
StepCoder: Improve Code Generation
with Reinforcement Learning from Compiler Feedback

Anonymous ACL submission

Abstract

The advancement of large language models001
(LLMs) has significantly propelled the field of002
code generation. Previous work integrated re-003
inforcement learning (RL) with compiler feed-004
back for exploring the output space of LLMs005
to enhance code generation quality. However,006
the lengthy code generated by LLMs in re-007
sponse to complex human requirements makes008
RL exploration a challenge. Also, since the009
unit tests may not cover the complicated code,010
optimizing LLMs by using these unexecuted011
code snippets is ineffective. To tackle these012
challenges, we introduce StepCoder, a novel013
RL framework for code generation, consisting014
of two main components: CCCS addresses the015
exploration challenge by breaking the long se-016
quences code generation task into a Curriculum017
of Code Completion Subtasks, while FGO only018
optimizes the model by masking the unexe-019
cuted code segments to provide Fine-Grained020
Optimization. In addition, we furthermore con-021
struct the APPS+ dataset for RL training, which022
is manually verified to ensure the correctness023
of unit tests. Experimental results show that024
our method improves the ability to explore the025
output space and outperforms state-of-the-art026
approaches in corresponding benchmarks 1.027

1 Introduction028

Code generation or program synthesis aims to au-029

tomatically generate source code that adheres to a030

specified programming requirement, which is typi-031

cally described in natural language (Svyatkovskiy032

et al., 2020; Gulwani et al., 2017). Recently, with033

the development of large language models (LLMs),034

techniques based on LLM (Li et al., 2023a; Luo035

et al., 2023b) have demonstrated impressive ability036

in code generation. However, challenges persist037

in aligning these models with complex human re-038

quirements (Hendrycks et al., 2021; Roziere et al.,039

1 The code and dataset will be made available upon publi-
cation.

2023), indicating a gap that still exists in fully meet- 040

ing user expectations. 041

In this context, learning from compiler feedback 042

exhibits impressive potential to improve the com- 043

prehension of complicated human requirements 044

and the quality of generated codes (Le et al., 2022). 045

This feedback from compilation and execution re- 046

sults is instrumental in directly ascertaining the 047

functional correctness of programs (Wang et al., 048

2022a; Li et al., 2022). Researchers (Liu et al., 049

2023; Shojaee et al., 2023) introduce reinforcement 050

learning (RL) and leverage compiler feedback from 051

unit tests as a reward metric to guide the exploration 052

of the output space of LLMs. The intention is for 053

the policy model to favor actions that yield higher 054

rewards increasingly. Nevertheless, the optimiza- 055

tion of LLMs for code generation via RL presents 056

several hurdles. First, the increasing complexity of 057

human requirements often results in the generation 058

of longer code sequences, which makes exploration 059

struggle (Hao et al., 2023; Ladosz et al., 2022). Sec- 060

ond, in cases where a single unit test fails to cover 061

the complex code, unexecuted code snippets may 062

emerge that are not relevant to the reward. Render- 063

ing optimization based on the entire code sequence 064

is potentially imprecise. Additionally, our analy- 065

sis reveals quality limitations in existing datasets 066

like APPS (Hendrycks et al., 2021) for RL training, 067

which impedes accurate learning from compiler 068

feedback through RL. 069

To tackle these challenges, we first introduce 070

StepCoder, an innovative framework developed for 071

enhancing code generation through reinforcement 072

learning. StepCoder integrates two key compo- 073

nents: Curriculum of Code Completion Subtasks 074

(CCCS) and Fine-Grained Optimization (FGO). 075

CCCS is designed to alleviate the complexities as- 076

sociated with exploration in code generation, while 077

FGO is designed to provide more precise and ef- 078

fective optimization strategies. Specifically, CCCS 079

employs a step-by-step strategy to break down com- 080

1

plex exploration problems (i.e., code generation)081

into a curriculum of easier sub-tasks (i.e., code082

completion). As the training progresses, the diffi-083

culty of code completion tasks rises by increasing084

the portion of code that needs to be completed.085

Eventually, the aim is for the model to evolve to a086

stage where it can effectively generate code solely087

from human requirements, thus fulfilling the origi-088

nal training goal of code generation. On the other089

hand, the key insight of FGO is that code snippets090

that are not executed in a unit test do not contribute091

to the final reward calculation. Therefore, FGO092

uses a dynamic masking technique to mask unexe-093

cuted snippets from unit test evaluations, ensuring094

that the model is optimized utilizing only the rele-095

vant code segments.096

Subsequently, our endeavor involves the devel-097

opment of APPS+, a dataset of superior quality098

specifically curated for code generation. APPS+ is099

meticulously designed to exclude code segments100

that exhibit syntax errors, are irrelevant to the stip-101

ulated problem, or fail to produce any output. Ad-102

ditionally, we have taken measures to standardize103

the format of inputs and outputs in unit tests to104

guarantee deterministic output comparisons.105

We evaluate the effectiveness of popular LLMs106

on APPS+. The results reveal that although LLMs107

show progressive improvements, they face diffi-108

culties with complex human requirements. We109

further evaluate our method on several extensively110

used benchmarks including MBPP (Austin et al.,111

2021) and HumanEval (Chen et al., 2021). The ex-112

perimental results show that StepCoder effectively113

eases the exploration difficulty in code generation,114

outperforming other reinforcement learning-based115

methods in effectiveness. The main contributions116

of our paper are as follows:117

• We introduce StepCoder, a novelty training118

method via RL, including CCCS and FGO.119

CCCS makes exploration easier by break-120

ing down the complicated goals into sub-121

objectives curriculum. FGO provides fine-122

grained optimization by only utilizing the ex-123

ecuted code in unit tests.124

• We constructed APPS+, a high-quality dataset125

designed for code generation. APPS+ pro-126

vides a more rigorous evaluation of LLMs’127

capabilities and a foundation to introduce re-128

inforcement learning in the training phase.129

• Experiments show that StepCoder can im-130

import random

def test():
...
for _ in range(int(input())):

…
rows[0] = p[::2]
rows[1] = p[1::2]
if sign(rows[0][0]) != sign(rows[1][0]):

print(0)
continue

for r in range(2, max_rows):
for n in range(max_col - 1):

rows[r][n] = rows[r - 1][0] * rows[r - 2][n +
1] - rows[r - 2][0] * rows[r - 1][n + 1]

last = sign(rows[0][0])
flag = 1
for i in range(1, len(rows)):

curr = sign(rows[i][0])
if rows[r] == [0 for _ in range(max_col)]:

for n in range(max_col):
rows[r][n] = rows[r - 1][n] * (max_pow +

4 - (r + 1) - 2 * (n + 1))

elif rows[i][0] == 0:
if any([x != 0 for x in rows[i]]):

flag = 0
break

else:
curr = last

if curr != last:
flag = 0
break

last = curr

: conditional statement
: executed code
: unexecuted code

Figure 1: The canonical solution of an instance in the
APPS dataset. We collect the conditional statements
by analyzing their abstract syntax tree, and some con-
ditional statements are highlighted with a grey dashed
box. When inputting s = [1\n10 12 1 5 3\n], only 75%
of the code fragment is executed, highlighted with a
green background.

