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Question Difficulty Consistent Knowledge Tracing
Anonymous Author(s)∗

ABSTRACT
Knowledge tracing aims to estimate knowledge states of students
based on their historical learning activities. Many deep learning
models have been developed for knowledge tracing with impressive
performance. Early works like DKT use skill IDs and student re-
sponses only. Recent works also incorporate questions IDs into their
models and achieve much improved performance. However, predic-
tions made by these models are thus on specific questions, and it
is not straightforward to translate them to estimation of students’
knowledge states over skills. In this paper, we propose to replace
question IDs with question difficulty levels in deep knowledge trac-
ing models, which transforms the knowledge tracing problem to
“predicting whether a student can answer any question of a given
skill at a given difficulty level correctly". The predictions made by
our model can be more readily translated to students’ knowledge
states over skills. Furthermore, by using question difficulty levels
to replace question IDs, we can also alleviate the cold-start prob-
lem in knowledge tracing as online learning platforms are updated
frequently with new questions. We further use two techniques to
smooth the predicted scores. One is to combine embeddings of
nearby difficulty levels using a Hann function. The other is to con-
strain the predicted probabilities to be consistent with question
difficulty levels by imposing a penalty if they are not consistent. We
conduct extensive experiments to study the performance of the pro-
posed model. Our experiment results show that our model outper-
forms latest knowledge tracing models in terms of both AUC/RMSE
and consistency with question difficulty levels.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
• Applied computing→ Education.

KEYWORDS
Knowledge tracing, deep sequence models, cold-start questions
ACM Reference Format:
Anonymous Author(s). 2018. Question Difficulty Consistent Knowledge
Tracing. In Proceedings of Make sure to enter the correct conference title from
your rights confirmation emai (Conference acronym ’XX). ACM, New York,
NY, USA, 9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Knowledge tracing aims to estimate knowledge states of students
over a set of knowledge components (also called skills) based on
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their historical learning activities. It enables the possibility of pro-
viding personalized feedbacks and recommendations in a timely
manner in online education. It is a key component in intelligent
tutoring systems (ITSs). Let 𝑥 = (𝑢, 𝑞,𝑦) be a learning activity of
a student, where 𝑢 is the student ID, 𝑞 is a question ID, and 𝑦 is a
binary variable (class label) indicating whether student 𝑢 answered
question 𝑞 correctly or not. Each question has one or more skills
associated with it. The knowledge tracing problem can be formu-
lated as follows: given a sequence 𝑆𝑢 = ⟨𝑥1, 𝑥2, · · · , 𝑥𝑡 ⟩ containing
historical learning activities of a student 𝑢, predict whether student
𝑢 can answer the next question correctly.

Many approaches have been proposed to tackle the knowledge
tracing problem, including traditional Bayesian Knowledge Trac-
ing (BKT) [9], factor analysis [3, 33], recurrent neural networks
[20, 27, 34, 47] and attentive models [8, 11, 29, 38]. Deep learning
based models have shown superior performance over traditional
methods. Early deep learning based models like DKT [34] use skill
IDs and student responses only. More recent works [11, 38] also use
questions IDs and achieve much improved performance. However,
predictions made by these models are thus on specific questions,
and it is not straightforward to translate them to students’ knowl-
edge states over skills.

In this paper, we propose to use question difficulty levels to re-
place question IDs in deep knowledge tracing models. By doing
so, we transform the knowledge tracing problem from predicting
whether a student can answer the next specific question of a given skill
correctly to predicting whether a student can answer any question of
a given skill at a given difficulty level correctly. The predictions made
by our model can be more easily used to estimate students’ knowl-
edge states over skills. Furthermore, by using question difficulty
levels to replace question IDs, we can also alleviate the cold-start
problem in knowledge tracing as online learning platforms are up-
dated frequently with new questions. Knowledge tracing models
that rely on question IDs may not perform well on new questions.
Difficulty levels of questions can be obtained using different meth-
ods, such as being estimated from learning activity data, annotated
by domain experts, or estimated from contents of questions using
language models.

We adopt two techniques to further smooth predictions made by
our model. One is to combine the embedding of a difficulty level
with the embeddings of its neighbors using a Hann function. The
other one is to constrain the predicted scores to be consistent with
questions difficulty levels. More specifically, given a student, a ques-
tion with a higher difficulty level should have a lower probability
of being answered correctly by the student than a question on the
same skill with a lower difficulty level. We impose a penalty if this
constraint is not satisfied.

The main contributions of this paper can be summarized as
follows:

• We use question difficulty levels to replace question IDs in
our knowledge tracing model. The predictions made by our
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model can be more readily translated to students’ knowl-
edge states over skills than models that rely on question IDs.
It also eases the cold-start problem in knowledge tracing.

• We further use two techniques, combining embeddings
of nearby question difficulty levels and question difficulty
consistent constraint, to produce predictions that are more
aligned with difficulty levels of questions, which make it
easier for end users to use and trust the predictions.

