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Abstract
Growing amount and quality of AI-generated001
texts makes detecting such content more diffi-002
cult. In most real-world scenarios, the domain003
(style and topic) of generated data and the gen-004
erator model are not known in advance. In this005
work, we focus on the robustness of classifier-006
based detectors of AI-generated text, namely007
their ability to transfer to unseen generators or008
semantic domains. We investigate the geom-009
etry of the embedding space of Transformer-010
based text encoders and show that clearing out011
harmful linear subspaces helps to train a ro-012
bust classifier, ignoring domain-specific spuri-013
ous features. We investigate several subspace014
decomposition and feature selection strategies015
and achieve significant improvements over state016
of the art methods in cross-domain and cross-017
generator transfer. Our best approaches for018
head-wise and coordinate-based subspace re-019
moval increase the mean out-of-distribution020
(OOD) classification score by 9% and 14% for021
RoBERTa and BERT embeddings respectively.022

1 Introduction023

The proliferation of generative AI leads to an ex-024

plosion in AI-generated content. Large language025

models (LLMs) can produce text that is very simi-026

lar to human-written, and image generation models027

provide increasingly realistic results with more de-028

tailed control over generated images. However,029

AI-generated content can be used for malicious030

purposes, which leads to the artificial content de-031

tection (ATD) problem: has a given text or image032

been created by an AI model or a human? Exist-033

ing approaches for artificial content detection can034

be divided into score-based and classifier-based.035

The former aim to identify and measure features036

that distinguish artificial content from real; e.g.,037

generated text may exhibit statistical artifacts due038

to the specific generation process used by a lan-039

guage model (Gehrmann et al., 2019), the differ-040

ence may lie in perplexities measured by another041

language model (Solaiman et al., 2019), curvature 042

of the probability function (Mitchell et al., 2023), 043

or intrinsic dimensionality of contextualized rep- 044

resentations (Tulchinskii et al., 2023). However, 045

score-based methods often rely on prior knowledge 046

about a specific generator and/or semantic domain, 047

and known traces may be easy to remove, e.g., by 048

paraphrasing the text (Krishna et al., 2023). One 049

notable exception is the intrinsic dimension feature 050

for text content, shown to be robust to domain trans- 051

fer and paraphrasing (Tulchinskii et al., 2023), but 052

its overall detection quality is relatively modest. 053

Supervised classification methods show almost 054

perfect in-domain detection quality, but fail to gen- 055

eralize to unseen text topics and writing styles 056

(Wang et al., 2024b; Tulchinskii et al., 2023). The 057

choice of training data, both artificial and gener- 058

ated, is crucial for successful out-of-domain (OOD) 059

transfer. In general, while usually there exist fea- 060

tures that can distinguish between natural and arti- 061

ficial subsets of the training set, the classifier may 062

lock into dataset-specific spurious differences and 063

hence generalize poorly. It is hard to say in ad- 064

vance if a classifier trained on a given dataset will 065

generalize well to new unseen generators and data 066

sources. Previous approaches to OOD detection for 067

ATD include UID-based detectors (Venkatraman 068

et al., 2023) and domain adversarial training (Bhat- 069

tacharjee et al., 2024), but most of these methods 070

are very data-intensive (Wang et al., 2024a). 071

In this work, we aim to improve supervised clas- 072

sification by ignoring spurious features to enhance 073

cross-domain robustness, training on small number 074

of domains or generators. Specifically, we focus on 075

methods related to extracting residual subspaces 076

and deleting information from embeddings. 077

Typically, high-dimensional data mainly occupy 078

a few dimensions, and projecting onto a comple- 079

mentary subspace results in lower variance. In 080

many applications, retaining only important direc- 081

tions while treating projections onto less loaded 082
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subspaces as residual noise can benefit downstream083

tasks. However, for tasks such as OOD detection084

the principal components of a dataset may be the085

least useful. Kamoi and Kobayashi (2020) found086

that nullifying the first (least important) principal087

components in the embedding space fine-tuned on088

in-domain (ID) data enhances OOD detection qual-089

ity; this is known as the partial Mahalanobis dis-090

tance. Podolskiy et al. (2021) conducted similar091

analysis for Transformer-based text classifiers and092

found that ID data has orthogonal classes and lies093

on a unit sphere in a low-dimensional space. The094

main difference between ID and OOD data lies095

in the residual subspace, hence the partial Maha-096

lanobis distance performs well in OOD detection.097

It is important to note that not all neural net-098

works learn useful residual subspaces for a given099

dataset; e.g., Podolskiy et al. (2021) and Ren et al.100

(2021) find that on text, CNN classifiers learn rep-101

resentations where components with low singular102

values contain too much information about ID data,103

making it difficult to distinguish OOD examples.104

In this work, we apply similar techniques to105

artificial text detection (ATD), a problem similar106

to OOD detection. Domain shift, with variations107

in text styles, topics, and new generation models,108

is a major challenge for ATD. Supervised classi-109

fiers, even performing well on validation datasets,110

struggle in realistic settings, where the domain and111

model of the AI-written text are unknown. To ad-112

dress this, we first show that training a classifier on113

the residual subspace significantly enhances ATD114

robustness under domain and model shift. Next, we115

show that controllable subspace removal can im-116

prove robustness, while also providing us with in-117

terpretable information about AI-written texts and118

domains. In particular, we use recent advances in119

concept erasure (Belrose et al., 2023), experiment-120

ing with erasing semantic and syntactic concepts121

based on probing tasks by Conneau et al. (2018);122

we show that some concepts are harmful for cross-123

domain and cross-model transfer in ATD.124

Our primary contributions are: (i) a first appli-125

cation of the residual subspace approach for ro-126

bust ATD; we show that restricting the detector127

to a residual subspace increases cross-topic and128

cross-model robustness with especially significant129

improvements on the most difficult samples; (ii)130

analysis of different residual decomposition tech-131

niques, such as nullifying head-wise subspaces in132

intermediate data representations and concept era-133

sure; (iii) analysis of applicability of our methods134

with different encoder- or decoder-based backbone 135

models. Besides, we create and release an exten- 136

sion for one of the datasets with recent generating 137

model GPT-4-o on three domains. Below, Section 2 138

surveys related work, Section 3 describes the pro- 139

posed methods, Section 4 introduces the datasets, 140

Section 5 presents a comprehensive experimental 141

evaluation, and Section 6 concludes the paper. 142

2 Related Work 143

Linear subspaces in Transformer-based models 144

are known to represent concepts. Hernandez and 145

Andreas (2021) studied low-dimensional subspaces 146

that encode linguistic features in BERT; linear 147

structure is known for such concepts as truthfulness 148

(Marks and Tegmark, 2023) and sentiment (Tigges 149

et al., 2023). This direction has been extended 150

to the linear representation hypothesis that posits 151

that language models operate with one-dimensional 152

representations of concepts in the activation space 153

(Bricken et al., 2023; Park et al., 2023). However, 154

Engels et al. (2024) showed that some concepts are 155

multi-dimensional. 156

Components of Transformer-based embed- 157

dings can provide useful features via the geometry 158

of their inner representations or parameter spaces. 159

For instance, outlier dimensions in the embedding 160

spaces of models such as BERT (Devlin et al., 161

2019) or RoBERTa (Liu et al., 2019), characterized 162

by unusually high variance and/or mean values, 163

have been studied in detail, including their emer- 164

gence during training and effects of disabling them 165

post-training (Kovaleva et al., 2021), their relation- 166

ship with positional embeddings and impact on 167

word-in-context tasks (Luo et al., 2021), influence 168

on the quality of representations (Timkey and van 169

Schijndel, 2021), and relations to the shapes of at- 170

tention maps and token frequencies (Puccetti et al., 171

2022). Activations of Transformer-based LMs have 172

been investigated for language structure informa- 173

tion (Jawahar et al., 2019), semantic and syntactic 174

features (Conneau et al., 2018); the latter work also 175

introduces a comprehensive selection of probing 176

tasks. However, only outlier dimensions have been 177

studied in full detail; we aim to address this gap by 178

studying how removing specific dimensions from 179

RoBERTa embeddings can improve detection of 180

artificially generated text. 181

Semantics of attention heads in Transformers 182

have been studied for a long time: Kovaleva et al. 183

(2019) provided empirical research on BERT atten- 184
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tion heads, demonstrating overparameterization by185

