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Abstract

Growing amount and quality of Al-generated
texts makes detecting such content more diffi-
cult. In most real-world scenarios, the domain
(style and topic) of generated data and the gen-
erator model are not known in advance. In this
work, we focus on the robustness of classifier-
based detectors of Al-generated text, namely
their ability to transfer to unseen generators or
semantic domains. We investigate the geom-
etry of the embedding space of Transformer-
based text encoders and show that clearing out
harmful linear subspaces helps to train a ro-
bust classifier, ignoring domain-specific spuri-
ous features. We investigate several subspace
decomposition and feature selection strategies
and achieve significant improvements over state
of the art methods in cross-domain and cross-
generator transfer. Our best approaches for
head-wise and coordinate-based subspace re-
moval increase the mean out-of-distribution
(OOD) classification score by 9% and 14% for
RoBERTa and BERT embeddings respectively.

1 Introduction

The proliferation of generative Al leads to an ex-
plosion in Al-generated content. Large language
models (LLMs) can produce text that is very simi-
lar to human-written, and image generation models
provide increasingly realistic results with more de-
tailed control over generated images. However,
Al-generated content can be used for malicious
purposes, which leads to the artificial content de-
tection (ATD) problem: has a given text or image
been created by an Al model or a human? Exist-
ing approaches for artificial content detection can
be divided into score-based and classifier-based.
The former aim to identify and measure features
that distinguish artificial content from real; e.g.,
generated text may exhibit statistical artifacts due
to the specific generation process used by a lan-
guage model (Gehrmann et al., 2019), the differ-
ence may lie in perplexities measured by another

language model (Solaiman et al., 2019), curvature
of the probability function (Mitchell et al., 2023),
or intrinsic dimensionality of contextualized rep-
resentations (Tulchinskii et al., 2023). However,
score-based methods often rely on prior knowledge
about a specific generator and/or semantic domain,
and known traces may be easy to remove, e.g., by
paraphrasing the text (Krishna et al., 2023). One
notable exception is the intrinsic dimension feature
for text content, shown to be robust to domain trans-
fer and paraphrasing (Tulchinskii et al., 2023), but
its overall detection quality is relatively modest.

Supervised classification methods show almost
perfect in-domain detection quality, but fail to gen-
eralize to unseen text topics and writing styles
(Wang et al., 2024b; Tulchinskii et al., 2023). The
choice of training data, both artificial and gener-
ated, is crucial for successful out-of-domain (OOD)
transfer. In general, while usually there exist fea-
tures that can distinguish between natural and arti-
ficial subsets of the training set, the classifier may
lock into dataset-specific spurious differences and
hence generalize poorly. It is hard to say in ad-
vance if a classifier trained on a given dataset will
generalize well to new unseen generators and data
sources. Previous approaches to OOD detection for
ATD include UID-based detectors (Venkatraman
et al., 2023) and domain adversarial training (Bhat-
tacharjee et al., 2024), but most of these methods
are very data-intensive (Wang et al., 2024a).

In this work, we aim to improve supervised clas-
sification by ignoring spurious features to enhance
cross-domain robustness, training on small number
of domains or generators. Specifically, we focus on
methods related to extracting residual subspaces
and deleting information from embeddings.

Typically, high-dimensional data mainly occupy
a few dimensions, and projecting onto a comple-
mentary subspace results in lower variance. In
many applications, retaining only important direc-
tions while treating projections onto less loaded



subspaces as residual noise can benefit downstream
tasks. However, for tasks such as OOD detection
the principal components of a dataset may be the
least useful. Kamoi and Kobayashi (2020) found
that nullifying the first (least important) principal
components in the embedding space fine-tuned on
in-domain (ID) data enhances OOD detection qual-
ity; this is known as the partial Mahalanobis dis-
tance. Podolskiy et al. (2021) conducted similar
analysis for Transformer-based text classifiers and
found that ID data has orthogonal classes and lies
on a unit sphere in a low-dimensional space. The
main difference between ID and OOD data lies
in the residual subspace, hence the partial Maha-
lanobis distance performs well in OOD detection.

It is important to note that not all neural net-
works learn useful residual subspaces for a given
dataset; e.g., Podolskiy et al. (2021) and Ren et al.
(2021) find that on text, CNN classifiers learn rep-
resentations where components with low singular
values contain too much information about ID data,
making it difficult to distinguish OOD examples.

In this work, we apply similar techniques to
artificial text detection (ATD), a problem similar
to OOD detection. Domain shift, with variations
in text styles, topics, and new generation models,
is a major challenge for ATD. Supervised classi-
fiers, even performing well on validation datasets,
struggle in realistic settings, where the domain and
model of the Al-written text are unknown. To ad-
dress this, we first show that training a classifier on
the residual subspace significantly enhances ATD
robustness under domain and model shift. Next, we
show that controllable subspace removal can im-
prove robustness, while also providing us with in-
terpretable information about Al-written texts and
domains. In particular, we use recent advances in
concept erasure (Belrose et al., 2023), experiment-
ing with erasing semantic and syntactic concepts
based on probing tasks by Conneau et al. (2018);
we show that some concepts are harmful for cross-
domain and cross-model transfer in ATD.

Our primary contributions are: (i) a first appli-
cation of the residual subspace approach for ro-
bust ATD; we show that restricting the detector
to a residual subspace increases cross-topic and
cross-model robustness with especially significant
improvements on the most difficult samples; (ii)
analysis of different residual decomposition tech-
niques, such as nullifying head-wise subspaces in
intermediate data representations and concept era-
sure; (iii) analysis of applicability of our methods

with different encoder- or decoder-based backbone
models. Besides, we create and release an exten-
sion for one of the datasets with recent generating
model GPT-4-o on three domains. Below, Section 2
surveys related work, Section 3 describes the pro-
posed methods, Section 4 introduces the datasets,
Section 5 presents a comprehensive experimental
evaluation, and Section 6 concludes the paper.

2 Related Work

Linear subspaces in Transformer-based models
are known to represent concepts. Hernandez and
Andreas (2021) studied low-dimensional subspaces
that encode linguistic features in BERT; linear
structure is known for such concepts as truthfulness
(Marks and Tegmark, 2023) and sentiment (Tigges
et al., 2023). This direction has been extended
to the linear representation hypothesis that posits
that language models operate with one-dimensional
representations of concepts in the activation space
(Bricken et al., 2023; Park et al., 2023). However,
Engels et al. (2024) showed that some concepts are
multi-dimensional.

Components of Transformer-based embed-
dings can provide useful features via the geometry
of their inner representations or parameter spaces.
For instance, outlier dimensions in the embedding
spaces of models such as BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019), characterized
by unusually high variance and/or mean values,
have been studied in detail, including their emer-
gence during training and effects of disabling them
post-training (Kovaleva et al., 2021), their relation-
ship with positional embeddings and impact on
word-in-context tasks (Luo et al., 2021), influence
on the quality of representations (Timkey and van
Schijndel, 2021), and relations to the shapes of at-
tention maps and token frequencies (Puccetti et al.,
2022). Activations of Transformer-based LMs have
been investigated for language structure informa-
tion (Jawahar et al., 2019), semantic and syntactic
features (Conneau et al., 2018); the latter work also
introduces a comprehensive selection of probing
tasks. However, only outlier dimensions have been
studied in full detail; we aim to address this gap by
studying how removing specific dimensions from
RoBERTa embeddings can improve detection of
artificially generated text.

