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Abstract

Causal inference is essential for data-driven decision making across domains such
as business engagement, medical treatment and policy making. However, re-
search on causal discovery has evolved separately from causal inference, prevent-
ing straightforward combination of methods from both fields. In this work, we
develop Deep End-to-end Causal Inference (DECI), a non-linear additive noise
model with neural network functional relationships that takes in observational data
and can perform both causal discovery and inference, including conditional aver-
age treatment effect (CATE) estimation. We provide a theoretical guarantee that
DECI can asymptotically recover the ground truth causal graph and treatment ef-
fects when correctly specified. Our results show the competitive performance of
DECI when compared to relevant baselines for both causal discovery and (C)ATE
estimation in over a thousand experiments on both synthetic datasets and causal
machine learning benchmarks.

1 Introduction

Causal-aware decision making is pivotal in many fields such as economics [72, 4] and healthcare [5,
22, 66]. For example, in healthcare, caregivers may wish to understand the effectiveness of different
treatments given only historical data. They aspire to estimate treatment effects from observational
data, with incomplete or no knowledge of the causal relationships between variables. This is the
end-to-end causal inference problem, where we discover the causal graph and estimate treatment
effects together using causal assumptions and observational data.

It is well known that any causal conclusion drawn from observational data requires assumptions
that are not testable in the observational environment [49]. Existing methods for estimating causal
quantities from data, which we refer to as causal inference methods, commonly assume complete a
priori knowledge of the causal graph. This is rarely available in real-world applications, especially
when many variables are involved. On the other hand, existing causal graph discovery methods,
i.e. those that seek to infer the causal graph from observational data, require assumptions about
statistical properties of the data, which often require less human input [60]. These methods often
return a large set of plausible graphs. This incompatibility of assumptions and inputs/outputs makes
the task of answering causal queries in an end-to-end manner non-trivial.

Continuous non-linear additive noise models are a promising class of models to enable end-to-
end causal inference. Indeed, if the data generating process is assumed to be in the class of non-
linear additive noise structural equation models with no unobserved confounders (with a few extra
technical assumptions), then both the causal graph and causal treatment effects are identifiable from
observational data.
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To take advantage of this, we propose Deep End-to-end Causal Inference (DECI), a highly flexible
non-linear additive noise model which combines neural network structural equations with spline
flows for the exogenous additive noise variables. We train DECI on observational data using varia-
tional inference on the causal graph, extending and generalizing recent work such as Notears [74, 76]
and others [36, 45, 46]. The fitted DECI model can be used for simulation-based estimation of
(C)ATE without additional training. We prove that, when correctly specified, variational inference
with DECI asymptotically recovers the true causal graph and data generating process. DECI there-
fore allows practitioners to estimate causal quantities using only observational data as input.

Motivated by real-world problems, we extend DECI to handle for mixed type (continuous and cate-
gorical) variables and missing value imputation, although we sacrifice identifiability in such cases.

We systematically evaluate DECI, along with a range of combinations of existing discovery and
inference algorithms in over 1000 experiments. DECI performs very competitively with baselines
from both the causal discovery and inference domains.

2 Preliminaries

Structural Equation Models (SEM) describe causal relationships between variables [49]. Let
x = (x1, . . . , xd) be a collection of random variables. Given a causal graph, a DAG G on nodes
{1, . . . , D}, we can define an observational distribution p(x) via the structural equations xi =
Fi

(
xpa(i;G), zi

)
where zi are independent exogenous noise variables, pa(i;G) are the parents of

node i in G, and Fi is the ith functional relationship. The SEM also describes how the distribution
changes under do-interventions p(x | do(xT = a)) in which variables xT are set to fixed values
a; here T ⊆ {1, . . . , d} are treatment indices. The do-intervention is used to define (conditional)
average treatment effects ((C)ATE) that describe the impact of treatments [49]

ATE(a,b) = Ep(xY |do(xT=a))[xY ]− Ep(xY |do(xT=b))[xY ], and (1)

CATE(a,b|c) = Ep(xY |do(xT=a),xC=c)[xY ]− Ep(xY |do(xT=b),xC=c)[xY ]. (2)

Additive noise SEMs, which are the focus on this paper, have structural equations of the form
xi = Fi

(
xpa(i;G), zi

)
= fi

(
xpa(i;G)

)
+ zi or x = fG(x) + z in vector form. (3)

Importantly, with minor technical assumptions to exclude e.g. linear Gaussian SEMs, continuous
additive noise models are structural identifiable from observational data [51]. This makes them a
promising starting point to develop models for end-to-end causal inference.

3 DECI: Deep End-to-end Causal Inference

We propose a non-linear additive noise model with neural network functional relationships

fi
(
xpa(i;G)

)
= ζi

 d∑
j=1

Gj,i ℓj(xj)

 , (4)

where Gj,i ∈ {0, 1} indicates the presence of the edge j → i. The functions ℓi and ζi (i = 1, . . . , d)
are defined using a weight sharing scheme ζi(·) = ζ(ui, ·) and ℓi(·) = ℓ(ui, ·), where ζ and ℓ are
multi-layer perceptrons (MLPs). The trainable parameters of the SEM functions are the parameters
of the networks ζ, ℓ and the node embeddings (ui)

d
i=1.

Exogenous Noise Model pz. We consider two possible models for the distribution of z: 1) a simple
Gaussian pzi(·) = N

(
·|0, σ2

i

)
with trainable variances σ2

i ; 2) a flow [53]

pzi(zi) = N
(
κ−1
i (zi)|0, 1

) ∣∣∣∣∂κ−1
i (zi)

∂zi

∣∣∣∣ . (5)

We choose the learnable bijections κi to be a rational quadratic splines [14], parametrized indepen-
dently across dimensions. Spline flows are significantly more flexible than the Gaussian distributions
employed in previous work [36, 45, 46, 74, 76].

Unified View of functional Causal Discovery. DECI employs neural nets for fi and flexible,
potentially non-Gaussian, distributions for pz, making it the most flexible member of a larger family
of SEMs for functional causal discovery [36, 45, 46, 74, 76]. We expand on this in Appendix D.

2



3.1 DECI and Bayesian Causal Discovery

DECI takes a Bayesian approach to causal discovery [17]. We therefore consider a joint distribution
over both the causal graph G and the the observations x(1), . . . ,x(N) given by

pθ(x
(1), . . . ,x(N), G) = p(G)

∏
n

pθ(x
(n)|G) = p(G)

∏
n

d∏
i=1

pzi

(
x
(n)
i − fi

(
x
(n)
pa(i;G)

))
(6)

where the final form reflects our additive noise model structure and θ denotes the trainable parame-
ters of the SEM functions and of the exogeneous noise model. We aim to fit a point estimate θ′ for θ
by maximizing a lower bound on the marginal likelihood of observational data pθ(x(1), . . . ,x(N)).
The posterior pθ′(G|x1, . . . ,xN ) then characterizes our beliefs about the causal graph.

Prior over Graphs. We propose a graph prior p(G) that encapsulates the knowledge that G must
be a DAG, and that encourages graph sparsity,

p(G) ∝ exp
(
−λs∥G∥2F − ρ h(G)2 − αh(G)

)
, (7)

where h(G) = tr
(
eG⊙G) is the DAG penalty [74] and is zero if and only if G is a DAG; α and

ρ control the weights of this penalty. These are gradually increased during training following an
augmented Lagrangian scheme, ensuring only DAGs remain at convergence. Graph sparseness is
controlled by penalising the norm λs∥G∥F , with λs a scalar. In some circumstances, we have
additional domain knowledge about the graph that does not go so far as completely specifying G.
In such cases, we consider a prior matrix W0 ∈ [0, 1]D×D that need not be binary, nor a DAG, and
propose an informed prior

p(G) ∝ exp
(
−λs∥G−W0∥2F − ρ h(G)2 − αh(G)

)
; (8)

see Sec. G.5 for full details.

Optimization and Inference. Unfortunately, the graph posterior of the DECI model is intractable.
To overcome this issue, we adopt variational inference [6] with qϕ(G) to approximate the intractable
posterior pθ(G|x1, . . . ,xN ), and use it to build a lower bound on the marginal likelihood of the
observational data (derivation in Appendix C.3), given by

ELBO(θ, ϕ) = Eqϕ(G)

[
log p(G)

∏
n

pθ(x
(n)|G)

]
+H[qϕ] ≤ log pθ(x

1, . . . ,xN ), (9)

where H[qϕ] represents the entropy of the distribution qϕ. We choose qϕ(G) to be the product of
independent Bernoulli distributions for each potential directed edge in G. We parametrize edge
existence and orientation separately, using the ENCO parametrization [38]. Parameters θ and ϕ
are trained by maximizing the ELBO. The Gumbel-softmax trick [28, 43] is used to estimate the
gradients with respect to ϕ. Appendix C.1 details the full optimization procedure.

Theoretical considerations. One key statistical guarantee of DECI is to show that optimizing the
variational objective eq. (9) leads to the recovery of the ground truth data generation mechanism.
To prove this when DECI is correctly specified, i.e. when there exists a θ∗, G0 corresponding to
the true data generating process and there are no unobserved confounding variables, we need two
additional technical assumptions: (1) f is non-invertible, 3rd-order differentiable and is not constant
w.r.t. any of its inputs; (2) proper noise densities with bounded likelihood. These assumptions
exclude, e.g. non-identifiable linear Gaussian SEMs. See Theorem 1 in Appendix B for the full
statement and proof.