prove the exploration efficiency and effective- 131

ness and outperform other methods. 132

2 Motivation 133

In this section, we clearly illustrate the challenges 134

faced by reinforcement learning in code generation 135

using a simplified example from APPS (Hendrycks 136

et al., 2021), which was widely used for RL training 137

in code generation. 138

Exploration problems of RL in code gener- 139

ation. Exploration methods play a crucial role 140

in tackling complicated sequence but sparse re- 141

ward problems (Yang et al., 2021; Ladosz et al., 142

2022). When a policy model explores a trajectory 143

with high returns, it undergoes optimization, mak- 144

ing it inclined to take similar actions in the future 145

(Williams, 1992; Salimans and Chen, 2018). 146

Consider the code shown in Figure 1, aimed 147

at fulfilling a given human requirement. We first 148

collect the conditional statements (CS) that are in- 149

dicated by the dashed box by analyzing its abstract 150

syntax tree. Conditional statement introduces new 151

independent paths, increasing the complexity of the 152

2

program (Shepperd, 1988). Suppose Pθ(CSi) de-153

notes the probability that the policy model with pa-154

rameter θ completes the i-th conditional statement.155

The probability that the policy model correctly gen-156

erates this code according to human requirements157

can be expressed as follows:158

P ∝ Po

3∏
i=1

Pθ(CSi), (1)159

where Po is the probability of other code snip-160

pets except the code labeled in the figure. Typi-161

cally, we initialize the policy model with the SFT162

model in sequence generation tasks to facilitate eas-163

ier exploration (Ouyang et al., 2022; Zheng et al.,164

2023). However, the limited performance of the165

SFT model in code generation still leads to the166

probability Pθ(CSi) at low values (Shojaee et al.,167

2023; Roziere et al., 2023). The increasing com-168

plexity of human requirements in code generation169

tasks often leads to a corresponding rise in the170

number of conditional statements. This escalation171

can result in a substantial decrease in the proba-172

bility Pθ(CSi), potentially leading P to an expo-173

nential reduction. Such a scenario exacerbates the174

challenges associated with exploration in large lan-175

guage models. An alternative approach to facilitate176

exploration is through reward shaping, a technique177

where designers artificially introduce rewards more178

frequently (Ladosz et al., 2022). However, in unit179

test feedback, rewards can only be obtained after180

the execution of the completely generated code.181

Consequently, the exploration of high-return trajec-182

tories in tasks with complex sequences and sparse183

rewards poses a significant challenge in optimizing184

the policy model.185

Optimization problems of RL in code genera-186

tion. We first introduce the RL fine-tuning process187

in code generation. Formally, for a learned policy188

model πθ with parameter θ, we treat the prediction189

of each token as an action a taken by πθ according190

to the history token sequences. The history token191

sequences can be viewed as the state s. Given a192

human requirement x, we denote the solution code193

y generated by πθ as an episode, and r(x, y) is the194

reward function from the compiler based on com-195

pilation and execution. Updating the parameters196

of πθ by using gradient policy algorithm (Sutton197

et al., 1999) can be represented as follows:198

max
θ

E(x,y)∼Dπθ
[
∑
t

At
π log(yt|y1:t−1, x; θ)] (2)199

where Aπ is the advantage computed by the Gen-200

eralized Advantage Estimator (GAE) (Schulman201

et al., 2015) from reward r, to reduce the variability 202

of predictions. 203

In code generation, rewards are contingent upon 204

the correctness of the unit test sample, which is 205

only relevant to the code snippet being executed, as 206

shown in Figure 1. It indicates that some actions in 207

the code are irrelevant to the reward, which leads 208

to inaccurate advantage. Therefore, optimizing the 209

policy model πθ with all actions is ineffective by 210

using Equation 2. 211

3 Method 212

In this section, we elaborate on the methodological 213

details of StepCoder, which provide an easier ex- 214

ploration and fine-grained optimization for RL in 215

code generation, respectively, as shown in Figure 2. 216

3.1 Priliminaries 217

Suppose D = {(xi, yi, ui, ei)}Ni=0 is the training 218

dataset for code generation, which x, y, u denotes 219

the human requirement (i.e., the task description), 220

the canonical solution and the unit test samples, 221

respectively. ei = {stj , enj}Ei
j=0 is a list of condi- 222

tional statements by automatically analyzing the 223

abstract syntax tree of the canonical solution yi, 224

which st and en represent the start position and the 225

end position of the statements, respectively. e is 226

sorted in ascending order based on the start posi- 227

tion st. For a human requirement x, its canonical 228

solution y can be represented as {at}Tt=0. In code 229

generation, given a human requirement x, the final 230

states are the set of codes passing the unit tests u. 231

3.2 StepCoder 232

StepCoder integrates two key components: CCCS 233

and FGO. CCCS is designed to break the code 234

generation tasks into a curriculum of the code com- 235

pletion subtasks. It can alleviate the exploration 236

challenge in RL. FGO is specifically designed for 237

code generation tasks to provide fine-grained opti- 238

mization by computing only the loss of executed 239

code snippets. 240

CCCS. In code generation, the solution to a com- 241

plicated human requirement usually involves a long 242

action sequence taken by the policy model. Mean- 243

while, the feedback from the compiler is delayed 244

and sparse, i.e., the policy model only receives the 245

reward after generating the entire code. In this sce- 246

nario, exploring is difficult. The core of our method 247

is to break down such a long sequence of explo- 248

ration problems into a curriculum of short, easily 249

3

Vanilla Reinforcement Learning
from Compiler Feedback

StepCoder

Step 1

Final

.

.

.

.

.

.

Human requirement
LLM Compiler

Reward

FGO

C
C

C
S

Generated code

Mask

Mask

!log(𝑦!|𝑦":!$", 𝑥
!

)

!log(𝑦!|𝑦":!$", 𝑥
!