• We propose a simple and efficient model architecture which
uses a LSTM sublayer to learn representations of histori-
cal learning sequences and a feed-forward neural network
(FFN) as the prediction layer. Despite its simplicity, our
model outperforms latest deep learning based knowledge
tracing models that use more complex architectures.

• We conduct extensive experiments to study the perfor-
mance of our models. Our experiment results show that our
model indeed produces predictions that are more consistent
with question difficulty levels than existing models, and it
is also more efficient and more accurate.

The rest of the paper is organized as follows. Section 2 introduces
related work. Section 3 presents our question difficulty consistent
knowledge tracing model. Experiment results are reported in Sec-
tion 4. Finally, Section 5 summarizes and concludes the paper.

2 RELATEDWORK
In this section, we briefly introduce the different approaches for
knowledge tracing. For a comprehensive review of these algorithms,
please refer to [2, 21].

Bayesian Knowledge Tracing (BKT) [9] models knowledge states
of students using a Hidden Markov Model with four parameters:
prior knowledge, learning rate, slip probability and guess probabil-
ity. Compared with deep learning based approaches, BKT falls short
in capturing inter-skill similarity, contextualized trial sequence and
variation in student ability [15]. Several improvements have been
made to standard BKT. [10] builds a machine learning model to es-
timate contextual slip and guess probabilities based on the learning
sequence. [32] introduces question level difficulty to BKT by giving
each question its own guess and slip probability. [31, 49] include
student-specific parameters for more personalized knowledge trac-
ing. [15] incorporates forgetting, skill grouping and latent student
ability into BKT and achieves significant performance gains over
standard BKT.

Another approach to knowledge tracing uses factor analysis
based on Item Response Theory (IRT). Learning factor analysis
(LFA) [3, 4] has parameters on student prior knowledge, knowledge
learning rate and question difficulty level but it assumes students
learn at the same rate. Performance factor analysis (PFA) [33] fur-
ther improves LFA by considering number of previous correct an-
swers and wrong answers. DASH [19] uses multiple time windows
to capture effects of learning and forgetting over time. All these
three algorithms cannot capture connections among knowledge
components. Sparse factor analysis (SPARFA) [17] uses matrix fac-
torization to predict students’ performance on a set of questions.
KTM [42] use Factorization Machines to incorporate side informa-
tion for knowledge tracing. Both SPARFA and KTM can capture
connections among questions via latent factors but they ignore the

sequential order of student-question interactions. SPARFA-Trace
[16] extends SPARFA by further modeling knowledge state transi-
tions that are induced by learning and forgetting over time. DAS3H
[7] combines DASH and KTM to capture both connections among
questions/skills and forgetting behaviors.

With the success of deep learning in various domains, many
deep learning models have been applied to knowledge tracing,
including ConvNN [37], memory-augmented NN [1, 51], Graph NN
[28, 40, 46, 50], RNN [5, 20, 22, 23, 26, 34, 43, 45, 47] and attentive
models [8, 11–13, 18, 29, 30, 38, 44, 48]. Deep learning based models
are shown to perform better than traditional approaches. They differ
not only in their model architectures, but also in what information is
used and how the information is converted tomodel inputs. The first
deep learning model DKT [34] uses skill IDs and student responses
only. It encodes each combination of skills and student responses
using either one-hot encoding or random vectors. Both are fixed
and non-learnable. DKVMN[51] and SAKT[29] can take either skill
IDs or question IDs as inputs, but not both. Both models use three
unlinked embeddings to encode three states of a question/skill:
answered correctly, answered wrongly and to-be-answered. This
encodingmethod is adopted bymany later models. Another popular
encoding method is proposed by AKT [11], which uses the Rasch
model to convert skill IDs and question IDs to model inputs. The
Rasch model uses 1-dimension embeddings for questions, which
may cause under-parametrization when the number of questions is
not large.

A few works use question difficulty explicitly like our work. [25]
builds an interpretable model using Tree-Augmented Naive Bayes
Classifier (TAN) on three features: individual skill mastery, student
ability and problem difficulty. DIMKT [35] uses both question ID
embeddings and question difficulty embeddings together with skill
ID embeddings and skill difficulty embeddings. Our experiment
results show that the predictions made by DIMKT may change
dramatically over question difficulty levels.

Besides question IDs, skill IDs and class labels, other information
has also been used to better model student learning. DKT-forget
[27] considers elapsed time from the previous question with the
same skill and number of previous encounters of the same skill.
SAINT+ [38] and LPKT [36] use two features, elapsed time from the
previous question and response time. Textual contents of questions
have been used in [13, 20, 30]. Relationships among knowledge
components such as prerequisite and similarity are utilized in [6,
14, 40]. The performance of our model can also be further improved
by incorporating such information. We will leave this to our future
work.

3 QUESTION DIFFICULTY CONSISTENT
KNOWLEDGE TRACING

In this section, we first introduce the overall architecture of our
Question Difficulty Consistent Knowledge Tracing (QDCKT) model,
and then describe the embedding layer and the question difficulty
consistent constraint.