3.2 Estimating Treatment Effects

We use our trained DECI model consisting of the posterior qϕ(G) and a point estimate for θ to
estimate (C)ATE by marginalizing over the graph posterior

Eqϕ(G)[ATE(a,b|G)] and Eqϕ(G)[CATE(a,b|c, G)]. (10)

This can be seen as a probabilistic relaxation of traditional causal quantity estimators [68].

Estimating ATE. We further propose a Monte Carlo approach to estimating ATE(a,b|G) for a
given graph. Specifically, we draw a sample from p

(
x\T |do(xT = b), G

)
by (1) sampling exoge-

nous noise variables z ∼ pz; (2) ‘mutilating’ the graph by removing incoming edges to xT and
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setting xT = b; (3) simulating the DECI SEM functions using eq. (3) and eq. (4) in the topological
order defined by Gdo(xT ) to give x\T (z, G,b). Our sample-based ATE estimate is therefore

ATE(a,b) ≈ 1

NG

NG∑
i=1

1

Nz

Nz∑
j=1

[xY (zij , Gi,a)− xY (zij , Gi,b)] (11)

where Gi ∼ qϕ(G), zij ∼ pz(z). Rather than simply taking a mean, we can also consider a density
estimate of the samples xY (zij , Gi,a) − xY (zij , Gi,b) which incorporates uncertainty that arises
from (1) incomplete knowledge of the causal graph, provided the posterior qϕ(G) has not collapsed
to one graph, (2) differences between individuals in the population. See also Appendix C.5.

CATE estimation. We focus on CATE estimation for which the treatment xT is not the cause
of the conditioning set xC . Under this assumption, we can estimate CATE by sampling from the
interventional distribution p

(
x\T |do(xT ), G

)
and then estimating the conditional distribution of xY

given xC . We describe our specific approach to estimate this conditional density in Appendix C.4.

Theoretical considerations. We previously showed that variational inference asymptotically re-
covers the correct SEM parameters θ∗. In Appendix B, we show further that a correctly specified
DECI model satisfies causal effect identifiability and positivity, meaning that treatment effects will
be correctly estimated in the large data limit.

3.3 General end-to-end causal inference (ECI) framework

The probabilistic treatment of the DAG, and the re-use of functional causal discovery generative
models for simulation-based causal inference are principles that can be applied beyond DECI.
Constraint-based [60] and score-based [8] discovery methods often output a set of DAGs compatible
with the data, i.e. a PAG or CPDAG. It is natural to interpret these equivalence classes as uniform
distributions over members of sets of graphs. We can then use eq. (10) to estimate treatment effects
by marginalizing over these distributions. The quantities inside the expectations over graphs can be
estimated using any existing causal inference method, such as linear regression [58], Double ML
[7], etc. Our experiments explore combinations of discovery methods that return graph equivalence
classes with standard causal inference methods.

Handling Heterogeneous Data. For real-world applications, DECI can be further extended to han-
dle mixed-type (continuous and discrete) data and missing value imputation. Appendix E provides
further details about these extensions.

4 Experiments

We evaluate DECI on both causal discovery and causal inference tasks. A full list of results and
details of the experimental set-up are presented in Appendices F and G. Code to reproduce our
experiments is available at https://github.com/microsoft/causica.

4.1 Causal Discovery Evaluation

Datasets. We consider synthetic, pseudo-real, and real data. For the synthetic data, we follow
Lachapelle et al. [36] and Zheng et al. [76] by sampling a DAG from two different random graph
models, Erdős-Rényi (ER) and scale-free (SF). We consider number of nodes d ∈ {16, 64} with
number of edges e ∈ {d, 4d}. The resulting datasets are identified as ER(d, e) and SF(d, e).

For the pseudo-real data we consider the SynTReN generator [67], which creates synthetic transcrip-
tional regulatory networks and produces simulated gene expression data that mimics experimental
data. We use the datasets generated by [36] (d=20), and take n=400 for training. Finally, for the
real dataset, we use the protein measurements in human cells from Sachs et al. [57].

Baselines. We run DECI using two models for exogenous noise: a Gaussian with learnable variance
(identified as DECI-G) and a spline flow (DECI-S). We compare against PC [31], (linear) Notears
[74], the nonlinear variants Notears-MLP and Notears-Sob [76], Grandag [36], and ICALiNGAM
[59]. When a CPDAG is the output, e.g., from PC, we treat all possible DAGs under the CPDAG as
having the same probability.
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Figure 1: Causal discovery on benchmark datasets. The figure
shows mean results across five random seeds.

Causality Metrics. We report F1
scores for adjacency, orientation
[15, 66] and causal accuracy [11].
For DECI, we report the expected
values of these metrics estimated
over the graph posterior.

Figure 1 shows the results for the
data generated with non-Gaussian
noise. We observe that DECI
achieves the best results across all
metrics. Additionally, using the
flexible spline model for the ex-
ogenous noise (DECI-S) yields bet-
ter results than the Gaussian model
(DECI-G). This is expected, as the
noise used to generate the data is
non-Gaussian. For Gaussian noise
(see Figure 6), both DECI-S and
DECI-G perform similarly.

4.2 End-to-end
Causal Inference

We evaluate the end-to-end pipeline, taking in observational data and returning (C)ATE estimates.

Datasets. We generate ground-truth treatment effects to compare against for the ER and SF syn-
thetic graphs that were described in Section 4.1 by applying random interventions on these synthetic
SEMs, ensuring at most 3 edges between the intervention and effect variables. For more detailed
analysis, we hand-craft a suite of synthetic SEMs, which we name CSuite. CSuite datasets are de-
signed to elucidate particular features of the model.2 Finally, we include two semi-synthetic causal
inference benchmark datasets for ATE evaluation: Twins (twin birth datasets in the US) [1] and
IHDP (Infant Health and Development Program data) [18].

Baselines. We consider different ways of combining discovery and inference algorithms. For DECI,
we can use a trained model to immediately estimate (C)ATE. We also consider using the learned
DECI graph posterior in combination with existing methods for causal inference on a known graph:
DoWhy-Linear and DoWhy-Nonlinear [58] which implement linear adjustment and Double Ma-
chine Learning (DML) [7] methods for backdoor adjustment respectively. We also pair other dis-
covery methods with DECI and DoWhy treatment effect estimation, namely the PC algorithm [31]
as a baseline and the ground truth graph (when available) as a check. We evaluate end-to-end
causal inference on all valid combinations that arise from combining discovery methods in {DECI-
Gaussian (DGa), DECI-Spline (DSp), PC, and True graph (T)} with causal inference methods in
{DECI-Gaussian (DGa), DECI-Spline (DSp), DoWhy-Linear (L), DoWhy-Nonlinear (N)}.

Metrics. We report RMSE between (C)ATE estimates and the ground truth.

In Table 1, we present results for six CSuite datasets. Lin. Exp is a two node linear SEM with ex-
ponential noise, only DECI Spline can recover the true graph; ATE estimation quality is similar for
different estimator given the true graph. Nonlin. Gauss is a two node non-linear SEM with Gaussian
noise, only DECI can fit the highly non-linear functional relationship, with equal performance be-
tween DECI-Gaussian and -Spline. Large backdoor is a larger non-linear SEM with non-Gaussian
noise. For DECI-Spline, which performs well on discovery, the ATE estimation is best using DECI,
as DoWhy takes the maximal adjustment set, which increases estimator variance on this dataset.
Weak arrows is a larger SEM which is harder for discovery due to the presence of weak functional
relationships. Here, DECI-Spline is best for discovery, but is somewhat less accurate for ATE esti-
mation given the right graph. Nonlin. Simpson is an adversarially constructed dataset where 1) the
true graph is theoretically identifiable, but difficult to discover in practice, 2) ATE estimation is very
poor given the wrong graph (Simpson’s paradox). All methods perform equally badly. Symprod
Simpson is a similar but slightly easier dataset, for which DECI-Spline with DML does well.

2All CSuite datasets are publicly available at https://github.com/microsoft/csuite.
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Table 1: Median ATE RMSEs from 20 seeds for six CSuite datasets.

Lin. Exp
Nonlin.
Gauss

Large
backdoor

Weak
arrows

Nonlin.
Simpson

Symprod
Simpson

DECI-Gaussian 1.029 0.042 0.213 1.097 1.995 0.318
DECI-Gaussian + DoWhy-Linear 1.031 1.522 0.144 1.108 1.994 0.695
DECI-Gaussian + DoWhy-Nonlin 1.031 1.532 0.331 1.108 1.994 0.487
DECI-Spline 0.022 0.043 0.031 0.189 1.997 0.427
DECI-Spline + DoWhy-Linear 0.001 1.522 0.091 0.110 1.994 0.819
DECI-Spline + DoWhy-Nonlin 0.002 1.532 0.232 0.064 1.994 0.160
PC + DoWhy-Linear 0.516 1.532 1.690 1.108 1.994 0.487
PC + DoWhy-Nonlin 0.517 1.532 1.690 1.108 1.994 0.487

True graph DECI-Gaussian 0.073 0.034 0.167 0.255 0.404 0.101
True graph DECI-Spline 0.028 0.034 0.035 0.128 0.531 0.242
True graph DoWhy-Linear 0.001 1.522 0.105 0.109 0.848 0.819
True graph DoWhy-Nonlin 0.003 1.532 0.241 0.015 0.597 0.168

Figure 2: Box plots showing end-to-end ATE and CATE estimation error on the semi-synthetic
Twins and IHDP datasets with different method combinations. Method acronyms are defined in
Section 4.2. Box plots show the meadian and interquartile range over 5 seeds.