)

Code Completion

Code Generation

Code Completion

Code Generation

Part of canonical solution

Figure 2: The overview of our method. In code generation, the environment with sparse and delayed rewards and
the complicated human requirement that involves a long sequence make exploration challenging for the Vanilla RL.
In CCCS, we break down a complicated exploration problem into a curriculum of sub-tasks. Utilizing a portion of
the canonical solution as the prompt enables the LLM to explore starting from simple sequences. The computation
of rewards is only relevant for the executed code snippets, and it is imprecise to optimize the LLM with the entire
code (i.e.,). In FGO, we mask unexecuted tokens (i.e.,) in unit tests and only compute the loss function using
executed tokens (i.e.,) to provide a fine-grained optimization.

explorable sub-tasks. We simplify code genera-250

tion to code completion sub-tasks. These sub-tasks251

are automatically constructed from the canonical252

solution in the training dataset.253

Consider a human requirement x, early in the254

training phase of CCCS, the starting point s∗ of255

exploration is the states near the final states. Specif-256

ically, we provide the human requirement x and the257

front part of the canonical solution xp = {ai}s
∗
i=0,258

and the policy model is trained to complete the259

code based on x
′
= (x, xp). Let ŷ be the com-260

bined sequence of xp and the output trajectory τ ,261

i.e. ŷ = (xp, τ). The reward model provides the262

reward r according to the correctness of the code263

snippet τ with ŷ as input, where we use the same264

setting as previous approaches (Le et al., 2022;265

Shojaee et al., 2023) as follows:266

r(x
′
, ŷ) =

+ 1, if ŷ passed all unit tests
−0.3, if ŷ failed any unit test
−0.6, if ŷ happened runtime error
− 1, if ŷ happened compile error.

(3)

267

We use the Proximal Policy Optimization (PPO)268

algorithm (Schulman et al., 2017) to optimize the 269

policy model πθ by utilizing the reward r and the 270

trajectory τ . In the optimization phase, the canoni- 271

cal solution’s code segment xp used for providing 272

prompts is masked, such that it does not contribute 273

to the gradient for the policy model πθ update. 274

CCCS optimizes the policy model πθ by maximiz- 275

ing the objection function as follows: 276

Objective(θ) = E(x′ ,ŷ)∼Dπθ
[r(x

′
, ŷ) 277

− β log(πθ(ŷ|x
′
))/πref(ŷ|x′

)] (4) 278

where πref is the reference model in PPO, which is 279

initialized by the SFT model. 280

As the training progresses, the starting point s∗ 281

of exploration gradually moves towards the begin- 282

ning of the canonical solution. Specifically, we set 283

a threshold ρ for each training sample. Each time 284

the cumulative correct proportion of code segments 285

generated by πθ is greater than ρ, we move the 286

starting point toward the beginning. In the later 287

stages of training, the exploration of our method 288

is equivalent to the exploration process of origi- 289

nal reinforcement learning, i.e., s∗ = 0, where 290

the policy model generates code using only human 291

4

requirements as input.292

The starting point s∗ is sampled at the beginning293

position of the conditional statements to complete294

the remaining unwritten code segments. Specifi-295

cally, a program with a greater number of condi-296

tional statements results in increased independent297

paths, leading to a higher logical complexity (Shep-298

perd, 1988). This complexity necessitates more299

frequent sampling to improve the quality of train-300

ing, while programs with fewer conditional state-301

ments need less frequent sampling. This sampling302

method allows for a balanced and representative303

sampling of code structures, catering to both com-304

plex and simple semantic constructs in the training305

dataset. To accelerate the training phase, we set the306

i-th sample’s number of curricula equal to ⌈
√
Ei⌉,307

where Ei is its number of conditional statements.308

The i-th sample’s stride of the training curriculum309

is ⌈ Ei

⌈
√
Ei⌉
⌉ instead of one.310

The key insight of CCCS can be summarized as311

follows: 1) It is easy to explore from the states near312

the goal (i.e., final states). 2) Exploring starting313

from the states distant from the goal is challenging,314

but it becomes easier when can leverage states that315

have already learned how to reach the goal.316

FGO. The relationship between reward and ac-317

tion in code generation differs from other reinforce-318

ment learning tasks such as Atari (Mnih et al., 2015;319

Lillicrap et al., 2015). In code generation, we can320

exclude a set of actions irrelevant to computing the321

rewards in generated code. Specifically, as men-322

tioned in Section 2, for a unit test, the feedback323

from the compiler relates only to the code snippets324

being executed. However, in vanilla RL optimiza-325

tion objectives, as shown in Equation 4, all actions326

of the trajectory are engaged in the computation327

of the gradient used in the policy update, which is328

imprecise.329

To improve the precision of optimization, we330

mask actions (i.e., tokens) that are not executed331

in unit tests when computing the loss for updating332

the policy model. The full algorithm of CCCS and333

FGO is detailed in Algorithm 1.334

4 Experiments335

In this section, we first introduce APPS+, a high-336

quality dataset for code generation by manually337

verifying based on the APPS dataset. Then, we338

elaborate on the experiment details and the experi-339

mental results.340

4.1 Dataset Preprocessing 341

Reinforcement learning requires an amount of high- 342

quality training data. During our investigation, 343

we found that among the currently available open- 344

source datasets, only APPS meets this requirement. 345

However, we found there are incorrect instances, 346

such as missing input, output, or canonical solu- 347

tion, canonical solutions that were uncompileable 348

or unexecutable, and discrepancies in execution 349

output. 350

To refine the APPS dataset, we excluded in- 351

stances lacking input, output, or canonical solu- 352

tions. Then, we standardized the formats of input 353

and output to facilitate the execution and compari- 354

son of unit tests. We conducted unit tests and man- 355

ual analysis for each instance, eliminating those 356

with incomplete or irrelevant code, syntax errors, 357

API misuse, or missing library dependencies. For 358

discrepancies in output, we manually reviewed the 359

problem description, correcting the expected output 360

or eliminating the instance. 361

Finally, we construct the APPS+ dataset, con- 362

taining 7,413 instances. Each instance includes 363

a programming problem description, a canonical 364

solution, a function name, unit tests (i.e., inputs 365

and outputs), and starter code (i.e., the beginning 366

part of the canonical solution). Appendix A illus- 367

trates an example from APPS+. The top section of 368

the figure shows the problem description, and the 369

right section presents the canonical solution, unit 370

tests, and metadata. Further details of APPS+ are 371

discussed in Appendix B.1. 372

4.2 Experiment Details 373

Benchmarks. In our study, we initially evaluated 374

our method and baselines on our pre-processed 375

APPS+ dataset and further assessed it on sev- 376

eral widely-used benchmarks in code generation, 377

i.e., MBPP (Mostly Basic Programming Problems) 378

(Austin et al., 2021) and HumanEval (Chen et al., 379

2021). We evaluate the MBPP and HumanEval 380

benchmark in a zero-shot learning setting which is 381

the same as previous approaches (Le et al., 2022; 382

Shojaee et al., 2023). In this setting, we fine-tune 383

the models only on the APPS+ dataset and evaluate 384

the code generation performance on MBPP and Hu- 385

manEval. The detailed description of benchmarks 386

can be found in the Appendix B.1. 387

Baselines. To verify the effectiveness of Step- 388

Coder and evaluate the performance of LLMs on 389

our APPS+ dataset, we consider a wide range of 390

5

Models Size
APPS+

Introductory Interview Competition Overall
Base Models

CodeLlama (Roziere et al., 2023) 13B 18.7 11.0 0.0 13.0
CodeLlama-Python (Roziere et al., 2023) 13B 29.0 12.3 2.9 17.9
DeepSeek-Coder-Base (Guo et al., 2024) 6.7B 13.0 10.3 5.0 10.9