3.1 The overall architecture
Our model uses an LSTM sublayer to generate representations of
historical learning sequences and a feed-forward neural network

2
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Figure 1: Architecture of QDCKT. Length-𝐿 history sequence
is fed to LSTM to generate representations of history se-
quence. Length-𝐿 query embedding sequence is concatenated
with representations of history sequence and fed to FFN pre-
diction layer to generate predicted scores. Query sequence
is one position ahead of history sequence. 𝑠𝑖 is skill ID, 𝑓𝑖 is
question difficulty level, and 𝑦𝑖 is class label at position 𝑖.

(FFN) as the prediction layer as shown in Figure 1. For a given
length-(𝐿 + 1) learning activity sequence, its first length-𝐿 sub-
sequence is regarded as history sequence and is fed to the LSTM
sublayer, and the last length-𝐿 sub-sequence is regarded as query
sequence whose class labels are to be predicted. Note that the query
sequence (from 1 to 𝐿) is one position ahead of the history sequence
(from 0 to 𝐿 − 1), and the model is trained to predict the class labels
over the whole query sequence. History sequences contain skill IDs,
question difficult levels and class labels. Query sequences contain
skill IDs and question difficult levels only. Class labels of query
sequences are not fed to the embedding layer and they are used for
calculating training loss only.

We use 𝑞𝑖 to denote question ID, 𝑓𝑖 to denote question difficulty
level of𝑞𝑖 , 𝑠𝑖 to denote skill ID,𝑦𝑖 to denote class label at position 𝑖 in
a length-(𝐿 + 1) sequence, 𝑖=0, 1, · · · , 𝐿. Both the history sequence
and the query sequence first pass through an embedding layer
respectively to generate embeddings 𝑒ℎ

𝑖−1 and 𝑒𝑖 at each position 𝑖 ,
𝑖=1, 2, · · · , 𝐿. Note that skill ID embeddings and question difficulty
level embeddings are shared between history sequences and query
sequences. The history embedding sequence is then passed through
the LSTM sublayer. For question𝑞𝑖 at position 𝑖 , its history sequence
ends at position 𝑖−1. The hidden state of LSTM cell at position 𝑖−1,
denoted as ℎ𝑖−1, is regarded as the representation of the history
sequence of𝑞𝑖 . It is concatenatedwith embedding of query sequence

at position 𝑖 , 𝑒𝑖 , and the resultant vector is passed through the FFN
prediction layer to make the final prediction. The FFN prediction
layer is given as below, where𝑊1,𝑊2, 𝑏1, 𝑏2 are learnable model
parameters, and 𝑦𝑖 is the predicted probability at position 𝑖 , 𝑖=1, 2,
· · · , 𝐿.

𝑦𝑖 = 𝜎 (𝑅𝑒𝐿𝑈 ( [ℎ𝑖−1, 𝑒𝑖 ] ·𝑊1 + 𝑏1) ·𝑊2 + 𝑏2) (1)

We use both binary cross entropy loss L𝑙𝑎𝑏𝑒𝑙 and question diffi-
culty consistent loss L𝑄𝐷𝐶𝐶 to learn model parameters. Question
difficulty consistent loss is described later in Section 3.3. Binary
cross entropy loss between the ground-truth class labels 𝑦𝑖s and
predicted probabilities 𝑦𝑖s over the whole length-𝐿 query sequence
is calculated below.

L𝑙𝑎𝑏𝑒𝑙 =
1
𝐿

𝐿∑︁
𝑖=1

(−𝑦𝑖 log(𝑦𝑖 ) − (1 − 𝑦𝑖 )𝑙𝑜𝑔(1 − 𝑦𝑖 )) (2)

The overall loss is shown below, where _ is a hyper-parameter.

L = L𝑙𝑎𝑏𝑒𝑙 + _ · L𝑄𝐷𝐶𝐶 (3)

3.2 Embedding layer
The inputs to our model include skill IDs, question difficulty levels
and class labels. Skill IDs are mapped to𝑑𝑒 -dimensional embeddings
using an embedding matrix S ∈ R𝑀×𝑑𝑒 , where 𝑀 is the number
of skills. Question difficulty levels can be estimated from learning
activity data, annotated by domain experts, or estimated based
on question contents using pre-trained language models. Here we
calculate difficulty levels of questions from learning activities, and
only training data are used. Given a question 𝑞, let 𝑛 be the number
of learning activities containing𝑞 in training data,𝑛𝑝 be the number
of activities with positive class labels among the 𝑛 activities, and 𝑝𝑐
be the overall percentage of correct answers in training data. The
difficulty of 𝑞, denoted as diff (𝑞), is calculated as below, where 𝛼 is
used for smoothing and it is set to 5 in our experiments.