On the semi-synthetic benchmark datasets, Twins and IHDP, we evaluated both ATE and CATE esti-
mation as shown in Figure 2. For ATE estimation, DECI-Spline is fractionally better than baselines
on Twins and significantly better for IHDP. On IHDP, it appears that only DECI-Spline was success-
ful at causal discovery, and given the right graph, DECI-Spline is the best method for computing
ATE. For CATE estimation, a similar pattern emerges.

We performed similar analysis for ATE estimation on additional CSuite datasets that contain discrete
variables or are not theoretically identifiable (Appendix G.2), on ER and SF datasets as large as 64
nodes (Appendix G.3), and CATE estimation on a subset of CSuite (Appendix G.2). A high-level
summary of our ATE results aggregated over all 27 datasets is shown in Table 5 (page 31). We
find that DECI Spline has the overall best (lowest) rank. We include additional experiments that
demonstrate the utility of our domain-informed prior (Appendix G.5) and explore how DECI fares
when unobserved confounders are present (Appendix G.6).

Summary Across all experiments we see that DECI enables end-to-end causal inference with com-
petitive performance on both synthetic and more realistic data. DECI particularly performs well
compared to other methods when its ability to handle nonlinear functional relationship and non-
Gaussian noise distributions comes into play in causal discovery or causal inference.

5 Discussion, scope, and limitations

Motivated by a real-world application where our knowledge of causal relationships is incomplete,
DECI combines ideas from causal discovery and inference to go directly from observations to causal
predictions. This formulation requires us to adopt assumptions, namely, that the data is generated
with a non-linear ANM and that there are no unobserved confounders. Empirically, we find DECI
to perform well when these assumptions are satisfied, validating the viability of an end-to-end ap-
proach. Unfortunately, the non-linear ANM assumptions made by DECI are impossible to check
in most real-world scenarios. Interestingly, even in our experiments where DECI’s assumptions are
violated , we do not find its performance to degrade severely. This encouraging result motivates us
to extend our theoretical analysis to the mixed type and missing data settings in future work.
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A Related Work

Our work relates to research on both causal discovery and causal inference. Approaches for causal
discovery from observational data can be classified into three groups: constraint-based, score-based,
and functional causal models [15]. Recently, Zheng et al. [74] framed the directed acyclic graph
(DAG) structure learning problem as a continuous optimisation task. Extensions building on this
continuous optimisation framing [36, 76] employ nonlinear function approximators, like neural net-
works, to model the relationships among connected variables. Similarly, recent work has combined
the continuous DAG learning approach with variational inference [40, 3, 12, 13]. However, these
works primarily focus on linear Gaussian models [3, 12, 13]. Only Lorch et al. [40] considers
non-linear functional forms but remains limited to Gaussian noise models. Our model allows both
non-linear functions and a learned non-Gaussian noise model. Appendix D shows that DECI can
be seen as a generalization of the Notears family of discovery methods. By combining the con-
tinuous optimisation approach to discovery with standard causal assumptions [45], we obtain our
main theorem about causal graph learning. To the best of our knowledge, we are the first to present
an identifiability proof for causal discovery using VI. We also extend functional methods to handle
mixed data types and missing values, which was not previous addressed in this context of continuous
causal discovery. Outside of functional causal discovery, functional relationships between variables
are typically not learned by discovery algorithms [60]. Thus, distinct models, with potentially in-
compatible assumptions or inputs, must be relied upon for causal inference. However, when a DAG
cannot be fully identified given the available data, constraint and score-based methods often return
partially directed acyclic graphs (PAGs) or completed partially directed acyclic graphs (CPDAGs)
[61]. Instead of returning a summary graph representing a set, DECI returns a distribution over
DAGs in such situation.

Causal inference methods assume that either the graph structure is provided [49] or relevant struc-
tural assumptions are provided without the graph [27]. Causal inference can be decomposed into
two steps: identification and estimation. Identification focuses on converting the causal estimand
(e.g. P (Y |do(X = x),W )) into an estimand that can be estimated using the observed data distri-
bution (e.g. P (Y |X,W )). Common examples of identification methods include the back-door and
front-door criteria [49], and instrumental variables [2]. Causal estimation computes the identified
estimand using statistical methods, such as simple conditioning, inverse propensity weighting [37],
or matching [54, 65]. Machine learning-based estimators for CATE have also been proposed [7, 69].
Recent efforts to weaken structural assumption requirements [16, 29] allow for PAGs and CPDAGs.
Our work takes steps in this direction, allowing inference with distributions over graphs.

A.1 Relationship with Khemakhem et al. [32]

Khemakhem et al. [32] introduced Carefl, a method that uses autoregressive flows [24, 35] to learn
causal-aware models, using the variables’ causal ordering to define the autoregressive transfor-
mations. The method’s main benefit is its ability to model complex nonlinear relationships be-
tween variables. However, Carefl alone is insufficient for causal discovery, as it requires the causal
graph structure as an input. The authors propose a two-step approach. First, they run a traditional
constraint-based method (e.g., PC) to find the graph’s skeleton and orient as many edges as possi-
ble, and second, they fit several flow models to determine the orientation of the remaining edges.
The drawbacks of this approach include the dependence on an external causal discovery methods
(which will inherently limit Carefl’s performance to that of the method used), and the cost of fitting
multiple flow models to orient the edges that are left unoriented after the first step. Our method
extends Khemakhem et al. [32] to learn the causal graph among multiple variables and perform end-
to-end causal inference. See Appendix D for further details on the connection between DECI and
flow-based causal discovery.

B Theoretical Considerations for DECI

DECI can be categorized as a functional score-based causal discovery approach, which aims to find
the model parameters θ and mean-field posterior qϕ(G) by maximizing the ELBO given in eq. (9).
A key statistical question we may ask of DECI is whether it is capable of recovering the ground truth
data generating distribution and true graph G0 when DECI is correctly specified and with infinite
data. In the following, we will show that DECI is indeed capable of this under standard assumptions.

11



The main idea is to first show that the maximum likelihood estimate (MLE) recovers the ground truth
graph and data generating distribution due to the correctly specified nin-linear additive noise model.
Then, we prove that optimal solutions from maximizing the ELBO are closely related to the MLE
in the large data limit. This is formalized in the following theorem.
Theorem 1 (DECI recovers the true data generating process). Assume DECI belongs to continuous
additive noise structural equation models with (1) no latent confounders; (2) non-invertible, third
order differentiable functional relations between variables that are not constant w.r.t. any of their
inputs (i.e. non-trivial); (3) proper noise density and regular log likelihood, then under a correctly
specified model, the solution (θ′, q′ϕ(G)) from maximizing the ELBO (eq. (9)) satisfies q′ϕ(G) =

δ(G = G′) where G′ is a unique graph. In particular, G′ = G0 and pθ′(x;G′) = p(x;G0).

Our proof strategy is as follows. In Appendix B.1, we show that the assumptions of the theorem,
particularly the assumption that DECI is well-specified, imply certain well-known properties, such
as structural identifiability. In Appendix B.2, we prove that maximum likelihood estimation iden-
tifies the correct data generating process, and in Appendix B.3, we complete the proof by showing
that maximizing the ELBO asymptotically recovers the MLE. Appendix B.4 discusses additional
theoretical results for treatment effect estimation.

B.1 Notation and Assumptions

First, we define the notation and explain the implication of assumptions required for our theory. We
denote a random variable x ∈ RD with a ground truth data generating distribution p(x;G0), where
G0 is a binary adjacency matrix representing the true causal DAG. DECI is an additive noise model
(ANM), defining the structural equations xj = f(xpa(j;G); θ) + zj , where pa(j;G) are the parents
of node j specified by the adjacency matrix G, f are non-invertible, third-order differentiable non-
trivial functions and zj are mutually independent noise variables with a joint density pθ(z1, . . . , zD).
The mean-field variational distribution qϕ(G) is a product of independent Bernoulli distribution, and
p(G) is the soft prior over the graph defined by eq. (7).

For completeness, we first provide the definition of causal minimality, structural identifiability, and
explain our model specification and regularity assumptions.
Definition 1 (Minimality). For a distribution pθ(x;G) generated by DECI with graph G and pa-
rameter θ, we assume the minimality condition holds [62]. Namely, the distribution pθ(x;G) does
not satisfy the local Markov condition with respect to any sub-graph of G.
Definition 2 (DECI Structural Identifiability). We assume that the DECI model satisfies the struc-
tural identifiability. Namely, for a distribution pθ(x;G), the graph G is said to be structural
identifiable from pθ(x;G) if there exists no other distribution pθ′(x;G′) such that G ̸= G′ and
pθ(x;G) = pθ′(x;G

′).

The following assumptions are explicit assumptions of Theorem 1, and are restated more formally
now, along with a discussion of when such assumptions are likely to hold in practice.
Assumption 1 (Correctly Specified Model). We assume the DECI model is correctly specified.
Namely, there exists a parameter θ∗ such that pθ∗(x;G0) = p(x;G0).