Supervised Fine-tuned Models

StarCoder (Li et al., 2023a) 15.6B 6.3 4.1 0.7 4.7
CodeLlama-Instruct (Roziere et al., 2023) 13B 33.3 11.0 1.4 18.7
WizardCoder-Python-V1.0 (Luo et al., 2023b) 13B 39.7 15.1 4.3 23.6
DeepSeek-Coder-Instruct (Guo et al., 2024) 6.7B 49.4 18.7 3.6 29.2
SFT on APPS+ 6.7B 50.1 19.0 6.4 29.8

Reinforcement Learning-based Models (Using DeepSeek-Coder-Instruct-6.7B as the backbone)

Vanilla PPO 6.7B 53.7 20.1 5.0 31.7
PPOCoder (Shojaee et al., 2023) 6.7B 54.4 20.3 6.4 32.1
RLTF (Liu et al., 2023) 6.7B 55.1 20.8 6.4 32.7

StepCoder (Ours) 6.7B 59.7 23.5 8.6 36.1
w/o CCCS 6.7B 58.7 21.7 7.1 34.6
w/o FGO 6.7B 58.4 23.3 8.6 35.5

Table 1: Results of pass@1 on our proposed APPS+. We compare popular and widely used state-of-the-art baselines
with our method. To ensure a fair comparison, we apply these RL-based approaches using the same base model (i.e.,
DeepSeek-Coder-Instruct-6.7B (Guo et al., 2024)) as a backbone on the APPS+ dataset. In addition, We fine-tune
DeepSeek-Coder-Instruct-6.7B on our APPS+ dataset to further validate the effectiveness of our approach.

baselines, including StarCoder (Li et al., 2023a),391

WizardCoder (Luo et al., 2023b), DeepSeek-Coder392

(Guo et al., 2024), and three versions of CodeL-393

lama (Base, Python, Instruct) (Roziere et al., 2023).394

Moreover, we also consider vanilla PPO and two395

state-of-the-art RL-based approaches, including396

PPOCoder (Shojaee et al., 2023) and RLTF (Liu397

et al., 2023). We carried out experiments apply-398

ing these methods utilizing the same backbone (i.e.,399

DeepSeek-Coder-Instruct (Guo et al., 2024)) on the400

APPS+ dataset to ensure a fair comparison. In ad-401

dition to demonstrating the necessity and effective-402

ness of our method, we also supervised fine-tuning403

DeepSeek-Coder-Instruct (Guo et al., 2024) on the404

APPS+ dataset to exclude the effect of training405

data. The detailed description of these baselines is406

discussed in Appendix B.2.407

Implementation Details. During the SFT phase,408

we adopt a learning rate set at 2e−5, conduct train-409

ing for three epochs, and employ a warm-up period410

of 0.3 epochs, with a linear decay to zero. The fine-411

tuning process was conducted on a device with412

eight NVIDIA A100 80G GPUs, with the global413

batch size set to 64. In the PPO training phase,414

we employ a learning rate of 5e−7 for the policy415

model and 1.5e−6 for the critic model. For each ex-416

ample, we collect a 16 roll-out code using nucleus417

sampling. The sampling temperature is set to 0.8,418

top-p is set to 0.9, and the maximum output token 419

length is set to 1024. The token-level KL penalty 420

coefficient β is set to 0.05, with a clip value of 0.8. 421

In the decoding phase, the temperature and top_p 422

are set to 0.2 and 0.95, respectively. 423

Evaluation & Metric. Our experiments and 424

reward collection for reinforcement learning (RL) 425

methods are conducted using Python3.x. Following 426

prior studies (Roziere et al., 2023; Luo et al., 2023b; 427

Le et al., 2022), we use Pass@k (Chen et al., 2021) 428

metric to evaluate all the models. Pass@k quan- 429

tifies the proportion of instances in which at least 430

one of the k-generated code solutions per human 431

requirement successfully passes all unit tests. Code 432

generation prompts are detailed in Appendix D. 433

4.3 Experimental Results on APPS+ 434

To assess the performance of widely used LLMs 435

and our StepCoder on code generation, we conduct 436

experiments on the APPS+ dataset that we con- 437

structed. The experimental results are illustrated in 438

Table 1. The results indicate that RL-based models 439

outperform both base models and SFT models. It 440

is reasonable to infer that reinforcement learning 441

can further enhance the quality of code generation 442

by more effectively navigating the model’s output 443

space, guided by compiler feedback. 444

Furthermore, our StepCoder surpasses all base- 445

6

line models including other RL-based approaches,446

achieving the highest score. Specifically, our ap-447

proach obtains 59.7%, 23.5%, and 8.6% in the448

‘Introductory’, ‘Interview’, and ‘Competition’, re-449

spectively. Our approach excels in exploring the450

output space compared to other RL-based methods,451

achieved by simplifying complex code generation452

tasks to code completion sub-tasks. Additionally,453

the FGO process plays a pivotal role in precisely454

optimizing the policy model. We also found that455

the performance of StepCoder is better than LLM456

which supervised fine-tuning on the APPS+ dataset457

based on the same backbone. The latter did lit-458

tle to improve the pass rate of the generated code459

compared with the backbone. This also directly460

demonstrates that the method of using compiler461

feedback to optimize the model improves the qual-462

ity of the generated code better than next-token463

prediction in code generation.464

Models (6.7B) HumanEval MBPP
DeepSeek-Coder-Instruct 78.0 64.2
SFT on APPS+ 55.5 54.8

Vanilla PPO 78.0 65.0
PPOCoder 76.8 63.8
RLTF 76.8 65.2
StepCoder (Ours) 78.7 67.0

Table 2: Results of pass@1 on MBPP and HumanEval.
We evaluate the LLMs’ performance on code generation
in a zero-shot learning setting. In this setting, the models
are fine-tuned on our proposed APPS+ dataset and tested
for their ability on MBPP and HumanEval.

