SHIELD, we opt to learn
which nodes to focus on based on MoD.

We adapt and train INViT on the MTMDVRP scenario; the
results are shown in Table 6 in Appendix J. INViT struggles
with the multi-task dynamics of the problem, likely because
the sparse attention mechanism relies on selecting the k-NN
nodes based on spatial distance. This is highly inflexible
and poorly suited for a dynamic MTMDVRP setting. As
such, essential nodes are possibly pruned away, leading to
an inferior neural solver.

Patterns of Layer Selection. Figure 3 shows the output
of SHIELD and MVMOoE for OVRPBTW on VM?22775.
The starred points indicate that SHIELD selects these points
more frequently when solving problems. Consider route
R5 for SHIELD and route R8 for MVMoE. SHIELD can
recognize that such points are far away from the depot and
that visiting other points en route is more advantageous,
whereas MVMOE only visited one node before returning.
Likewise, for route R4 in SHIELD and route R6 in MVMOoE,
SHIELD identifies the two starred points to be better served
as connecting points instead of making an entire loop, which
results in back-tracking to a similar area. Since the problem
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is an open problem, we can see that SHIELD favors ending
routes at faraway locations, whereas MVMOoE tends to loop
back and forth in many occurrences.

The right panel of Figure 3 illustrates how the use of layers is
distributed as the agent starts to address the demands of the
problem. The z-axis represents the percentage of the sub-
tour solved, while the y-axis denotes the average number
of MoD layers used by the agent. The model initially uses
some processing power to find a good starting node set. In
the middle, fewer layers are being used, and finally, as the
problem ends, more layers are activated to select effective
ending points. Additional qualitative analysis in Figure 5 in
Appendix L shows that for maps with similar top density and
right bias, the model behaves somewhat similarly regarding
its overall layer usage.

Size Generalization. To explore how our model behaves on
problem sizes beyond what it was trained on, we generate
and label an additional dataset with 200 nodes each. For
the MTMDVRP200, we increased the time allowed to solve
each instance to 80 seconds. Table 8 in Appendix M illus-
trates the zero-shot generalization performance of trained
MTMDVRP100 models on the MTMDVRP200. SHIELD is
still the superior model to the other baselines, showing a size-
able performance gap on problems larger than it was trained
on. Additionally, note that the inference time of SHIELD
is comparable to MVMOoE and MVMOoE-Light. This is be-
cause in the MTMDVRP200, inference on the MVMOoE
models requires smaller batch sizes, whereas SHIELD’s
sparsity allows it to process larger batches.

We also investigate the performance of all models on a zero-
shot size generalization setting to the CVRPLib Set-X. Ta-
bles 9 and 10 in Appendix N show that SHIELD outperforms
all models considerably in the Large setting (101 < N <
251) and the Extra Large setting (502 < N < 1001). We
attribute the flexibility of dynamic processing in SHIELD
to the strong zero-shot performance.

Single-Task Multi-Distribution. Table 12 in Appendix P
showcases the performances of models trained on a single
task, CVRP, across our various distributions. As SHIELD
is still the top-performing model, the results suggest our
architecture is not catered only to the MTMDVRP scenario
— its flexibility allows for strong generalization across distri-
butions for the single task case.

5. Conclusion

The push toward unified generic solvers is essential in build-
ing foundation models for neural combinatorial optimiza-
tion. In this paper, we propose to extend such solvers to
the Multi-Task Multi-Distribution VRP, a significantly more
practical representation of industrial problems. With this
problem setting, we propose SHIELD. This neural archi-

tecture, motivated by regularization via compute and pa-
rameters, is designed to handle generalization across task
and distribution dimensions, making it a robust solver for
practical problems. Extensive experiments and thorough
analysis of the empirical results demonstrate that sparsity
and hierarchy, two key techniques in SHIELD, substantially
influence the model’s generalization ability. This forms a
stepping stone towards other foundation models, such as
generalizing across various sizes.
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A. Related Work

Generalization Study. Joshi et al. (2021) highlighted the generalization challenge faced by neural solvers, where their
performance drops significantly on out-of-distribution (OOD) instances. Numerous studies have sought to improve
generalization performance in cross-size (Bdeir et al., 2022; Son et al., 2023; Huang et al., 2025), cross-distribution (Fang
et al., 2024; Jiang et al., 2022; Bi et al., 2022; Zhang et al., 2022; Zhou et al., 2023), and cross-task (Lin et al., 2024; Liu
et al., 2024; Zhou et al., 2024; Berto et al., 2024) settings. However, their methods are tailored to specific settings and cannot
handle our MTMDVRP setup, which considers crossing tasks and realistic customer distributions. While a recent work Goh
et al. (2024) explores more realistic TSPs, their approach struggles with complex cross-problem scenarios. In this paper, we
take a step further by exploring generalization across both different problems and real-world distributions in VRPs.

Multi-task VRP Solver. Recent work in (Liu et al., 2024) explored the training of a Multi-Task VRP solver across a range
of VRP variants sharing a set of common features indicating the presence or absence of specific constraints. Zhou et al.
(2024) enhanced the model architecture by introducing Mixture-of-Experts within the transformer layers, allowing the model
to capture representations tailored to different tasks effectively. These studies focus on zero-shot generalization, where
models are trained on a subset of tasks and evaluated on unseen tasks that combine common features. Other studies (Wang
& Yu, 2023; Drakulic et al., 2024) investigate this promising direction, but with different problem settings. Alternatively,
Berto et al. (2024) improved convergence robustness by training on all tasks within a batch using a mixed environment.