𝑑𝑖 𝑓 𝑓 (𝑞) = 1 −
𝑛𝑝 + 𝛼 · 𝑝𝑐

𝑛 + 𝛼
(4)

The difficulty level of 𝑞 is calculated by converting diff (𝑞) to
a number between 1 and 𝑁 as follows, where 𝑁 is the maximal
number of difficulty levels, and it is a hyper-parameter.

𝑓𝑞 = ⌊𝑑𝑖 𝑓 𝑓 (𝑞) · 𝑁 ⌋ + 1 (5)

Each difficulty level is mapped to one 𝑑𝑒 -dimensional embedding
using an embedding matrix D ∈ R𝑁×𝑑𝑒 . We expect the embed-
dings of nearby difficulty levels are close to each other. We adopt
the ContinuousEmbedding layer used in [41] to obtain smoothed em-
beddings for difficulty levels. Given a difficulty level 𝑖 , we take the 𝑙
adjacent embeddings centered at 𝑖 , and use Hann function to calcu-
late their weighted sum to get the smoothed embedding of 𝑖 . Here
window size 𝑙 is a hyper-parameter.We use an example to show how
this is calculated. Let 𝑙=5 and 𝑖=10. We take the five embeddings be-
tween difficulty level 8 and difficulty level 12, and denoted them as
𝑒
𝑓

𝑗
, j=8, 9, · · · , 12.Weights in a Hannwindow of 5 are [0, 0.5, 1, 0.5, 0].

We normalize the weights to have sum of 1, and the weights become
[0, 0.25, 0.5, 0.25, 0]. The smoothed embedding of difficulty level 10 is
then calculated as 𝑒 𝑓10 = 0×𝑒 𝑓8 +0.25×𝑒 𝑓9 +0.5×𝑒 𝑓10+0.25×𝑒 𝑓11+0×𝑒 𝑓12.
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Class labels are mapped to 𝑑-dimensional embeddings using an
embedding matrix C ∈ R2×𝑑 , where 𝑑 is the input dimension to
the LSTM sublayer and it can be different from 𝑑𝑒 . To generate
the input vectors to the LSTM sublayer, skill ID embeddings and
question difficulty level embeddings are concatenated and then
linearly transformed to 𝑑-dimensional vectors, and then added
to the class label embeddings. More formally, let 𝑒𝑠

𝑖
∈ S be the

skill ID embedding, 𝑒 𝑓
𝑖
be the smoothed question difficulty level

embedding, and 𝑒𝑦
𝑖
be the class label embedding at position 𝑖 , 𝑖=0,

1, · · · , 𝐿 − 1. The input vector 𝑒ℎ
𝑖
to LSTM is generated as follows,

where𝑊3 ∈ R2𝑑𝑒×𝑑 and 𝑑3 ∈ R𝑑 are learnable model parameters.

𝑒ℎ𝑖 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (( [𝑒𝑠𝑖 , 𝑒
𝑓

𝑖
] ·𝑊3 + 𝑑3) + 𝑒

𝑦

𝑖
), 𝑖 = 0, 1, · · · , 𝐿 − 1 (6)

Let 𝑒𝑠
𝑖
∈ S be the skill ID embedding, and 𝑒 𝑓

𝑖
be the smoothed

question difficulty level embedding at position 𝑖 of the query se-
quence, 𝑖=1, 2, · · · , 𝐿. The query sequence is converted to input
vectors to the FFN prediction layer as follows.

𝑒𝑖 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 ( [𝑒𝑠𝑖 , 𝑒
𝑓

𝑖
] ·𝑊3 + 𝑑3), 𝑖 = 1, 2, · · · , 𝐿 (7)

Note that we do not use skill difficulty levels to replace skill IDs
because students’ knowledge states are assessed in terms of individ-
ual skills. Skills with the same difficulty level are not exchangeable.

3.3 Question difficulty consistent constraint
Question difficulty consistent constraint (QDCC) requires the pre-
dicted scores to be consistent with question difficulty levels. More
specifically, given a student, a question with a higher difficulty level
should have a lower probability of being answered correctly by the
student than a question on the same skill with a lower difficulty
level. To impose this constraint, for each question 𝑞 in the query
sequence, we randomly sample a question 𝑞′ such that 𝑞′ has the
same skill as 𝑞 to form a sequence of alternative query questions.
The alternative question sequence is processed in the same way as
the original query sequence as shown in Figure 1. We first pass the
alternative question sequence to the embedding layer, concatenate
its embeddings with hidden states of LSTM, and then pass the resul-
tant vector to the FFN prediction layer to get predicted scores𝑦′s on
the alternative questions. We then compare 𝑦′ and 𝑑𝑖 𝑓 𝑓 (𝑞′) with
𝑦 and 𝑑𝑖 𝑓 𝑓 (𝑞) of the original query question to calculate question
difficulty consistent loss L𝑄𝐷𝐶𝐶 as follows.