4.4 Ablation Studies465

To investigate the impact of individual components466

in StepCoder, we conducted ablation experiments467

with two variations of our approach, including Step-468

Coder only with CCCS and only with FGO, as469

shown in Table 1. Experimental results demon-470

strate that both components of our approach im-471

prove the quality of the generated code compared472

to vanilla PPO. CCCS can enhance its performance473

in addressing Competition-level problems. This im-474

provement is logical, considering that CCCS effec-475

tively simplifies the exploration of more complex476

human requirements. Simultaneously, FGO boosts477

the pass rate of unit tests by integrating compiler478

feedback with the relevant executed code snippet.479

4.5 Results on MBPP and HumanEval480

To further demonstrate the effectiveness of our481

method, we conducted comparative analyses482

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of lines duplicated

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f t
as

ks

with MBPP
with HumanEval

Figure 3: Analysis of duplicated lines between APPS+
and the two benchmarks. The overlap of data between
APPS+ and them is very small. Only 0.2% and 7.1%
had more than half of their lines matched somewhere in
MBPP and HumanEval, respectively.

of StepCoder against various approaches using 483

the well-recognized benchmarks MBPP and Hu- 484

manEval. These models are trained on APPS+ and 485

then evaluated on MBPP and HumanEval. The ex- 486

perimental results are illustrated in Table 2 which 487

shows that StepCoder is superior over all other 488

models on both benchmarks. 489

However, there are concerns regarding potential 490

overlaps in the training data between APPS+ and 491

the two benchmarks, which might contribute to an 492

improvement in performance. To address these con- 493

cerns, we analyze the difference between APPS+ 494

and the benchmarks by calculating the code line 495

overlap ratio of two corresponding canonical solu- 496

tions following previous work (Austin et al., 2021; 497

Le et al., 2022). The findings are presented in Fig- 498

ure 3. This evidence underscores our approach’s 499

effectiveness in enhancing the quality of generated 500

code and its capability across a broad spectrum of 501

code generation tasks, primarily by improving the 502

exploration problem in reinforcement learning. 503

Meanwhile, our findings revealed a significant 504

degradation in the performance of the SFT model 505

on both MBPP and HumanEval benchmarks. Fur- 506

ther analysis of the error cases showed that a minor- 507

ity were related to function name errors, while the 508

majority were associated with program correctness 509

errors. This also indicated that SFT on a single 510

dataset may impair the ability to follow instruc- 511

tions and the ability to generalize, thus affecting 512

the performance of code generation on other tasks. 513

In contrast, RL-based methods can improve the 514

performance for unseen tasks of code generation. 515

7

Intro Inter Comp All
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pe

rc
en

ta
ge

 (
%

)
Compile Error

Deepseek-instruct
Vanilla PPO
StepCoder (Ours)

Intro Inter Comp All
0

10

20

30

40

50

60

70
Runtime Error & Failure

Figure 4: Analysis by unit test results on APPS+. The
results are categorized into CompileError (Reward = -1)
and Runtimeerror & Failure (Reward = -0.6 or -0.3).

