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Abstract

Self-supervised entity alignment (EA) aims to
link equivalent entities across different knowl-
edge graphs (KGs) without seed alignments.
The current SOTA self-supervised EA method
draws inspiration from contrastive learning,
originally designed in computer vision based
on instance discrimination and contrastive loss,
and suffers from two shortcomings. Firstly, it
puts unidirectional emphasis on pushing sam-
pled negative entities far away rather than
pulling positively aligned pairs close, as is
done in the well-established supervised EA.
Secondly, KGs contain rich side information
(e.g., entity description), and how to effec-
tively leverage those information has not been
adequately investigated in self-supervised EA.
In this paper, we propose an interactive con-
trastive learning model for self-supervised EA.
The model encodes not only structures and se-
mantics of entities (including entity name, en-
tity description, and entity neighborhood), but
also conducts cross-KG contrastive learning
by building pseudo-aligned entity pairs. Exper-
imental results show that our approach outper-
forms previous best self-supervised results by
a large margin (over 9% average improvement)
and performs on par with previous SOTA su-
pervised counterparts, demonstrating the effec-
tiveness of the interactive contrastive learning
for self-supervised EA.

1 Introduction

Knowledge Graphs (KGs) (e.g., DBpe-
dia (Lehmann et al., 2015), YAGO (Pellissier-
Tanon and et al.) and Wikidata (Vrandeci¢, 2014))
provide structural knowledge about the entities
and relations in real world. These separately
constructed KGs contain heterogeneous but
complementary knowledge. Entity Alignment
(EA) integrates the complementary knowledge
in these KGs via identifying equivalent enti-
ties (Sun et al., 2020b), and thus benefits various
knowledge-driven applications such as question

answering (Cui et al., 2019) and recommendation
system (Cao et al., 2019c).

The mainstream solutions in the literature are
based on deep representation learning, which em-
bed entities into a latent space, and then calculate
the distance between embeddings as the evidence
for EA. These approaches could be roughly clas-
sified into three lines: KG structure embedding-
based methods (Chen et al., 2017; Sun et al., 2017a)
utilize seed alignments to guide the representation
learning of entity and relation; Graph-based meth-
ods (Wang et al., 2018a; Liu et al., 2020b) employ
Graph Neural Networks (GNNs) (Kipf and Welling,
2016; Velickovié et al., 2017) to enhance the entity
embeddings by utilizing various entity information
and propagating the seed alignments to the entire
KG; BERT-based method (Tang et al., 2020) di-
rectly fine-tunes multilingual BERT and achieves
the SOTA performance. Despite great performance
achieved, they rely on seed alignments provided by
humans during the training process. As the acquisi-
tion of seed alignments is usually time-consuming
and labor-intensive (Liu et al., 2021c¢), it is hard to
apply them to real-world EA scenarios.

Hence, self-supervised EA under the unsuper-
vised setting (i.e., matching entities without any
seed alignment) starts to attract research attention.
One pioneer work is EVA (Liu et al., 2021b), which
used visual semantic representations of entities to
align entities in heterogeneous KGs in a fully unsu-
pervised setting. Very recently, SelfKG (Liu et al.,
2021c) drew inspirations from contrastive learning
approaches, which originally targeted computer vi-
sion tasks by leveraging instance discrimination
and contrastive loss (e.g., MoCo (He et al., 2020),
SimCLR (Chen et al., 2020b)), and gave a con-
trastive learning framework for self-supervised EA.
Despite their success, the following two critical
issues still need further investigation.

How to find pivots for cross-KG interaction
in a self-supervised EA framework? EA is essen-



tially building inter-KG links, and thus the cross-
KG information interaction is critical. Existing
methods achieve such interaction via explicit su-
pervision (seed alignments) or implicit signals (im-
ages as visual pivots). SelfKG puts unidirectional
emphasis on pushing sampled negative entities far
away rather than pulling positively aligned pairs
close, as is done in the well-established supervised
EA. However, its negative sampling can only sam-
ple entities from the same source KG to avoid con-
flict, which blocks the direct cross-KG information
interaction. Therefore, it is necessary to rethink
how to design a self-supervised EA framework with
direct cross-KG interaction.

How to learn comprehensive KG embeddings
and jointly utilize entity structural and seman-
tic information? Previous supervised methods
have validated the effectiveness of various entity in-
formation (e.g., relation, attribute, description) (Wu
et al., 2019a; Liu et al., 2020b; Tang et al., 2020).
While in the un/self-supervised EA, limited fea-
tures are focused, e.g., entity image (Liu et al.,
2021b) and name label (Liu et al., 2021c). How
to fully utilize and integrate the structural and se-
mantic entity information in self-supervised EA
remains another issue.

To address the above problems, we propose a
model named Interactive Contrastive Learning for
self-supervised Entity Alignment (ICLEA). We de-
sign a novel interactive contrastive learning mech-
anism in a self-supervised EA framework by con-
structing pseudo-aligned entity pairs to establish a
direct information interaction channel for the two
KGs. Inspired by previous supervised approaches,
we introduce more important side information into
self-supervised EA. Specifically, we separately en-
code entity name labels and descriptions by differ-
ent pre-trained models, then organically combine
them to provide powerful initial embeddings for en-
tities. We propose a relation-aware neighborhood
aggregator to better leverage the structural and se-
mantic information brought by the KGs’ relations.