In practice, this assumption is hard to check in general. However, we can leverage the universal
approximation capacity of neural networks [19], meaning that they can approximate continuous
functions arbitrarily well. This flexibility gives us a higher chance that this assumption indeed
holds.
Assumption 2 (Regularity of log likelihood). We assume for all parameters θ and possible graphs
G, the following holds:

Ep(x;G0) [| log pθ(x;G)|] <∞.

This assumption can be verified by analysing the tail behaviour of the noise distribution of the DECI
SEM.

We can now show that the our assumptions about the DECI model imply some of the commonly
used causal assumptions.
Lemma 1 (Implication of DECI assumptions). Assume DECI satisfies the assumptions mentioned
in Theorem 1. Then DECI satisfies (1) the causal Markov assumption; (2) causal minimality; (3)
structural identifiability.
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Proof. We show how each assumptions are implied by referring to some theorems from previous
works.

Causal Markov assumption. Since DECI belongs to the class of SEMs with proper probability
density functions, Theorem 1.4.1 in Pearl et al. [50] proves that its induced joint probability is
Markov with respect to the graph.

Causal minimality. Since DECI’s function relationships are not constant w.r.t. any of their inputs,
Proposition 16 in Peters et al. [51] proves that DECI satisfies causal minimality.

Structural identifiability. Since DECI satisfies causal minimality, and the functions are non-
invertible and third-order differentiable, Theorem 19 and Proposition 22 in Peters et al. [51] prove
that the corresponding DECI SEM is structural identifiable.

B.2 MLE Recovers Ground Truth

The likelihood has often been used as the score function for causal discovery. For example, Carefl
[32] adopts the likelihood ratio test [25] in the bivariate case, which is equivalent to selecting the
causal directions with the maximized likelihood. However, they did not explicitly show that the
resulting model recovers the ground truth causal graph for the multivariate case. In addition, Zhang
et al. [73] proved that maximizing likelihood for bivariate causal discovery is equivalent to minimiz-
ing the dependence between the cause and the noise variable. With the correctly specified, structural
identifiable model, the resulting noise and cause are independent through maximizing the likelihood,
indicating the graph is indeed causal. However, it is non-trivial to generalize this to the multivariate
case that we treat in DECI. In the following, we will show that under a correctly specified model
and with maximum likelihood training with infinite data, DECI can recover the unique ground truth
graph G∗ = G0 and the true data generating distribution pθ∗(x;G∗) = p(x;G0), where (θ∗, G∗)
are MLE solutions.

Proposition 1. Assuming conditions in Theorem 1 hold, we denote (θ∗, G∗) as the MLE solution
with infinite training data. Then, we have

pθ∗(x;G
∗) = p(x;G0)

and in particular, we have G∗ = G0.

Proof. The key idea is to show that with arbitrary (θ,G), we have the following:

lim
N→∞

1

N

N∑
i=1

log pθ(xi;G) ≤ lim
N→∞

1

N

N∑
i=1

log p(xi;G
0)

By law of large numbers, we have

lim
N→∞

1

N

N∑
i=1

log pθ(xi;G) = Ep(x;G0) [log pθ(x;G)] .

Then, we can show

Ep(x;G0) [log pθ(x;G)]− Ep(x;G0)

[
log p(x;G0)

]
=Ep(x;G0)

[
log

pθ(x;G)

p(x;G0)

]
≤Ep(x;G0)

[
pθ(x;G)

p(x;G0)
− 1

]
=

∫
pθ(x;G)dx− 1 = 0

where the inequality is due to log t ≤ t − 1. From the assumptions, We know there are no latent
confounders and the model is correctly specified. Then, the above equality holds when (θ∗, G∗)
induces the same join likelihood p(x;G0). Since the model is structural identifiable from Lemma 1,
we must have G∗ = G0.
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B.3 DECI Recovers the Ground Truth

To show that DECI can indeed recover the ground truth by maximizing the ELBO, we first introduce
an important lemma showing the KL regularizer KL[qϕ(G)∥p(G)] is negligible in the infinite data
limit.

Lemma 2. Assume a variational distribution qϕ(G) over a space of graphs Gϕ, where each graph
G ∈ Gϕ has a non-zero associated weight wϕ(G). With the soft prior p(G) defined as eq. (7) and
bounded λ, ρ, α, we have

lim
N→∞

1

N
KL[qϕ(G)∥p(G)] = 0. (12)

Proof. First, we write down the definition of KL divergence

KL[qϕ(G)∥p(G)] =
∑
G∈Gϕ

wϕ(G)
[
logwϕ(G) + λ∥G∥2F + ρh(G)2 + αh(G) + logZ

]
where Z is the normalizing constant for the soft prior. From the definition and assumptions, it is
trivial to know that logwϕ(G), λ∥G∥2F are bounded for all G ∈ Gϕ. In the following, we show that
h(G) and logZ are also bounded.

From the definition of the DAG penalty, we have h(G) = tr(exp(G ⊙ G)) − D. The matrix
exponential is defined as

tr(exp(G⊙G)) =
∞∑
k=0

1

k!
tr((G⊙G)k)

=

∞∑
k=0

1

k!
tr((G)k)

=

D∑
k=0

1

k!
tr((G)k)

where the second equality is due to the fact that G is a binary adjacency matrix. From Zheng et al.
[75], we know that tr(Gk) counts for the number of closed loops with length k. Since the graph has
finite number of nodes, the longest possible closed loop is D, resulting in the third equality.

Thus, it is obvious that for any k, the number of closed loops with length k must be finite. Hence, it
is trivial that h(G) <∞. Therefore, with bounded λ, ρ, α, the un-normalized soft prior

| exp(−λ∥G∥2F − ρh(G)2 − αh(G))| <∞.

Thus, the normalizing constantZ must be finite since there are only finite number of possible graphs.

Therefore, these must exists a constant Mϕ,G such that logwϕ(G) + λ∥G∥2F + ρh(G)2 +αh(G) +
logZ < Mϕ,G. Hence, we have

0 ≤ KL[qϕ(G)∥p(G)] <
∑
G∈Gϕ

wϕ(G)MG,ϕ ≤
√ ∑
G∈Gϕ

w2
ϕ(G)

√ ∑
G∈Gϕ

M2
G,ϕ <∞

where the third inequality is obtained by using Cauchy-Schwarz inequality. Thus, we have

lim
N→∞

1

N
KL[qϕ(G)∥p(G)] = 0.

Now, we can prove that DECI can recover the ground truth. Recalling Theorem 1,

Theorem 1 (DECI recovers the true distribution). Assuming conditions in Theorem 1 are true, the
solution (θ′, q′ϕ(G)) from maximizing ELBO (eq. (9)) in the infinite data limit satisfies q′ϕ(G) =

δ(G = G′) whereG′ is a unique graph. In particular, we haveG′ = G0 and pθ′(x;G′) = p(x;G0).
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Proof. In terms of optimization, it is equivalent to re-write the ELBO (eq. (9)) as

1

N
Eqϕ [log pθ(x1, . . . ,xN )]− 1

N
KL [qϕ(G)∥p(G)] .

Now, under the infinite data limit and the definition of qϕ, we have

lim
N→∞

1

N
Eqϕ [log pθ(x1, . . . ,xN )]− 1

N
KL [qϕ(G)∥p(G)]

= lim
N→∞

1

N

∑
G∈Gϕ

wϕ(G) log pθ(x1, . . . ,xN |G)−
1

N
KL[qϕ(G)∥p(G)]

= lim
N→∞

1

N

N∑
i=1

∑
G∈Gϕ

wϕ(G) log pθ(xi|G)

=

∫
p(x;G0)

∑
G∈Gϕ

wϕ(G) log pθ(x|G)dx,

where the second and third equalities are from Lemma 2 and the law of large numbers, respectively.
Let (θ∗, G∗) be the solutions from MLE (Proposition 1). Then, since

∑
G∈Gϕ wϕ(G) = 1, wϕ(G) >

0, we have ∑
G∈Gϕ

wϕ(G)Ep(x;G0) [log pθ(x|G)] ≤ Ep(x;G0) [log pθ∗(x;G
∗)]

with the equality holding when every graph G ∈ Gϕ and associated parameter θG satisfies

Ep(x;G0) [log pθG(x|G)] = Ep(x;G0) [log pθ∗(x|G∗)] . (13)

From Proposition 1, under a correctly specified model, we have

Ep(x;G0) [log pθ∗(x|G∗)] = Ep(x;G0)

[
log p(x;G0)

]
Thus, for a G′ ∈ Gϕ and associated parameter θ′, the condition in eq. (13) becomes

Ep(x;G0) [log pθ′(x|G′)] = Ep(x;G0)

[
log p(x|G0)

]
=⇒Ep(x;G0)

[
log

pθ′(x;G
′)

p(x;G0)

]
= 0

=⇒KL[p(x;G0)∥pθ′(x;G′)] = 0,

which implies pθ′(x;G′) = p(x;G0). Since DECI is structural identifiable, this means G′ = G0

and it is unique. Thus, the graph space Gϕ only contains one graphG′, and q′ϕ(G) = δ(G = G′).

One should note that we do not explicitly restrict the noise distribution, indicating it still holds
with the spline noise (Appendix E). However, the above theorem implicitly assumes that DECI is
a special case of ANM for structural indentifiability and that the data has no missing values. Thus,
it is not applicable for DECI with the mixed-type and missing value extensions. We leave a more
general theoretical guarantee to future work.