4.6 Analysis by Unit Test Results516

We further analyzed the results of cases that did not517

pass all unit tests, as shown in Figure 4. The results518

show that our method can effectively reduce the519

likelihood of compilation errors, which is particu-520

larly evident in Interview-level and Competition-521

level programming problems. However, it was also522

observed that all LLMs are more prone to runtime523

errors and failures as compared to compilation er-524

rors, albeit StepCoder shows a comparatively lower525

rate of runtime errors and failures. These results526

demonstrate that StepCoder is less prone to com-527

pilation errors, but still suffers from runtime errors528

and failure. These findings suggest that future re-529

search should further focus on minimizing runtime530

errors to improve code quality and pass rates.531

5 Related Work532

Large Language Models for Code Generation.533

Recently, pre-trained language models have shown534

remarkable ability in understanding natural lan-535

guage and code generation by training on large536

text corpora containing code data (Christopoulou537

et al., 2022; Li et al., 2023b). In addition, SFT mod-538

els achieve more competitive performance such as539

StarCoder (Li et al., 2023a), WizardCoder (Luo540

et al., 2023b), Code Llama Instruct (Roziere et al.,541

2023), and DeepSeek-Coder (Guo et al., 2024).542

Reinforcement Learning is a method of learn-543

ing the optimal policy by exploring the environ-544

ment and obtaining rewards (Williams, 1992; Sut-545

ton et al., 1998). Recently, some researchers have546

introduced RL to LLMs and improved the qual-547

ity of the generated code by utilizing the unit test548

feedback to explore the output space of the pol-549

icy model. For instance, CodeRL (Le et al., 2022)550

leverages unit test signals for rewards and employs551

actor-critic methods (Konda and Tsitsiklis, 1999;552

Sutton et al., 1999) to enhance models on code gen-553

eration. PPOCoder (Shojaee et al., 2023) refines554

CodeRL by employing the PPO algorithm (Schul-555

man et al., 2017) and RLTF (Liu et al., 2023) pro- 556

vides fine-grained rewards through the error loca- 557

tions, but the reward space is still sparse. However, 558

the exploration of complex tasks in an environment 559

characterized by a sparse reward is challenging, 560

limiting the effectiveness of RL in boosting code 561

generation model performance 562

Exploration in Reinforcement Learning. Ex- 563

ploration is crucial in addressing long sequences 564

and sparse reward problems (Hao et al., 2023; La- 565

dosz et al., 2022). In the sequence generation task, 566

researchers improved exploration by initializing the 567

policy model using the SFT model (Ouyang et al., 568

2022; Shen et al., 2023). Our proposed approach 569

incorporates similar methods, but additional meth- 570

ods are necessary to ensure effective exploration, 571

especially when tackling complex human-driven re- 572

quirements, where the limited quality of generated 573

code makes exploration still challenging. 574

Other notable methods introduce the Process- 575

Supervised Reward Model to provide step-by-step 576

rewards for complex sequence generation tasks 577

such as mathematical reasoning and code gener- 578

ation (Uesato et al., 2022; Lightman et al., 2023; 579

Luo et al., 2023a; Ma et al., 2023). However, these 580

methods require labelling a large preference dataset 581

to train the reward model. Similar to our approach, 582

some methods construct a learning curriculum by 583

initiating each episode from a sequence of pro- 584

gressively more challenging starting states (Sali- 585

mans and Chen, 2018; Florensa et al., 2017). In 586

contrast to our approach, these methods are de- 587

signed to address the problem of exploration in 588

other fields, such as gaming and robotic manipula- 589

tion. Meanwhile, our approach combines software 590

engineering features to dynamically determine the 591

starting states through conditional statements and 592

introduces FGO to enhance fine-grained optimiza- 593

tion with the coverage information. 594

6 Conclusion 595

In this paper, we introduce StepCoder, a novel train- 596

ing framework via Reinforcement Learning (RL). 597

StepCoder breaks down complicated exploration 598

problems to reduce the difficulty of exploring en- 599

vironments with sparse rewards while providing 600

fine-grained optimization. In addition, we also con- 601

struct a high-quality dataset APPS+, specifically 602

for code generation. Experiments indicate that our 603

method can effectively improve the quality of gen- 604

erated code via RL compared to other approaches. 605

8

7 Limitations606

In this section, we discuss the potential limitations607

of the APPS+ dataset and our proposed method608

StepCoder. Firstly, while the APPS+ dataset we609

developed stands as a vital resource for code gener-610

ation tasks, we only provided three manually ver-611

ified unit tests for each instance (i.e., the number612

is the same as MBPP) due to time and manpower613

constraints. We plan to increase the number of614

unit tests in the future, aiming for an average of615

over 10 unit tests per instance. Secondly, despite616

our method’s outstanding performance by breaking617

down complicated goals into sub-objectives cur-618

riculum and fine-grained optimization, it requires619

more training time compared to traditional PPO620

algorithm. We expect a more time-efficient method621

while generating the highe-quality code. We leave622

these problems to future work.623

References624

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten625
Bosma, Henryk Michalewski, David Dohan, Ellen626
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.627
Program synthesis with large language models. arXiv628
preprint arXiv:2108.07732.629

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming630
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-631
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,632
Greg Brockman, et al. 2021. Evaluating large633
language models trained on code. arXiv preprint634
arXiv:2107.03374.635

Fenia Christopoulou, Gerasimos Lampouras, Milan636
Gritta, Guchun Zhang, Yinpeng Guo, Zhongqi637
Li, Qi Zhang, Meng Xiao, Bo Shen, Lin Li,638
et al. 2022. Pangu-coder: Program synthesis with639
function-level language modeling. arXiv preprint640
arXiv:2207.11280.641

OpenCompass Contributors. 2023. Opencompass:642
A universal evaluation platform for foundation643
models. https://github.com/open-compass/644
opencompass.645

Carlos Florensa, David Held, Markus Wulfmeier,646
Michael Zhang, and Pieter Abbeel. 2017. Reverse647
curriculum generation for reinforcement learning.648
In Conference on robot learning, pages 482–495.649
PMLR.650

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh,651
et al. 2017. Program synthesis. Foundations and652
Trends® in Programming Languages, 4(1-2):1–119.653

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai654
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,655
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-656
feng Liang. 2024. Deepseek-coder: When the large657

language model meets programming – the rise of 658
code intelligence. 659

Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, 660
Jinyi Liu, Zhaopeng Meng, Peng Liu, and Zhen 661
Wang. 2023. Exploration in deep reinforcement 662
learning: From single-agent to multiagent domain. 663
IEEE Transactions on Neural Networks and Learning 664
Systems. 665

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 666
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 667
Samir Puranik, Horace He, Dawn Song, and Jacob 668
Steinhardt. 2021. Measuring coding challenge com- 669
petence with APPS. In Proceedings of the Neural 670
Information Processing Systems Track on Datasets 671
and Benchmarks 1, NeurIPS Datasets and Bench- 672
marks 2021, December 2021, virtual. 673

Vijay Konda and John Tsitsiklis. 1999. Actor-critic al- 674
gorithms. Advances in neural information processing 675
systems, 12. 676

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyon- 677
dong Oh. 2022. Exploration in deep reinforcement 678
learning: A survey. Information Fusion, 85:1–22. 679

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio 680
Savarese, and Steven Chu Hong Hoi. 2022. Coderl: 681
Mastering code generation through pretrained models 682
and deep reinforcement learning. Advances in Neural 683
Information Processing Systems, 35:21314–21328. 684

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 685
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 686
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 687
2023a. Starcoder: may the source be with you! 688
arXiv preprint arXiv:2305.06161. 689

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie 690
Del Giorno, Suriya Gunasekar, and Yin Tat Lee. 691
2023b. Textbooks are all you need ii: phi-1.5 techni- 692
cal report. arXiv preprint arXiv:2309.05463. 693

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 694
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 695
James Keeling, Felix Gimeno, Agustin Dal Lago, 696
et al. 2022. Competition-level code generation with 697
alphacode. Science, 378(6624):1092–1097. 698

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 699
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 700
John Schulman, Ilya Sutskever, and Karl Cobbe. 701
2023. Let’s verify step by step. arXiv preprint 702
arXiv:2305.20050. 703

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, 704
Nicolas Heess, Tom Erez, Yuval Tassa, David Sil- 705
ver, and Daan Wierstra. 2015. Continuous control 706
with deep reinforcement learning. arXiv preprint 707
arXiv:1509.02971. 708

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, 709
Wei Yang, and Deheng Ye. 2023. Rltf: Reinforce- 710
ment learning from unit test feedback. arXiv preprint 711
arXiv:2307.04349. 712

9

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-713
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei714
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-715
ardmath: Empowering mathematical reasoning for716
large language models via reinforced evol-instruct.717
arXiv preprint arXiv:2308.09583.718

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo719
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-720
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:721
Empowering code large language models with evol-722
instruct. arXiv preprint arXiv:2306.08568.723

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan,724
Pengfei Liu, Yang You, and Hongxia Yang. 2023.725
Let’s reward step by step: Step-level reward model726
as the navigators for reasoning. arXiv preprint727
arXiv:2310.10080.728

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,729
Andrei A Rusu, Joel Veness, Marc G Bellemare,730
Alex Graves, Martin Riedmiller, Andreas K Fidje-731
land, Georg Ostrovski, et al. 2015. Human-level732
control through deep reinforcement learning. nature,733
518(7540):529–533.734

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,735
Carroll Wainwright, Pamela Mishkin, Chong Zhang,736
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.737
2022. Training language models to follow instruc-738
tions with human feedback. Advances in Neural739
Information Processing Systems, 35:27730–27744.740

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten741
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,742
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.743
Code llama: Open foundation models for code. arXiv744
preprint arXiv:2308.12950.745

Tim Salimans and Richard Chen. 2018. Learning mon-746
tezuma’s revenge from a single demonstration. arXiv747
preprint arXiv:1812.03381.748