The main contributions of our work are threefold:
1) We design an interactive contrastive learning
mechanism to achieve the direct cross-KG infor-
mation interaction in a self-supervised EA frame-
work. 2) We propose appropriate modules to better
utilize and integrate the structural and semantic
entity information for self-supervised EA. 3) Ex-
perimental results show that ICLEA outperforms
the best self-supervised baseline by a large margin

(over 9% average improvement), and performs on
par with previous SOTA supervised methods while
maintaining more stable model training. Our work
significantly narrows the gap between supervised
and self-supervised EA approaches!.

2 Problem Definition

Definition 1 (Knowledge Graph). A knowledge
graph is represented as G=(E,R,T,S), where
eache € £, 7 € R, t = (e;,1,¢5) €T (ej,e5 €E
) represent an entity, a relation and a fact respec-
tively, and s(e) = {ne,de,a.} € S denotes the
side information of entity e, i.e., entity name, tex-
tual description and attribute value. We denote
the set of one-hop neighbors of entity e as N, of
size ]./\fe , namely, the entities that are directly con-
nected to e in KG G via fact triples, where N, =
{e/|(e,r,e') € TA(e,e € E)}U{e | (¢/,r,e) €
T A (e,e € &)}

Knowledge graphs are often separately con-
structed for various goals, and thus contain het-
erogeneous but complementary knowledge. En-
tity alignment is to identify entities from different
knowledge graphs (different languages or sources)
that describe the same real-world object, and can
be formally defined as follows.

Definition 2 (Entity Alignment). Given two dif-
ferent KGs Gy and Gy, EA is to learn a rank-
ing function f : & x & — R to calculate the
similarity score between two entities, based on
which we rank the correctly aligned entity es as
high as possible among all entities of £ with
a queried entity ey € &;. Pre-aligned entity
pairs T = {(e1,ea) | e1 € E1,e3 € &, €1 > €2}
are provided, where <> means that the e from Gy
and the es from Go are equivalent.

According to the use of Z, the EA task is classi-
fied into (semi-)supervised and self-supervised or
unsupervised settings. The (semi-)supervised set-
ting leverages part of Z as supervision signals for
learning, while the self-supervised or unsupervised
setting does not require any supervision.

3 The Proposed Approach

Although supervised EA methods achieve SOTA
performance, their dependence on supervision sig-
nals limits real-world applications. In contrast, self-
supervised methods show the ability to obtain com-
petitive performance without any supervision, and

"We will release our code and data under an open source
license after the review process.
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Figure 1: The overall framework of ICLEA. It consists of three main parts: (1) KG semantic encoder; (2) The
relation-aware neighborhood aggregator; (3) Interactive contrastive learning mechanism.

have much better scalability. To fully exploit the
potential of self-supervised EA approaches, two
crucial issues remain to be addressed. 1.How to
establish a direct cross-KG information interac-
tion channel for a self-supervised EA framework
instead of only performing intra-KG contrastive
learning? 2.How to fully utilize and integrate the
structural and semantic KG information?

To address the above issues, we introduce the
interactive contrastive learning for self-supervised
EA framework, which contains three parts: 1. A
KG semantic encoder is utilized to encode the
names, descriptions of entities and relations for pro-
viding efficient initial embeddings. 2. A relation-
aware neighborhood aggregator is introduced to
fully exploit relations’ structural and semantic in-
formation so as to update entity representations.
3. An interactive contrastive learning mecha-
nism is proposed to perform contrastive learning
between pseudo-aligned entity pairs in two KGes,
thus promoting the direct learning of cross-KG in-
teractions. Fig. 1 shows the overall framework of
our proposed approach ICLEA.

3.1 KG Semantic Encoder

KG semantic encoder aims to fully capture the se-
mantics of entities and relations by leveraging their
names and descriptions. Since pre-trained language
models (PLMs) have achieved remarkable progress
in NLP, we decide to leverage LaBSE (Feng et al.,
2020), a language-agnostic pre-trained sentence
model, for encoding the name. Besides, we choose
SentenceTransformers?2, a transformer-based sen-
tence embedding framework, to obtain entity de-
scription embeddings. We choose them due to their

Zhttps://github.com/UKPLab/sentence-transformers

outstanding empirical performance in capturing
precise semantics for phrases and long sentences
while helping us to cross the multilingual barrier.

The names of each entity e and relation r are
usually composed of phrases. We utilize the tok-
enizer of LaBSE to obtain the tokens of the entity
name N, and relation name n,., and get correspond-
ing embeddings through LaBSE model fy, .-
Next, a mean pooling operation is applied to the
embedding of each token, followed by an Lo nor-
malization.

b, = HMean(feLaBSE (nm))HLQ s Nz € {1, nr )
ey
Moreover, entity description contains rich se-
mantics that allows PLMs to encode with more con-
text information. The entity description is usually
composed of one or more sentences and contains
multifaceted features related to the entity. For each
description, we select the first L, characters to
feed into the SentenceTransformers model fy..
and get the representation of entity description d.,

ha, = |l fosr (de)l , - )

Finally, we get the entity e’s representation em-
bedding ﬁe by concatenating entity name embed-
ding Ene and entity description embedding ﬁde, and
more details are available in Appendix A.1,

l_ie = Concat(}_ine , l_ide ). 3)

3.2 Relation-Aware Neighborhood
Aggregator

Relation-aware neighborhood aggregator aims to
update entity embeddings by performing message
passing with the help of KG relation information.