Semantics of attention heads in Transformers
have been studied for a long time: Kovaleva et al.
(2019) provided empirical research on BERT atten-



tion heads, demonstrating overparameterization by
pruning some of them, Michel et al. (2019) showed
that most heads can be removed at test time without
significant performance loss. Clark et al. (2019)
studied the specialization of attention heads; Pande
et al. (2021), their functional roles. In BERT-like
models, important information is distributed across
layers; e.g., Jawahar et al. (2019) showed that lower
layers capture phrase-level information, which is
partly lost in the upper layers; the model captures a
hierarchy of linguistic information, with deeper lay-
ers required to capture long-distance dependencies.
Bian et al. (2021) showed that attention maps are
correlated across layers and organized into clusters.
Therefore, here we focus on groups of attention
heads within a layer rather than individual heads.
Artificial text detection (ATD) is a new field
of study (up until recently, artificial content was
mostly easy to distinguish), but there already exist
many promising approaches. Score-based methods
include DetectGPT, which measures the curvature
of the probability function (Mitchell et al., 2023),
and GPTZero (Tian and Cui, 2023), which checks
the perplexity and burstiness of a text; these meth-
ods, however, are limited to a single domain or
generator. Throughout recent work, it remains a
reasonable baseline for general and cross-domain
ATD to take embeddings from BERT-like mod-
els as a feature space and train logistic regression
(LR) over them. Following Tulchinskii et al. (2023)
and Jawahar et al. (2020), we take the ROBERTa
model (Liu et al., 2019) to extract text embeddings,
use mean-pooling over embeddings, and train LR
models for ATD. The recent SemEval-2024 compe-
tition (Wang et al., 2024a) proposed challenge in a
multi-generator, multi-domain, and multi-language
setting based on the new ATD dataset that was in-
troduced in Wang et al. (2024b). Task 8 included
problems such as binary classification, source iden-
tification, and fake/real text boundary detection. So-
lutions used approaches such as LLM fine-tuning
(RoBERTa, XILM-R), contrastive learning, and en-
semble methods. However, while all these ap-
proaches are data-intensive, absolute classification
quality is still poor. In this work, we use classifiers
that perform well on in-domain data and aim to
improve their performance on unseen domains.

3 Methods

Removing unnecessary features is often an effec-
tive method to improve the robustness of a ma-

chine learning model. The embedding space has
linear substructures responsible for linguistic fea-
tures such as token frequencies, word-in-context
information etc. (Luo et al., 2021; Puccetti et al.,
2022). We aim to detect and erase such substruc-
tures, which are harmful for ATD generalization.

3.1 Linear decompositions of embeddings

PCA and the standard basis. Let x be some
text input, z € R?, its embeddings obtained by
some model, z = M(x), C = {c1,...,cq}, a
basis of R%, and let «; be coefficients of z in C,
z = 25:1 a;c;. We want to split C into good
and bad parts, C = C4 U Cp, so that components
in C,4 contain most of the information general for
all domains, while Cp is responsible for spurious
domain-specific features. Then, we construct a
classifier on restricted embeddings z’ where the
“bad” part is nullified, z’ = Zz’ecg a;c;. Intuitively,
information about the style, topic, and other se-
mantic properties is harmful for ATD, and we want
to focus on residual features that are less impor-
tant for other NLP tasks. Podolskiy et al. (2021)
show that PCA can serve as such a decomposi-
tion for a Transformer-based model: removing top
components computed for an in-domain dataset
improves OOD detection. Indeed, for a dataset
of natural texts D, subspace (Cy) should “explain”
the data variability, while the variance of D pro-
jected on (C,) is expected to be low. PCA is a
theoretically optimal way to find such subspaces
(see Appendix A.1).

Despite PCA’s solid theoretical background, in
practice it does not always perform well; in ATD,
we usually deal with a small dataset that cannot
fully capture the real distribution, which is bad
for PCA. To access data properties beyond those
represented in our train set, we propose to utilize
the internal structure of the pretrained embedding
model. Indeed, Transformer-based models tend
to disentangle some data properties during train-
ing, and semantic interpretation has been discov-
ered for some neurons and embedding dimensions
(Luo et al., 2021; Timkey and van Schijndel, 2021;
Puccetti et al., 2022). We hypothesize that such
“built-in” disentanglement could lead to meaning-
ful subspaces spanned by a subset of the stan-
dard basis, i.e., vectors {e; = [1,0,...,0],e2 =
[0,1,...,0],...,e4=0,0,...,1]}. Projection to
a subspace (e;|i € S) for some subset of indices
S can be done by simply nullifying all embedding
dimensions except S. Our experiments support



this intuition: PCA-based decomposition does not
lead to any significant changes in detector’s quality
(see Appendix F), while coordinate-based subspace
removal significantly improves transfer scores.
Attention heads as linear substructures. Both
decompositions discover global linear structure,
i.e., universal directions in the embedding space
independent of input data. But it is much more
natural to rely on local linearity of the data and try
to discover substructures in a data manifold that
does not necessarily form global linear subspaces.
For text embeddings, the neural network represents
a function from R?*7 to a data manifold M. We
can decompose this function into a sum of input-
dependent components of the same functional form.
Cammarata et al. (2020) proposed linear circuits,
showing that the data flow in a Transformer can be
represented as the main residual stream with linear
addition of flows from other elements of the model
(attention heads and feed-forward blocks). We are
mostly interested in attention flows because it is
well known that attention heads in Transformers
have highly specialized functions (Kovaleva et al.,
2019; Pande et al., 2021), so we hypothesize that
head-wise decomposition should reflect the “built-
in” disentanglement of the pretrained model. We
can represent a Transformer-based embedding as

z =TI |a(x)xo + Xl: Bi(x)MLP' + ZI: Zh:%(X)Al’h . (D

where ALP are the outputs of attention heads, «, 3,
~ are scalar functions, and II is a centering projec-
tionII(x) =x — & Zle x' (see Appendix A.2).
Concept erasure. Finally, we consider an em-
bedding space decomposition based on extracted
linear directions or low-rank subspaces responsible
for some harmful semantic feature zg. If such a
direction is found, we can remove it by subtracting
the component corresponding to this direction from
the embedding. Namely, we erase the feature as

z =12 — Pp(z), (2)
where Pr is the projection to the subspace zr.

3.2 Subspace removing methods

Greedy search. Our basic approach chooses the
best features using a small subset of domains ex-
cluded from the whole dataset. Given a multi-
domain dataset D = Dy U --- U Dy, where D;
are domain subsets, we first choose two domains
Dgearch = {D1, D2} to perform feature selection.