John Schulman, Philipp Moritz, Sergey Levine, Michael749
Jordan, and Pieter Abbeel. 2015. High-dimensional750
continuous control using generalized advantage esti-751
mation. arXiv preprint arXiv:1506.02438.752

John Schulman, Filip Wolski, Prafulla Dhariwal,753
Alec Radford, and Oleg Klimov. 2017. Proxi-754
mal policy optimization algorithms. arXiv preprint755
arXiv:1707.06347.756

Wei Shen, Rui Zheng, Wenyu Zhan, Jun Zhao, Shi-757
han Dou, Tao Gui, Qi Zhang, and Xuan-Jing Huang.758
2023. Loose lips sink ships: Mitigating length bias759
in reinforcement learning from human feedback. In760
Findings of the Association for Computational Lin-761
guistics: EMNLP 2023, pages 2859–2873.762

Martin Shepperd. 1988. A critique of cyclomatic com-763
plexity as a software metric. Software Engineering764
Journal, 3(2):30–36.765

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and 766
Chandan K Reddy. 2023. Execution-based code gen- 767
eration using deep reinforcement learning. arXiv 768
preprint arXiv:2301.13816. 769

Richard S Sutton, Andrew G Barto, et al. 1998. Intro- 770
duction to reinforcement learning, volume 135. MIT 771
press Cambridge. 772

Richard S Sutton, David McAllester, Satinder Singh, 773
and Yishay Mansour. 1999. Policy gradient methods 774
for reinforcement learning with function approxima- 775
tion. Advances in neural information processing 776
systems, 12. 777

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, 778
and Neel Sundaresan. 2020. Intellicode compose: 779
Code generation using transformer. In Proceedings 780
of the 28th ACM Joint Meeting on European Software 781
Engineering Conference and Symposium on the Foun- 782
dations of Software Engineering, pages 1433–1443. 783

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran- 784
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell, 785
Geoffrey Irving, and Irina Higgins. 2022. Solv- 786
ing math word problems with process-and outcome- 787
based feedback. arXiv preprint arXiv:2211.14275. 788

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yi- 789
tong Li, Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang, 790
and Qun Liu. 2022a. Compilable neural code gen- 791
eration with compiler feedback. arXiv preprint 792
arXiv:2203.05132. 793

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al- 794
isa Liu, Noah A Smith, Daniel Khashabi, and Han- 795
naneh Hajishirzi. 2022b. Self-instruct: Aligning lan- 796
guage model with self generated instructions. arXiv 797
preprint arXiv:2212.10560. 798

Ronald J Williams. 1992. Simple statistical gradient- 799
following algorithms for connectionist reinforcement 800
learning. Machine learning, 8:229–256. 801

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 802
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 803
Jiang. 2023. Wizardlm: Empowering large lan- 804
guage models to follow complex instructions. arXiv 805
preprint arXiv:2304.12244. 806

Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, 807
Jianye Hao, Zhaopeng Meng, Peng Liu, and Zhen 808
Wang. 2021. Exploration in deep reinforcement 809
learning: a comprehensive survey. arXiv preprint 810
arXiv:2109.06668. 811

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, 812
Wei Shen, Binghai Wang, Yan Liu, Senjie Jin, Yuhao 813
Zhou, Limao Xiong, et al. 2023. Delve into ppo: 814
Implementation matters for stable rlhf. In NeurIPS 815
2023 Workshop on Instruction Tuning and Instruction 816
Following. 817

A Instance of the APPS+ Dataset 818

We present an example from our APPS+ dataset, 819

as shown in Figure 5. 820

10

-----Task description-----
def numDistinct(self, s: str, t: str) -> int:\n

"""Given a string S and a string T, count the number of distinct subsequences of S which equals T. A subsequence of a string is
a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the
relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not). """

-----Example1-----
Input: S = "rabbbit", T = "rabbit"
Output: 3
Explanation:
As shown below, there are 3 ways you can generate "rabbit" from S.

-----Example2-----
Input: S = "babgbag", T = "bag"
Output: 5

"inputs": [
[
"\"rabbbit\"",
"\"rabbit\""

]
],
"outputs": [
3

],
"fn_name": "numDistinct",
"starter_code": "\nclass Solution:\n def numDistinct(self, s: str,

t: str) -> int:\n"

def numDistinct(self, s, t):
setOft=set(t)
news=""
for ch in s:

if ch in setOft:
news+=ch

dp=[[1 for i in range(len(news)+1)] for j in range(len(t)+1)]
for j in range(1,len(t)+1):

dp[j][0]=0

for i in range(len(t)):
for j in range(len(news)):

if t[i]==news[j]:
dp[i+1][j+1]=dp[i][j]+dp[i+1][j]

else:
dp[i+1][j+1]=dp[i+1][j]

return dp[len(t)][len(news)]

Unit Test & Meta DataCanonical Solution

Programming Problem Description

Figure 5: An instance from our APPS+ dataset includes a human requirement (top), corresponding canonical code
(bottom left), metadata, and example cases for unit testing to evaluate the generated code (bottom right). We clean
the APPS dataset (Hendrycks et al., 2021) to provide a more rigorous evaluation and a foundation for training by
RL in code generation.