pruning some of them, Michel et al. (2019) showed186

that most heads can be removed at test time without187

significant performance loss. Clark et al. (2019)188

studied the specialization of attention heads; Pande189

et al. (2021), their functional roles. In BERT-like190

models, important information is distributed across191

layers; e.g., Jawahar et al. (2019) showed that lower192

layers capture phrase-level information, which is193

partly lost in the upper layers; the model captures a194

hierarchy of linguistic information, with deeper lay-195

ers required to capture long-distance dependencies.196

Bian et al. (2021) showed that attention maps are197

correlated across layers and organized into clusters.198

Therefore, here we focus on groups of attention199

heads within a layer rather than individual heads.200

Artificial text detection (ATD) is a new field201

of study (up until recently, artificial content was202

mostly easy to distinguish), but there already exist203

many promising approaches. Score-based methods204

include DetectGPT, which measures the curvature205

of the probability function (Mitchell et al., 2023),206

and GPTZero (Tian and Cui, 2023), which checks207

the perplexity and burstiness of a text; these meth-208

ods, however, are limited to a single domain or209

generator. Throughout recent work, it remains a210

reasonable baseline for general and cross-domain211

ATD to take embeddings from BERT-like mod-212

els as a feature space and train logistic regression213

(LR) over them. Following Tulchinskii et al. (2023)214

and Jawahar et al. (2020), we take the RoBERTa215

model (Liu et al., 2019) to extract text embeddings,216

use mean-pooling over embeddings, and train LR217

models for ATD. The recent SemEval-2024 compe-218

tition (Wang et al., 2024a) proposed challenge in a219

multi-generator, multi-domain, and multi-language220

setting based on the new ATD dataset that was in-221

troduced in Wang et al. (2024b). Task 8 included222

problems such as binary classification, source iden-223

tification, and fake/real text boundary detection. So-224

lutions used approaches such as LLM fine-tuning225

(RoBERTa, XLM-R), contrastive learning, and en-226

semble methods. However, while all these ap-227

proaches are data-intensive, absolute classification228

quality is still poor. In this work, we use classifiers229

that perform well on in-domain data and aim to230

improve their performance on unseen domains.231

3 Methods232

Removing unnecessary features is often an effec-233

tive method to improve the robustness of a ma-234

chine learning model. The embedding space has 235

linear substructures responsible for linguistic fea- 236

tures such as token frequencies, word-in-context 237

information etc. (Luo et al., 2021; Puccetti et al., 238

2022). We aim to detect and erase such substruc- 239

tures, which are harmful for ATD generalization. 240

3.1 Linear decompositions of embeddings 241

PCA and the standard basis. Let x be some 242

text input, z ∈ Rd, its embeddings obtained by 243

some model, z = M(x), C = {c1, . . . , cd}, a 244

basis of Rd, and let αi be coefficients of z in C, 245

z =
∑d

i=1 αici. We want to split C into good 246

and bad parts, C = Cg ∪ Cb, so that components 247

in Cg contain most of the information general for 248

all domains, while Cb is responsible for spurious 249

domain-specific features. Then, we construct a 250

classifier on restricted embeddings z′ where the 251

“bad” part is nullified, z′ =
∑

i∈Cg αici. Intuitively, 252

information about the style, topic, and other se- 253

mantic properties is harmful for ATD, and we want 254

to focus on residual features that are less impor- 255

tant for other NLP tasks. Podolskiy et al. (2021) 256

show that PCA can serve as such a decomposi- 257

tion for a Transformer-based model: removing top 258

components computed for an in-domain dataset 259

improves OOD detection. Indeed, for a dataset 260

of natural texts D, subspace ⟨Cb⟩ should “explain” 261

the data variability, while the variance of D pro- 262

jected on ⟨Cg⟩ is expected to be low. PCA is a 263

theoretically optimal way to find such subspaces 264

(see Appendix A.1). 265

Despite PCA’s solid theoretical background, in 266

practice it does not always perform well; in ATD, 267

we usually deal with a small dataset that cannot 268

fully capture the real distribution, which is bad 269

for PCA. To access data properties beyond those 270

represented in our train set, we propose to utilize 271

the internal structure of the pretrained embedding 272

model. Indeed, Transformer-based models tend 273

to disentangle some data properties during train- 274

ing, and semantic interpretation has been discov- 275

ered for some neurons and embedding dimensions 276

(Luo et al., 2021; Timkey and van Schijndel, 2021; 277

Puccetti et al., 2022). We hypothesize that such 278

“built-in” disentanglement could lead to meaning- 279

ful subspaces spanned by a subset of the stan- 280

dard basis, i.e., vectors {e1 = [1, 0, . . . , 0], e2 = 281

[0, 1, . . . , 0], . . . , ed = [0, 0, . . . , 1]}. Projection to 282

a subspace ⟨ei|i ∈ S⟩ for some subset of indices 283

S can be done by simply nullifying all embedding 284

dimensions except S. Our experiments support 285
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this intuition: PCA-based decomposition does not286