Refer to 3.3, it has the online and momentum parts.
These two parts have the same model structure, and
they have different parameter updating strategies.
We take the online part as an example to introduce
this module. The relations can bring us two aspects
of crucial information: structural — neighbor en-
tities, which provide valuable context information
for understanding the center node, and semantic
— neighbor relations, which capture rich semantic
information of edges adjacent to the given entity. In
this work, we apply GAT (Velickovié et al., 2017)
as a backbone network due to its effectiveness.
Structural Aggregator. The aggregation of neigh-
bor entities is performed by considering both en-
tities’ importance and their relations to the center
node. One vanilla GAT aggregates all neighbor
entity embeddings for the center node to model the
importance of different entities, which treats all
relations equally, formally,
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where W is the linear transformation’s weight ma-
trix. The attention mechanism is a single-layer
feedforward neural network parametrized by a
weight vector 3 K is the multi-head attention
number. o is a nonlinear activation function such
as LeakyReLU. «;; is the normalized attention
coefficient. || is vector concatenation.

Another extended GAT is proposed to model the
importance of different adjacent relations. It uses
relation specific attention heads as relation-wise
gates to control information flow from neighbor
entities and obtains updated entity embedding ﬁft,

B =l | S BEWER;

JEN;
i = P (7ig) ®)
Y Y ken, exp (vik)

Yij =0 (U (Fijwry +Br1.) W2 +Brzv) ;
ij ij ij ij

where 77; is trainable relation specific embedding
between entity ¢ and entity j. W,,. and B, are
relation’s transformation and bias weight matrix.

Semantic Aggregator. Relation’s name in KGs
usually contains certain semantic information,
which is helpful to obtain better entity represen-
tations. Semantic aggregator aims to aggregate

and fuse neighbor relations’ semantic information
into the center entity. In this work, we apply a
GAT that is same as Eq. 4 to fuse neighbor rela-
tion name embeddings into corresponding entity
embeddings. Specifically, for each ﬁj in Eq. 4, we
replace it with a average neighbor relation embed-
ding h; = K%] foo P, , where 1., is the z-th
relation’s name between entity 7 and entity j, K;
is the total number of relations between enitty 7 and
entity j, and ﬁnw is the relation name embedding,
which can be calculated from Eq. 1. For ﬁk inEq. 4,
we replace it with /ﬁk using a similar method. In
this way, we can obtain l_ife of entity ¢ based on its
neighbor relation names.

Finally, we use a fully-connected layer to fuse
three aspects of embeddings Ef“ Eft, and ﬁfe to
obtain the final entity representation j;,

T = MLP(Concat(ﬁf”, Hft7 Efe)) (©)

3.3 Interactive Contrastive Learning

Interactive contrastive learning strategy is designed
to learn direct cross-KG interactions for self-
supervised EA. It mainly consists of three parts:(1)
Momentum contrastive learning mechanism sam-
ples negative entities and pushes them far away
from the positive one, thus aligned ones are rel-
atively drawn close. (2) Negative sample queues
store previous encoded batches as negative samples
for the positive batch. (3) Interactive contrastive
learning mechanism constructs pseudo-aligned sets
during training and establishes cross-KG direct in-
formation interaction. It pulls the positive samples
and pseudo-aligned entities closer, while pushing
them far away from the negative samples in KGs.

Momentum Contrastive Learning Mechanism.
Given a training KG G;’s initial entity embed-

dings Hy = {ﬁl,i_i% .. .,ﬁlgl‘}, self-supervised
EA representation learning aims to learn an online
embedding tranformation function fy that maps Hy
t0 Vi = {8, 8, ..., 5} with & = f5 (hz)
such that ¥, best describes Em Instance-wise
contrastive learning achieves this objective by op-
timizing a contrastive loss. Following SelfKG,
we use the Noise Contrastive Estimation (NCE)
loss(Gutmann and Hyvérinen, 2010). In practice,

we jointly optimize the NCE loss on both source
KG G, and target KG Go, defined as,

1E] exp (U + U5,/T)
Lnceg, = > —log I ) =
1 =1 exp (Tg - 00, /7) + > h—1 €XP (vw . H;C/T)

, (D



where, v, and v/, are positive embeddings for en-
tity e;, and v}, includes 7 negative samples’ em-
beddings, and 7 is a temperature hyperparame-
ter. These embeddings are obtained by feeding
l_ix to a momentum encoder parameterized by ¢,
7. = fo(hy), where 6 is a moving average of 0,

0« mx0+(1—m)x0,me]|0,1). ®)

Negative Sample Queues. While performing mo-
mentum contrastive learning for EA, we need to
sample negative entities from the same source KG
to avoid the conflict by simply excluding the posi-
tive one. We maintain two negative queues for both
KGs that store previous encoded batches as nega-
tive samples. As shown in the middle part of Fig. 1,
when a new batch Batch' arrives, we add it to the
corresponding queue tail, and the head Batchy is
dequeued as a positive sample batch Batch,. In
the early stage of training, we do not perform any
parameter update until one of the negative queues
reaches the predefined length L + 1, where L for
the number of previous batches used as negative
samples and “1” for the dequeued positive batch.
Let the numbers of the entities in KGs |&1], |€2],
the batch size B and L is constraint by,