On each step, we train a classifier, removing one
component, and compare their performance. First,
we train ATD classifiers on texts from D; only
and evaluate on Do, getting a feature ranking on
Dy — D, transfer. Then, we do the opposite,
getting a ranking for Dy — D;. The final set of
residual features is obtained as the intersection of
top-score lists in both rankings (see Appendix B.4).

Head pruning removes some components in de-
composition (1) by replacing the output of a given
head with zeros on inference. Importantly, this ap-
proach is approximate because, besides its direct
impact as a component in the decomposition, each
head also has an indirect influence on all computa-
tions on subsequent layers. But Gandelsman et al.
(2023) showed that this indirect impact is small
and can be ignored (see also Appendix A.2). To
choose the set of heads for pruning, we note that
different layers contain different kinds of informa-
tion (e.g., semantic information is mostly in bottom
and middle layers), and the linguistic complexity of
tasks solved by attention heads grows from bottom
to top (Kovaleva et al., 2019; Tenney et al., 2019).
Therefore, we simply prune every layer separately.

Concept erasure by probing tasks. To remove
a linear subspace responsible for some data proper-
ties, we apply a concept erasure technique called
LEACE (Belrose et al., 2023). Suppose we have
a k-class classification task defined by a dataset
Z with one-hot labels Y, and we want to erase all
the knowledge required for linear separation of the
classes. LEACE is a projection-based method of
the form (2), with theoretical guarantees that any
linear classifier on top of z cannot solve the classifi-
cation task better then a constant predictor. Erasing
a concept from an embedding z is defined as

=z-WIT(WEzy)(WEzy)™T Wz, (3)

N>

where W = (le/ZQ)Jr, Y77 18 Z’s covariance ma-
trix, X zy is the cross-covariance of Z and Y. Ge-
ometrically, LEACE is the least-squares-optimal
transform that maps centroids of different classes
of the dataset (Z,Y) to the same point, making
linear separation impossible.

In this work, we utilize probing tasks provided
by Conneau et al. (2018), designed to represent ele-
mentary linguistic concepts (see Section 4). These
experiments allow us to not only improve ATD
robustness, but also obtain insights about the influ-
ence of interpretable linguistic features.
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Figure 1: Mean accuracy in cross-domain (left) and
cross-model ATD by RoBERTa-base on SemEval

4 Data

ATD datasets. There are few high-quality datasets
with both human and artificial text. One such
dataset was presented by Wang et al. (2024b) and
used in the SemEval-2024 competition'; it cov-
ers five domains: Wikipedia, Reddit, WikiHow,
PeerRead, and arXiv. We have used five text gen-
eration models: ChatGPT (Schulman et al., 2022),
Davinci0032, Cohere? | Dolly-v2 (Conover et al.,
2023), and BLOOMz (Muennighoff et al., 2023).
Since the amount of human-written text in each
domain is larger than generated by each model, we
crop human data so that there are 3000 samples
of parallel data for each domain and model/human
combination. Similar to Wang et al. (2024b), we
create two tasks: (1) in the cross-domain task, we
concatenate data across generating models, get-
ting five binary ATD tasks in different domains;
(2) in the cross-model task, concatenation across
domains yields five binary ATD tasks for each gen-
erator model. Thus, results are presented as 5 x 5
heatmaps (e.g., Fig. 1) and its aggregations.

Our second dataset, used by Tulchinskii et al.
(2023), has three domains—Wikipedia, Red-
dit, StackExchange—with davinci003 generations.
Compared to SemEval, it has a larger distribution
shift in basic text features (e.g., length), which
makes it harder for cross-domain transfer. We ex-
tend it by adding similar text generated by GPT-40:
continuing text from Wikipedia articles, long-form
question answering on Reddit Q&A and StackEx-
change. Thus, we obtain a dataset, called below
GPT-3D, with six domain-model pairs. For GPT-
3D we report average OOD scores, i.e. the accuracy
of classifiers trained on one domain-model subset
and evaluated on the rest; average accuracy values
do not include training sets.

lhttps ://semeval.github.io/SemEval2024/
2https ://platform.openai.com/docs/models
3https://docs. cohere.com/docs/models
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Domains <& & DR >
Avg. transfer to: 57.2 547 647 704 85.1
Avg. transfer from:  72.5 61.8 763 663 552
Avg. sent. length 38.7 444 17.0 147 104
Avg. “1” count 0.24 0.79 025 0.08 0.01
Avg. “?” count 0.12 090 036 043 0.03
) S
& & & & o
& NS F P >
Generators S 3 O O Q
Avg. transfer to: 79.0 68.2 828 865 774

Avg. transfer from:  90.5 59.2 81.8 79.1 833

Avg. sent. length 17.7 109 153 226 212
Avg. “!1” count 0.18 050 0.04 023 0.29
Avg. “?” count 0.08 039 0.11 0.13 0.22

Table 1: Average RoBERTa detector accuracy by do-
mains and by generators on SemEval (in %), avg length
of generated sentences (in symbols) and avg counts of
“I” and “?” marks per text sample; dark red — smallest
value in a row, dark green — largest value, red — domains
and generators with lowest transfer accuracy.

Probing datasets. For probing and concept era-
sure experiments, we use the dataset used by Con-
neau et al. (2018) with several supervised classi-
fication tasks: SentLen, predicting the length of
the sentence, TreeDepth, finding the depth of a
syntactic tree, TopConst, classifying the high-level
syntactic structure (top two nodes in the syntax
tree), classifying Tense, SubjNum (subject number),
and ObjNum (object number) in the main clause,
detecting errors with BShift (bigram shift, word or-
der inversion in a bigram), SOMO (Semantic Odd
Man Out, where a word is replaced with a random
grammatically fitting word), and CoordInv (Coordi-
nation Inversion, whether the coordination of two
clauses in the sentence is inverted), and predicting
exact words from a 1000-word vocabulary in WC
(Word Content).

S Results and Analysis

Experimental setup is detailed in the Appendix B.
PCA-based results are reported in Appendix F.
Baseline RoBERTa. As a baseline we use
logistic regression (LR) trained on mean-pooled
RoBERTa embeddings. Results are shown in Fig. 1
for SemEval and Fig. 3a for GPT-3D; the cross-
domain and cross-model settings are challenging in
both tasks. Fig. 1 shows that in-domain classifica-
tion is almost perfect for baseline LR on RoBERTa
embeddings, but the cross-domain part is very in-
consistent: e.g., transfer from Reddit to PeerRead
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works well across all models (91% avg accuracy)
but transfer from arXiv to WikiHow is uniformly
bad (54%). In SemEval, Wikihow is the hardest
domain to transfer to, while Arxiv is the hardest
domain to transfer from (Table 1); both domains
contain syntactic anomalies (very few or many “!”
and “?” marks, unusual average sentence lengths
etc.). Bloomz is the hardest model to transfer both
to and from (Table 1), and it also generates un-
usual texts (very short sentences replete with “!”
and “?”). But generally, it is not easy to predict
which transfer direction is easier in ATD or explain
the reasons for it; e.g., Wikipedia, often used for
NLP model evaluation (Merity et al., 2016), is far
from the best basis for transfer, especially in the
cross-model setting (Fig. 3a). We also compare
(Fig. 3f) our proposed methods with the approach
based on the intrinsic dimensionality (PHD) of real
and artificial texts tokens embedding point clouds,
according to (Tulchinskii et al., 2023).