L𝑄𝐷𝐶𝐶 =
1
𝐿

𝐿∑︁
𝑖=1

| (𝑦𝑖 − 𝑦′𝑖 ) − (𝑑𝑖 𝑓 𝑓 (𝑞′𝑖 ) − 𝑑𝑖 𝑓 𝑓 (𝑞𝑖 )) | (8)

Given a position 𝑖 , if question 𝑞′
𝑖
is more difficult than 𝑞𝑖 , that

is, 𝑑𝑖 𝑓 𝑓 (𝑞′
𝑖
) > 𝑑𝑖 𝑓 𝑓 (𝑞𝑖 ), then 𝑦𝑖

′ should be smaller than 𝑦𝑖 . As
alternative question sequences pass through only the Embedding
layer and the FFN prediction layer, calculating 𝑦′s does not incur
much overhead.

3.4 Sequence loading
During the training phase, sequences are sampled from students’
full learning activity sequences randomly. In each epoch, students
with more activities are sampled more frequently. More specifically,
the frequency that a student𝑢 is sampled in each epoch is calculated
as ⌈𝑁𝑢/(𝐿 + 1)⌉, where 𝑁𝑢 is the number of activities of student 𝑢

Table 1: Dataset statistics

datasets #students #skills #questions #activities % of corrects

assit09 3168 150 26,628 341,879 64.5%
assit17 1708 102 3,162 936,572 37.3%
assit09 571 138 52,846 813,632 76.7%
assit09 1560 154 125,916 2,287,184 77.2%

and 𝐿 is the length of the sequences to be fed to knowledge tracing
models. Once a student is sampled, a random position from this
student’s full activity sequence is picked as the ending position
of the sampled segment. Using this sampling method, for a same
student, different segments are sampled from this student’s full
activity sequence in different epochs, which has some regularization
effect onmodel performance. All the sampled sequences have length
𝐿+1. Sampled sequences with length less than 𝐿+1 are padded with
zeros at the beginning of the sequences.

During the inference phase, every testing activity 𝑥 is used as the
last activity of a sequence, and the 𝐿 activities prior to 𝑥 are used
to form a length-(𝐿+1) testing sequence to be passed to knowledge
tracing models.

4 A PERFORMANCE STUDY
In this section, we first introduce the datasets and experiment set-
tings used in our performance study, and then present the results of
the following experiments: 1) comparing prediction performance
of QDCKT with state-of-the-art knowledge tracing models; 2) ab-
lation studies to show the effectiveness of the three techniques
used in QDCKT: replacing question IDs with question difficulty
levels, combining embeddings of nearby question difficulty levels
using a Hann function and question difficulty consistent constraint
(QDCC); 3) examining the predictions made by baseline models
and variants of QDCKT to see how much they are aligned with
question difficulty levels; and 4) comparing running time efficiency
and memory consumption of different models.

4.1 Experiment settings
Weuse four datasets in our experiments and their statistics are listed
in Table 1. For all the datasets, students with less than 10 activities
are removed. The statistics are calculated after the removal. The
last column is the percentage of correct answers on the datasets.

• assist09 1 was collected on the ASSISTments platform in
the school year of 2009-2010. There are three versions of
the dataset, and we use the one on skill builder. On this
dataset, a question may have more than one skills, and we
map the combined skills to one single skill ID.

• assist17 2 was also collected on the ASSISTments platform
and used in ASSISTments Data Mining Competition 2017.
It contains student responses to math questions across two
academic years.

• algebra05 and algebra06[39] were used for KDD Cup 2010
Educational Data Mining Challenge. On these two datasets,

1https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
2https://sites.google.com/view/assistmentsdatamining/dataset
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Table 2: Comparison with baseline models.

assist09 assist17 algebra05 algebra06
models AUC RMSE AUC RMSE AUC RMSE AUC RMSE

DKT 0.7185±0.0066 0.4444±0.0034 0.7272±0.0062 0.4466±0.0025 0.6757±0.0099 0.4065±0.0025 0.7254±0.0032 0.3929±0.0052
DKVMN 0.7203±0.0105 0.4634±0.0068 0.7524±0.0057 0.4394±0.0027 0.7829±0.0031 0.3821±0.0041 0.8135±0.0022 0.3624±0.0037
SAKT 0.7160±0.0084 0.4650±0.0053 0.7204±0.0046 0.4463±0.0012 0.7938±0.0016 0.3732±0.0030 0.8160±0.0023 0.3605±0.0034
AKT 0.7852±0.0051 0.4220±0.0044 0.7834±0.0031 0.4244±0.0021 0.8173±0.0033 0.3637±0.0030 0.8400±0.0020 0.3457±0.0036
LPKT 0.7539±0.0216 0.4474±0.0047 0.6687±0.0037 0.4911±0.0007 0.8059±0.0059 0.4002±0.0032 0.8265±0.0032 0.3940±0.0035
DIMKT 0.7785±0.0056 0.4242±0.0047 0.7869±0.0038 0.4238±0.0027 0.8186±0.0028 0.3621±0.0027 0.8413±0.0013 0.3463±0.0037
QIKT 0.7482±0.0047 0.4432±0.0051 0.6509±0.0033 0.4969±0.0005 0.8051±0.0028 0.3749±0.0041 0.8245±0.0014 0.3663±0.0049
QDCKT 0.7893±0.0049 0.4164±0.0038 0.7931±0.0045 0.4195±0.0028 0.8221±0.0026 0.3601±0.0031 0.8441±0.0016 0.3451±0.0041