Single-task VRP Solver. Most research focuses on developing single-task VRP solvers, which primarily follows two key
paradigms: constructive solvers and improvement solvers. Constructive solvers learn policies that generate solutions from
scratch in an end-to-end fashion. Early works proposed Pointer Networks (Vinyals et al., 2015) to approximate optimal
solutions for TSP (Bello et al., 2017) and CVRP (Nazari et al., 2018) in an autoregressive (AR) way. A major breakthrough
in AR-based methods came with the Attention Model (AM) (Kool et al., 2018), which became a foundational approach
for solving VRPs. The policy optimization with multiple optima (POMO) (Kwon et al., 2020) improved upon AM by
considering the symmetry property of VRP solutions. More recently, a wave of studies has focused on further boosting either
the performance (Kim et al., 2022; Drakulic et al., 2023; Chalumeau et al., 2023; Grinsztajn et al., 2023; Luo et al., 2023;
Hottung et al., 2024) or versatility (Kwon et al., 2021; Berto et al., 2023; Son et al., 2025) of these solvers to handle more
complex and varied problem instances. Beyond AR methods, non-autoregressive (NAR) constructive approaches (Joshi
etal., 2019; Fu et al., 2021; Kool et al., 2022; Qiu et al., 2022; Sun & Yang, 2023; Min et al., 2023; Ye et al., 2023; Kim
et al., 2024; Xia et al., 2024) construct matrices, such as heatmaps representing the probability of each edge being part of the
optimal solution, to solve VRPs through complex post-hoc search. In contrast, improvement solvers (Chen & Tian, 2019;
Lu et al., 2020; Hottung & Tierney, 2020; Costa et al., 2020; Wu et al., 2021; Ma et al., 2021; Xin et al., 2021; Hudson
et al., 2022; Ma et al., 2023) typically learn more efficient and effective search components, often within the framework
of classic heuristics or meta-heuristics, to iteratively refine an initial solution. While constructive solvers can efficiently
achieve desirable performance, improvement solvers have the potential to find near-optimal solutions given a longer time.
There are also studies that focus on the scalability (Li et al., 2021; Hou et al., 2023; Ye et al., 2024), robustness (Geisler
et al., 2022; Lu et al., 2023), and constraint handling (Bi et al., 2024) of neural VRP solvers, which are less related to our
work. For those interested, we refer readers to Bogyrbayeva et al. (2024). Apart from such single-task VRP solvers, there
are alternative approaches to complex routing problems, such as the PDP, where travel times change over time (Wen et al.,
2022; Mao et al., 2023). These problems present additional dynamics that further increase the realism of VRPs.

B. Generation of VRP Variants

As mentioned in Section 2, we consider four additional constraints on top of the CVRP, resulting in 16 different variants in
total. Note that unlike (Liu et al., 2024; Zhou et al., 2024), we do not generate node coordinates from a uniform distribution.
Instead, we sample a set of fixed points from a given map. Here, we detail the generation of the five total constraints.

Capacity (C): We adopt the settings from (Kool et al., 2018), whereby each node’s demand §; is randomly sampled from
a discrete distribtution set, {1,2,...,9}. For N = 50, the vehicle capacity @ is set to 40, and for N = 100, the vehicle
capacity is set to 50. All demands are first normalized to their vehicle capacities, so that §; = ¢;/Q).

Open route (O): For open routes, we set o = 1 in the dynamic feature set received by the decoder. Apart from this, we
remove the constraint that the vehicle has to return to the depot when it has completed the route or is unable to proceed
further due to other constraints. Suppose the problem has both open routes (O) and duration limit (L), then we mask all
nodes v; such that [; + d;; > L, whereby d;; is the distance between node v; and the potentially masked node v;, and L is
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the duration limit constraint. For problems with both open routes (O) and time windows (TW), we mask all nodes v; such
that ¢; + d;; > wj, where t, is the current time after servicing the current node. Finally, suppose a route has both open
routes (O) and backhauls (B), no special masking considerations are required as the vehicle does not return to the origin.

Backhaul (B): We adopt the approach from (Liu et al., 2024) by randomly selecting 20% of customer nodes to be backhauls,
thus changing their demand to be negative instead. We also follow the same setup as (Zhou et al., 2024) whereby routes can
have a mix of linehauls and backhauls without any strict precedence. To ensure feasible solutions, we ensure that all starting
points are linehauls only unless all remaining nodes are backhauls.

Duration limit (L): The duration limit is fixed such that the maximum length of the vehicle, L = 3, which ensures that a
feasible route can be found as all points are normalized to a unit square.