Average transfer results. Table 3 and Fig. 3
show that our methods provide a stable improve-
ment of OOD scores for classifiers trained on sepa-
rate domain-model subsets, for both SemEval and
GPT-3D datasets. TopConst concept erasure yields
the highest increase among methods that do not
have access to OOD data (+3%), and improve-
ment increases for the most difficult domain pairs
(e.g., +6% for Wikipedia—Reddir). Interestingly,
the PHD method by Tulchinskii et al. (2023), while
providing very stable cross-domain results for GPT-
3-based generations, completely fails to deal with
GPT-4o0 (Fig. 3 (f)), while our methods increase
cross-model scores up to 10%. Still, results for
the most difficult pairs are unsatisfactory, falling
below the random baseline; the only method that
can achieve at least random level for any OOD sub-
set is head pruning, where the heads are selected
on validation set combined of all models and do-
mains examples (4+9.1% “cross-all” compared to
full RoBERTa, Fig. 3 (e)).

Head pruning for transfer tasks. We adapt
head pruning (Voita et al., 2019) to remove a whole
layer of attention heads. Since layers of a model
have rough linguistic meanings (Jawahar et al.,
2019), thus we analyse the impact of structural-
level information on ATD. Fig. 2 and Table 2 show
detailed results for each layer pruned on SemEval.
Removing the first layer improves average cross-
domain accuracy by 3%, but the improvement is
unstable (from —7.1% to +18.9% in different do-
mains). Pruning layers 3 and 4 is more stable and

Cross-domain Cross-model
Avg Max 1 Max | Avg Max T Max |

RoBERTa 73.0 - - 828 - -

1 76.0 189 -7.1 826 44 -44
2 739 63 -37 833 28 -24
3 750 86 -19 831 26 -1.8
4 746 84 -16 837 33 -16
5 73.7 36 -1.8 829 17 -14
6 726 28 -37 827 16 -21
7 723 13 52 825 12 -3.0
8 733 35 -35 825 04 -1.8
9 73.1 45 -1.5 827 06 -1.2
10 727 32 32 824 04 22
11 732 38 -65 823 04 -14
12 737 72 37 828 1.7 -11

Table 2: Balanced accuracy for OOD classification for
different pruned layers on SemEval

Transfer to domain/model  Transfer from domain/model
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Figure 2: Mean accuracy on SemEval with pruned
RoBERTa layers. Dashed lines show the baseline.

beneficial in both settings. Cross-domain ATD is
more challenging; Fig. 2 (top) shows that some
domains (Wikipedia and WikiHow) exhibit similar
patterns but others are unrelated. The best scores
are in transfer from Reddit, achieving 81% mean
balanced accuracy with 0-th layer pruned (+5% to
full RoBERTa). The cross-model setting is easier
and not greatly affected by pruning layers, with
the exception of BLOOMz. Here the best source
model is GPT-3.5-davinci, with 92% cross-model
accuracy after removing layer 4.

Concept erasure. Generally, results on SemEval
show that the best concepts to erase are TopConst
and TreeDepth, improving up to 2.1% on cross-
domain transfer and not hurting the cross-model
transfer. Erasing WC also performs well but is
less stable. Figs. 4 give more detailed informa-
tion. Although changes compared to Table 6 are
marginal on average, they range from —8.5% to
+13% across domains and models. Grammati-
cal properties, (Tense, SubjNum, ObjNum) have



no significant impact, while erasing global syn-
tax information (TopConst, TreeDepth) improves
cross-domain transfer up to +13%, especially from
wikipedia and arxiv. This means that LLMs in gen-
eral are not good in mimicking complicated syntac-
tic structures, but have no problem with local gram-
matical categories. Erasing WC erasure leads to the
largest cross-domain improvement, which means
that word semantics produce domain-specific spuri-
ous features that harm generalization. There is one
outlier: wikihow—arxiv; we hypothesize that these
domains have common word-level features due to
many bullet points, numbered lists, and sequen-
tial structures in both. For cross-model transfer,
erasing all three tasks related to error detection in
sentence structure (BShift, CoordInv, SOMO) are
harmful for ATD performance and robustness; eras-
ing global syntax (TopConst, TreeDepth) improves
performance, while word content (WC) leads to
contradictory results.

We conclude that the ability to detect grammat-
ically correct sentences is crucial for robust Al-
generated text detection; the difference in global
syntax between natural and generated texts is signif-
icant, but varies between models and domains, so
erasing this information helps generalization, and
individual word semantics is a source of spurious
features. On the other hand, world-level grammati-
cal categories are captured well by all generators
and do not influence ATD performance.

Selecting embedding components and heads.
To evaluate component removal, we use Reddit
and Wikipedia domains from GPT-3D as Dgearcn
(because they have the lowest cross-domain ATD
accuracy). For head selection, we used a lay-off
evaluation set with samples of all generators and
domains from GPT-3D. We evaluate the methods
on GPT-3D and SemEval, using the same set of
removed heads or components. Fig. 3 and Table 3
show the results; transfer to and from Wikipedia
and Reddit subsets has improved. Head Selection
greatly improves the performance on validation
domains, achieving the best scores among all the
methods. Results of cross-task transfer (from GPT-
3D to SemEval, Appendix C) indicate that compo-
nent and head removal works better if components
are chosen on the same data distribution where the
classifier is trained; still, in general cross-dataset
transfer here is not better than the baseline.

Influence of the embedding model. RoOBERTa
is commonly used as the encoder for ATD (Krishna
etal., 2023; Solaiman et al., 2019; Tulchinskii et al.,

100.0 97.3 RERE 100.0 98.0 |87.51 100.0 gy |87.1

|
) 93.5 .1000 98.5 90.2 |87.0

DN 988 915 WEN 993 96.3

877 . 100.0
st Avg

Y 711 ekl 826 814 788

Wiki Reddit SE ~ Wiki Reddit SE
davinci GPT-40

(d) RoBERTa optimal head removal
EEEN 57.5 TN 693 | 552 453 689

86.3 993 96.0 955 983 AN 89.7
5 . 940993 [0l 76.0 | 69.3 .

86.8 97.3 [88.0° 998 983 940 89.1

a) Baseline RoBERTa
wi 988 %1 F

8 99.0 92.7 NARENIE

2
£ Reddic R 80.1
o

est Tes
L 66.4 88.6 LK 794

Wiki Reddit SE  Wiki Reddit SE

davinci GPT-40
(c) TopConst erasure (RoBERTa
Wiki | 98.5 E EIm 50.7 357 9.7

Reddw 100.0 96.8 188:24 99.3

SE 925 1865 993 | 87.7 RIS

inci

dav

99.8 963 A3 o 99.0 925 895 99.0 9.3 887

875 . 935 [873" 100.0 |89:0

Test Avg

927 1000 |87.0
Avg
Avg 864 900 771 v 769

Wiki Reddit SE Wiki Reddit SE
GPT-40

90.9 89.9 .