B Experiments Setup in Detail821

In this section, we elaborate in detail on the base-822

lines we compare and the implementation details823

of our method.824

B.1 Benchmarks825

APPS+. We construct the new benchmark826

APPS+ by refining the popular benchmark APPS827

(Hendrycks et al., 2021). The APPS dataset con-828

sists of problems collected from different open-829

access coding websites such as Codeforces, Kattis,830

and more. Codeforces, Kattis, and more APPS+831

was categorized into three difficulty levels: Intro-832

ductory (2,850), Interview (4,020), and Competi-833

tion (586). The mean length of each problem is834

255.3 words, and that of the code is 21.9 lines. On835

average, each instance is accompanied by three836

unit tests and includes a ‘conditional statement’ at-837

tribute representing the start and end position of the838

statement in the canonical solution. We randomly839

selected about 25% instances (700 Introductory, 840

1,000 Interview, and 140 Competition) for the val- 841

idation dataset and another 25% instances for the 842

test dataset. 843

MBPP. MBPP (Austin et al., 2021) is a smaller 844

but common Python code generation benchmark. It 845

contains 974 instances created by crowd-sourcing 846

to an internal pool of crowd workers with basic 847

Python knowledge. The difficulty level of the prob- 848

lems in this dataset is introductory. Most problems 849

are often conveyed in a single sentence of natural 850

language, and each problem consists of a task de- 851

scription, code solution, and three automated test 852

cases. We evaluate LLMs in a zero-shot learning 853

setting which is the same as previous studies (Le 854

et al., 2022; Shojaee et al., 2023). In this setting, we 855

fine-tune models only based on the APPS+ dataset 856

and evaluate them on MBPP. 857

HumanEval. HumanEval (Chen et al., 2021) is 858

another extensively used benchmark for evaluating 859

the ability of code generation. It comprises 164 860

11

hand-written Python problems that test language861

comprehension, algorithmic thinking, and basic862

mathematics. The complexity of these problems863

is akin to that of simple software interview ques-864

tions. We also evaluate models on the HumanEval865

benchmark in a zero-shot learning setting.866

B.2 Baselines867

StarCoder. StarCoder (Li et al., 2023a) is a 15.5B868

parameter model trained on 80+ programming lan-869

guages sourced from GitHub, encompassing one870

trillion tokens. It undergoes fine-tuning specifically871

for 35 billion Python tokens, enabling its profi-872

ciency across a diverse set of coding tasks. With an873

extended context length of 8K, StarCoder excels874

particularly in infilling capabilities.875

CodeLlama. CodeLlama (Roziere et al., 2023)876

is a collection of pre-trained and fine-tuned genera-877

tive text models ranging in scale from 7B to 34B878

parameters. CodeLlama comes in three variants:879

CodeLlama: base models designed for general880

code synthesis and understanding; CodeLlama-881

Python: designed specifically to handle the Python882

programming language; CodeLlama-Instruct: for883

instruction following and safer deployment.884

WizardCoder. WizardCoder (Luo et al., 2023b)885

is fine-tuned by using a complicated dataset which886

is constructed by adapting the Evol-Instruct (Xu887

et al., 2023) on code-related tasks, which is a fur-888

ther improvement of self-instruct method (Wang889

et al., 2022b). It has proven to be highly effective890

in code generation by fine-tuning more complex891

instruction data.892

DeepSeek-Coder. DeepSeek-Coder (Guo et al.,893

2024) demonstrates state-of-the-art performance894

among open-source code models across various895

programming languages. It encompasses a col-896

lection of code language models from 1B to 33B897

trained from scratch. The training corpus for these898

models comprises an impressive 2 trillion tokens899

which is the combination of code and natural lan-900

guages. Each model is trained to utilize a window901

size of 16K, and a fill-in-the-blank task is incorpo-902

rated into the training process, which enhances the903

models’ capacity to facilitate code completion and904

infilling tasks.905

PPOCoder. PPOCoder (Shojaee et al., 2023)906

initially employs the Proximal Policy Optimiza-907

tion algorithm (Schulman et al., 2017) for code908

generations. In addition, it integrates discrete com-909

piler feedback with syntax and semantics matching910

scores between generated code and executable ob-911

jectives which reduces the sparsity of the reward 912

function, thereby providing better guidance for gen- 913

erating code that aligns more closely with the cor- 914

rect objectives. 915

RLTF. RLTF (Liu et al., 2023) features real-time 916

data generation during the training process and 917

multi-granularity unit test feedback. Except for the 918

discrete compiler feedback, it penalizes specific 919

sections in the code where errors occur through the 920

error locations from the feedback of unit tests. 921

C The algorithm of CCCS and FGO 922

The full algorithm of StepCoder is detailed in Al- 923

gorithm 1. 924

D The prompts used for code generation 925

For DeepSeek-Coder-Instruct (Guo et al., 2024), 926

we use the same prompt as the previous paper. 927

Moreover, DeepSeek-Coder-Instruct serves as the 928

backbone model for PPOCoder (Shojaee et al., 929

2023), RLTF (Liu et al., 2023), and our proposed 930

StepCoder. Consequently, we align the prompts 931

for these RL-based approaches with the prompt of 932

DeepSeek-Coder-Instruct to maintain consistency. 933

The prompt used for other models such as CodeL- 934

lama, WizardCoder and StarCoder is the same as 935

in previous studies (Contributors, 2023; Luo et al., 936

2023b; Li et al., 2023a; Roziere et al., 2023). 937

The prompt used for DeepSeek-Coder-Instruct 938

and LLMs based on it is as follows: 939

You are an AI programming assistant, utilizing the 940

Deepseek Coder model, developed by Deepseek 941

Company, and you only answer questions related 942

to computer science. 943

For politically sensitive questions, security and pri- 944

vacy issues, and other non-computer science ques- 945

tions, you will refuse to answer. 946

Instruction: 947

write an algorithm in python: 948

{Task description} 949

Response: 950

12

Algorithm 1 StepCoder: Improve Code Generation with Reinforcement Learning from Compiler Feed-
back
Require: the train dataset D = {(xi, yi, ui, ei), 1 ≤ i ≤ n}, the threshold value ρt for curriculum

training.
Require: the policy model πθ

1: Initialize the stride of curriculum s = ⌈ Ei

⌈
√
Ei⌉
⌉ for each sample

2: Initialize the current curriculum c = ⌈
√
Ei⌉ − 1 for each training sample

3: Initialize the pass rate ρ = 0 for each training sample
4: while TRUE do
5: Initialize mini-batch Ds = {}
6: Get latest policy model πθ
7: Sample a mini-batch of size M from D
8: for i in 0, · · · , M − 1 do ▷ Begin to sample the trajectories
9: Calculate the start position pos = si ∗ ci ▷ CCCS

10: Reorganize the given context x
′
i = xi + yi [: pos]

11: Sample trajectory ŷi ← πθ(.|x
′
i)

12: Compute reward ri using Equation 3
13: Calculate unexecuted snippets’ mask matrix mij = [1 if ŷji is executed else 0] ▷ FGO
14: Add {x′

i, ŷi, ui, ri, si, ci,mi} to mini-batch Ds

15: end for
16: θ ← A(θ,Ds) ▷ Update the policy model by PPO algorithm
17: for i in 0, · · · , M − 1 do
18: if ri = 1 then ▷ Update pass rate using moving average
19: ρi = α+ (1− α) ∗ ρi
20: else
21: ρi = (1− α) ∗ ρi
22: end if
23: if ρi > ρt then ▷ Meet the update conditions, proceed to the next stage
24: ρi = 0
25: ci = min(ci − 1, 0)
26: end if
27: end for
28: end while

13

	Introduction
	Motivation
	Method
	Priliminaries
	StepCoder

	Experiments
	Dataset Preprocessing
	Experiment Details
	Experimental Results on APPS+
	Ablation Studies
	Results on MBPP and HumanEval
	Analysis by Unit Test Results

	Related Work
	Conclusion
	Limitations
	Instance of the APPS+ Dataset
	Experiments Setup in Detail
	Benchmarks
	Baselines

	The algorithm of CCCS and FGO
	The prompts used for code generation