Time window (TW): For time windows, we follow the methodology in (Li et al., 2021). The depot node vy has a time
window of [0, 3] with no service time. As for other nodes, each node has a service time of s; = 0.2, and the time windows are
obtained as following: (1) first we sample a time window center given by 7; U (wg + do;, w§ — dio — $;), whereby do; = d,o
is the distance or travel time between depot vy and node v;, (2) then we sample a time window half-width A; uniformly from
[s:/2,w§/3] = [0.1,1], (3) then we set the time window as [w?, w¢] = [MAX(w?,v; — h;), MIN(wS, v; + h;)]-

C. Neural Combinatorial Optimization Model Details

Neural constructive solvers are typically parameterized by a neural network, whereby a policy, 7y, is trained by reinforcement
learning so as to construct a solution sequentially (Kool et al., 2018; Kwon et al., 2020). The attention-based mechanism
(Vaswani, 2017) is popularly used, whereby attention scores govern the decision-making process in an autoregressive fashion.
The overall feasibility of solution can be managed by the use of masking, whereby invalid moves are masked away during
the construction process. Classically, neural constructive solvers employ an encoder-decoder architecture and are trained as
sequence-to-sequence models (Sutskever, 2014). The probability of a sequence can be factorized using the chain-rule of
probability, such that

T
po(r1G) = [ [ po(7elG, m1:4-1) ©)

t=1
The encoder tends employ a typical transformer layer, whereby
h = LN'(h}™' + MHAL(h! ™!, .. high) (10)

h! = LN!(h; + FF(h;)) a1

where h! is the embedding of the i-th node at the I-th layer, MHA is the multi-headed attention layer, LN the layer
normalization function, and FF a feed-forward multi-layer perceptron (MLP). All embeddings are passed through L layers
before reaching the decoder.

The decoder produces the solutions autoregressively, whereby a contextual embedding combines the embeddings from the
starting and current location as follows

o = hi\gr + D (12)

Then, the attention mechanism is used to produce the attention scores. Notably, the context vectors h . are denoted as query
vectors, while keys and values are the set of N node embeddings. This is mathematically represented as

v/ DIM

W U-TANH(QEL) G £y W <t a3
! —00 otherwise

whereby U is a clipping function and DIM the dimension of the latent vector. These attention scores are then normalized
using a softmax function to generate the following selection probability

pi = po(Te = ils, T1:4—1) = S e (14)
J
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Finally, given a baseline function b(-), the policy is trained with the REINFORCE algorithm (Williams, 1992) and gradient
ascent, with the expected return J

VoI (0) ~ E[(R(r') - b'(5)) Vo log po(+"|5)| (15)
The reward of each solution R is the length of the solution tour.

D. Soft-clustering Algorithm Details

Algorithm 1 Psuedo code of soft clustering algorithm
1: function CLUSTER
Require:  encoder embeddings H, constraints vector 7y, number of centers N, number of iterations B, initial embeddings
C, embedding size d

2: Qg = WJ’Y}C
33 forb<«1toBdo
4: H « Wy (H)
S: é(—Wc([C,Oéd])
TAT
6: P = SOFTMAX(H\% ) {Compute attention scores}
7 C = )", ¥ih; {Update the centers with data}
8: Cour =C +C {Residual connection}
9: C' = NORM(Cour) {Layer normalization}
10:  end for

11:  return C'
12: end function
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E. Dataset Details

Map of all points for USA13509 Map of all points for JA9847 Map of all points for BM33708

Figure 4. Plot of all 9 World Maps and their points

We utilize the following 9 country maps® shown in Figure 4: (1) USA13509: USA containing 13,509 cities; (2) JA9847:
Japan containing 9,847 cities; (3) BM33708: Burma containing 33,708 cities; (4) KZ9976: Kazakhstan containing 9,976;
(5) SW24978: Sweden containing 24,978 cities; (6) VM22775: Vietnam containing 22,775 cities; (7) EG7146: Egypt
containing 7,146 cities; (8) FI10639: Finland containing 10,639 cities; (9) GR9882: Greece containing 9,882 cities.

https://www.math.uwaterloo.ca/tsp/world/countries.html
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F. Model sizes and average runtimes

Table 4. Overall number of parameters and average runtimes for all models.

Model Num. Parameters | FLOPs on VRP50 | Runtime on VRP50 Runtime on VRP100
POMO-MTVRP 1.25M 52.88 GFLOPs 2.74s 8.30s
MVMoE 3.68M 84.41 GFLOPs 3.72s 11.21s
MVMOoE-Light 3.70M 84.03 GFLOPs 3.45s 10.38s
MVMOoE-Deeper 4.46M 114.99 GFLOPs 9.23s OOM
SHIELD-MoD 4.37TM 95.76 GFLOPs 5.43s 17.70s
SHIELD 4.59M 106.72 GFLOPs 6.16s 20.07s

Table 4 showcases the number of parameters per model, the number of floating operations on MTMDVRP50, and the
runtimes on MTMDVRP50 and MTMDVRP100. Note that the total FLOPs is calculated based on a single pass through the
encoder and one decoding step. The FLOPs is also a sum of the forward and backward passes for gradient updates. We only
use one decoding step as inferior solvers will require more steps to solve the problem, and thus would also require more

FLOPs.

G. Mathematical Notations

S;
D,
t

T
Yk

Ot

Vij

A problem instance ¢

Set of dynamic features at decoding time-step ¢

Decoding time-step

z-coordinate of problem instance &
y-coordinate of problem instance ¢
Demand of node ¢

Opening timing of time-window for node ¢
Closing timing of time-window for node 7
Capacity of vehicle at decoding time-step ¢
Current time-step

Presence of open route at time-step ¢
Current length of partial route at time-step ¢
Set of all possible VRP tasks

Set of all possible distributions

The percentage of tokens allowed through a MoD layer

Router score for node ¢

One-hot encoded vector of constraints for task &

Presence of open route at time-step ¢
Number of iterations of clustering

Number of cluster centers

Mixing coefficient between node ¢ and cluster j
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H. Solver and Metric Details

We use HGS (Vidal, 2022) for CVRP and VRPTW instances, and Google’s OR-tools routing solver (Furnon & Perron) for
the rest. For HGS, we use the default hyperparameters, while for OR-tools, we apply parallel cheapest insertion as the initial
solution strategy and guided local search as the local search strategy. The time limit is set to 20s and 40s for solving a single
instance of size N = 50, 100, respectively. For neural solving, we utilize 8x augmentations on the (z, y)-coordinates for the
test set as proposed by (Kwon et al., 2020). The following table details the various transformations applied.