Wiki Reddit SE ~ Wiki Reddit SE
davinci GPT-40

davinci

f) Intrinsic dimension (PHD
BN 716 I8N 457 33

(e) Best set of coordinates (RoBERTa)
0

r”

0.
86.2 LI 72.0 924 45

0 77.0 706 3

86.5

958 (875 995 97.0

53.7
Syl 983 900 99.0

738 | 818

945

99.8 62.5 640 711 3

8
812

2.4
Test Avg

Avg R 891 889 BN 75.9

Wiki Reddit SE  Wiki Reddit SE
davinci GPT-40

I 617 50 30 438 49.6

Wiki Reddit SE  Wiki Reddit SE

davinci GPT-40
Figure 3: Mean accuracy in cross-domain/cross-model
ATD on GPT-3D by: (a) RoBERTa-base, (b) RoOBERTa-
base with all attention heads pruned from layer 1, (c)
RoBERTa with TopConst concept erasure, (d) optimal
head removal, (e) best set of coordinates, (f) classifier
based on PHD intrinsic dimensions.

SemEval GPT-3D
RoBERTa CD CM CD CM CA
Baseline 73.0 828 84.1 71.0 70.1
Layer 1 76.0 826 84.8 727 729
Layer 4 746 837 849 723 720

TopConst erased 75.1 831 86.7 714 73.1
TreeDepth erased 739 83.0 853 733 720

Selected heads 743 80.0 866 793 79.2
Selected coordinates 74.5 82.6 854 719 728

Table 3: Balanced accuracy for OOD classification:
cross-domain (CD), cross-model (CM), cross-all (CA).

2023), but we have tested other models as well. Ta-
ble 4 and Figure 14 in the Appendix F show the
results; in all cases, we trained LR on mean-pooled
embeddings of the last layer. There is an interest-
ing difference between encoder and decoder-based
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Figure 4: Score change after concept erasure in cross-
domain and cross-model settings on SemEval.

BERT, GPT-3D Phi2, GPT-3D
CD CM CA CD CM CA

Baseline 82.4 819 71.1 922 92.3 86.7
Layer 1 83.2 77.8 69.3 85.5 89.5 78.0
Layer 4 822 789 69.6 92.6 92.3 87.2
Selected heads 854 81.0 73.1

TopConst erased 83.1 81.4 70.9 91.8 91.5 86.1
TreeDepth erased 84.0 83.2 71.8 93.3 91.8 87.0
Selected coordinates 92.1 88.0 85.2 93.1 89.9 86.7

Table 4: Aggregated OOD scores for BERT and Phi2
embeddings. Best results are given in bold.

models: although the quality is very different and
correlates with model size, all tested encoders are
well suited for our content removal methods (their
performance increases, often significantly), while
the decoder’s behaviour is the opposite. Table 4
shows the results of different subspace removal
methods for BERT (Devlin et al., 2019) and Phi-2
(Abdin et al., 2023) embeddings; the latter model
is larger, so its baseline scores are much higher, but
embedding restriction does not lead to any improve-
ments while BERT’s quality increases, making the
results of these models comparable after compo-
nent removal despite the differences in model size.
We believe that the different behaviour of our meth-
ods reflects the fundamental difference in the em-
bedding space geometry of encoders and decoders
caused by limitations of the expressive power of
the attention due to the triangular attention mask
(e.g., the group of upper triangular matrices does
not contain any nontrivial rotations or orthogonal
transforms in general). On the other hand, high
performance of our methods for relatively small

encoder-based models shows that their text repre-
sentations contain disentangled elementary features
learned in pretraining and expressed by separate
embedding coordinates, attention heads (i.e., linear
terms in input-dependent embedding decomposi-
tions), or global directions in the embedding space.

We also report how removing components influ-
ences the geometry of the embedding space. PHD
intrinsic dimension has the opposite behaviour in
GPT-3 and GPT-4 models families: the general-
ization ability of a PHD-based ATD classifier de-
creases after removing embedding components (see
Appendix E).

6 Conclusion

In this work, we aim to improve the robustness of
artificial text detectors via linear feature removal
from text embeddings. We propose three ideas
that are extremely easy to implement and achieve
stable improvement in robustness averaged across
domains and models, up to 14% depending on the
text encoder. More importantly, we conclude with
the following novel insights from our work.

First, new generation models can completely
break detectors; e.g., on the GPT-4 family previ-
ous detectors’ perform below random, while on
the same model classifiers demonstrate very high
performance in the cross-domain setting. The rea-
son could be the presence of watermarks in GPT-4
generations; if so, watermarks unknown for ATD
developers are dangerous, leading to unpredictable
black-box behaviour.

Second, performance with respect to the training
subset is often counterintuitive; e.g., a classifier
trained on Wikipedia may perform worse than on
Reddit, although Wikipedia is considered a cleaner
domain, better suited for general-purpose models.

Third, Transformer encoders learn disentangled
intrinsic features in coordinates and attention heads,
and simple decompositions perform better for ATD
than more complex approaches. But this effect is
less pronounced for decoder models. We plan to
study differences in the geometry of encoder and
decoder-based text representations in future work.

Finally, global syntax and sentence complexity
is a key point for ATD, but the exact differentiating
features are domain- and model-specific, so this
information should be ignored. Local grammatical
categories do not provide an important signal for
ATD. Instead, the classifier should rely on features
for detecting various types of inconsistencies.



7 Limitations

In this work we demonstrate how state of the art
ATD methods can fail, for instance, to transfer
to new generative models. Our method increases
OOD performance on some generators, but there
is no guarantee that this property will be preserved
for all future models. Novel pretraining tech-
niques, data collection and processing paradigms,
and model architectures can completely change the
picture. Since our method is based on supervised
classification, it is not clear which features it ac-
tually uses for classification. It can also lead to
unexpected results, especially in the presence of
the so-called watermarks, i.e., small changes in
data distribution inside each generated sample de-
liberately injected by generative model developers.
We believe that for truly reliable ATD detection, all
conclusions should be interpretable, so that a hu-
man analyst could inspect the decision. By the pro-
posed methods of concept erasure, we have made a
step towards such kind of ATD approaches.

We have tested our approaches using relatively
small subsets of uni-model or uni-domain data
and demonstrated promising quality improvements.
Nevertheless, it is still not identical to real-world
scenarios, where at least several domains and gener-
ators are available in training time, and even more
have to be considered during the model’s applica-
tion. One of our objectives in this work has been
to propose a novel direction that can significantly
improve ATD methods in the future and make them
more reliable, but currently it is not yet a fully prac-
tical production-ready solution.