B.4 Theoretical considerations for treatment effect estimation

Our proposed DECI model provides an end-to-end framework to connect causal discovery and infer-
ence. The assumptions introduced in Appendix B.1 are mainly introduced for the causal discovery
task. In the following, we will discuss their relationships to some common assumptions required
for the causal inference task. In particular, we show that no additional assumptions are needed to
guarantee that DECI can correctly estimate treatment effects.

Causal effect identifiability and positivity. Under the assumed DECI SEM (non-linear additive
noise model with independent noise variables), our model is Markovian, meaning that the well-
known causal effect identification theorem for Markovian models naturally holds (Theorem 3.2.5 of
Pearl [47]). This result does assume positivity of observational distributions.
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Fortunately, the proposed form of DECI implies positivity. In particular, DECI is based on non-
linear additive noise models. One of the fundamental assumption of non-linear ANMs is that
the joint distribution should have a proper density function, i.e. it should be absolutely continu-
ous w.r.t. Lebesgue measure (see Assumption 2). This means the density function is non-negative.
Additionally, since the noise model for DECI is either a Gaussian or a spline transformed Gaussian,
the measure of the set where the density is zero must have a measure zero. This means DECI will
have a positive density almost everywhere, which in turn implies positivity.

A note on consistency assumptions. A consistency assumption is not required by our method,
since these are only standard within the potential outcome formulation for causality of Rubin [55],
and are rarely seen in graphical model based approach [47] to causality used in our paper. The
graphical model approach works fundamentally differently than potential outcomes (PO): we start
by defining a causal model, and all other counterfactual and interventional quantities are derived
from this causal model. On the contrary, the PO approach treats counterfactuals (i.e. potential out-
comes) as primitive random variables that are not observed. Therefore, the PO approach needs
assumptions such as consistency, no interference, etc. to ensure the coherent mathematical consis-
tency of counterfactual statements. See Imbens [26], Pearl [48], for example, for more discussions
on PO approach versus graphical approach to causality.

C Additional Details for DECI

C.1 Optimization Details for Causal Discovery

As mentioned in the main text, we gradually increase the values of ρ and α as optimization pro-
ceeds, so that non-DAGs are heavily penalized. Inspired by Notears, we do this with a method that
resembles the updates used by the augmented Lagrangian procedure for optimization [44]. The op-
timization process interleaves two steps: (i) Optimize the objective for fixed values of ρ and α for
a certain number of steps; and (ii) update the values of the penalty parameters ρ and α. The whole
optimization process involves running the sequence (i)–(ii) until convergence, or until the maximum
allowed number of optimization steps is reached.

Step (i). Optimizing the objective for some fixed values of ρ and α using Adam [33]. We optimize
the objective for a maximum of 6000 steps or until convergence, whichever happens first (we stop
early if the loss does not improve for 1500 optimization steps. If so, we move to step (ii)). We use
Adam, initialized with a step-size of 0.01. During training, we reduce the step-size by a factor of 10
if the training loss does not improve for 500 steps. We do this a maximum of two times. If we reach
the condition a third time, we do not decrease the step-size and assume optimization has converged,
and move to step (ii).

Iterating (i)–(ii). We initialize ρ = 1 and α = 0. At the beginning of step (i) we measure the DAG
penalty P1 = Eqϕ(G)h(G). Then, we run step (i) as explained above. At the beginning of step (ii)
we measure the DAG penalty again, P2 = Eqϕ(G)h(G). If P2 < 0.65P1, we leave ρ unchanged and
update α ← α + ρP2. Otherwise, if P2 ≥ 0.65P1, we leave α unchanged and update ρ ← 10 ρ.
We repeat the sequence (i)–(ii) for a maximum of 100 steps or until convergence (measured as α or
ρ reaching some max value which we set to 1013 for both), whichever happens first.

C.2 Other Hyperparameters

We use λs = 5 in our prior over graphs eq. (7). For ELBO Monte Carlo gradients we use the Gumbel
softmax method [43] with a hard forward pass and a soft backward pass with temperature of 0.25.

The functions eq. (4) used in DECI’s SEM, ζ and ℓ, are 2 hidden layer MLPs with 128 hidden units
per hidden layer. These MLPs use residual connections and layer-norm at every hidden layer.

For the non-Gaussian noise model in eq. (5), the bijection κ is an 8 bin rational quadratic spline [14]
with learnt parameters.

In Section 3.2, for ATE estimation we compute expectations by drawing 1000 graphs from DECI’s
graph posterior qϕ and for each graph we draw 2 samples of xY for a total of 2000 samples. For
CATE estimation, we need to train a separate surrogate predictor per graph samples. We draw 10
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different graph samples and 10000 (xC ,xY ) pair samples for each graph. We use these to train the
surrogate models.

Our surrogate predictor is a basis function linear model with 3000 random Fourier features drawn
such that the model approximates a Gaussian process with a radial basis function kernel of length-
scale equal to 1 [70].

C.3 ELBO Derivation

The goal of maximum likelihood training involves maximizing the likelihood of the observed vari-
ables. For DECI (with fully observed datasets) this corresponds to the log-marginal likelihood

log pθ(x
1, . . . , xN ) = log

∑
G∈G

p(G)
∏
n

pθ(x
n|G). (14)

Marginalising G in the equation above is intractable, even for moderately low dimensions, since the
number of terms in the sum grows exponentially with the size of G (which grows quadratically with
the data dimensionality D).

Variational inference proposes to use a distribution qϕ(G) to build the ELBO, a lower bound of the
objective from eq. (14), as follows:

log pθ(x
1, . . . , xN ) = log

∑
G

p(G)
∏
n

pθ(x
n|G) (15)

= log
∑
G

qϕ(G)
p(G)

∏
n pθ(x

n|G)
qϕ(G)

(16)

= logEqϕ(G)

[
p(G)

∏
n pθ(x

n|G)
qϕ(G)

]
(17)

≥ Eqϕ(G)

[
log

p(G)
∏
n pθ(x

n|G)
qϕ(G)

]
(Jensen’s inequality) (18)

= Eqϕ(G)

[
log p(G)

∏
n

pθ(x
n|G)

]
+H[qϕ] (19)

= ELBO(ϕ, θ), (20)

where we denote H[qϕ] = −Eqϕ(G) log qϕ(G) for the entropy of the distribution qϕ. Interestingly,
the distribution qϕ that maximizes the ELBO is exactly the one that minimizes the KL-divergence
between the approximation and the true posterior, KL(qϕ(G)∥pθ(G|x1 . . . , xN )) (see, e.g. Blei et al.
[6]). This is why qϕ can be used as a posterior approximation.

C.4 CATE estimation

We focus on CATE estimation for which the treatment xT is not the cause of the conditioning set
xC , i.e. there is no directed path from T toC inG. Under this assumption, we can estimate CATE by
sampling from the interventional distribution p

(
x\T |do(xT ), G

)
and then estimating the conditional

distribution of xY given xC . Precisely, we let Y = X \ (T ∪ C) denote all variables that we do not
intervene or condition on. Conditional densities

pθ(xY | do(xT=b),xC=c, G) =
pθ(xY ,xC=c|xT=b, Gdo(xT ))

pθ(xC=c|xT=b, Gdo(xT ))
(21)

are not directly tractable due to the marginal distribution. However, we can always sample from the
joint interventional distribution pθ(xY ,xC |xT=b, Gdo(xT )). These samples can be used to train a
surrogate regression model gG3 to the relations between xC and xY by minimizing the square loss

Epθ(xY ,xC |xT=b,Gdo(xT ))

[
∥xY − gG(xC)∥2

]
, (22)

3Subscript G allows differentiating surrogate models fit on samples from different graphs drawn from qϕ.
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Figure 3: DECI CATE estimation on the CSuite Symprod Simpson dataset. Left: The DECI graph
posterior has two modes with p(G) = 0.6 for the correct graph and p(G) = 0.4 for an alternative
possibility with some incorrect edges. Middle: we display the joint distribution of conditioning
and effect variables in the observational setting and under interventions on xT . DECI captures the
observational density well. Right: interventional distributions with their conditional means xC = c
marked with crosses. DECI predicts conditional expectations by fitting functions from xC to xY
and evaluating them at c. DECI outputs CATE by marginalizing the result over possible graphs.
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Figure 4: Marginalizing ATE estimates from graph and exogenous noise samples.

where gG approximates the conditional mean of xY . We choose gG to be a basis-function linear
model with random Fourier basis [70]. We train two separate surrogate models for intervention
xT = a and reference xT = b, respectively. We estimate CATE as the difference between their
outputs evaluated at xC = c, followed by marginalising over different sampled graphs, giving

CATE(a,b|c) ≈ Eqϕ(G)

[
gGdo(xT=a)

(xC = c)− gGdo(xT=b)
(xC = c))

]
. (23)

Our CATE estimation procedure is illustrated in Figure 3.