lead to any significant changes in detector’s quality287

(see Appendix F), while coordinate-based subspace288

removal significantly improves transfer scores.289

Attention heads as linear substructures. Both290

decompositions discover global linear structure,291

i.e., universal directions in the embedding space292

independent of input data. But it is much more293

natural to rely on local linearity of the data and try294

to discover substructures in a data manifold that295

does not necessarily form global linear subspaces.296

For text embeddings, the neural network represents297

a function from Rd×T to a data manifold M. We298

can decompose this function into a sum of input-299

dependent components of the same functional form.300

Cammarata et al. (2020) proposed linear circuits,301

showing that the data flow in a Transformer can be302

represented as the main residual stream with linear303

addition of flows from other elements of the model304

(attention heads and feed-forward blocks). We are305

mostly interested in attention flows because it is306

well known that attention heads in Transformers307

have highly specialized functions (Kovaleva et al.,308

2019; Pande et al., 2021), so we hypothesize that309

head-wise decomposition should reflect the “built-310

in” disentanglement of the pretrained model. We311

can represent a Transformer-based embedding as312

z = Π

[
α(x)x0 +

∑
l

βl(x)MLPl +
∑
l

∑
h

γl(x)A
l,h

]
, (1)313

where Al,h are the outputs of attention heads, α, β,314

γ are scalar functions, and Π is a centering projec-315

tion Π(x) = x− 1
d

∑d
i=1 x

i (see Appendix A.2).316

Concept erasure. Finally, we consider an em-317

bedding space decomposition based on extracted318

linear directions or low-rank subspaces responsible319

for some harmful semantic feature zF . If such a320

direction is found, we can remove it by subtracting321

the component corresponding to this direction from322

the embedding. Namely, we erase the feature as323

ẑ = z− PF (z), (2)324

where PF is the projection to the subspace zF .325

3.2 Subspace removing methods326

Greedy search. Our basic approach chooses the327

best features using a small subset of domains ex-328

cluded from the whole dataset. Given a multi-329

domain dataset D = D1 ∪ · · · ∪ Dk, where Di330

are domain subsets, we first choose two domains331

Dsearch = {D1, D2} to perform feature selection.332

On each step, we train a classifier, removing one 333

component, and compare their performance. First, 334

we train ATD classifiers on texts from D1 only 335

and evaluate on D2, getting a feature ranking on 336

D1 → D2 transfer. Then, we do the opposite, 337

getting a ranking for D2 → D1. The final set of 338

residual features is obtained as the intersection of 339

top-score lists in both rankings (see Appendix B.4). 340

Head pruning removes some components in de- 341

composition (1) by replacing the output of a given 342

head with zeros on inference. Importantly, this ap- 343

proach is approximate because, besides its direct 344

impact as a component in the decomposition, each 345

head also has an indirect influence on all computa- 346

tions on subsequent layers. But Gandelsman et al. 347

(2023) showed that this indirect impact is small 348

and can be ignored (see also Appendix A.2). To 349

choose the set of heads for pruning, we note that 350

different layers contain different kinds of informa- 351

tion (e.g., semantic information is mostly in bottom 352

and middle layers), and the linguistic complexity of 353

tasks solved by attention heads grows from bottom 354

to top (Kovaleva et al., 2019; Tenney et al., 2019). 355

Therefore, we simply prune every layer separately. 356

Concept erasure by probing tasks. To remove 357

a linear subspace responsible for some data proper- 358

ties, we apply a concept erasure technique called 359

LEACE (Belrose et al., 2023). Suppose we have 360

a k-class classification task defined by a dataset 361

Z with one-hot labels Y , and we want to erase all 362

the knowledge required for linear separation of the 363

classes. LEACE is a projection-based method of 364

the form (2), with theoretical guarantees that any 365

linear classifier on top of ẑ cannot solve the classifi- 366

cation task better then a constant predictor. Erasing 367

a concept from an embedding z is defined as 368

ẑ = z−W+(WΣZY )(WΣZY )
+Wz, (3) 369

where W = (Σ
1/2
ZZ)

+, ΣZZ is Z’s covariance ma- 370

trix, ΣZY is the cross-covariance of Z and Y . Ge- 371

ometrically, LEACE is the least-squares-optimal 372

transform that maps centroids of different classes 373

of the dataset (Z, Y ) to the same point, making 374

linear separation impossible. 375

In this work, we utilize probing tasks provided 376

by Conneau et al. (2018), designed to represent ele- 377

mentary linguistic concepts (see Section 4). These 378

experiments allow us to not only improve ATD 379

robustness, but also obtain insights about the influ- 380

ence of interpretable linguistic features. 381
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Figure 1: Mean accuracy in cross-domain (left) and
cross-model ATD by RoBERTa-base on SemEval

4 Data382

ATD datasets. There are few high-quality datasets383

with both human and artificial text. One such384

dataset was presented by Wang et al. (2024b) and385

used in the SemEval-2024 competition1; it cov-386

ers five domains: Wikipedia, Reddit, WikiHow,387

PeerRead, and arXiv. We have used five text gen-388

eration models: ChatGPT (Schulman et al., 2022),389

Davinci0032, Cohere3 , Dolly-v2 (Conover et al.,390

2023), and BLOOMz (Muennighoff et al., 2023).391

Since the amount of human-written text in each392

domain is larger than generated by each model, we393

crop human data so that there are 3000 samples394

of parallel data for each domain and model/human395

combination. Similar to Wang et al. (2024b), we396

create two tasks: (1) in the cross-domain task, we397

concatenate data across generating models, get-398

ting five binary ATD tasks in different domains;399

(2) in the cross-model task, concatenation across400

domains yields five binary ATD tasks for each gen-401

erator model. Thus, results are presented as 5× 5402

heatmaps (e.g., Fig. 1) and its aggregations.403

Our second dataset, used by Tulchinskii et al.404

(2023), has three domains—Wikipedia, Red-405

dit, StackExchange—with davinci003 generations.406

Compared to SemEval, it has a larger distribution407

shift in basic text features (e.g., length), which408

makes it harder for cross-domain transfer. We ex-409

tend it by adding similar text generated by GPT-4o:410

continuing text from Wikipedia articles, long-form411

question answering on Reddit Q&A and StackEx-412

change. Thus, we obtain a dataset, called below413

GPT-3D, with six domain-model pairs. For GPT-414

3D we report average OOD scores, i.e. the accuracy415

of classifiers trained on one domain-model subset416

and evaluated on the rest; average accuracy values417

do not include training sets.418

1https://semeval.github.io/SemEval2024/
2https://platform.openai.com/docs/models
3https://docs.cohere.com/docs/models

Domains W
iki

pe
dia

W
iki

How

Red
dit

Pe
erR

ea
d

arX
iv

Avg. transfer to: 57.2 54.7 64.7 70.4 85.1
Avg. transfer from: 72.5 61.8 76.3 66.3 55.2
Avg. sent. length 38.7 44.4 17.0 14.7 10.4
Avg. “!” count 0.24 0.79 0.25 0.08 0.01
Avg. “?” count 0.12 0.90 0.36 0.43 0.03

Generators da
vin

ci

Bloo
mz

Coh
ere

Cha
tG

PT
Doll

y

Avg. transfer to: 79.0 68.2 82.8 86.5 77.4
Avg. transfer from: 90.5 59.2 81.8 79.1 83.3
Avg. sent. length 17.7 10.9 15.3 22.6 21.2
Avg. “!” count 0.18 0.50 0.04 0.23 0.29
Avg. “?” count 0.08 0.39 0.11 0.13 0.22

Table 1: Average RoBERTa detector accuracy by do-
mains and by generators on SemEval (in %), avg length
of generated sentences (in symbols) and avg counts of
“!” and “?” marks per text sample; dark red – smallest
value in a row, dark green – largest value, red – domains
and generators with lowest transfer accuracy.