Table 5. List of augmentations suggested by (Kwon et al., 2020)
fz,y)

(2, y) (y,2)
(.T,l—y) (y,l—l’)
(l—x,y) (1—y,$)

1-z,1-y) (1-y,1—2x)

The optimality gap is measured as the percentage gap between the neural solver’s tour length and the traditional solver. This
is defined as

VR
=3V

where L; is the tour length of test instance ¢ computed by the traditional solver, HGS or OR-Tools.

0= — 1) %100 (16)

I. Detailed hyperparameter and training settings
e Number of MoE encoder layers: 6
* Total number of experts: 4
* Number of experts used per layer: 2
* Number of MoD decoder layers: 3
» Capacity of MoD layer (number of tokens allowed): 10%
* Number of single-headed attention decision-making layer: 1
 Latent dimension size: 128
* Number of heads per transformer layer: 8
» Feedforward MLP size: 512
* Logit clipping U: 10
* Learning rate: le*
e Number of clustering layers: 1
* Number of iterations for clustering: 5
* Number of learnable cluster embeddings: 5
* Number of episodes per epoch: 20,000
* Number of epochs: 1,000
* Batch size: 128
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J. Additional Experiments — Alternative sparse approaches in Encoder

Table 6. Performance of INViT and SHIELD on the MTMDVRP50 and MTMDVRP100 scenarios. INVIiT struggles with the complexity
of the MTMDVRP compared to SHIELD despite using some form of sparse attention.

MTMDVRP50 MTMDVRP100
In-dist Out-dist In-dist Out-dist
Model Obj Gap Time Obj Gap Time Obj Gap Time Obj Gap Time
In-task INViT | 64082 9.1437% 66.48s 6.7462  9.0992%  66.84s | 10.6057 17.2425% 66.65s 11.4286 18.4235% 68.06s
SHIELD | 6.0136 2.3747%  6.13s  6.2784 2.7376%  6.11s | 9.2743  2.4397% 19.93s 9.9501  3.1638%  20.25s
Out-task INVIT | 62996 15.3570% 69.43s 6.6932 152064% 70.11s | 11.1489 26.8217% 68.00s 12.1012 27.9947% 69.98s

SHIELD | 5.7779 6.0810%  6.20s 6.1570 6.3520%  6.20s | 9.2400  5.6104% 19.92s 9.9867  6.2727%  20.18s

A similar sparse attention approach would be INVIiT (Fang et al., 2024). Essentially, INViT proposes to only attend to the
k-Nearest Neighbors (k-NN) during solution construction, as attention to all nodes introduces an aliasing effect, which
confuses the decoder, resulting in poor decision-making. Only attending to the k-NN nodes effectively reduces the number
of interactions amongst the nodes and thus introduces sparsity into the attention mechanism, a somewhat similar approach to
SHIELD. A key difference between the approaches is that INViT’s reduction is based on a heuristic, the k-NN, while in
SHIELD, we opt to learn which nodes to focus on based on MoD.

Results shown in 6 compares SHIELD and a trained INViT model. We utilize the same training and hyperparameter settings
as INViT-3 on our data and environment setup. As shown, INViT struggles with the multi-task dynamics of the problem,
likely because the sparse attention mechanism relies on selecting the k-NN nodes based on spatial distance. This is highly
inflexible and poorly suited for a dynamic MTMDVRP setting. As such, essential nodes are possibly pruned away, leading
to an inferior neural solver.

K. Additional experiments — Effect of sparsity in Encoder

Table 7. Experimental study for the impacts of using MoD layers in the encoder on MTMDVRPS50. Even by increasing the number of
layers, the model’s performance is unsatisfactory.

In-dist Out-dist
Model Obj Gap Obj Gap
SHIELD 6.0136  2.3747% | 6.2784  2.7376%

In-task ~ SHIELD (MoDEnc-6) | 6.2271  6.2578% | 6.6213  7.6650%
SHIELD (MoDEnc-12) | 6.1838  5.4944% | 6.5817  7.1229%

SHIELD 57779 6.0810% | 6.1570  6.3520%

Out-task ~ SHIELD (MoDEnc-6) | 6.0432 11.5021% | 6.4894 12.9905%
SHIELD (MoDEnc-12) | 5.9846 10.3009% | 6.4322 12.0432%

Table 7 studies the impact of sparsity in the encoder. We replace encoder layers with MoD layers of capacity of 10% and
find that the model’s performance degrades significantly, even after doubling the number of layers. This shows that the MoE
encoder plays a crucial role in the architecture — it enables the model to leverage various experts to capture a broad range of
representations for effective encoding. In contrast, the MoD introduces greater flexibility in the decoder, allowing the model
to dynamically select layers for decision-making, which helps it adapt effectively to varying outputs.
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L. Additional experiments — Average layer usage per token for CVRP on various distributions
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Figure 5. Plot of layer usage for CVRP samples across three maps, with the x-axis as node IDs, y-axis as layer numbers, and values as
average usage frequency during decoding.