C.5 Intervened Density Estimation with DECI

Apart from (C)ATE estimation, DECI may also be used to evaluate densities under intervened dis-
tributions. For a given graph, the density of some observation vector a is computed by evaluating
the base distribution density after inverting the SEM

pθ(x = a|Gm) =
∏
i

p(zi = (ai − fi(apa(i;Gm)))) (24)
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noting that the transformation Jacobian is the identity. We then marginalise the graphs using Monte
Carlo:

pθ(x = a) ≈ 1

M

M∑
m

pθ(x = a|Gm); Gm ∼ qϕ(G). (25)

Under Gdo(xT ), i ∈ T correspond to parent nodes and we have the following factorisation:
p(x|Gdo(xT )) = p(x\T |Gdo(xT ))

∏
i∈T p(xi). We can then evaluate the interventional density of

an observation x\T = a with DECI as

pθ(x\T = a|do(xT = b), Gm)

=
pθ(x\T = a,xT = b|Gmdo(xT )

)

pθ(xT = b|Gmdo(xT )
)

=
pθ(x\T = a|xT = b, Gmdo(xT )

)pθ(xT = b)

pθ(xT = b)

=
∏
j∈\T

p(zi = (ai − fi(apa(i;Gmdo(xT )
)))), (26)

which amounts to evaluating the density of the exogenous noise corresponding to non-intervened
variables. We can then marginalise the graph using Monte Carlo as in eq. (25). See Figure 4 for an
illustration of estimating interventional densities with two graph.

C.6 Discussion on Causal Discovery Methods

When performing causal discovery, DECI returns a posterior over graphs. Most other causal discov-
ery methods return either a single graph or an equivalence class of graphs. However, we can re-cast
these methods in the probabilistic framework used by DECI by noting that a posterior over graphs
takes the form

p(G|X) =
p(X|G)p(G)∑
G p(X|G)p(G)

. (27)

In this equation, the likelihood measures the degree of compatibility of a certain DAG architecture
with the observed data. For score-based discovery methods [8, 9, 10, 23] we take the score to be
log p(X|G). For functional discovery methods [21, 59, 71] we use the exogenous variable log-
density. Constraint-based methods [60, 61] can also be cast in this light by assuming a uniform
distribution over all graphs in their outputted equivalence class G: log p(X|G) = − log |G|,∀G ∈ G.
To what degree these methods succeed at constraining the space of possible graphs will depend on
how well their respective assumptions are met and the amount of data available [20].

D Unified View of Causal Discovery Methods

This section introduces a simple analysis showing that, similarly to DECI, most causal discovery
methods based on continuous optimization can be framed from a probabilistic perspective as fitting
a flow. The benefits of this unified perspective are twofold. First, it allows a simple comparison
between methods, shedding light on the different assumptions used by each one, their benefits and
drawbacks. Second, it simplifies the development of new tools to improve these methods, since
any improvements to one of them can be easily mapped to the others by framing them in this unified
framework (e.g. our extensions to handle missing values and flexible noise distributions can be easily
integrated with Notears).

The connection between causal discovery methods based on continuous optimization and flow-
based models uses the concept of a weighted adjacency matrix W (θ) ∈ RD×D linked to a function
f(x; θ) : RD → RD. Loosely speaking, these matrices can be seen as characterizing how likely
is each output of f(x; θ) to depend on each component of the input x. For instance, W (θ)j,i = 0
indicates that fi(x; θ) is completely independent of xj . Such adjacency matrices can be constructed
efficiently for a wide range of parameterizations for f , such as multi layer perceptrons and weighted
combinations of nonlinear functions. We refer the reader to Zheng et al. [76] for details.
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Lemma 3. Let f(x; θ) : RD → RD be a θ-parameterized function with weighted adjacency matrix
W (θ) ∈ RD×D. Given a dataset {x1, . . . ,xN}, fitting a flow with the transformation z = x −
f(x; θ), base distribution pz and a hard acyclicity constraint on W (θ) is equivalent to solving

max
θ

N∑
n=1

log pz(x
n − f(xn; θ)) s.t. h(W (θ)) = 0, (28)

where h(·) is the algebraic characterization of DAGs, h(W ) = tr
(
eW⊙W )

.

Proof. The acyclicity constraint is enforced by constraining the optimization domain to Θ = {θ :
h(W (θ)) = 0}. Then, the maximum likelihood objective can be written as∑

n

log pθ(x
n) =

∑
n

log pz(x
n − f(xn; θ)) + log

∣∣∣∣det d(xn − f(xn; θ))dxn

∣∣∣∣ (29)

=
∑
n

log pz(x
n − f(xn; θ)), (30)

where the first equality we use the change of variable formula, valid because the transformation
z = g(x; θ) = x−f(x; θ) is invertible for any θ ∈ Θ, and the second equality uses that the function
f(xn; θ) has Jacobian-determinant equal to 1, due to the constraint Θ = {θ : h(W (θ)) = 0}.

Lemma 3 is the main building block in the formulation of continuous optimization-based causal
discovery methods from a probabilistic perspective as fitting flow models. This is simply because
the objective used by each of these methods can be exactly recovered from eq. (28) with specific
choices for f(x; θ) and pz.
Notears [74] uses a standard isotropic Gaussian for pz and a linear transformation for f(x, θ). (This
is similar to DECI-Gaussian, although DECI permits fully nonlinear functions.)
Notears-MLP [76] uses a standard isotropic Gaussian for pz and D independent multi-layer per-
ceptrons, one for each component of f(x, θ).
Notears-Sob [76] uses a standard isotropic Gaussian for pz and a weighted linear combination of
nonlinear basis functions.
GAE [45] uses a standard isotropic Gaussian for pz and a GNN for f(x, θ).
Grandag [36] uses a factorized Gaussian with mean zero and learnable scales for pz and D multi
layer perceptrons, one for each component of f(x, θ).
Golem [46]. This is a linear method whose original formulation was already in a probabilistic per-
spective, using a linear transformation for f(x; θ).
In summary, recently proposed causal discovery methods based on continuous optimization can
be formulated from a probabilistic perspective as fitting a flow with different constraints, transfor-
mations, and base distributions. This unified formulation sheds light on the assumptions done by
each method (e.g. a Gaussian noise assumption, either implicitly as in Notears or explicitly as in
Grandag) and, more importantly, simplifies the development of new tools to improve them. For
instance, the ideas proposed to deal with partially-observed datasets and non-Gaussian noise are
readily applicable to any of the causal discovery methods mentioned in this section, addressing
some of their limitations [30, 39, 52].

E DECI for Real-world Heterogeneous Data

We extend DECI to handle mixed-type (continuous and discrete) data and data with missing values,
which often arise in real-world applications.

Handling Mixed-type Data. For discrete-valued variables, we remove the additive noise structure
and directly parameterise parent-conditional class probabilities

pdiscrete
θ

(
xi|xpa(i;G);G

)
= Pi

(
xpa(i;G); θ

)
(xi), (31)

where Pi
(
xpa(i;G); θ

)
is a normalised probability mass vector over the number of classes of xi,

obtained by applying the softmax operator to fi(xpa(i;G)). This means that for discrete variables,
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the output of fi is a vector of length equal to the number of classes for variable i. This approach
gives a valid likelihood for pθ(xn|G) which we use to train DECI. However, since the full generative
model is no longer an ANM, we cannot guarantee that Theorem 1 applies in this setting.

Handling Missing Data. We propose an extension of DECI to partially observed data.4 We use xno
to denote the observed components of xn, xnu to denote the unobserved components, and their joint
density in the observational environment is pθ(xno ,x

n
u). We approximate the posterior p(G,xnu|xno )

with the variational distribution,

qϕ,ψ
(
G,x1

u, . . . ,x
N
u |x1

o, . . . ,x
N
o

)
= qϕ(G)

∏
n

qψ(x
n
u|xno ),

which yields the following learning objective

ELBO(θ, ϕ, ψ) = H(qϕ) +
∑
n

H(qψ(x
n
u|xno )) + Eqϕ,ψ

[
log p(G)

∏
n

pθ(x
n
o ,x

n
u|G)

]
. (32)

We parameterize the Gaussian imputation distribution qψn(x
n
u|xno ) using an amortization network

[34], whose input is xno , and output the mean and variance of the imputation distribution qψ(xnu|xno ).

F Datasets Details

ER and SF graphs. For the synthetic data, we follow Lachapelle et al. [36] and Zheng et al. [76]
by sampling a DAG from two different random graph models, Erdős-Rényi (ER) and scale-free
(SF), and simulating each ANM xi = fi(xpa(i;G)) + zi, where fi is a nonlinear function (randomly
sampled spline). We consider two noise distributions for zi, a standard Gaussian and a more complex
one obtained by transforming samples from a standard Gaussian with an MLP with random weights.
We consider number of nodes d ∈ {16, 64} with number of edges e ∈ {d, 4d}. The resulting
datasets are identified as ER(d, e) and SF(d, e). All datasets have n=5000 training samples.

Our two benchmark datasets (Twins and IHDP) are constructed following similar procedures de-
scribed in Louizos et al. [41].

IHDP [18]. This dataset contains measurements of both infants (birth weight, head circumference,
etc.) and their mother (smoked cigarettes, drank alcohol, took drugs, etc) during real-life data col-
lected in a randomized experiment. The main task is to estimate the effect of home visits by special-
ists on future cognitive test scores of infants. The outcomes of treatments are simulated artificially as
in [18]; hence the outcomes of both treatments (home visits or not) on each subject are known. Note
that for each subject, our models are only exposed to only one of the treatments; the outcomes of the
other potential/counterfactual outcomes are hidden from the model, and are only used for the purpose
of (C)ATE evaluation. To make the task more challenging, additional confoundings are manually
introduced by removing a subset (non-white mothers) of the treated children population. In this way
we can construct the IHDP dataset of 747 individuals with 6 continuous covariates and 19 binary
covariates. We use 10 replicates of different simulations based on setting B (log-linear response
surfaces) of [18], which we downloaded from https://github.com/AMLab-Amsterdam/CEVAE.
We use a 70%/30% train–test split ratio. Before training our models, all continuous covariates are
normalized.