Finally, we do not address the real-word case of
post-processed and paraphrased generations, and
also texts partially written by humans. For example,
if some sentences of this section have been gener-
ated by GPT-40 but then partially corrected by the
authors, most probably the methods considered in
this work would not be able to detect it. We leave
this direction for further study.
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A Residual subspaces for ATD

A.1 Formal definitions and theory

In this subsection, we introduce formal definitions
and recap some statements from linear algebra that
are useful for a better understanding of the geome-
try and properties of residual subspaces. First, we
define the notion of explained variance and rela-
tive explained variance to be able to quantify the
properties of residual subspaces.

Definition 1 (Subspace explained variance (Shen
and Huang, 2008; Gandelsman et al., 2023)). Let
DcRED = {x1,...,xn} be a dataset, and
S c RY is an arbitrary subspace, with Pr(x) :
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R? — S being the projection function onto S. We
call the variance of the projections Pr(D) the ex-
plained variance of subspace S with respect to D:

EVP(S) = Ep|[Pr(x — Efx])* =
_ % 3 [IPr(x) — Pr(p)|?,

xeD

where p = % Y xep X

If X is a matrix of centered data vectors (x — )
for x € D (row-wise), and V is the k x d matrix
defining an arbitrary basis of the subspace 5, .S =
(v1,...,v;), then the explained variance EVP(S)
can be written in matrix form:

EVP(S) = Tr(Pr(X)TPr(X)), 4)

where the projection operator Pr(X) can be com-
puted as

Pr(X)=XvT(wvvh)-lv. 6))
In the case of an orthonormal basis, VIV = I, for-

mulas (4) and (5) become a simple decomposition
into the sum of component-wise variations:

k
EVP(S) =) VP, (6)
=1

where VZ»D is the variance along the ¢th basis vector.
Relative explained variance reflects the relative

importance of a subspace by the ratio of the sub-

space explained and total variance of the data:

_EVP(S)

RVZ(5) Var(D)

For data distributed equally over all directions,
it is proportional to the subspace dimension. For
example, for D ~ N (p, o) for any subspace S

_ dim(S)
==

RVP(S)

Definition 2. A subspace S is called an o-residual
subspace with respect to D if and only if its relative
explained variance is not greater than o.:

RVP(S) < a. (7)

The simplest way to find residual subspaces for
a given « follows from (6). We can compute the
variances Var; with respect to each coordinate of
the embeddings, and then select the coordinates

12

(a) Coordinates

(c) Concept erasure

\
/ 7 \\,
‘\\/7/ J

Figure 5: Geometric intuition of our approaches.

{wi,,...,u;, } with the smallest variances while
their sum does not exceed the desired portion of the
total variance. But this method does not guarantee
that the required subspace will be found even if
it exists for a given dataset. Figure 5 shows the
geometric intuition of our approaches; in particular,
the residual subspace, even if it exists, may not be
spanned by any subset of the standard basis. The
following proposition provides a guaranteed way
to find the a-residual subspace if it exists.

Proposition 1. Let {uy,...,uy} be the princi-
pal components of a dataset D with correspond-
ing singular values M1, ..., \q (in descending or-
der). Then the explained variance of a subspace
spanned by d — k last principal components Ry, =

(uk+1, ey ud> is
d
EVP(Ry) = ) A 8)
i=k+1

Moreover, Ry has the minimal explained variance
among all (d — k)-dimensional subspaces.

Proof. The first statement follows from (4), taking
in account that the trace of a matrix is invariant
under the change of the basis. Therefore, we can
apply a singular transform to X and obtain
Tr(Pr;(X)TPry(X)) =
= Tr(Pr;(diag(Ag, . . .

The second statement follows from the Frobe-
nius theorem, which says that for any matrix X the
projection of its rows to the first k£ singular compo-
nents leads to the best rank-%k approximation with



respect to Frobenius norm:

<u17"'7uk> = argmin Z ”X_PTS( )H )

S,dim S=k xeX

where the sum goes over rows of X. This can
be rewritten in terms of the residual subspace

R = (ugy1,...,uy), which is unambiguously
defined as the orthogonal complement of S =
(ug, ..., ug):
(Wertsoooug) = argmin > [[Pra(x)|?
R,dim R=d—k %,
xeX
= argmin EVP(R),
R,dim R=d—k

which completes the proof. 0

As a corollary, PCA allows to find the a-residual
subspace for a given dataset D, if it exists. Namely,
we can select its singular values starting from the
least until their relative sum exceeds «.. Then, the
number of components in the sum is equal to the
maximal subspace dimension, and the subspace
spanned by the corresponding singular vectors pro-
vides the necessary subspace.

A.2 Head-wise decomposition

In our derivation of the form of head-wise flows,
we follow the ideas proposed by Gandelsman et al.
(2023). In the following, we consider Transformer
blocks with post-layer-normalization, such as in
BERT and RoBERTa models. The transformation
inside each layer can be written as

4= LN(z_1 + MHA(z;_1)), ©)

z; = LN(z; + MLP(z;)), where (10)
X—X

LN(X) = W, (11)

andx = % Ele x; is the mean of the components
of a vector x. The numerator of (11) can be rewrit-
ten as a linear transform

1

x—x=(I--1

pi )x = IIx,

(12)
where I is the identity matrix, 1 is the square ma-
trix consisting of ones, and d is the dimension of
x. Note that this transform is in fact an orthogonal
projection to the hyperplane defined by the equa-
tion 1 + - -+ + x4 = 0. As all projections, 1I is
idempotent:

12

II. (13)

13

Applying (12) and (13) to (9), we can write a
layer-wise linear decomposition for post-layer-
norm Transformers:

M (z) = a(z)11(zo) +Zﬁz II(MLP(2;))+
+Z% MHA(Zl 1) =
T (2o +Z[a’l II(MLP(;))+

+ZZ%

where «, 3, 7y are input-dependent scalars, I1 is the
projection transform (12), and A"" denotes atten-
tion head & on layer [.

Mzi-1)), (14)

B Technical details of the experiments

B.1 Preprocessing and models

For text preprocessing, we only replaced consec-
utive spaces, trailing spaces, and a newline char-
acters with one space, as was done by Tulchinskii
et al. (2023).

For embeddings extraction, we used stan-
dard pretrained models from the Hugging-
Face* library: roberta-base (125M param-
eters), microsoft/phi-2 (2.7B parameters),
bert-base-uncased (110M parameters). We use
each text sample as an input for chosen model and
obtain the resulting embedding from the last layer
of this model. We take the mean pooling of that
embedding to decrease the dimensionality and get
a vector of dimension 768; this is our text feature
vector.

For all further experiments with embeddings, we
use the logistic regression model from the scikit-
learn® package on the training subset with default
parameters: [bfgs solver, Lo regularization coeffi-
cient C' = 1, and maximum amount of iterations
max_iter = 100.