We conduct further analysis on the simpler CVRP to examine how the model generalizes across tasks and distributions.
Figure 5 presents a heat map where we average the number of times a layer is used when the agent is positioned on a node.
Note that the z-axis denotes the node ID, while the y-axis denotes the layer number, with the value indicating the average
number of times that combination is called. For this analysis, we sort the nodes in anticlockwise order based on their  and
y coordinates to impose a spatial ordering. We observe that for maps with similar top density and curved shapes, such as
BM33708 and VM22775, the MoD layers tend to exhibit a similar pattern in layer usage, whereas a map like SW24978 has
a much different sort of distribution.

M. Additional experiments — Size Generalization to MTMDVRP200

Table 8. Performance of trained MTMDVRP100 models on MTMDVRP200. SHIELD is the superior model even when tested on problem
sizes larger than those it was trained on.

MTMDVRP200
In-dist Out-dist

Model Obj Gap Time Obj Gap Time
Solver 13.7525 - 943.23s  14.8228 - 921.81s
POMO-MTVRP | 14.5695 5.4613% 19.80s 159036 7.0430%  20.01s

In-task MVMoE 14.6137 5.8753%  44.25s 159391 7.3486%  44.40s
MVMOoE-Light | 14.6420 6.0924% 40.87s 159581 7.4784%  41.92s
SHIELD-MoD | 14.4123 4.7980% 37.89s 15.7342 6.1487%  38.01s

SHIELD 14.3648 3.7939%  42.24s  15.6536 5.0516%  40.04s
Solver 14.4622 - 973.11s  15.7897 - 959.09s
POMO-MTVRP | 155735 8.5203% 21.31s 17.1759 10.2531%  26.78s

Out-task MVMoE 15.6040 8.8840%  45.49s 17.2145 10.5085%  45.23
MVMOoE-Light | 15.6412 9.1470% 43.22s 17.2423 10.7143%  43.94s
SHIELD-MoD | 15.5373 7.4336% 39.13s  17.1948 8.8987%  39.06s

SHIELD 15.3896 6.4856%  42.86s 16.9555 7.8179%  47.92s

We generate and label an additional dataset with 200 nodes each. For the MTMDVRP200, we increased the time allowed to
solve each instance to 80 seconds. Table 8 illustrates the zero-shot generalization performance of trained MTMDVRP100
models on the MTMDVRP200. SHIELD is still the superior model to the other baselines, showing a sizeable performance
gap on problems larger than it was trained on. Additionally, note that the inference time of SHIELD is comparable to
MVMOoE and MVMOoE-Light. This is because in the MTMDVRP200, inference on the MVMOoE models requires smaller
batch sizes, whereas SHIELD’s sparsity allows it to process larger batches.
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N. Additional experiments — Generalization to CVRPLib

Table 9. Performance on CVRPLIib data Set-X-1. Instances vary from 101 to 251 nodes.