Table 3: Ablation studies. Number of question difficult levels is set to 1000.

assist09 assist17 algebra05 algebra06
models AUC RMSE AUC RMSE AUC RMSE AUC RMSE

QDCKT 0.7893±0.0049 0.4164±0.0038 0.7931±0.0045 0.4195±0.0028 0.8221±0.0026 0.3601±0.0031 0.8441±0.0016 0.3451±0.0041
w/o QDCC 0.7815±0.0055 0.4217±0.0043 0.7932±0.0040 0.4197±0.0025 0.8199±0.0023 0.3614±0.0032 0.8431±0.0019 0.3448±0.0034
𝑙=1 0.7870±0.0053 0.4174±0.0040 0.7966±0.0043 0.4182±0.0029 0.8215±0.0025 0.3599±0.0030 0.8442±0.0018 0.3441±0.0037
𝑙=1,w/o QDCC 0.7765±0.0056 0.4252±0.0044 0.7974±0.0045 0.4181±0.0029 0.8173±0.0044 0.3657±0.0035 0.8428±0.0019 0.3451±0.0036
ID 0.7846±0.0053 0.4385±0.0065 0.8009±0.0043 0.4161±0.0030 0.8143±0.0028 0.3704±0.0043 0.8381±0.0019 0.3527±0.0042
ID,w/o QDCC 0.7838±0.0041 0.4366±0.0083 0.7924±0.0040 0.4242±0.0025 0.8064±0.0053 0.4221±0.0145 0.8385±0.0024 0.3561±0.0037

Table 4: Variants of QDCKT

models 𝑓𝑞 question ID 𝑙 for Hann func QDCC

QDCKT yes no 21 yes
w/o QDCC yes no 21 no
𝑙=1 yes no 1 yes
𝑙=1,w/o QDCC yes no 1 no
ID no yes - yes
ID,w/o QDCC no yes - no

values of column “Problem Hierarchy" are used as skills,
and combinations of values in “Problem Name" column and
“Step Name" column are used as questions. All values are
converted to lower case. We also replace concrete numbers
in “Step Name" column by variable names like 𝑎, 𝑏, 𝑐 so that
similar step names can be merged together and regarded
as the same step.

The following baselines are included in our experiments:

• DKT [34]: is the first knowledge tracing algorithm using
a deep learning model, and it uses skill IDs and student
responses only. Different from the original algorithm in
[34] which uses fixed vectors for skills, we use learnable
embeddings for skills in our experiments.

• DKVMN [51]: uses a key-value memory network for knowl-
edge tracing. We use question IDs and student responses
as its inputs.

• SAKT [29]: uses an attention sublayer plus an FFN sublayer
for knowledge tracing. We use question IDs and student
responses as its inputs.

• AKT 3 [11]: is an attentive knowledge tracing model with
three blocks, and it uses a context-aware distance measure
to model forgetting. It takes skill IDs, question IDs and
student responses as inputs.

• LPKT [36]: aims to monitor students’ knowledge states
through consistently modeling their learning process. It
takes question IDs, response time (in seconds), elapsed time
from previous question (in minutes), question-skill matrix
and student responses as inputs. Note that LPKT does not
create embeddings for skill IDs.

• DIMKT 4 [35] explicitly uses question difficulty levels and
skill difficulty levels together with skill IDs, question IDs
and student responses as inputs.

• QIKT [5]: is an interpretable knowledge tracing model com-
bining LSTM with item response theory. It takes skill IDs,
question IDs and student responses as inputs.

We implement DKT and SAKT ourselves using PyTorch. For DKVMN,
DIMKT and QIKT, we obtain their model implementations from
the pyKT library [24]. The implementations of AKT and LPKT are
downloaded from the website provided in the original papers. All
the models use the same sequence loader as described in Section
3.4 for training and testing.

Our experiments were conducted on a NVIDIA A40 GPU with
48GB memory. The performance of the models is evaluated using
AUC (Area Under Curve) and RMSE (Root Mean Square Error). On
3https://github.com/arghosh/AKT
4https://github.com/bigdata-ustc/EduKTM
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(a) assist09, past % of corrects: 83.5% (b) assist17, past % of corrects: 80.5% (c) algebra05, past % of corrects: 82.5% (d) algebra06, past % of corrects: 86%

(e) assist09, past % of corrects: 39.5% (f) assist17, past % of corrects: 29.5% (g) algebra05, past % of corrects: 54.5% (h) algebra06, past % of corrects: 50%

Figure 2: Scores predicted by different models versus question difficulty levels. The first row shows scores predicted on a
high-performing student and the second row shows scores predicted on a low-performing student over a same skill. “past % of
corrects" is calculated over the selected length-200 history sequence.