Probing datasets. For probing and concept era- 419

sure experiments, we use the dataset used by Con- 420

neau et al. (2018) with several supervised classi- 421

fication tasks: SentLen, predicting the length of 422

the sentence, TreeDepth, finding the depth of a 423

syntactic tree, TopConst, classifying the high-level 424

syntactic structure (top two nodes in the syntax 425

tree), classifying Tense, SubjNum (subject number), 426

and ObjNum (object number) in the main clause, 427

detecting errors with BShift (bigram shift, word or- 428

der inversion in a bigram), SOMO (Semantic Odd 429

Man Out, where a word is replaced with a random 430

grammatically fitting word), and CoordInv (Coordi- 431

nation Inversion, whether the coordination of two 432

clauses in the sentence is inverted), and predicting 433

exact words from a 1000-word vocabulary in WC 434

(Word Content). 435

5 Results and Analysis 436

Experimental setup is detailed in the Appendix B. 437

PCA-based results are reported in Appendix F. 438

Baseline RoBERTa. As a baseline we use 439

logistic regression (LR) trained on mean-pooled 440

RoBERTa embeddings. Results are shown in Fig. 1 441

for SemEval and Fig. 3a for GPT-3D; the cross- 442

domain and cross-model settings are challenging in 443

both tasks. Fig. 1 shows that in-domain classifica- 444

tion is almost perfect for baseline LR on RoBERTa 445

embeddings, but the cross-domain part is very in- 446

consistent: e.g., transfer from Reddit to PeerRead 447
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works well across all models (91% avg accuracy)448

but transfer from arXiv to WikiHow is uniformly449

bad (54%). In SemEval, Wikihow is the hardest450

domain to transfer to, while Arxiv is the hardest451

domain to transfer from (Table 1); both domains452

contain syntactic anomalies (very few or many “!”453

and “?” marks, unusual average sentence lengths454

etc.). Bloomz is the hardest model to transfer both455

to and from (Table 1), and it also generates un-456

usual texts (very short sentences replete with “!”457

and “?”). But generally, it is not easy to predict458

which transfer direction is easier in ATD or explain459

the reasons for it; e.g., Wikipedia, often used for460

NLP model evaluation (Merity et al., 2016), is far461

from the best basis for transfer, especially in the462

cross-model setting (Fig. 3a). We also compare463

(Fig. 3f) our proposed methods with the approach464

based on the intrinsic dimensionality (PHD) of real465

and artificial texts tokens embedding point clouds,466

according to (Tulchinskii et al., 2023).467

Average transfer results. Table 3 and Fig. 3468

show that our methods provide a stable improve-469

ment of OOD scores for classifiers trained on sepa-470

rate domain-model subsets, for both SemEval and471

GPT-3D datasets. TopConst concept erasure yields472

the highest increase among methods that do not473

have access to OOD data (+3%), and improve-474

ment increases for the most difficult domain pairs475

(e.g., +6% for Wikipedia–Reddit). Interestingly,476

the PHD method by Tulchinskii et al. (2023), while477

providing very stable cross-domain results for GPT-478

3-based generations, completely fails to deal with479

GPT-4o (Fig. 3 (f)), while our methods increase480

cross-model scores up to 10%. Still, results for481

the most difficult pairs are unsatisfactory, falling482

below the random baseline; the only method that483

can achieve at least random level for any OOD sub-484

set is head pruning, where the heads are selected485

on validation set combined of all models and do-486

mains examples (+9.1% “cross-all” compared to487

full RoBERTa, Fig. 3 (e)).488

Head pruning for transfer tasks. We adapt489

head pruning (Voita et al., 2019) to remove a whole490

layer of attention heads. Since layers of a model491

have rough linguistic meanings (Jawahar et al.,492

2019), thus we analyse the impact of structural-493

level information on ATD. Fig. 2 and Table 2 show494

detailed results for each layer pruned on SemEval.495

Removing the first layer improves average cross-496

domain accuracy by 3%, but the improvement is497

unstable (from −7.1% to +18.9% in different do-498

mains). Pruning layers 3 and 4 is more stable and499

Cross-domain Cross-model
Avg Max ↑ Max ↓ Avg Max ↑ Max ↓

RoBERTa 73.0 - - 82.8 - -
1 76.0 18.9 -7.1 82.6 4.4 -4.4
2 73.9 6.3 -3.7 83.3 2.8 -2.4
3 75.0 8.6 -1.9 83.1 2.6 -1.8
4 74.6 8.4 -1.6 83.7 3.3 -1.6
5 73.7 3.6 -1.8 82.9 1.7 -1.4
6 72.6 2.8 -3.7 82.7 1.6 -2.1
7 72.3 1.3 -5.2 82.5 1.2 -3.0
8 73.3 3.5 -3.5 82.5 0.4 -1.8
9 73.1 4.5 -1.5 82.7 0.6 -1.2
10 72.7 3.2 -3.2 82.4 0.4 -2.2
11 73.2 3.8 -6.5 82.3 0.4 -1.4
12 73.7 7.2 -3.7 82.8 1.7 -1.1

Table 2: Balanced accuracy for OOD classification for
different pruned layers on SemEval
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Figure 2: Mean accuracy on SemEval with pruned
RoBERTa layers. Dashed lines show the baseline.

beneficial in both settings. Cross-domain ATD is 500

more challenging; Fig. 2 (top) shows that some 501

domains (Wikipedia and WikiHow) exhibit similar 502

patterns but others are unrelated. The best scores 503

are in transfer from Reddit, achieving 81% mean 504

balanced accuracy with 0-th layer pruned (+5% to 505

full RoBERTa). The cross-model setting is easier 506

and not greatly affected by pruning layers, with 507

the exception of BLOOMz. Here the best source 508

model is GPT-3.5-davinci, with 92% cross-model 509

accuracy after removing layer 4. 510

Concept erasure. Generally, results on SemEval 511

show that the best concepts to erase are TopConst 512

and TreeDepth, improving up to 2.1% on cross- 513

domain transfer and not hurting the cross-model 514

transfer. Erasing WC also performs well but is 515

less stable. Figs. 4 give more detailed informa- 516

tion. Although changes compared to Table 6 are 517

marginal on average, they range from −8.5% to 518

+13% across domains and models. Grammati- 519

cal properties, (Tense, SubjNum, ObjNum) have 520

6



no significant impact, while erasing global syn-521

tax information (TopConst, TreeDepth) improves522

cross-domain transfer up to +13%, especially from523

wikipedia and arxiv. This means that LLMs in gen-524

eral are not good in mimicking complicated syntac-525

tic structures, but have no problem with local gram-526

matical categories. Erasing WC erasure leads to the527

largest cross-domain improvement, which means528

that word semantics produce domain-specific spuri-529

ous features that harm generalization. There is one530

outlier: wikihow→arxiv; we hypothesize that these531

domains have common word-level features due to532

many bullet points, numbered lists, and sequen-533

tial structures in both. For cross-model transfer,534

erasing all three tasks related to error detection in535

sentence structure (BShift, CoordInv, SOMO) are536

harmful for ATD performance and robustness; eras-537

ing global syntax (TopConst, TreeDepth) improves538

performance, while word content (WC) leads to539

contradictory results.540

We conclude that the ability to detect grammat-541

ically correct sentences is crucial for robust AI-542

generated text detection; the difference in global543

syntax between natural and generated texts is signif-544

icant, but varies between models and domains, so545

erasing this information helps generalization, and546

individual word semantics is a source of spurious547

features. On the other hand, world-level grammati-548

cal categories are captured well by all generators549

and do not influence ATD performance.550

Selecting embedding components and heads.551

To evaluate component removal, we use Reddit552

and Wikipedia domains from GPT-3D as Dsearch553

(because they have the lowest cross-domain ATD554

accuracy). For head selection, we used a lay-off555

evaluation set with samples of all generators and556

domains from GPT-3D. We evaluate the methods557

on GPT-3D and SemEval, using the same set of558

removed heads or components. Fig. 3 and Table 3559

show the results; transfer to and from Wikipedia560

and Reddit subsets has improved. Head Selection561

greatly improves the performance on validation562

domains, achieving the best scores among all the563

methods. Results of cross-task transfer (from GPT-564

3D to SemEval, Appendix C) indicate that compo-565

nent and head removal works better if components566

are chosen on the same data distribution where the567

classifier is trained; still, in general cross-dataset568

transfer here is not better than the baseline.569

Influence of the embedding model. RoBERTa570

is commonly used as the encoder for ATD (Krishna571

et al., 2023; Solaiman et al., 2019; Tulchinskii et al.,572
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Figure 3: Mean accuracy in cross-domain/cross-model
ATD on GPT-3D by: (a) RoBERTa-base, (b) RoBERTa-
base with all attention heads pruned from layer 1, (c)
RoBERTa with TopConst concept erasure, (d) optimal
head removal, (e) best set of coordinates, (f) classifier
based on PHD intrinsic dimensions.