(L+1)x B<min(&],[&]).  ©

Finally, the real number of negative samples used
for each positive batch’s entity is (L + 1) x B — 1.
Interactive Contrastive Learning Mechanism.
This mechanism aims to build an direct informa-
tion interaction channel for two KGs during train-
ing. We construct pseudo-aligned entity sets Sg,
and Sg, for each source KG to the correspond-
ing target KG at the beginning of each training
epoch. Given initial embeddings of source and tar-
get KGs Gy and G5, Hy and Ho, we feed them into
the online encoder fy to obtain the corresponding
embeddings V1 and V2. For each entity ey, in
G1 and ey, in G2, we match the most similar en-
tities €55 and er, from the corresponding G» and
G1. We predefine a Lo distance threshold A, if
Dis(elp,ezAp) or Dis(ezq, €, ) is less than A, we

add the pair of entities <61p, €5 > or <€2q, elq> to
the corresponding pseudo-aligned set Sg, or Sg,.
We apply Faiss® for obtaining pseudo-aligned sets
efficiently. It is worth noting that distinct from
the previous bootstrapping strategy (Sun et al.,
2018) that maintains high-confidence aligned entity

3https://github.com/facebookresearch/faiss

pairs iteratively, our approach focuses on generat-
ing larger pseudo-aligned sets automatically, which
liberates us from the caution of introducing a few
noises. To incorporate pseudo-aligned sets into the
contrastive learning process we introduce an addi-
tional NCE loss L into the training process, and
in Eq. 10 we take the example of the KG Ql, where
Uy = fg(hlp) v = e(h ) hlp and hA is entity
embeddings. The hyperparameter B balances the
sensitiveness of the model to the negative sample
v, and ¥,_from different KGs. A pseudo-code of
our algorithm is given in Appendix B,

1€1] exp (vg - vy’ /T
Lieg Z B- |: log p( /7) :|
exp (3 - 3/ /7) + Ly exp (v - 7, /7)
+(1—-p3) - |:— log exp (Vi - vi'/7) :| .
exp (vy - vg'/T) + 22:1 exp (v} 172k /T)

(10

Based on the above discussion, we can get the
overall optimization goal £ of ICLEA,

> Lnceg, + Licly - an

i€{1,2}

4 Experiments

In this section, we evaluate our proposed approach
on DBP15K, a widely used benchmark for EA. We
first introduce the experimental settings, then re-
port the overall results, and finally conduct ablation
studies as well as parameter sensitivity analyses.

4.1 Experimental Settings

Dataset. The DBP15K dataset is originally built
by (Sun et al., 2017b), which includes three cross-
lingual datasets extracted from DBpedia*. Each
contains 15, 000 reference alignments between En-
glish (EN) and one of the other languages, i.e., Chi-
nese (ZH), Japanese (JA) and French (FR). Tab. 2
presents the detailed statistics. To make wide com-
parisons, we also report the results on its translated
version (Xu et al., 2019). Moreover, to make the
comparisons fair, we use Google Translate to trans-
late all non-English entity descriptions into English
when using translated DBP15K in our experiments.
Evaluation Metrics. We use Hits@N as the eval-
uation metric. Hits@N means the proportion of
correct entities that rank no larger than N (N is 1
and 10), and higher Hits@N indicates better perfor-
mance. We further calculate the average Hits@1 of
three subtasks to measure the overall performance.

*http://downloads.dbpedia.org/2016-04/



Model \ DBP15Kz en |

DBP15K_en \

DBP15Ksg n \

AVG Hits@1
| Hits@1 Hits@10 | Hits@l Hits@10 | Hits@1 Hits@10 |
Supervised
MTransE 30.8 61.4 27.9 57.5 24.4 55.6 27.7
JAPE 41.2 74.5 36.3 68.5 324 66.7 36.6
MuGNN 494 84.4 50.1 85.7 49.5 87.0 49.7
BootEA 62.9 84.8 62.2 85.4 65.3 87.4 63.5
MRPEA 68.1 86.7 65.5 85.9 67.7 89.0 67.1
JEANS 71.9 89.5 73.7 91.4 76.9 94.0 74.2
GM-Align™ 67.9 78.5 74.0 87.2 89.4 95.2 77.1
HGCN* 72.0 85.7 76.6 89.7 89.2 96.1 79.3
AttrGNN™ 79.6 92.9 78.3 92.1 91.9 97.8 83.3
RNM™* 84.0 91.9 87.2 94.4 93.8 95.4 88.3
EPEA* 88.5 95.3 924 96.9 95.5 98.6 92.1
CEAFF 79.5 - 86.0 96.4 87.3
HMAN 87.1 98.7 93.5 99.4 97.3 9.8 92.6
BERT-INT 96.8 99.0 96.4 99.1 99.2 99.8 97.5
Unsupervised or Self-supervised
MultiKE 50.9 57.6 39.3 48.9 63.9 71.2 514
EVA 75.2 89.5 73.7 89.0 73.1 90.9 74.0
SelfKG 74.5 86.6 81.6 91.3 95.7 99.2 84.0
SelfKG™ 82.9 91.9 89.0 95.3 95.9 99.2 89.3
ICLEA 88.4 97.2 924 97.8 99.1 99.9 93.3
ICLEA* 92.1 98.1 95.5 98.8 99.2 99.9 95.6

Table 1: Overall results on DBP15K. Methods marked wit

“*” use a translated version of DBP15K. The best

results in supervised/unsupervised or self-supervised settings are marked in underline/bold.

Datasets ‘ Ent. Rel. R-Tri. Ent Alignments.
2N | i | s T i dsom
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Table 2: Statistics of the simplified DBP15K datasets.