(a) assist09, past % of corrects: 83.5% (b) assist17, past % of corrects: 80.5% (c) algebra05, past % of corrects: 82.5% (d) algebra06, past % of corrects: 86%

(e) assist09, past % of corrects: 39.5% (f) assist17, past % of corrects: 29.5% (g) algebra05, past % of corrects: 54.5% (h) algebra06, past % of corrects: 50%

Figure 3: Scores predicted by variants of QDCKT versus question difficulty levels. The first row shows scores predicted on a
high-performing student and the second row shows scores predicted on a low-performing student over a same skill.

all datasets, the following hyper-parameters are used: sequence
length 𝐿 is set to 200, batch size is set to 256, embedding dimension
and model input dimension are both set to 64, hidden layer dimen-
sion of FFN is set to 512, number of RNN and attention layers is
set to two, and attention head number is set to 8. Adam optimizer
(𝛽1=0.9, 𝛽2=0.999, 𝜖=1e-08) is used for model training. All models
are trained using one cycle of cosine annealing scheduling with a

minimum learning rate of 0.0001, and the number of epochs is set to
100.Window size 𝑙 for Hann function is set to 21. Grid search is used
to select the best hyper-parameter values on validation data. The
maximum learning rate is selected from [0.01, 0.003, 0.001, 0.0003,
0.0001]. Dropout rate is selected from [0, 0.1, 0.2, 0.3, 0.4, 0.5]. Ques-
tion difficulty level number 𝑁 is selected from [100, 1000]. Number
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of latent concepts for DKVMN is selected from [4, 8, 16, 32, 64].
Five-fold cross validation is used to evaluate model performance.

QIKT model consumes more memory than other models. We
get out-of-memory error when running QIKT on algebra05 and
algebra06 datasets with batch size of 256. We reduce the batch
size for QIKT on the two datasets to 128 and 64 respectively. The
number of questions on assist09, algebra05 and algebra06 is very
large. To avoid over-parameterization, we use a smaller dimension
for question ID embeddings for LPKT and DIMKT. The dimension
of question embeddings for these two models is tuned using values
from [1, 2, 4, 8, 16, 32, 64].

4.2 Comparing with baselines
Table 2 shows the mean and standard deviation of AUC and RMSE
of the models evaluated using five-fold cross validation. The best
performance is highlighted in bold. The second best performance is
highlighted using underline. DKT uses only skill IDs and responses,
so it has the lowest AUC and highest RMSE. DKVMN and SAKT
uses question IDs and student responses. Their performance is
much better than DKT, but is worse than other models that use
both question information and skill IDs. Our model performs the
best among all models with the highest AUC and lowest RMSE on
all the four datasets. DIMKT performs the second best and it also
uses question difficulty levels.

4.3 Ablation studies
In this experiment, we study the impact of the three techniques used
in our QDCKT model: using question difficulty levels to replace
question IDs, combining embeddings of nearby difficulty levels and
the question difficulty consistent constraint described in Section
3.3. Table 4 shows the configurations of several variants of QDCKT.
In this table, second column indicates whether question difficulty
levels are used, third column indicates whether question ID embed-
dings are used, fourth column indicates the window size of Hann
function for combining embeddings of nearby difficulty levels if
applicable, and the last column shows whether the question diffi-
culty consistent constraint is used. When question ID embeddings
are used, we also choose the dimension of question ID embeddings
from [1, 2, 4, 8, 16, 32, 64] to avoid over-parameterization.

The AUC and RMSE of the variants are shown in Table 3. Using
question difficulty levels improves model performance on datasets
assist09, algebra05 and algebra06 where the number of questions
is large. On these three datasets, many questions have only a few
activities, that is, there are many cold-start questions on these three
datasets. For example, nearly 60% questions have less than 10 ac-
tivities on assist09, and this number increases to be more than 70%
on algebra05 and algebra06. The question difficulty consistent con-
straint improves model performance on the same three datasets.
The improvement is more obvious when embeddings of nearby
difficulty levels are not combined (𝑙=1). It also improves model per-
formance significantly when question ID embeddings are used on
datasets assist17 and algebra05. Combining embeddings of nearby
difficulty levels improves model performance slightly on assist09,
algebra05 and algebra06.

On dataset assist17, the three techniques do not seem to be help-
ful. However, question difficulty consistent constraint is still able to

improve model performance significantly when question ID embed-
dings are used. Using question difficulty levels to replace question
IDs decreases model performance slightly when QDCC is already
in use. It still improves model performance when QDCC is not in
use. QDCKT has the largest performance gain over baseline models
on this dataset.