SemEval GPT-3D
RoBERTa CD CM CD CM CA

Baseline 73.0 82.8 84.1 71.0 70.1
Layer 1 76.0 82.6 84.8 72.7 72.9
Layer 4 74.6 83.7 84.9 72.3 72.0
TopConst erased 75.1 83.1 86.7 71.4 73.1
TreeDepth erased 73.9 83.0 85.3 73.3 72.0

Selected heads 74.3 80.0 86.6 79.3 79.2
Selected coordinates 74.5 82.6 85.4 71.9 72.8

Table 3: Balanced accuracy for OOD classification:
cross-domain (CD), cross-model (CM), cross-all (CA).

2023), but we have tested other models as well. Ta- 573

ble 4 and Figure 14 in the Appendix F show the 574

results; in all cases, we trained LR on mean-pooled 575

embeddings of the last layer. There is an interest- 576

ing difference between encoder and decoder-based 577
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Figure 4: Score change after concept erasure in cross-
domain and cross-model settings on SemEval.

BERT, GPT-3D Phi2, GPT-3D
CD CM CA CD CM CA

Baseline 82.4 81.9 71.1 92.2 92.3 86.7
Layer 1 83.2 77.8 69.3 85.5 89.5 78.0
Layer 4 82.2 78.9 69.6 92.6 92.3 87.2
Selected heads 85.4 81.0 73.1 - - -
TopConst erased 83.1 81.4 70.9 91.8 91.5 86.1
TreeDepth erased 84.0 83.2 71.8 93.3 91.8 87.0
Selected coordinates 92.1 88.0 85.2 93.1 89.9 86.7

Table 4: Aggregated OOD scores for BERT and Phi2
embeddings. Best results are given in bold.

models: although the quality is very different and578

correlates with model size, all tested encoders are579

well suited for our content removal methods (their580

performance increases, often significantly), while581

the decoder’s behaviour is the opposite. Table 4582

shows the results of different subspace removal583

methods for BERT (Devlin et al., 2019) and Phi-2584

(Abdin et al., 2023) embeddings; the latter model585

is larger, so its baseline scores are much higher, but586

embedding restriction does not lead to any improve-587

ments while BERT’s quality increases, making the588

results of these models comparable after compo-589

nent removal despite the differences in model size.590

We believe that the different behaviour of our meth-591

ods reflects the fundamental difference in the em-592

bedding space geometry of encoders and decoders593

caused by limitations of the expressive power of594

the attention due to the triangular attention mask595

(e.g., the group of upper triangular matrices does596

not contain any nontrivial rotations or orthogonal597

transforms in general). On the other hand, high598

performance of our methods for relatively small599

encoder-based models shows that their text repre- 600

sentations contain disentangled elementary features 601

learned in pretraining and expressed by separate 602

embedding coordinates, attention heads (i.e., linear 603

terms in input-dependent embedding decomposi- 604

tions), or global directions in the embedding space. 605

We also report how removing components influ- 606

ences the geometry of the embedding space. PHD 607

intrinsic dimension has the opposite behaviour in 608

GPT-3 and GPT-4 models families: the general- 609

ization ability of a PHD-based ATD classifier de- 610

creases after removing embedding components (see 611

Appendix E). 612

6 Conclusion 613

In this work, we aim to improve the robustness of 614

artificial text detectors via linear feature removal 615

from text embeddings. We propose three ideas 616

that are extremely easy to implement and achieve 617

stable improvement in robustness averaged across 618

domains and models, up to 14% depending on the 619

text encoder. More importantly, we conclude with 620

the following novel insights from our work. 621

First, new generation models can completely 622

break detectors; e.g., on the GPT-4 family previ- 623

ous detectors’ perform below random, while on 624

the same model classifiers demonstrate very high 625

performance in the cross-domain setting. The rea- 626

son could be the presence of watermarks in GPT-4 627

generations; if so, watermarks unknown for ATD 628

developers are dangerous, leading to unpredictable 629

black-box behaviour. 630

Second, performance with respect to the training 631

subset is often counterintuitive; e.g., a classifier 632

trained on Wikipedia may perform worse than on 633

Reddit, although Wikipedia is considered a cleaner 634

domain, better suited for general-purpose models. 635

Third, Transformer encoders learn disentangled 636

intrinsic features in coordinates and attention heads, 637

and simple decompositions perform better for ATD 638

than more complex approaches. But this effect is 639

less pronounced for decoder models. We plan to 640

study differences in the geometry of encoder and 641

decoder-based text representations in future work. 642

Finally, global syntax and sentence complexity 643

is a key point for ATD, but the exact differentiating 644

features are domain- and model-specific, so this 645

information should be ignored. Local grammatical 646

categories do not provide an important signal for 647

ATD. Instead, the classifier should rely on features 648

for detecting various types of inconsistencies. 649
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7 Limitations650

In this work we demonstrate how state of the art651

ATD methods can fail, for instance, to transfer652

to new generative models. Our method increases653

OOD performance on some generators, but there654

is no guarantee that this property will be preserved655

for all future models. Novel pretraining tech-656

niques, data collection and processing paradigms,657

and model architectures can completely change the658

picture. Since our method is based on supervised659

classification, it is not clear which features it ac-660

tually uses for classification. It can also lead to661

unexpected results, especially in the presence of662

the so-called watermarks, i.e., small changes in663

data distribution inside each generated sample de-664

liberately injected by generative model developers.665

We believe that for truly reliable ATD detection, all666

conclusions should be interpretable, so that a hu-667

man analyst could inspect the decision. By the pro-668

posed methods of concept erasure, we have made a669

step towards such kind of ATD approaches.670

We have tested our approaches using relatively671

small subsets of uni-model or uni-domain data672

and demonstrated promising quality improvements.673

Nevertheless, it is still not identical to real-world674

scenarios, where at least several domains and gener-675

ators are available in training time, and even more676

have to be considered during the model’s applica-677

tion. One of our objectives in this work has been678

to propose a novel direction that can significantly679

improve ATD methods in the future and make them680

more reliable, but currently it is not yet a fully prac-681

tical production-ready solution.682

Finally, we do not address the real-word case of683

post-processed and paraphrased generations, and684

also texts partially written by humans. For example,685

if some sentences of this section have been gener-686

ated by GPT-4o but then partially corrected by the687

authors, most probably the methods considered in688

this work would not be able to detect it. We leave689

this direction for further study.690
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A Residual subspaces for ATD 968