Baselines. We compare our ICLEA against two
groups of baselines, i.e., semi-supervised and
un/self-supervised EA approaches. The latter in-
clude MultiKE (Zhang et al., 2019), EVA and
SelfKG, and the former are further divided into
three branches: 1) KG structure embedding-based
methods that only use the KGs’ structure informa-
tion: MTransE (Chen et al., 2017), JAPE (Sun et al.,
2017b), BootEA (Sun et al., 2018), MuGNN (Cao
et al.,, 2019a), MRPEA (Shi and Xiao, 2019)
and JEANS (Chen et al., 2020a), 2) Graph-based
methods that leverage GNNs to utilize various
KG information: GM-Align(Xu et al., 2019),
CEAFF (Zeng et al., 2019), HGCN(Wu et al.,
2019b), AttrGNN (Liu et al., 2020b), RNM (Zhu
et al., 2020b) and EPEA (Wang et al., 2020), 3)
BERT-based methods that directly use multilingual
BERT to deal with EA: HMAN (Yang et al., 2019)
and BERT-INT (Yang et al., 2019).

Implementation Details. Our model is imple-
mented with Pytorch 1.7.0. We employ Adam

as our optimizer with a learning rate le—6 and
gradually reduce it to maintain the stability of train-
ing. The number of training epochs is 300, the
batch size is 64, momentum m is 0.9999, similar-
ity threshold A is 1.0, temperature 7 is 0.08 and
the size of negative queue is 32. We choose Lo
distance as entity embedding distance metric for
pseudo alignment generation and set 3 to 0.5 in
interactive contrastive learning. More implementa-
tion details are available in Appendix A.

4.2 Main Results

Tab. 1 lists the overall performance. For all base-
lines, we take the reported results from the original
papers or SelfKG (Liu et al., 2021c). From the
results, we have the following observations:

Comparisons with semi-supervised methods.
ICLEA outperforms almost all previous supervised
models on both original and translated DBP15K,
and achieves results comparable to BERT-INT (the
strongest baseline). They use multi-lingual BERT
directly to help with entity alignment. ICLEA
achieves the same excellent results as BERT-INT
on the FR_EN subtask, where the BERT-INT’s
HIT@1 is 0.1% higher than that of ICLEA, while
the ICLEA’s HIT@10 is 0.1% higher than that of
BERT-INT. The gap between ICLEA and BERT-
INT is only 4.2% in average Hits@1, and it is
further narrowed to 1.9% on the translated dataset
(though BERT-INT does not translate dataset di-



88.0 83.0

82.0
81.0
80.0
79.0
78.0
77.0

86.0
o
©840
£82.0)
Zs2.
80.0]
78.0

0 50 100 150 200 250 300 0 50 100 150 200 250 300

a) Hits@!1 wi its@1 withou
Hits@]1 with ICL b) Hits@1 without ICL
98.0 89.0 7.4
88.0 R LT © —8- DBP15K zh_en Hit@1
e N 88.5| ~# DEPISKzn_en ita10 97.2
86.0| &~ . 96.0 9%
584.0 N 88.0 YN 7.0
ges- \ 940 % o, pee
£82.0 . 87.5 o o [96.6
\
80.0 -8~ DBP15K zh_en Hit@1 %\\ 92.0 87.0 _.,_—""{ 96.4
78.0] DBP15K zh_en Hit@10 ‘\‘ N e == 96.2
10900 8655y

.04 0.99 0.999 0.9999 0.99999

0.08 0.1 0.5
Different values of T Different values of m

(e) Temperature™ (f) Momentumm

-~ BatchSize(NegativeSize=32) ‘ 88.0| —#= DBP15K zh_en Hit@l ~—-—
88.0 NegativeSize(BatchSize=32) - DBP15K zh_en Hit@10 7
86.0 PE4 96.0_
Pl "©‘
84.0 -
o 94.02
% T
82.0 e
-
80.0| &~ 92.0
16 32 6 128 256 512
Size Different description length

(c) NQ size and batch size (d) Description length

97.4 97.4

88.4) o 88.4) .
BN 972 gg2 PN °7:2
88.2 o N : " AN 97.0
s > . 88.0 =3
g0l 7 » 97.0 z X 96.85,
’ \ 9.8 578 % 96.62
87.8 N 87.6| ©7 N OF
N0 1966 g4l N %964
\ 7.41 —— DBPI5K zh_en Hit@1 S 5
%196.4 g7.2 DBP15K zh_en Hit@10 ®96.
1.2 0.3 0.4 0.5 0.6 0.7 1.0 96.0

0.8 1.1 3 .
Different distance threshold A Different values of B

(g) Similarity threshold A (h) Hyperparameter 3
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training epochs with and without ICL.

rectly, it uses multi-lingual BERT). It is worth
mentioning that BERT-INT actually fine-tunes the
whole multi-lingual BERT, whose parameter scale
is 10 times larger than ICLEA (110M vs 11M). In
a nutshell, ICLEA significantly narrows the gap
between supervised and self-supervised EA.
Comparisons with un/self-supervised methods.
In the unsupervised or self-supervised setting,
ICLEA notably outperforms all those baselines
with a large margin. Even compared with the
strongest baseline SelfKG, ICLEA improves the
average Hits@1 score by 9.3%/6.3% on the origi-
nal/translated datasets. Note that the improvement
is more significant in original datasets, especially
in ZH_EN subtask, indicating that ICLEA is less
language dependent and suitable for dealing with
the cross-lingual entity alignment tasks.
Multi-lingual bias phenomenon. ICLEA exhibits
multi-lingual bias consistent with most previous
methods, i.e., performing best on the FR_EN and
worst on the ZH_EN. Note that EVA has a rela-
tively balanced performance on three datasets due
to the introduction of language-independent entity
images. This inspires us that multi-modal entity in-
formation utilization in self-supervised EA would
be a promising future direction.