TWINS [1]. This dataset consists of twin births in the US between 1989 and 1991. Only twins which
with the same sex born weighing less than 2kg are considered. The treatment is defined as being born
as the heavier one in each twins pair, and the outcome is defined as the mortality of each twin in their
first year of life. Therefore, by definition, for each pair of twins, we can observe the outcomes of both
treatments (the lighter twin and heavier twin). However, during training, only one of the treatment
is visible to our models, and the other potential outcome is unknown to the model and is only used
for evaluation. The raw dataset is downloaded from https://github.com/AMLab-Amsterdam/
CEVAE. Following Louizos et al. [41], we also introduce artificial confounding using the categorical
GESTAT10 variable. This is done by assigning treatments (factuals) using the conditional probability
ti|xi, zi = Bern(σ(wT0 xi + wh(zi/10 − 0.1))), where ti is the treatment assignment for subject
i, zi is the corresponding GESTAT10 covariate, xi denotes the other remaining covariates. Both w0

4We assume that values are missing (completely) at random, the most common setting [42, 56, 63, 64].
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and wh are randomly generated as w0 ∼ N (0, 0.1I), wh ∼ N (5, 0.1). All continuous covariates
are normalized.

Ground Truth ATE and CATE Estimation for TWINS and IHDP. In both benchmark datasets,
since the held-out hypothetical outcomes of counterfactual treatments are already known, the the
ground truth ATE can be naively estimated by averaging the difference between the factual and
counterfactual outcomes across the entire dataset. The CATE estimation is a bit tricky, since both
datasets contains covariates collected from real-world experiments, in which the underlying ground
truth causal graph structure is unknown. As a result, exact CATE estimation is generally impossi-
ble for continuous conditioning sets. Therefore, when evaluating the CATE estimation performance
on TWINS and IHDP, we focus only on discrete variables (binary and categorical) as a condi-
tioning set. This allows unbiased estimation of the ground truth CATE by simply averaging the
treatment effects on subgroups of subjects in the dataset that have the corresponding discrete value
in the conditioning set. We consider only single conditioning variable at a time, and estimate the
corresponding CATE for evaluation.

F.1 CSuite

We develop Causal Suite (CSuite), a number of small to medium (2–12 nodes) synthetic datasets
generated from hand-crafted structural equatio models with the intention of testing different capa-
bilities of causal discovery and inference methods. All continuous-only datasets take the form of
additive noise models. Further details about CSuite, and direct access to the data is provided at
https://github.com/microsoft/csuite.

Each dataset comes with a training set of 2000 samples, and between 1 and 2 intervention test sets.
Each intervention test set has a treatment variable, treatment value, reference treatment value and
effect variable. We estimate the ground truth ATE by drawing 2000 samples from the treated and
reference intervened distributions. For the datasets used to evaluate CATE, we generate samples
from conditional intervened distributions by using Hamiltonian Monte Carlo. We employ a burn-in
of 10k steps and a thinning factor of 5 to generate 2000 conditional samples, which we then use to
compute our ground truth CATE estimate. We note that because all ground truth causal quantities
are estimated from samples, there is a lower bound on the expected error that can be obtained by our
methods. When methods obtain an error equal or lower we say that they have solved the task.

lingauss A two node graph (Figure 5a) with a linear relationship and Gaussian noise. We have
X1 ∼ N(0, 1) and X2 = 1

2X1 +
√
3
2 Z2 where Z2 ∼ N(0, 1) is independent of X1. The observa-

tional distribution is symmetrical in X1 ↔ X2. The graph is not identifiable. The best achievable
performance on this dataset is obtained when there is a uniform distribution over edge direction.

linexp A two node graph (Figure 5a) with a linear functional relationship, but with exponentially
distributed additive noise. We haveX1 ∼ N(0, 1) andX2 = 1

2X1+
√
3
2 (Z2−1) whereZ2 ∼ Exp(1)

is independent of X1. By using non-Gaussian noise, the graph becomes identifiable. However, the
inference problem will be more challenging for methods sensitive to outliers, such as those that
assume Gaussian noise.

nonlingauss A two node graph (Figure 5a) with a nonlinear relationship and Gaussian additive
noise. We haveX1 ∼ N(0, 1) andX2 =

√
6 exp(−X2

1 )+αZ2 where Z2 ∼ N(0, 1) is independent
of X1 and α2 = 1− 6

(
1√
5
− 1

3

)
. Note Var(X2) = 1 and Cov(X1, X2) = 0. By having a linear

correlation of zero between X1 and X2, this dataset creates a potential failure mode for causal
inference methods that assume linearity.

nonlin_simpson A synthetic Simpson’s paradox, using the graph Figure 5b: if the confounding
factor X3 is not adjusted for, the relationship between the treatment X1 and effect X2 reverses. The
variable X4 correlates strongly with the effect, but must not be used for adjustment. Choosing an
incorrect adjustment set when estimating E[X2|do(X1)] leads to a significantly incorrect ATE esti-
mate. All variables are continuous, with nonlinear structural equations and non-Gaussian additive
noise.
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symprod_simpson Another Simpson’s paradox using the graph Figure 5c. This dataset is similar
to nonlin_simpson with 2 key differences: 1) the effect variable is the result of a product between
the confounding variable and the treatment variable. This makes drawing causal inferences require
non-linear function estimation. Additionally, the ATE is close to 0. The conditioning variable for the
CATE task is a descendant of the confounding variable. This dataset probes for methods’ capacity
to reduce their uncertainty about a confounding variables based on values of its child variables.

large_backdoor A nine node graph, as shown in Figure 5d. This dataset is constructed so that
there are many possible choices of backdoor adjustment set. While both minimal and maximal
adjustment sets can result in a correct solution, the minimal adjustment set results in a much lower-
dimensional adjustment problem and thus will result in lower variance solutions. The conditioning
node for the CATE task is a child of the root variable. Thus the CATE task probes for methods’
capacity to infer the value of an observed confounder from one of its children. All variables are
continuous, with nonlinear structural equations and non-Gaussian additive noise.

weak_arrows A nine node graph, as shown in Figure 5e. Unlike the previous dataset, when the
true graph is known, a large adjustment set must be used. The causal discovery challenge revolves
around finding all arrows, which are scaled to be relatively weak, but which have significant predic-
tive power for X9 in aggregate. This dataset tests methods’ capacity to identify the full adjustment
set and adjust for a large number of variables simultaneously.

cat_to_cts A two node (Figure 5a) graph with categorical X1 and continuous X2 with an additive
noise model. We have X1 ∼ Cat

(
1
4 ,

1
4 ,

1
2

)
takes values in {0, 1, 2} and X2 = X1 +

8
5 (s(Z2) − 1)

where s(x) = log(exp(x) + 1) is the softplus function, and Z2 ∼ N(0, 1) is independent of X1.

cts_to_cat A two node (Figure 5a) graph with continuous X1 and categorical X2. We take X1 ∼
U(−
√
3,
√
3) and X2 categorical on {0, 1, 2} with the following conditional probabilities

p(X2|X1 = x1) =


(

6
13 ,

6
13 ,

1
13

)
if x1 < −

√
3
3(

1
8 ,

3
4 ,

1
8

)
if −

√
3
3 ≤ x1 <

√
3
3(

1
3 ,

1
3 ,

1
3

)
if x1 >

√
3
3

(33)

In this problem, we treat X2 as the treatment and X1 as the target, giving a theoretical ATE of zero.

mixed_simpson Similar to the nonlin_simpson dataset, using the graph of Figure 5b, but with X3

categorical on three categories, and X1 binary.

large_backdoor_binary_t Similar to the large_backdoor dataset, using the graph of Figure 5d,
but with X8 binary.

weak_arrows_binary_t Similar to the weak_arrows dataset, using the graph of Figure 5e, but
with X8 binary.

mixed_confounding A large, mixed type dataset with 12 variables, as shown in Figure 5f. In this
dataset, X1, X5 are binary, X3, X6, X8 are categorical on three categories, and other variables are
continuous. We utilise nonlinear structural equations and non-Gaussian additive noise.

G Additional Results

G.1 Causal Discovery Results under Gaussian Exogenous Noise

Figure 1 in the main text shows causal discovery results for the case where synthetic data was
generated using non-Gaussian noise. In that case, it was observed that using DECI together with
a flexible noise model performed better than DECI with a Gaussian noise model. Figure 6 shows
results for synthetic data generated using Gaussian noise. As expected, in this case using a Gaussian
noise model is beneficial, although DECI with a spline noise mode still performs strongly.
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(a) Two node
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(b) Nonlin. Simpson

X1 X2

X3 X4

(c) Symprod. Simpson

X1

X2 X3

X4 X5

X6 X7

X8 X9

(d) Large backdoor. Treatment X8, outcome X9, con-
dition X7.

X1

X2 X3

X4 X5

X6 X7

X8 X9

(e) Weak arrows. Treatment X8, outcome X9, condi-
tion X7.

X1 X2

X3 X4 X5

X6

X7

X8

X9

X10 X12 X11

(f) Mixed confounding

Figure 5: CSuite graphs. Unless otherwise stated, we take X1 as the treatment, X2 as the outcome,
and for CATE we take X3 as the conditioning variable.