Set-X-1 POMO-MTL MVMOoE MVMOoE-Light SHIELD-MoD SHIELD SHIELD-Ep400
Instance Opt. Obj. Gap Obj. Gap Obj. Gap Ob;. Gap Oby;. Gap Obj. Gap
X-nl01-k25 27591 | 29875  8.2781% | 29189  57917% | 29445  6.7196% | 28967  4.9871% | 28678 3.9397% | 29346  6.3608%
X-n106-k14 26362 | 27158  3.0195% | 27061  2.6515% | 27356  3.7706% | 26909  2.0750% | 27076 2.7084% | 27192  3.1485%
X-nl110-k13 14971 15420  2.9991% | 15379  2.7253% | 15387  2.7787% | 15450  3.1995% | 15316 2.3045% | 15312  2.2777%
X-n115-k10 12747 | 13680  7.3194% | 13368  4.8717% | 13536  6.1897% | 13245  3.9068% | 13290 4.2598% | 13472  5.6876%
X-nl120-k6 13332 | 13939  4.5530% | 14082  5.6256% | 13980  4.8605% | 13901  4.2679% | 13724 2.9403% | 13971  4.7930%
X-n125-k30 55539 | 58929  6.1038% | 58443  5.2288% | 59056  6.3325% | 58648  5.5979% | 57426 3.3976% | 58277  4.9299%
X-n129-k18 28940 | 30114  4.0567% | 29905  3.3345% | 29970  3.5591% | 29802  2.9786% | 29540 2.0733% | 29695  2.6088%
X-n134-k13 10916 | 11637  6.6050% | 11658  6.7974% | 11612  6.3760% | 11519  5.5240% | 11274 3.2796% | 11447  4.8644%
X-n139-k10 13590 | 14295  5.1876% | 14155  4.1575% | 14121  3.9073% | 13988  2.9286% | 14004 3.0464% | 14152  4.1354%
X-n143-k7 15700 | 17091  8.8599% | 16710  6.4331% | 16744  6.6497% | 16621  58662% | 16548 5.4013% | 16792  6.9554%
X-n148-k46 43448 | 47317  8.9049% | 45621  5.0014% | 45794  53996% | 45728  5.2477% | 44739 2.9714% | 45082  3.7608%
X-n153-k22 21220 | 23689  11.6352% | 23267  9.6466% | 23510 10.7917% | 23541 10.9378% | 23252  9.5759% | 23392 10.2356%
X-n157-k13 16876 | 17730  5.0604% | 17698  4.8708% | 17713  4.9597% | 17386  3.0220% | 17366  2.9035% | 17583  4.1894%
X-nl62-k11 14138 | 14845  5.0007% | 14884  52766% | 14746  4.3005% | 14703  3.9963% | 14767 4.4490% | 14804  4.7107%
X-n167-k10 20557 | 21863  6.3531% | 21898  6.5233% | 21827  6.1779% | 21644  5.2877% | 21326  3.7408% | 21566  4.9083%
X-n172-k51 45607 | 50381 10.4677% | 48863  7.1393% | 48686  6.7512% | 48434  6.1986% | 48091  5.4465% | 48613  6.5911%
X-nl176-k26 47812 | 53848  12.6244% | 52302  9.3909% | 51433  7.5734% | 52313  9.4140% | 51811 8.3640% | 50887  6.4314%
X-nl181-k23 25569 | 26480  3.5629% | 26661  4.2708% | 26490  3.6020% | 26156  2.2957% | 26237 2.6125% | 26333  2.9880%
X-nl186-k15 24145 | 25900  7.2686% | 25695  6.4195% | 25613  6.0799% | 25409  5.2350% | 25503  5.6244% | 25372  5.0818%
X-n190-k8 16980 | 17826  4.9823% | 18121  6.7197% | 18125  6.7432% | 17417  2.5736% | 17802 4.8410% | 17846  5.1001%
X-n195-k51 44225 | 49703  12.3867% | 47834  8.1605% | 47704  7.8666% | 47608  7.6495% | 46509 5.1645% | 47731  7.9276%
X-n200-k36 58578 | 61857  5.5977% | 62039  59084% | 61871  5.6216% | 61384  4.7902% | 61375 4.7748% | 61729  5.3792%
X-n209-k16 30656 | 32754  6.8437% | 32725  6.7491% | 32605  6.3576% | 32157  4.8963% | 32244 5.1801% | 32083 = 4.6549%
X-n219-k73 117595 | 120795  2.7212% | 119924  1.9805% | 121201  3.0665% | 119679  1.7722% | 119847 1.9150% | 119560 1.6710%
X-n228-k23 25742 | 30042 16.7042% | 28629  11.2151% | 28754 11.7007% | 28206  9.5719% | 28118 9.2301% | 28119  9.2339%
X-n237-k14 27042 | 29217  8.0430% | 29252  8.1725% | 29003  7.2517% | 28560  5.6135% | 28743  6.2902% | 28880  6.7968%
X-n247-k50 37274 | 43111 15.6597% | 40868  9.6421% | 41735 11.9681% | 41556 11.4879% | 40676  9.1270% | 41266  10.7099%
X-n251-k28 38684 | 41321  6.8168% | 40874  5.6613% | 40854  5.6096% | 40316  4.2188% | 40410 4.4618% | 40602  4.9581%

Averages 31280 | 33601  7.4148% | 33111  6.0845% | 33174  6.1773% | 32902  5.1979% | 32703 4.6437% | 32897  5.3961%

Table 10. Performance on CVRPLib data Set-X-2. Instances vary from 502 to 1001 nodes.