4.3 Ablation Study

We perform ablation study to evaluate the effective-
ness of all model components. Accordingly, we
implement four variants of ICLEA by removing en-
tity description encoder (w/o Des.), relation-aware
neighborhood aggregator (w/o Rel.), momentum
contrastive learning (w/o MCL) and interactive con-

trastive learning (w/o ICL). Tab. 3 presents the re-
sults, which show that the removal of each compo-
nent has a negative impact on the performance.

Specifically, w/o Des. has the largest negative
impact on performance, demonstrating the effec-
tiveness of entity description. w/o Rel. causes rela-
tively larger decreases in Hits@1 than Hits@10,
indicating the importance of relation and struc-
ture in distinguishing more ambiguous cases. w/o
ICL brings a more notable performance degrada-
tion, illustrating the importance of the interactive
contrastive learning mechanism for self-supervised
EA. Besides, we further investigate how the perfor-
mance changes during the model training with and
without ICL. As shown in Fig. 2a and 2b, without
ICL, the Hits@1 score reaches the peak after tens
of epochs and then shows a sharp drop, while using
ICL brings a more stable model training.

DBPISKzuen | DBPISKmew | DBPISKem ex

Model ‘
| His@l

Hits@10 ‘ Hits@1 Hits@10 ‘ Hits@1 Hits@10

ICLEA
w/o Des.
w/o Rel.
w/o MCL
w/o ICL

88.4
80.4
87.0
86.7
83.6

97.2
91.4
96.7
96.5
93.7

924
87.3
91.5
90.2
88.8

97.8
94.1
97.7
97.1
96.2

99.1
97.3
98.8
98.6
97.5

9.9
99.5
99.9
99.7
99.8

Table 3: Ablation study of ICLEA on DBP15K.

4.4 Hyper-parameters Analyses

Negative queue size and batch size. For these
two parameters, we perform grid search from 8 to
64. Fig. 2c shows that the performance exhibits a
fluctuating upward trend when fixing batch size to
64 and increasing the size of the negative queue.
Meanwhile, Fig. 2c also shows the performance in-
creases steadily with larger batch size when setting



queue size to 64. While both expanding negative
queue and batch size can improve the performance,
a larger batch size usually brings more computa-
tional cost than the negative queue.

Entity description length. As shown in Fig. 2d,
a longer description brings better performance be-
cause it can provide more semantic information.
Considering the computation cost and the descrip-
tion length distribution in the datasets (see Ap-
pendix for details), we set the length to 512.
Temperature 7 and momentum coefficient m.
The temperature 7 regulates the degree of atten-
tion to difficult samples (Wang and Liu, 2021) and
the momentum coefficient m prevents sensitive up-
date. We empirically choose both parameters from
finite sets and present the results in Fig. 2e and
Fig. 2f, which show that a relatively larger m (e.g.,
0.9999) leads to better performance and 7 = 0.08
is a good cut-off point.

Distance threshold \ and hyperparameter (.
Distance threshold A controls the selection of
pseudo alignments. A larger A means more pseudo
alignments for cross-KG interaction, while possi-
bly introducing more noise. As shown in Fig. 2g,
it is a good balance point when A = 1.0. The hy-
perparameter (3 is the trade-off factor between the
positive samples and negative samples from differ-
ent knowledge graphs. As shown in Fig. 2h, we
find that the sensitivity of the model is almost the
same for both, and thus set 3 to 0.5.

5 Related Work

In this section, we briefly review representative
efforts of the EA task to present the trends and
promising directions in this domain.

EA task aims to identify the equivalent entities
from heterogeneous knowledge graphs for better
curation of them (Tang et al., 2006). The early
efforts mostly consider this task under semi- or
fully supervised setting (Tang et al., 2006; Li et al.,
2008). From early KG structure embedding-based
methods (Chen et al., 2017; Sun et al., 2018; Li
et al., 2019) to GNNs-based methods (Wang et al.,
2018b; Cao et al., 2019b; Zhu et al., 2020b,a; Mao
et al., 2020a; Wong et al., 2020; Sun et al., 2020a;
Mao et al., 2020b; Yu et al., 2021), a series of ex-
plorations have proven that structural information
is indispensable in EA tasks. When the research
comes into the era of pre-trained language models
(PLMs), the multilingual PLMs further improve the
SOTA performance of semantic EA models (Wu

et al., 2019b; Tang et al., 2020) and attracted more
attention for this field. Besides the high perfor-
mance achieved by these (semi-) supervised mod-
els, researchers begin to consider the efficiency and
practicality with new methods such as adversarial
learning, active learning, etc (Pei et al., 2020; Zeng
etal., 2021; Mao et al., 2021; Liu et al., 2021a).

However, the imperative need for labeled data
still bridges the gap between these models and real-
world applications, for annotating the data of entity
alignment is naturally time-consuming and labor-
intensive (Liu et al., 2020a). Therefore, several
pioneer approaches (Zhang et al., 2019; Liu et al.,
2021b, 2020a) attempt to solve the problem under
unsupervised settings, i.e., matching the entities
without any seed alignment. Strikingly, the suc-
cess of self-supervised training in computer vision
community (He et al., 2020; Chen et al., 2020b)
provides new directions for unsupervised entity
alignment models. As there are few attempts that
launch self-supervised training in this task (Liu
et al., 2021c), we recognize that it is urgent and
purposeful to set up a paradigm so that the expe-
rience of existing EA methods can be adapted to
this new direction. Therefore, we propose ICLEA,
which jointly considers the structural and semantic
information in the self-training process, and calls
for more efforts in self-supervised EA.