4.4 Score consistency
In this experiment, we plot the predicted scores produced by differ-
ent models versus question difficulty levels. We randomly sample a
high-performing student and a low-performing student from the
testing data on each dataset, and select a skill that has many ques-
tions and these questions are at various difficulty levels. For the se-
lected skill, one question is selected at each question difficulty level.
For each sampled student, we randomly select a length-200 segment
from her/his learning activity sequence as the history sequence,
and then use the selected skill and its selected questions as the next
question whose class label is to be predicted. Figure 2 shows the
scores generated by different models (y-axis) versus the question
difficulty levels of the selected questions (x-axis). The predictions
made by our QDCKT model are very well aligned with question
difficulty levels. They are also aligned with students’ historical
performance. The high-performing student has higher predicted
scores than the low-performing students on a same skill at a same
difficulty level.

The predictions made by other models such as DIMKT can fluc-
tuate dramatically despite the fact that DIMKT uses both question
difficulty levels and skill difficulty levels. This is not desirable as end
users may find it hard to use and trust such predictions. LPKT and
QIKT often produce flat predictions, that is, the predicted scores do
not change when question difficulty changes. This may be fine if
a student does not know a skill hence the predicted score at any
difficulty level is close to 0, or a student already masters a skill very
well hence the predicted score at any difficulty level is close to 1.
However, the scores predicted by the two models are flat mostly
at around 0.5, which means the models are uncertain whether the
student masters the skill or not.

Figure 3 shows the scores produced by variants of QDCKT versus
the question difficulty levels of the selected questions. Even without
using the three techniques, our model shows better alignment with
question difficulty levels than baseline models. Among the variants
of QDCKT, “ID,w/o QDCC" has the biggest fluctuation, followed
by “𝑙=1,w/o QDCC". Using QDCC (“ID" and “𝑙=1" ) can effectively
smooth predicted scores. So does combining nearby embeddings of
question difficulty levels (“w/o QDCC" which uses a window size
of 21 for Hann function).

4.5 Running time and memory consumption
Table 5 shows the mean running time of one epoch of different
models. Table 6 shows the maximal memory usage of different
models with a batch size of 256 during training. For QIKT, we have
to set batch size to a smaller value of 128 and 64 on algebra05 and
algbrea06 respectively because of out-of-memory error when batch
size is larger. DIMKT consumes the least amount of memory, but
it is more than 10 times slower than QDCKT. QDCKT consumes
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Table 5: Mean running time of one epoch of different models
(seconds).

models assist09 assist17 algebra05 algebra06

DKT 0.8 1.0 0.8 1.4
DKVMN 3.9 5.2 5.1 10.8
SAKT 1.1 1.5 1.4 2.5
AKT 6.8 9.5 7.5 19.7
LPKT 19.6 25.2 21.6 57.5
DIMKT 11.9 16.7 13.1 37.6
QIKT 4.4 2.0 8.0 51.5
QDCKT 1.4 1.5 1.6 2.7
w/o QDCC 1.1 1.2 1.2 1.9
𝑙=1 1.2 1.4 1.2 2.3
𝑙=1,w/o QDCC 0.9 1.2 1.1 1.9
ID 1.2 1.4 1.2 2.3
ID,w/o QDCC 0.9 1.2 1.1 1.9

Table 6: Maximal memory consumption of different models
during training (GB)

models assist09 assist17 algebra05 algebra06

DKT 2.0GB 1.9GB 2.0GB 2.0GB
DKVMN 4.0GB 2.4GB 2.4GB 2.3GB
SAKT 2.6GB 2.6GB 3.0GB 3.0GB
AKT 17.0GB 17.0GB 17.0GB 17.0GB
LPKT 11.9GB 8.1GB 11.1GB 12.0GB
DIMKT 1.5GB 1.5GB 1.5GB 1.5GB
QIKT 33.2GB 4.4GB 22.3 38.4GB
QDCKT 2.3GB 2.4GB 2.4GB 2.4GB

slightly more memory than DIMKT. All variants of QDCKT con-
sumes similar amount of memory ranging from 2.1GB to 2.5GB.
DKT is the fastest model among all models, and its memory usage
is also small. However, its performance is also the worst among all
the models. QDCKT makes a much better trade-off among running
time, memory usage and prediction performance.

5 SUMMARY AND CONCLUSION
In this paper, we propose a model which uses question difficulty
levels to replace question ids for knowledge tracing and adopts
two techniques to further smooth the predictions. It shows better
performance than several latest knowledge tracing models in term
of prediction accuracy, prediction quality and running efficiency.
We use a LSTM sublayer to generate representations of historical se-
quences and a FFN as the prediction layer. They can be replaced by
other deep learning units. For example, the LSTM sublayer can be re-
placed by a Transformer Encoder, and the FFN prediction layer can
be replaced by a multi-head attention sublayer. We have explored
this model architecture and it has similar prediction performance
with the current architecture, but is slower.

The predictions made by our model are more consistent with
question difficulty levels and can be more readily used to estimate
knowledge states of students over skills than existing models that

rely on question IDs. This brings us one step closer to more in-
terpretable and more trustworthy knowledge tracing models. As
our future work, we will explore how to make our model more
explainable.
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