B.2 Computational resources
For all of our experiments we used two servers with
the following computational resources:

* 1 V100 16Gb GPU + 32 CPUs (Intel(R)
Xeon(R) Gold 6151), 126GB RAM

* 2 V100 16GB GPUs + 64 CPUs (Intel(R)
Xeon(R) Gold 6151), 252GB RAM

4https://huggingface.co/

Shttps://scikit-learn.org/stable/
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Figure 6: Accuracy (vertical axis) as a function of the
number of components removed from the RoOBERTa
embedding (horizontal axis).
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Figure 7: Accuracy (vertical axis) as a function of the
number of removed components (similar to Fig. 6) for
data with all symbols except English letters, numbers,
and “1”, “?”, > and “.” symbols filtered out.

B.3 Detailed experimental setup on GPT-3D

For experiments on the GPT-3D dataset, we con-
sider texts generated by either the davinci or GPT-4-
o generator on the ith topic from the list and the cor-
responding human-written texts on the same topic
as one dataset, labeling the generated and human-
written texts with “0” and “1” respectively. We
use each text sample as an input for the ROBERTa
model and take the mean-pooled embeddings to
obtain a vector of dimension 768; this is our text
feature vector.

We split the resulting dataset of these feature
vectors into training and test subsets. We train lo-
gistic regression on the training subset and test the
resulting classifier on the test subset of every other
generator we have. The resulting accuracy values
comprise the ¢th row of our resulting diagram. We
repeat this process for every considered topic.

B.4 Greedy search for embedding components

The resulting scores for greedy search of the
embeddings components to remove, in both di-
rections, SReddit—sWikipedia a0d Swikipedia—sReddit>
are shown in Figure 6. We also provide another
similar plot in Figure 7 in the setting where all sym-
bols except English letters, numbers, and “!”, “?”
“), and “.” symbols have been filtered out. This ex-
periment shows that the text preprocessing method
can significantly influence the process of choosing
the best components.

bl

14

B.5 Layer-wise head pruning on GPT-3D
dataset, exrtended with GPT-4
generations

The GPT-3D dataset contains natural and artifi-
cially generated texts (by two models: GPT-3.5-
davinci-003 and GPT-4-0) in three different do-
mains: Wikipedia articles, long-form question an-
swering from Reddit (general topics), and Stack-
Exchange (more technical texts). For each (do-
main, generating model) pair, the dataset contains
an equal number of generated and natural texts
from that domain; therefore, classes are balanced
in all settings. For each (domain, generating model)
pair, we split the data into training and evaluation
subsets in the 13:2 ratio. None of the evaluation
subsets intersect with any of the training subsets.

Although our main track of research on our GPT-
3D dataset was conducted using GPT-4-o data, we
also generated a small sample of data by the ear-
lier GPT-4 generator. This model is more expen-
sive so the amount of data fit to our budget was
not sufficient for a stable evaluation of all the pro-
posed methods; but below we report interesting
findings obtained by layer-wise head pruning. Ta-
ble 5 demonstrates, that in this data-sparse regime
the performance of OOD transfer of GPT-4 gener-
ations is low, but 1st layer pruning corrects it by
as much as 16%. This observation does not corre-
spond to the results obtained by GPT-4-o0 genera-
tions. Besides, the quality of cross-model transfer
significantly improved. We believe that this obser-
vation requires an additional study with a larger
GPT-4 dataset.

Below we described the detailed experimental
setup for this study.

The experiment was conducted as follows: first,
a classifier was trained on data for one (domain,
generating model) pair and then evaluated on two
other domains with the same generating model; we
call this the OOD (out-of-domain) setting. Then,
the classifier is evaluated on all three domains but
with a different generating model (Transfer). The
results are presented in Table 5, which reports aver-
age accuracy across all domains.

The first row of the table (Full) contains results
obtained using the unaltered RoOBERTa-base model.
Then we separately prune each layer of attention
heads (“turn off” all 12 attention heads of each
layer by zeroing their output); this can be done,
e.g., with the prune_heads method of the ROBER-
TaModel class from the HuggingFace library. Re-



davinci GPT-4 davinci to GPT-4 GPT-4 to davinci

OOD OOD transfer transfer

Full model 81.3 643 66.4 70.4
Pruned layer

#0 832 80.1 80.0 83.2
#1 834 7838 4.7 79.2
#2 82.1 788 72.7 77.4
#3 81.8 82.0 73.6 78.1
#4 834 79.6 71.6 76.4
#5 822 78.1 72.9 75.6
#6 84.0 763 72.3 74.4
#7 82.8 754 70.1 74.6
#3 82.8 72.1 68.5 73.4
#9 83.2 732 68.7 71.4
#10 83.1 71.0 68.1 72.8
#11 86.6 68.2 67.3 71.7

Table 5: Average accuracy of artificial text detection
over three domains (Wikipedia, Reddit, StackExchange)
and two generating models (GPT3.5-davinci and GPT4).
Detector is trained on one domain against one generator
and evaluated on other domains (OOD) and on all do-
mains against unseen generating model (transfer). Best
results are given in bold, runner-ups are underlind.

Cross-model
Avg Max 1 Max |

Cross-domain
Avg Max 1 Max |

Roberta  73.0 - - 82.8 - -

Bshift 73.0 64 -6.8 822 15 -2.6
Coordlnv  72.1 1.1 -3.7 821 09 -3.4
ObjNum 729 0.9 -1.5 830 0.7 -0.0
SOMO 729 6.8 -3.8 821 0.6 -4.1
Tense 727 04 -1.6 828 1.0 -0.4
SentLen  73.0 4.1 3.0 826 02 -1.2
SubjNum 72.8 04 -1.6 829 0.5 -0.4
TopConst 75.1 12.6 -1.8 831 22 -0.9
TreeDepth 73.9 12.1 -14 83.0 1.0 -0.3
wcC 74.1 110 -85 83.0 29 -2.9

Table 6: Balanced accuracy results for out-of-domain
classification for different erased concepts on SemEval

sults for these cases are reported in other rows of
Table 5.

Table 5 shows full results across the layers, indi-
cating that pruning the lower layers of the model,
especially Layer 0, yields better results.

B.6 Concept erasure on SemEval

Table 6 reports detailed results on concept erasure
on the SemEval dataset. For concept erasure we
use an open-source implementation®.

C Cross-dataset transfer

Table 7 compares the classifiers trained on SemEval
dataset with the same setup trained on GPT-3D

6https://github.com/EleutherAI/
concept-erasure
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SemEval GPT-3D
RoBERTa CD CM CD CM CA
Baseline 322*/ gég,{ 84.1 710 70.1
Selected heads 1397 5007 866 793 792
coordimates  75.4% 153t 854 719 728

Table 7: Balanced accuracy for OOD classification:
cross-domain (CD), cross-model (CM), cross-all (CA).
Numbers with asterisks correspond to cross-dataset
transfer.
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Figure 8: IsoScore and cosine similarity of the
RoBERTa embeddings before and after removing their
“bad” components; the embeddings were calculated on
GPT-3D dataset.

data, but tested on SemEval. Surprisingly, in cross-
domain transfer heads and coordinates selection
on GPT-3D leads to an improvement of the per-
formance on SemEval. However, the cross-model
performance degrades.