6 Conclusion and Future Work

In this work, we propose a model named Interac-
tive Contrastive Learning for self-supervised Entity
Alignment — ICLEA. To better jointly utilize the
entity’s structural and semantic information, we
separately encode entity name labels and descrip-
tions with the help of PLMs and propose a relation-
aware neighborhood aggregator to better leverage
the structural and semantic information brought by
KGs’ relations. We design an innovative interac-
tive contrastive learning mechanism by construct-
ing pseudo-aligned entity pairs to establish a direct
information interaction channel for the two KGs.
Experimental results show that ICLEA performs on
par with previous SOTA supervised counterparts
and outperforms previous best self-supervised re-
sults by a large margin while maintaining more sta-
ble model training. We also present several promis-
ing directions, including the utilization of entity
attributes, solving multi-lingual bias problem and
applying prototypical contrastive learning, whose
detailed discussions are in Appendix C.
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A Implementation and Training Details

‘We train and evaluate all our models on a machine
with the specifications listed in Table 4.

Table 4: Hardware specifications of the used machine.

hardware specification
RAM 252 GB
CPU AMD® EPYC 7402 24-core 48-thread
GPU NVIDIA® GeForce RTX 3090 (24 GB) x 8

A.1 Dataset

We process the data and conduct an experimental
study on the DBP15K datasets, with the original
datasets from (Sun et al., 2017b) and (Tang et al.,
2020).

First, we simplify the names of entities and
relations. The names of entities or relations in
DBP15K usually have a string of useless prefixes,
such as “http://dbpedia.org/resource/Jay_Chou”
and “http://dbpedia.org/property/nation”, we re-
move the useless prefixes and replace the under-
scores with empty spaces, leaving meaningful en-
tity and relation names. (Tang et al., 2020) pro-
vides the description data of entities in DBP15K,
and distribution of the number of entities based on
description length in DBP15K dataset is shown in
Figure 3, the description length of most entities
is less than 256, but in order to fully consider all
entities, we set the extracted description length to
512, while 512 is also the maximum length that can
be extracted from most PLMs. After processing,
the new entity names, relation names, and entity
descriptions allow PLMs to handle them in an effi-
cient and unambiguous way.

Then, we need to map each entity separately to
a unique index in each pair of KGs. We use the
DBPI15K dataset provided in (Tang et al., 2020)
as our original dataset and follow the indexes they
created in our experiments, since they have already
completed this processing step.

In terms of obtaining 1-hop neighbors, we treat
KGs as undirected graphs, that means we use the
relational triples in the datasets to find all entities
connected to a given entity, regardless of the direc-
tion of the connection.

Finally, we rebuild the dataset and use the Dat-
alLoader of Pytorch’s torch.utils.data package to
package our data and create a batch process, with
inputs containing the names of the central and adja-
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cent entities, their descriptions and adjacency ma-
trix.

The DBP15K dataset we used can be down-
loaded via the following links:

* https://github.com/nju-websoft/JAPE
* https://github.com/kosugil 1037/bert-int

A.2 Training Details

Our model is implemented by Pytorch with
versionl.7.0, trained with following parame-
ters:batch size=64, negative queue size=32, train-
ing epochs=300, description length=512, max
neighbor num=15, m=0.9999, 7=0.08, warm-up
epochs=24 and random seed=37. We use only
NCE loss in the first 20-30 epochs to warm up
the network, within this range, there is not much
difference in the performance of the model so we
set warm-up epochs to 24. The results prove that
the model can acquire more accurate pseudo-entity
pairs after the warm-up epochs.

We employ Adam as our optimizer with a small
learning rate 1e—6 and gradually reduce our learn-
ing rate to maintain the stability of training.

To extract information at the semantic level,
we use LaBSE to obtain entity names and rela-
tion embeddings, LaBSE is a SOTA language-
agnostic sentence embedding PLM which is trained
on 109 different languages. SentenceTransform-
ers are used to obtain entity description embed-
dings as input for subsequent layers. Sentence-
Transformers is a Python framework for SOTA
sentence, text and image embeddings. We use the
paraphrase —multilingual —mpnet —base —v2
model provided by SentenceTransformers to ex-
tract sentence representations, which trained on
parallel data for 50+ languages, is selected to ex-
tract sentence representations because of its best
performance tested in our experiments. In neigh-
bor aggregator layer, both input_size and out-
put_size =LaBSE_DIM + DESC_DIM, and in
fully-connected layer, input_size=LaBSE_DIM Xx
5 and output_size = LaBSE_DIM x 3, where
LaBSE_DIM and DESC_DIM are equal to 768.