Set-X-2 POMO-MTL MVMOoE MVMOoE-Light SHIELD-MoD SHIELD SHIELD-Ep400
Instance Opt. Ob;. Gap Ob;. Gap Ob;. Gap Ob;. Gap Ob;. Gap Ob;. Gap
X-n502-k39 69226 | 73599  6.3170% | 75113  8.5040% | 75679  9.3216% | 73184  5.7175% | 73062  5.5413% | 73445 = 6.0945%
X-n513-k21 24201 27955  15.5118% | 29444  21.6644% | 28483  17.6935% | 27478  13.5408% | 27217 12.4623% | 27373  13.1069%
X-n524-k153 154593 | 175923 13.7975% | 174409 12.8182% | 170334 10.1822% | 167380 8.2714% | 169715 9.7818% | 166660  7.8057%
X-n536-k96 94846 | 104866 10.5645% | 105896 11.6505% | 104408 10.0816% | 102157  7.7083% | 102237  7.7926% | 103042  8.6414%
X-n548-k50 86700 | 94290  8.7543% | 93623  7.9850% | 92798  7.0334% | 91483  5.5167% | 91726  5.7970% | 92055 = 6.1765%
X-n561-k42 42717 | 48781 14.1958% | 49953 16.9394% | 48678  13.9546% | 47328 10.7943% | 47639  11.5223% | 47485 11.1618%
X-n573-k30 50673 | 57151 12.7839% | 55796 10.1099% | 55870  10.2560% | 54664  7.8760% | 53936  6.4393% | 55204  8.9416%
X-n586-k159 190316 | 208217  9.4059% | 209038  9.8373% | 208510  9.5599% | 205408  7.9300% | 205487 7.9715% | 208175 9.3839%
X-n599-k92 108451 | 118994  9.7214% | 119879 10.5375% | 118864  9.6016% | 117615  8.4499% | 116950  7.8367% | 118514  9.2788%
X-n613-k62 59535 | 68882 15.7000% | 72992  22.6035% | 69091 16.0511% | 66657 11.9627% | 66715 12.0601% | 66419  11.5629%
X-n627-k43 62164 | 69756  12.2129% | 69197 11.3136% | 68302  9.8739% | 67125  7.9805% | 67494  8.5741% | 67059  7.8743%
X-n641-k35 63682 | 72638 14.0636% | 72348 13.6082% | 71041  11.5559% | 69425  9.0182% | 69156  8.5958% | 69617  9.3197%
X-n655-k131 106780 | 115083  7.7758% | 113186  5.9993% | 113610 6.3963% | 111711  4.6179% | 110508 3.4913% | 111542  4.4596%
X-n670-k130 146332 | 177344 21.1929% | 173046 18.2557% | 170328 16.3983% | 164820 12.6343% | 166737 13.9443% | 164140 12.1696%
X-n685-k75 68205 | 79362 16.3580% | 84485 23.8692% | 79502 16.5633% | 76224  11.7572% | 76676  12.4199% | 76195 11.7147%
X-n701-k44 81923 | 90163  10.0582% | 92522  12.9378% | 89812  9.6298% | 88608  8.1601% | 87959  7.3679% | 88603  8.1540%
X-n716-k35 43373 | 50636 16.7454% | 51003  17.5916% | 49429  13.9626% | 47821  10.2552% | 47996  10.6587% | 47586  9.7134%
X-n733-k159 136187 | 158694 16.5265% | 156545 14.9486% | 156747 15.0969% | 148203  8.8232% | 149217 9.5677% | 153664 12.8331%
X-n749-k98 77269 | 88333 14.3188% | 91569  18.5068% | 88438  14.4547% | 84651 9.5536% | 85367 10.4803% | 85824 11.0717%
X-n766-k71 114417 | 135772 18.6642% | 133725 16.8751% | 129996 13.6160% | 128128 11.9834% | 128052 11.9169% | 127179 11.1539%
X-n783-k48 72386 | 84162 16.2683% | 85094  17.5559% | 82690  14.2348% | 80855 11.6998% | 80521 11.2384% | 80358 11.0132%
X-n801-k40 73305 | 85008 15.9648% | 84025 14.6238% | 83210 13.5120% | 81070  10.5927% | 80637  10.0020% | 81015 10.5177%
X-n819-k171 158121 | 177282 12.1179% | 178589 12.9445% | 175340 10.8898% | 171630  8.5435% | 172020 8.7901% | 175820 11.1933%
X-n837-k142 193737 | 213908 10.4115% | 214165 10.5442% | 211521  9.1795% | 208552  7.6470% | 209350  8.0589% | 210464  8.6339%
X-n856-k95 88965 | 99911  12.3037% | 102485 15.1970% | 98990  11.2685% | 99014  11.2955% | 96889  8.9069% | 97602  9.7083%
X-n876-k59 99299 | 110191 10.9689% | 111857 12.6467% | 111044 11.8279% | 106826  7.5801% | 106180  6.9296% | 107710  8.4704%
X-n895-k37 53860 | 65277 21.1975% | 66353  23.1953% | 64716  20.1560% | 62114  15.3249% | 62101  15.3008% | 61552  14.2815%
X-n916-k207 329179 | 360052  9.3788% | 362596 10.1516% | 359444  9.1941% | 354793  7.7812% | 353567  7.4087% | 355423  7.9726%
X-n936-k151 132715 | 173297 30.5783% | 167723 26.3783% | 163193  22.9650% | 158308 19.2842% | 159965 20.5327% | 156897 18.2210%
X-n957-k87 85465 | 98132 14.8213% | 99442 16.3541% | 97109  13.6243% | 94209 10.2311% | 93672  9.6028% | 94118  10.1246%
X-n979-k58 118976 | 132128 11.0543% | 132449 11.3241% | 131752 10.7383% | 128765 8.2277% | 129968  9.2388% | 127952  7.5444%
X-n1001-k43 72355 | 87428 20.8320% | 87802 21.3489% | 86285 19.2523% | 82866 14.5270% | 82407 13.8926% | 82253  13.6798%

Averages 101874 | 115725 14.0802% | 116136 14.9631% | 114225 12.7539% | 111534  9.8527% | 111598 9.8164% | 111905 10.0618%

Tables 9 and 10 showcase various models trained on MTMDVRP100 applied to data from the CVRPLib Set-X-1 (Large) and
Set-X-2 (Extra Large). These instances have varying sizes from 101 to 1001 nodes. Additionally, we include SHIELD-Ep400,
the 400th epoch of training SHIELD, which has similar in-task in-dist performance compared to MVMoE. SHIELD is a
significantly superior model in terms of zero-shot size generalization.
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0. Additional experiments — Importance of Varied Distributions

Table 11. Performance of all models when trained on only Uniform data. We retain a similar layout to Table 1 but all distributions are
considered out-of-distribution in this case.