D Removing “bad” outliers and how it
influences the geometry of embeddings

Previous studies have shown that some dimensions
skew the embedding space greatly and have a dra-
matic influence on its geometry. In particular,
Timkey and van Schijndel (2021) have shown that
the embeddings of BERT, RoBERTa, and some
other Transformer-based models lie in a narrow
cone. To show this, they use the mean cosine simi-
larity of the embeddings: if the cosine similarity of
all embeddings is high, it means that they are simi-
lar to each other along some dimensions; the larger
the average cosine similarity, the less isotropic the
embedding space is.

Rudman et al. (2022) introduced a more complex
tool for measuring the anisotropy of the embed-
ding space: IsoScore. The fundamental motivation
for IsoScore is that it roughly reflects the fraction
of dimensions uniformly utilized by a given point
cloud. According to the authors’ estimation, less
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than 20% of dimensions of the BERT model embed-
ding space are utilized uniformly. Larger IsoScore
values correspond to more isotropic embedding
spaces.

Figure 8 shows how removing the components
that are “bad” for cross-domain and cross-model
generalization abilities influences the IsoScore and
cosine similarity scores for ROBERTa embeddings.

We see that after removing these “bad” dimen-
sions, the embeddings of fake and real texts change
their isotropy in different rates, but both become
more isotropic in general. Based on this observa-
tion, we hypothesize that the isotropy of the embed-
ding space can be connected to the model’s gener-
alization abilities; we leave testing this hypothesis
for future research.

E Components removal and PHD

We conducted additional experiments to evaluate
the influence of removing embedding components
(selected with the greedy search outlined in Section
3.2 Subspace removing methods) in the ROBERTa
and BERT models on the cross-domain and cross-
model generalization abilities of the persistent ho-
mological fractal intrinsic dimensionality-based
method. Figure 9 shows a consistent decrease in
accuracy for both cross-model and cross-domain
ATD as components are being removed. Such re-
moval typically reduces the intrinsic dimension-
ality of human-written texts, hence degrading the
discriminative power of linear classifiers in ATD.
An interesting observation is that the PHD of
a newer generation LLM (GPT-40) is higher than
that of human-written texts, while the PHD of the
older generation (GPT-3.5-davinci) is lower that of
human-written texts. This may explain the poor
generalization ability between the models on GPT-
3.5-davinci and GPT-40. See Figure 10 for details.

F PCA

We investigated the PCA decomposition of the em-
bedding spaces of ROBERTa, BERT and Phi-2. We
tried to remove components with highest and low-
est variance to check how it affects the overall ac-
curacy and generalization abilities of the models.
The results are shown in Figures 13 and 14.
Figure 13 shows that while we remove PCA com-
ponents of the RoOBERTa embedding space with the
largest variance, the transferability between the dif-
ferent domains and models drops significantly. At
first, the transferability from GPT-40 to GPT-3.5-
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Figure 9: PHD-based logistic regression accuracy
before and after components removal, mean accu-
racy in cross-domain/cross-model ATD on GPT-3D:
(a) RoBERTa, full embeddings, (b) RoBERTa after com-
ponents removal, (c) BERT, full embeddings, (d) BERT,
after components removal.

davinci goes down to random; next, transferabil-
ity between different domains of texts generated
with GPT-3.5-davinci goes down to random; and fi-
nally, transferability between GPT-3.5-davinci and
GPT-40 drops down. Interestingly, transferability
between different domains of GPT-40 remains sig-
nificantly higher than random even after removing
90% of the high-variance components.

Figure 14 shows that removing the first PCA
component with the highest accuracy does not af-
fect the classification quality much, suggesting that
it does not play a distinct role in classification.
However, removing 25% of the components with
high variance is damaging for all three models,
while removing the components with low or aver-
age variance does not hurt the model performance.

Overall, we see that high-variance components
in the PCA space generally play some important
role in the generalization ability of all three models
(RoBERTa, BERT, and Phi-2); however, we have
not been able to significantly improve the quality
of classification by simply removing low-variance
PCA components on any model.
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GPT-3D dataset.
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Wang et al. (2024b).
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Figure 12: Concept erasure, cross-domain setting

peerread
peerread

768

gpt_3_wikipedia gpt_3_wikipedia

gpt_3_reddit gpt_3_reddit

gpt_3_stackexchange gpt_3_stackexchange

Train
Train

gpt_4_o_wikipedia gpt_4_o_wikipedia

gpt_4_o_reddit gpt_4_o_reddit

gpt_4_o_stackexchange 0.89 0.95

gpt_4_o_stackexchange

© = o © = o
o 8 ] = o © = o
5 k=l =3 5 ] =3 E = o 5 S o
9 ° c 2 k] c 1 3 o 3 I
14 o c 8 o ] @ S 5 @ 5 S
] =) 5 g il 5 k3 g 2 E= g e
= an X s S, X X ™ ] X o %]
| < ] | < g E] | B E] | 3
m o o] o I o] | ° X~ | < ~
| o © | | © m o 9 o, o [
P S < Q S ! o] ! o ©
= ] | > ] ~ S < 8
° ! a ! & 2 o ° 2
™ o o ) =3 o
g < o o <
5] o Q |
= o o
g o
Test @

es Test
384

gpt_3_wikipedia gpt_3_wikipedia

gpt_3_reddit gpt_3_reddit

gpt_3_stackexchange gpt_3_stackexchange

Train

Train

gpt_4_o_wikipedia gpt_4_o_wikipedia

gpt_4_o_reddit 0.94 0.92

gpt_4_o_reddit

gpt_4_o_stackexchange 0.96

gpt_4_o_stackexchange

e
@
&

gpt_3_reddit
gpt_3_reddit

©
©
o
o
=%
2
m
o
Q
o

gpt_4_o_reddit
gpt_3_wikipedia
gpt_4_o_reddit

gpt_4_o_wikipedia

gpt_4_o_wikipedia

gpt_3_stackexchange

gpt_3_stackexchange

gpt_4_o_stackexchange

gpt_4_o_stackexchange

Test Test

Figure 13: Classification quality on PCA components of ROBERTa embeddings on the GPT-3D dataset. Top left —
all components are present; top right — 10% of the components with the largest variance are removed; bottom left —

50% of the components with the largest variance are removed; bottom right — 90% of the components with the
largest variance are removed.
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Figure 14: Mean accuracy on the GPT-3D dataset, depending on the number of PCA components left; e.g., “top

10% components” means that we have removed 90% of the components with the smallest variance.

19



	Introduction
	Related Work
	Methods
	Linear decompositions of embeddings
	Subspace removing methods

	Data
	Results and Analysis
	Conclusion
	Limitations
	Residual subspaces for ATD
	Formal definitions and theory
	Head-wise decomposition

	Technical details of the experiments
	Preprocessing and models
	Computational resources
	Detailed experimental setup on GPT-3D
	Greedy search for embedding components
	Layer-wise head pruning on GPT-3D dataset, exrtended with GPT-4 generations
	Concept erasure on SemEval

	Cross-dataset transfer
	Removing ``bad'' outliers and how it influences the geometry of embeddings
	Components removal and PHD
	PCA
	Datasets license