A.1 Formal definitions and theory 969

In this subsection, we introduce formal definitions 970

and recap some statements from linear algebra that 971

are useful for a better understanding of the geome- 972

try and properties of residual subspaces. First, we 973

define the notion of explained variance and rela- 974

tive explained variance to be able to quantify the 975

properties of residual subspaces. 976

Definition 1 (Subspace explained variance (Shen 977

and Huang, 2008; Gandelsman et al., 2023)). Let 978

D ⊂ Rd, D = {x1, . . . ,xN} be a dataset, and 979

S ⊂ Rd is an arbitrary subspace, with Pr(x) : 980
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Rd → S being the projection function onto S. We981

call the variance of the projections Pr(D) the ex-982

plained variance of subspace S with respect to D:983

EVD(S) = ED∥Pr(x− E[x])∥2 =984

=
1

N

∑
x∈D

∥Pr(x)− Pr(µ)∥2,985

where µ = 1
N

∑
x∈D x.986

If X̄ is a matrix of centered data vectors (x−µ)987

for x ∈ D (row-wise), and V is the k × d matrix988

defining an arbitrary basis of the subspace S, S =989

⟨v1, . . . , vk⟩, then the explained variance EVD(S)990

can be written in matrix form:991

EVD(S) = Tr(Pr(X̄)TPr(X̄)), (4)992

where the projection operator Pr(X) can be com-993

puted as994

Pr(X̄) = X̄V T (V V T )−1V. (5)995

In the case of an orthonormal basis, V TV = I, for-996

mulas (4) and (5) become a simple decomposition997

into the sum of component-wise variations:998

EVD(S) =

k∑
i=1

VD
i , (6)999

where VD
i is the variance along the ith basis vector.1000

Relative explained variance reflects the relative
importance of a subspace by the ratio of the sub-
space explained and total variance of the data:

RVD(S) =
EVD(S)

Var(D)
.

For data distributed equally over all directions,
it is proportional to the subspace dimension. For
example, for D ∼ N (µ, σ2) for any subspace S

RVD(S) =
dim(S)

d
.

Definition 2. A subspace S is called an α-residual1001

subspace with respect to D if and only if its relative1002

explained variance is not greater than α:1003

RVD(S) ≤ α. (7)1004

The simplest way to find residual subspaces for1005

a given α follows from (6). We can compute the1006

variances Vari with respect to each coordinate of1007

the embeddings, and then select the coordinates1008

Figure 5: Geometric intuition of our approaches.

{ui1 , . . . , uim} with the smallest variances while 1009

their sum does not exceed the desired portion of the 1010

total variance. But this method does not guarantee 1011

that the required subspace will be found even if 1012

it exists for a given dataset. Figure 5 shows the 1013

geometric intuition of our approaches; in particular, 1014

the residual subspace, even if it exists, may not be 1015

spanned by any subset of the standard basis. The 1016

following proposition provides a guaranteed way 1017

to find the α-residual subspace if it exists. 1018

Proposition 1. Let {u1, . . . ,ud} be the princi- 1019

pal components of a dataset D with correspond- 1020

ing singular values λ1, . . . , λd (in descending or- 1021

der). Then the explained variance of a subspace 1022

spanned by d− k last principal components Rk = 1023

⟨uk+1, . . . ,ud⟩ is 1024

EVD(Rk) =

d∑
i=k+1

λi. (8) 1025

Moreover, Rk has the minimal explained variance 1026

among all (d− k)-dimensional subspaces. 1027

Proof. The first statement follows from (4), taking 1028

in account that the trace of a matrix is invariant 1029

under the change of the basis. Therefore, we can 1030

apply a singular transform to X̄ and obtain 1031

Tr(Pri(X̄)TPri(X̄)) = 1032

= Tr(Pri(diag(λ1, . . . , λd))) = λi. 1033

The second statement follows from the Frobe-
nius theorem, which says that for any matrix X̄ the
projection of its rows to the first k singular compo-
nents leads to the best rank-k approximation with
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respect to Frobenius norm:

⟨u1, . . . ,uk⟩ = argmin
S,dimS=k

∑
x∈X̄

∥x− PrS(x)∥2,

where the sum goes over rows of X̄ . This can1034

be rewritten in terms of the residual subspace1035

R = ⟨uk+1, . . . ,ud⟩, which is unambiguously1036

defined as the orthogonal complement of S =1037

⟨u1, . . . ,uk⟩:1038

⟨uk+1, . . . ,ud⟩ = argmin
R,dimR=d−k

∑
x∈X̄

∥PrR(x)∥21039

= argmin
R,dimR=d−k

EVD(R),1040

which completes the proof.1041

As a corollary, PCA allows to find the α-residual1042

subspace for a given dataset D, if it exists. Namely,1043

we can select its singular values starting from the1044

least until their relative sum exceeds α. Then, the1045

number of components in the sum is equal to the1046

maximal subspace dimension, and the subspace1047

spanned by the corresponding singular vectors pro-1048

vides the necessary subspace.1049

A.2 Head-wise decomposition1050

In our derivation of the form of head-wise flows,1051

we follow the ideas proposed by Gandelsman et al.1052

(2023). In the following, we consider Transformer1053

blocks with post-layer-normalization, such as in1054

BERT and RoBERTa models. The transformation1055

inside each layer can be written as1056

ẑl = LN(zl−1 +MHA(zl−1)), (9)1057

zl = LN(ẑl +MLP(ẑl)), where (10)1058

1059

LN(x) =
x− x̄

∥x− x̄∥2 , (11)1060

and x̄ = 1
d

∑d
i=1 xi is the mean of the components1061

of a vector x. The numerator of (11) can be rewrit-1062

ten as a linear transform1063

x− x̄ = (I− 1

d
1)x = Πx, (12)1064

where I is the identity matrix, 1 is the square ma-1065

trix consisting of ones, and d is the dimension of1066

x. Note that this transform is in fact an orthogonal1067

projection to the hyperplane defined by the equa-1068

tion x1 + · · · + xd = 0. As all projections, Π is1069

idempotent:1070

Π2 = Π. (13)1071

Applying (12) and (13) to (9), we can write a 1072

layer-wise linear decomposition for post-layer- 1073

norm Transformers: 1074

M(z) = α(z)Π(z0) +
∑
l

βl(z)Π(MLP(ẑl))+ 1075

+
∑
l

γl(z)Π(MHA(zl−1)) = 1076

= α(z)Π(z0) +
∑
l

βl(z)Π(MLP(ẑl))+ 1077

+
∑
l

∑
h

γl(z)Π(A
l,h(zl−1)), (14) 1078

where α, β, γ are input-dependent scalars, Π is the 1079

projection transform (12), and Al,h denotes atten- 1080

tion head h on layer l. 1081

B Technical details of the experiments 1082

B.1 Preprocessing and models 1083

For text preprocessing, we only replaced consec- 1084

utive spaces, trailing spaces, and a newline char- 1085

acters with one space, as was done by Tulchinskii 1086

et al. (2023). 1087

For embeddings extraction, we used stan- 1088

dard pretrained models from the Hugging- 1089

Face4 library: roberta-base (125M param- 1090

eters), microsoft/phi-2 (2.7B parameters), 1091

bert-base-uncased (110M parameters). We use 1092

each text sample as an input for chosen model and 1093

obtain the resulting embedding from the last layer 1094

of this model. We take the mean pooling of that 1095

embedding to decrease the dimensionality and get 1096

a vector of dimension 768; this is our text feature 1097

vector. 1098

For all further experiments with embeddings, we 1099

use the logistic regression model from the scikit- 1100

learn5 package on the training subset with default 1101

parameters: lbfgs solver, L2 regularization coeffi- 1102

cient C = 1, and maximum amount of iterations 1103

max_iter = 100. 1104

B.2 Computational resources 1105

For all of our experiments we used two servers with 1106

the following computational resources: 1107

• 1 V100 16Gb GPU + 32 CPUs (Intel(R) 1108

Xeon(R) Gold 6151), 126GB RAM 1109

• 2 V100 16GB GPUs + 64 CPUs (Intel(R) 1110

Xeon(R) Gold 6151), 252GB RAM 1111

4https://huggingface.co/
5https://scikit-learn.org/stable/
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Figure 6: Accuracy (vertical axis) as a function of the
number of components removed from the RoBERTa
embedding (horizontal axis).