Each batch consists of center entity embedding,
neighbor embeddings, relation embeddings and
their adjacency matrix. We use neighbor embed-
dings, relation embeddings to obtain two types of
entity embeddings as the input of vanilla GAT. Ex-
tended GAT is used to obtain relation-aware entity
representations. Finally, we use a fully-connected



5000 f—— 6000
I EN
4000 5000
wn (%)
€ IS
53000 5 4000
2,000 23000
] -]
& 2000
1000 1000

05-0

w
a
=3
IS
=3
=3

05-0
00T-0S
ST-00T
0Z-0ST
52-00Z

00€-052
0St-00t
005-0St
001-0S
ST-00T
0Z-0ST

8
o
&
S S O 3
Description length

(a) DBP]SKZH_EN

52-002

S S O
Description length

(b) DBP15Ka g

- A == FR
= EN 5000 = EN
%)
£ 4000
2
?3000
€ 2000
w
1000

0S-0

P
a
: Q

A
1=}
S

w
a
=]
A
=)
=3

00€-0S2
0St-00t
005-0St
001-0S
ST-00T
0Z-0ST
52-002
00€-0ST
0Sv-00t
005-0St

Py Py
o o
@ Q@
W W
vy I
) )
n n

S S O
Description length

(C) DBP1 SKFR_EN

Figure 3: Distribution of the number of entities based on description length in DBP15K.

layer to fuse three aspects of embeddings to obtain
the final entity representation. It is worth noting
that we perform normalization at the end of both
GAT and fully-connected layer.

We randomly select 5% from the original train-
ing set as the validation set in order to early stop-
ping. All experiments are conducted on a Ubuntu
server with GPU(GeForceRTX 3090). Each evalu-
ation is repeated five times with the same random
seed and averaged results are reported.

A.3 Nearest Neighbor Search

To quickly obtain pseudo-entity pairs and evalu-
ate the model, we use Faiss, a library for efficient
similarity search and clustering of dense vectors.

We first apply IndexFlatL.2 based on L2 distance
as an indexer to construct indexes for the entities
in source KG and target KG. Once the indices are
built, the kd-tree algorithm used in Faiss allows for
a fast similarity search task.

In the entity pair acquisition period, we treat the
two KGs as equivalent and perform two-direction
searches. If the L2 distance between an entity and
its nearest neighbor is less than the threshold A, we
treat each entity and its top 1 nearest neighbor as a
pair of pseudo-aligned entities.

In the model evaluation period, we search the
top 1 and top 10 nearest entities in the target KG
for each entity in the source KG, which is used to
calculate Hits@1, Hits@10.

B Pseudo-code for Interactive
Contrastive Learning

Algorithm 1 gives the overall technological pro-
cess of our interactive contrastive learning for self-
supervised entity alignment.
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Algorithm 1: Interactive Contrastive Learning.

Input: encoder fy, training dataset X of source KG
K G, target dataset Y of target KG KGa,
Similarity threshold A\, momentum m,

0 =

whil

// initialize momentum encoder as the

oder

e not MaxEpoch do

/% Get

Vi= fo(X),Vj = fo(Y)
all data

Pairi—2 = Faiss.search(Vi, V;, 1, \)

Pairs—,1 = Faiss.search(V;, Vi, 1, X)

pseudo-aligned entities #/

/ get features for

// Find the top 1 nearest entity with L2
distance less than A for each entity
Pairq; = merge(Pairi—z, Paire—1)
* Training =/

for = in Dataloader(X) do
minibatch x

(z),0" = fo(x)

// load a

// forward pass

through encoder and momentum encoder,

Using the ps

do-aligned entity
representat ion

neg_value = fo:(neg_queue)

Loss = Lee(v,v', neg_value) +
Lia(v,v", neg_value)

of = as positive example

// calculate loss with Equation 10
0 = Adam(Loss, 0)
// update encoder parameters

0" =mx0’ + (1—m) x 0

update momentum encoder

//

C Future Works

Utilization of Entity Attributes Attributes are
a series of attribute-value pairs, which are similar
to relation-entity pairs. Aligned entities usually
have similar attributes and values in different KGs.
Some previous work has demonstrated that con-
structing representations for attributes can improve
the accuracy of entity alignment. AttrGNN (Liu
et al., 2020b) uses graph partition and attributed
value encoder to deal with various types of attribute
triples. But attribute values are of various types and
are numerous, so it is difficult to construct attribute-
related representations for entities in the context



of a self-supervised framework. How to combine
attributes with a self-supervised EA framework to
construct better representations for entities and per-
form self-supervised learning is one of the future
research directions.

Solving Multi-lingual bias problem Multi-
lingual bias can be interpreted as:A model prefers
one language or language pair over others. There is
some multi-lingual bias in the representation of sen-
tences extracted using the cross-linguistic model,
so Hits@1 varies in different language datasets,
usually the best in FR_EN and the worst in ZH_EN.
The earlier models that rely only on KG structure
features to deal with EA such as JAPE, MTransE,
etc., almost all models show the highest Hits@1
value in ZH_EN dataset, which shows on the other
hand that multi-lingual bias does exist. EVA solves
this problem by introducing image information
and achieves a balanced performance on the three
datasets. It uses image information to generate
an initial seed dictionary and incorporates image
features into entity representation. Designing a
multi-modal fusion algorithm for EA, which or-
ganically fuses image, side information, and graph
structures for our self-supervised learning, is also a
work worthy of research.

Prototypical Contrastive Learning For a given
entity, contrastive learning of EA treats different
entities of the same knowledge graph as negative
examples, regardless of their semantic similarity.
This leads to some entities with similar semantics
being pushed too far in the representation space.
Some previous work learns semantic relationships
between different samples by introducing prototype
information, and has achieved significant improve-
ments on CV tasks. PCL (Li et al., 2020) intro-
duces prototypes as latent variables to help find
the maximum-likelihood estimation of the network
parameters in an Expectation-Maximization frame-
work. Knowledge graph entities also have potential
concept information, such as people, buildings, etc.
How to let the model learn this information and
assist in self-supervised EA is also a challenge.
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