MTMDVRP50 MTMDVRP100
Model In-dist Out-dist In-dist Out-dist

Obj Gap Obj Gap Obj Gap Obj Gap
POMO-MTVRP (Uniform) | 6.0932 3.8834% 6.4104 4.0007% | 9.5517 5.7774% 10.1878 6.1687%
MVMOoE (Uniform) 6.0779  3.6000% 6.3930 3.6710% | 9.5065 5.2291% 10.1454  5.7632%
In-task MVMOoE-Light (Uniform) | 6.0926 3.8418% 6.4061 3.8254% | 9.5116 5.3037% 10.1407 5.7016%

MVMOoE-Deeper (Uniform) | 6.0580 3.1964% 6.3822 3.5062% | OOM OOM OOM OOM
SHIELD-MoD (Uniform) | 6.0482 3.0379% 6.3666 3.2037% | 9.4120 4.1218% 10.0525 4.7131%
SHIELD (Uniform) 6.0414 2.9223% 6.3596 3.0832% | 9.3956 3.9280% 10.0373 4.6271%
POMO-MTVRP (Uniform) | 5.8762 8.1526% 6.2457 8.3681% | 9.5947 10.1253% 10.3081 10.6234%
MVMOoE (Uniform) 5.8602 7.7505% 6.2251 7.8788% | 9.5514 9.4994%  10.2716 10.2298%
Out-task MVMOokE-Light (Uniform) | 5.8802 8.1328% 6.2414 8.0983% | 9.5490 9.5566%  10.2555 10.1128%

MVMOoE-Deeper (Uniform) | 5.8292  7.0524% 6.2034 7.4642% | OOM OOM OOM OOM
SHIELD-MoD (Uniform) | 5.8103 6.7257% 6.1769  6.9455% | 9.3977 7.6183% 10.1111  8.3284%
SHIELD (Uniform) 5.8035 6.6394% 6.1712 6.8616% | 9.3721 7.2676% 10.0889 8.1911%

Table 11 displays the performance of all models when trained purely on uniform data. Note that while we retain the same
table layout as Table 1, all distributions are considered as out-of-distribution in such a case as the model does not see them
at all. Evidently, all models degrade in their predictive performance, even though SHIELD still retains its overall superior
performance.

P. Additional Experiments — Single-task Multi-distribution

Table 12. Performance of various models trained on the CVRP task with multiple distributions.

CVRP50 CVRP100
Model In-dist Out-dist In-dist Out-dist
Obj Gap Obj Gap Obj Gap Obj Gap
POMO-MTVRP | 6.6511 1.2260% 6.9763 1.4689% | 9.9795 2.3587% 10.6194 3.3445%
MVMoE 6.6454 1.1401% 69709 1.3858% | 9.9733 2.2932% 10.6189 3.2974%

MVMOoE-Light | 6.6482 1.1814% 6.9723 1.4112% | 9.9681 2.2398% 10.6237 3.4012%

MVMOoE-Deeper | 6.6313 0.9207% 6.9628 1.2731% | OOM OOM OOM OOM

SHIELD-MoD | 6.6284 0.8798% 6.9552 1.1623% | 9.9346 1.8948% 10.5545 2.6917%
SHIELD 6.6269 0.8570% 6.9474 1.0338% | 9.9278 1.8203% 10.5579 2.6541%

Table 12 displays the performance of various models when trained in a single-task multi-distribution setting. Here, we
choose CVRP to be the task at hand. SHIELD remains the best-performing model in such a scenario, suggesting that its
architecture is not catered purely to a multi-task multi-distribution problem only.
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Q. Additional Experiments — Multi-Task VRP

Table 13. Performance of all models on the MTVRP scenario where all models are trained on the Uniform distribution.

MTVRP50 MTVRP100

Model Obj Gap Obj Gap
POMO-MTVRP | 10.0470 2.9086% | 15.9662 4.2795%
MVMoE 10.0213  2.6279% | 15.8868  3.7400%
In-task MVMOoE-Light | 10.0436 2.8539% | 15.9182 3.9825%

MVMoE-Deeper | 10.0020 2.4281% | OOM OOM
SHIELD-MoD 9.9865  2.2522% | 15.8134 3.2617%
SHIELD 9.9732  2.1252% | 15.7754 3.0124%
POMO-MTVRP | 10.3023 7.1085% | 16.9683 8.2123%
MVMOoE 10.2705  6.7095% | 16.8697 7.4778%
Out-task MVMOoE-Light | 10.3004 7.0367% | 16.9036 7.8180%

MVMOoE-Deeper | 10.2342  6.3488% 010)%1 OOM
SHIELD-MoD | 10.2135 6.0721% | 16.7268  6.5004%
SHIELD 10.1985 5.9522% | 16.6817 6.2304%

To verify that our architecture improves overall, we trained all models on the MTVRP setting using the uniform distribution.
Table 13 showcases the performance of all models. Here, we see that SHIELD is still clearly the better-performing model.
Additionally, the gaps between the models are less significant once we remove the varied distributions. This indicates
the difficulty of a multi-distribution scenario — having varied structures with multiple tasks is more complex. Since our
architecture is more flexible, it generalizes better in the MTMDVRP scenario.
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R. Additional Experiments — Behavior of Scaling During Inference
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Figure 6. Overall performance of SHIELD with varying sampling widths.

For NCO solvers, we can allocate more test time to perform sampling and find better solutions during inference. In this
experiment, we reduced the number of test instances to 100 instances per problem and performed inference with sampling
widths 1x, 10x, 50x, and 100x. We plot the performance of the various widths are shown in Figure 6. As shown, as we
increase the sampling width, the general performance of the model increases (lower gap is better) in a logarithmic fashion.
This suggests that while we can allocate more test time for inference, its effectiveness eventually saturates.
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S. Detailed experimental results

Table 14. Performance of models on USA13509
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Table 15. Performance of models on JA9847
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Table 16. Performance of models on BM33708
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Table 17. Performance of models on KZ9976
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Table 18. Performance of models on SW24978
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Table 19. Performance of models on VM22775
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Table 20. Performance of models on EG7146
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Table 21. Performance of models on F110639
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Table 22. Performance of models on GR9882
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