Figure 7: Accuracy (vertical axis) as a function of the
number of removed components (similar to Fig. 6) for
data with all symbols except English letters, numbers,
and “!”, “?”, “,”, and “.” symbols filtered out.

B.3 Detailed experimental setup on GPT-3D1112

For experiments on the GPT-3D dataset, we con-1113

sider texts generated by either the davinci or GPT-4-1114

o generator on the ith topic from the list and the cor-1115

responding human-written texts on the same topic1116

as one dataset, labeling the generated and human-1117

written texts with “0” and “1” respectively. We1118

use each text sample as an input for the RoBERTa1119

model and take the mean-pooled embeddings to1120

obtain a vector of dimension 768; this is our text1121

feature vector.1122

We split the resulting dataset of these feature1123

vectors into training and test subsets. We train lo-1124

gistic regression on the training subset and test the1125

resulting classifier on the test subset of every other1126

generator we have. The resulting accuracy values1127

comprise the ith row of our resulting diagram. We1128

repeat this process for every considered topic.1129

B.4 Greedy search for embedding components1130

The resulting scores for greedy search of the1131

embeddings components to remove, in both di-1132

rections, SReddit→Wikipedia and SWikipedia→Reddit,1133

are shown in Figure 6. We also provide another1134

similar plot in Figure 7 in the setting where all sym-1135

bols except English letters, numbers, and “!”, “?”,1136

“,”, and “.” symbols have been filtered out. This ex-1137

periment shows that the text preprocessing method1138

can significantly influence the process of choosing1139

the best components.1140

B.5 Layer-wise head pruning on GPT-3D 1141

dataset, exrtended with GPT-4 1142

generations 1143

The GPT-3D dataset contains natural and artifi- 1144

cially generated texts (by two models: GPT-3.5- 1145

davinci-003 and GPT-4-o) in three different do- 1146

mains: Wikipedia articles, long-form question an- 1147

swering from Reddit (general topics), and Stack- 1148

Exchange (more technical texts). For each (do- 1149

main, generating model) pair, the dataset contains 1150

an equal number of generated and natural texts 1151

from that domain; therefore, classes are balanced 1152

in all settings. For each (domain, generating model) 1153

pair, we split the data into training and evaluation 1154

subsets in the 13:2 ratio. None of the evaluation 1155

subsets intersect with any of the training subsets. 1156

Although our main track of research on our GPT- 1157

3D dataset was conducted using GPT-4-o data, we 1158

also generated a small sample of data by the ear- 1159

lier GPT-4 generator. This model is more expen- 1160

sive so the amount of data fit to our budget was 1161

not sufficient for a stable evaluation of all the pro- 1162

posed methods; but below we report interesting 1163

findings obtained by layer-wise head pruning. Ta- 1164

ble 5 demonstrates, that in this data-sparse regime 1165

the performance of OOD transfer of GPT-4 gener- 1166

ations is low, but 1st layer pruning corrects it by 1167

as much as 16%. This observation does not corre- 1168

spond to the results obtained by GPT-4-o genera- 1169

tions. Besides, the quality of cross-model transfer 1170

significantly improved. We believe that this obser- 1171

vation requires an additional study with a larger 1172

GPT-4 dataset. 1173

Below we described the detailed experimental 1174

setup for this study. 1175

The experiment was conducted as follows: first, 1176

a classifier was trained on data for one (domain, 1177

generating model) pair and then evaluated on two 1178

other domains with the same generating model; we 1179

call this the OOD (out-of-domain) setting. Then, 1180

the classifier is evaluated on all three domains but 1181

with a different generating model (Transfer). The 1182

results are presented in Table 5, which reports aver- 1183

age accuracy across all domains. 1184

The first row of the table (Full) contains results 1185

obtained using the unaltered RoBERTa-base model. 1186

Then we separately prune each layer of attention 1187

heads (“turn off” all 12 attention heads of each 1188

layer by zeroing their output); this can be done, 1189

e.g., with the prune_heads method of the RoBER- 1190

TaModel class from the HuggingFace library. Re- 1191
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davinci GPT-4 davinci to GPT-4 GPT-4 to davinci
OOD OOD transfer transfer

Full model 81.3 64.3 66.4 70.4

Pruned layer
#0 83.2 80.1 80.0 83.2
#1 83.4 78.8 74.7 79.2
#2 82.1 78.8 72.7 77.4
#3 81.8 82.0 73.6 78.1
#4 83.4 79.6 71.6 76.4
#5 82.2 78.1 72.9 75.6
#6 84.0 76.3 72.3 74.4
#7 82.8 75.4 70.1 74.6
#8 82.8 72.1 68.5 73.4
#9 83.2 73.2 68.7 71.4
#10 83.1 71.0 68.1 72.8
#11 86.6 68.2 67.3 71.7

Table 5: Average accuracy of artificial text detection
over three domains (Wikipedia, Reddit, StackExchange)
and two generating models (GPT3.5-davinci and GPT4).
Detector is trained on one domain against one generator
and evaluated on other domains (OOD) and on all do-
mains against unseen generating model (transfer). Best
results are given in bold, runner-ups are underlind.

Cross-domain Cross-model
Avg Max ↑ Max ↓ Avg Max ↑ Max ↓

Roberta 73.0 - - 82.8 - -
Bshift 73.0 6.4 -6.8 82.2 1.5 -2.6
CoordInv 72.1 1.1 -3.7 82.1 0.9 -3.4
ObjNum 72.9 0.9 -1.5 83.0 0.7 -0.0
SOMO 72.9 6.8 -3.8 82.1 0.6 -4.1
Tense 72.7 0.4 -1.6 82.8 1.0 -0.4
SentLen 73.0 4.1 -3.0 82.6 0.2 -1.2
SubjNum 72.8 0.4 -1.6 82.9 0.5 -0.4
TopConst 75.1 12.6 -1.8 83.1 2.2 -0.9
TreeDepth 73.9 12.1 -1.4 83.0 1.0 -0.3
WC 74.1 11.0 -8.5 83.0 2.9 -2.9

Table 6: Balanced accuracy results for out-of-domain
classification for different erased concepts on SemEval

sults for these cases are reported in other rows of1192

Table 5.1193

Table 5 shows full results across the layers, indi-1194

cating that pruning the lower layers of the model,1195

especially Layer 0, yields better results.1196

B.6 Concept erasure on SemEval1197

Table 6 reports detailed results on concept erasure1198

on the SemEval dataset. For concept erasure we1199

use an open-source implementation6.1200

C Cross-dataset transfer1201

Table 7 compares the classifiers trained on SemEval1202

dataset with the same setup trained on GPT-3D1203

6https://github.com/EleutherAI/
concept-erasure

SemEval GPT-3D
RoBERTa CD CM CD CM CA

Baseline 73.0 /
76.4*

82.8 /
76.3* 84.1 71.0 70.1

Selected heads 74.3 /
75.6*

80.0 /
75.4* 86.6 79.3 79.2

Selected
coordinates

74.5 /
75.4*

82.6 /
75.3* 85.4 71.9 72.8

Table 7: Balanced accuracy for OOD classification:
cross-domain (CD), cross-model (CM), cross-all (CA).
Numbers with asterisks correspond to cross-dataset
transfer.

Figure 8: IsoScore and cosine similarity of the
RoBERTa embeddings before and after removing their
“bad” components; the embeddings were calculated on
GPT-3D dataset.

data, but tested on SemEval. Surprisingly, in cross- 1204

domain transfer heads and coordinates selection 1205

on GPT-3D leads to an improvement of the per- 1206

formance on SemEval. However, the cross-model 1207

performance degrades. 1208

D Removing “bad” outliers and how it 1209

influences the geometry of embeddings 1210

Previous studies have shown that some dimensions 1211

skew the embedding space greatly and have a dra- 1212

matic influence on its geometry. In particular, 1213

Timkey and van Schijndel (2021) have shown that 1214

the embeddings of BERT, RoBERTa, and some 1215

other Transformer-based models lie in a narrow 1216

cone. To show this, they use the mean cosine simi- 1217

larity of the embeddings: if the cosine similarity of 1218

all embeddings is high, it means that they are simi- 1219

lar to each other along some dimensions; the larger 1220

the average cosine similarity, the less isotropic the 1221

embedding space is. 1222

Rudman et al. (2022) introduced a more complex 1223

tool for measuring the anisotropy of the embed- 1224

ding space: IsoScore. The fundamental motivation 1225

for IsoScore is that it roughly reflects the fraction 1226

of dimensions uniformly utilized by a given point 1227

cloud. According to the authors’ estimation, less 1228
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than 20% of dimensions of the BERT model embed-1229

ding space are utilized uniformly. Larger IsoScore1230

values correspond to more isotropic embedding1231

spaces.1232

Figure 8 shows how removing the components1233

that are “bad” for cross-domain and cross-model1234

generalization abilities influences the IsoScore and1235

cosine similarity scores for RoBERTa embeddings.1236

We see that after removing these “bad” dimen-1237

sions, the embeddings of fake and real texts change1238

their isotropy in different rates, but both become1239

more isotropic in general. Based on this observa-1240

tion, we hypothesize that the isotropy of the embed-1241

ding space can be connected to the model’s gener-1242

alization abilities; we leave testing this hypothesis1243

for future research.1244

E Components removal and PHD1245

We conducted additional experiments to evaluate1246

the influence of removing embedding components1247

(selected with the greedy search outlined in Section1248

3.2 Subspace removing methods) in the RoBERTa1249

and BERT models on the cross-domain and cross-1250

model generalization abilities of the persistent ho-1251

mological fractal intrinsic dimensionality-based1252

method. Figure 9 shows a consistent decrease in1253

accuracy for both cross-model and cross-domain1254

ATD as components are being removed. Such re-1255

moval typically reduces the intrinsic dimension-1256

ality of human-written texts, hence degrading the1257

discriminative power of linear classifiers in ATD.1258

An interesting observation is that the PHD of1259

a newer generation LLM (GPT-4o) is higher than1260

that of human-written texts, while the PHD of the1261

older generation (GPT-3.5-davinci) is lower that of1262

human-written texts. This may explain the poor1263

generalization ability between the models on GPT-1264

3.5-davinci and GPT-4o. See Figure 10 for details.1265

F PCA1266

We investigated the PCA decomposition of the em-1267

bedding spaces of RoBERTa, BERT and Phi-2. We1268

tried to remove components with highest and low-1269

est variance to check how it affects the overall ac-1270

curacy and generalization abilities of the models.1271

The results are shown in Figures 13 and 14.1272

Figure 13 shows that while we remove PCA com-1273

ponents of the RoBERTa embedding space with the1274

largest variance, the transferability between the dif-1275

ferent domains and models drops significantly. At1276

first, the transferability from GPT-4o to GPT-3.5-1277

Test

80.4 71.6 78.7 45.7 33.4 49.7

80.1 72.0 79.2 45.1 33.7 49.5
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Figure 9: PHD-based logistic regression accuracy
before and after components removal, mean accu-
racy in cross-domain/cross-model ATD on GPT-3D:
(a) RoBERTa, full embeddings, (b) RoBERTa after com-
ponents removal, (c) BERT, full embeddings, (d) BERT,
after components removal.

davinci goes down to random; next, transferabil- 1278

ity between different domains of texts generated 1279

with GPT-3.5-davinci goes down to random; and fi- 1280

nally, transferability between GPT-3.5-davinci and 1281

GPT-4o drops down. Interestingly, transferability 1282

between different domains of GPT-4o remains sig- 1283

nificantly higher than random even after removing 1284

90% of the high-variance components. 1285

Figure 14 shows that removing the first PCA 1286

component with the highest accuracy does not af- 1287

fect the classification quality much, suggesting that 1288

it does not play a distinct role in classification. 1289

However, removing 25% of the components with 1290

high variance is damaging for all three models, 1291

while removing the components with low or aver- 1292

age variance does not hurt the model performance. 1293

Overall, we see that high-variance components 1294

in the PCA space generally play some important 1295

role in the generalization ability of all three models 1296

(RoBERTa, BERT, and Phi-2); however, we have 1297

not been able to significantly improve the quality 1298

of classification by simply removing low-variance 1299

PCA components on any model. 1300
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Figure 10: PHD of RoBERTa full embeddings and embeddings after component removal for real/fake texts from the
GPT-3D dataset.

Figure 11: Concept erasure, cross-model setting

G Datasets license1301

We release our dataset under CC BY-SA 4.0 licence1302

agreement. For the information about the licence1303

of M4 (SemEval) subsets, see original paper by1304

Wang et al. (2024b).1305

1306
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Figure 12: Concept erasure, cross-domain setting

Figure 13: Classification quality on PCA components of RoBERTa embeddings on the GPT-3D dataset. Top left —
all components are present; top right — 10% of the components with the largest variance are removed; bottom left —
50% of the components with the largest variance are removed; bottom right — 90% of the components with the
largest variance are removed.
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Figure 14: Mean accuracy on the GPT-3D dataset, depending on the number of PCA components left; e.g., “top
10% components” means that we have removed 90% of the components with the smallest variance.

19


	Introduction
	Related Work
	Methods
	Linear decompositions of embeddings
	Subspace removing methods

	Data
	Results and Analysis
	Conclusion
	Limitations
	Residual subspaces for ATD
	Formal definitions and theory
	Head-wise decomposition

	Technical details of the experiments
	Preprocessing and models
	Computational resources
	Detailed experimental setup on GPT-3D
	Greedy search for embedding components
	Layer-wise head pruning on GPT-3D dataset, exrtended with GPT-4 generations
	Concept erasure on SemEval

	Cross-dataset transfer
	Removing ``bad'' outliers and how it influences the geometry of embeddings
	Components removal and PHD
	PCA
	Datasets license