G.2 CSuite Results

Comprehensive results on CSuite ATE and CATE performance are shown in Figures 7 and 8. We first
provide a summary of results here and then go into per-dataset analysis in the following subsection.

We find DECI to perform consistently well in our 2 node datasets. It learns a uniform posterior over
graphs in the non-identifiable setting, it fits non-linear functions well and it is robust to heavy tailed
noise when employing the spline noise model. We find linear and non-linear DML inference to also
perform acceptably, with the exception of the heavy tailed noise case, where the methods overfit to
outliers and thus estimate ATE poorly.

On the larger (4 and 12 node) datasets, when the true graph is available, DECI provides ATE esti-
mates competitive with the well-established non-linear DML method. Notably, DECI outperforms
backdoor adjustment methods when the number of possible adjustment sets is large. Choosing the
optimal adjustment set is an NP-hard problem and the most common approach is to simply choose
the largest one. This leads to DoWhy suffering from high variance. DECI’s simulation-based ap-
proach avoids having to choose an adjustment set. On the other hand, for densely connected graphs
where the strength of the connection between nodes is low, DECI struggles to capture the funci-
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Figure 6: DECI achieves better results than the baselines in all metrics shown. The plots show
the results for causal discovery for synthetic data generated using Gaussian noise. The legend
“DECI-G" and “DECI-S" correspond to DECI using a Gaussian and spline noise model. Addi-
tionally, the “(PO)” corresponds to running DECI with 30% of the training data missing completely
at random. For readability, we highlight the DECI results by connecting them with soft lines. The
figure shows mean results across five different random seeds.

tonal relationships in the data and DML is most competitive. For CATE estimation DECI provides
superior performance in all datasets and is able to completely solve all tasks but one.

When the graph is learnt from the data, the non-linear nature of our (4 and 12 node) datasets together
with their heavy tailed noise make the discovery problem very challenging. We find that the PC
algorithm provides very poor results or fails to find any causal DAGs compatible with the data when
working with these datasets. We find both DECI to provide more acceptable performance with the
DECI-spline variant producing more reliable results. In this learnt graph setting, causal inference
performance deteriorates sharply as a consequence of imperfect causal discovery. However, our
findings in terms of relative performance among inference methods stay the same.

G.2.1 Discussion of Continuous CSuite Results

1. lingauss: When the true graph is available, all our causal inference methods are able to
solve this problem. However, when the graph needs to be identified from the data, causal
discovery accuracy is around 50%. DECI discovery converges to a posterior with half of
its mass on the right distribution resulting in DECI inference methods showing the lowest
error.

2. linexp: The non-Gaussian noise causes difficulties for DECI-Gaussian, which identifies the
wrong orientation in a majority of cases. As a result, inference algorithm yield poor results.
Surprisingly, the PC algorithm is also unable to identify the causal graph, leading to overall
poor inference performance. With the spline noise model, DECI successfully identifies the
causal graph, allowing for all inference algorithms to solve the problem.

3. nonlingauss: The non-linear relationship between variables leads all DECI discovery runs
to successfully recover the edge direction for this dataset while PC consistently identifies
the wrong edge direction. As expected, linear ATE estimation performs poorly on this
task. However, we find DoWhy non-linear to not fare much better, likely this is because
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Figure 7: End-to-end ATE results on CSuite.
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26



Method DGa DGa+L DGa+N DSp DSp+L DSp+N PC+L PC+N T+L T+N T+DGa T+DSp
Dataset

ER(16, 16) - G 1.280 1.141 1.129 1.648 1.374 1.393 1.491 1.475 0.945 0.936 1.083 1.332
ER(16, 16) - S 1.726 1.776 1.780 1.829 1.776 1.755 1.869 1.790 1.755 1.793 1.643 1.660
ER(16, 64) - G 1.699 1.422 1.334 1.501 1.442 1.202 1.335 1.440 1.310 1.369 1.460 1.644
ER(16, 64) - S 2.311 2.465 2.600 2.174 2.452 2.421 2.584 2.276 2.742 2.641 2.510 2.428
ER(64, 64) - G 1.208 1.420 1.190 1.287 1.450 1.397 1.325 1.273 1.284 1.250 1.158 1.124
ER(64, 64) - S 2.246 1.626 1.626 1.892 2.325 2.292 1.526 2.446 2.442 2.441 2.490 2.481
SF(16, 16) - G 1.156 1.030 1.409 1.699 2.052 1.343 1.574 1.233 1.131 1.078 1.127 1.375
SF(16, 16) - S 2.870 1.805 2.284 2.431 2.363 1.805 3.008 2.520 2.518 2.502 2.424 2.477
SF(16, 64) - G 1.702 - - 1.539 - 1.635 1.464 1.551 1.510 1.463 1.559 1.486
SF(16, 64) - S 3.594 - - 4.139 - - 3.877 4.145 4.162 4.106 4.161 3.861
SF(64, 64) - G 1.049 0.998 1.134 1.010 1.035 1.309 0.972 1.343 1.006 - 1.087 1.288
SF(64, 64) - S 2.754 3.239 3.239 3.242 3.239 3.239 3.227 2.591 2.815 - 2.883 3.034
csuite_cat_to_cts 0.495 0.504 0.504 0.501 0.504 0.504 0.262 0.264 0.020 0.023 0.019 0.036
csuite_cts_to_cat 0.015 0.011 0.011 0.016 0.011 0.011 0.039 0.038 0.011 0.011 0.011 0.011
csuite_large_backdoor 0.213 0.144 0.331 0.031 0.091 0.232 1.690 1.690 0.105 0.241 0.167 0.035
csuite_large_backdoor_bt 0.028 0.029 0.187 0.029 0.029 0.027 0.039 0.039 0.119 0.070 0.021 0.014
csuite_linexp 1.029 1.031 1.031 0.022 0.001 0.002 0.516 0.517 0.001 0.003 0.073 0.028
csuite_lingauss 0.120 0.523 0.024 0.149 0.025 0.024 0.498 0.498 0.025 0.022 0.076 0.085
csuite_mixed_confounding 0.477 0.461 0.282 0.254 0.500 0.380 0.250 0.387 0.107 0.057 0.019 0.018
csuite_mixed_simpson 1.259 0.723 0.723 1.765 1.772 1.771 0.723 0.723 0.017 0.022 0.014 0.013
csuite_nonlin_simpson 1.995 1.994 1.994 1.997 1.994 1.994 1.994 1.994 0.848 0.597 0.404 0.531
csuite_nonlingauss 0.042 1.522 1.532 0.043 1.522 1.532 1.532 1.532 1.522 1.532 0.034 0.034
csuite_symprod_simpson 0.318 0.695 0.487 0.427 0.819 0.160 0.487 0.487 0.819 0.168 0.101 0.242
csuite_weak_arrows 1.097 1.108 1.108 0.189 0.110 0.064 1.108 1.108 0.109 0.015 0.255 0.128
csuite_weak_arrows_bt 0.226 0.252 0.252 0.085 0.065 0.029 0.123 0.086 0.228 0.003 0.060 0.034
IHDP 0.187 0.187 0.187 0.090 0.101 0.116 0.187 0.187 0.187 0.187 0.146 0.087
Twins 0.030 0.025 0.025 0.022 0.025 0.025 0.068 0.025 0.022 0.042 0.022 0.060

Table 2: Median ATE RMSE data underling our rank table. The median is taken across multiple
seeds, with the number of seeds shown in Table 3. Standard deviations are also shown in Table 4.
Missing values indicate that the method exceeded the computational budget—this typically occurred
for larger graphs.

Method DGa DGa+L DGa+N DSp DSp+L DSp+N PC+L PC+N T+L T+N T+DGa T+DSp
Dataset

ER(16, 16) - G 5 5 5 5 5 5 5 5 5 5 5 5
ER(16, 16) - S 5 5 5 5 5 5 5 5 5 5 5 5
ER(16, 64) - G 5 5 5 5 5 5 5 5 5 5 5 5
ER(16, 64) - S 5 5 4 5 3 5 5 5 5 5 5 5
ER(64, 64) - G 5 1 1 5 1 1 4 5 5 5 5 5
ER(64, 64) - S 5 1 1 5 2 2 1 5 5 5 5 5
SF(16, 16) - G 5 2 3 5 4 5 4 5 5 5 5 5
SF(16, 16) - S 5 1 2 5 2 1 3 5 5 5 5 5
SF(16, 64) - G 5 0 0 5 0 1 4 5 5 5 5 5
SF(16, 64) - S 5 0 0 5 0 0 4 5 5 5 5 5
SF(64, 64) - G 5 4 3 5 3 2 3 4 5 0 5 5
SF(64, 64) - S 5 5 5 5 5 5 3 4 5 0 5 5
csuite_cat_to_cts 20 20 20 20 20 20 20 20 20 20 20 20
csuite_cts_to_cat 20 20 20 20 20 20 20 20 20 20 20 20
csuite_large_backdoor 20 20 20 20 20 20 20 20 20 20 20 20
csuite_large_backdoor_bt 20 20 20 20 20 20 20 20 20 20 20 20
csuite_linexp 20 20 20 20 20 20 20 20 20 20 20 20
csuite_lingauss 20 20 20 20 20 20 20 20 20 20 20 20
csuite_mixed_confounding 20 20 20 20 20 20 20 20 20 20 20 20
csuite_mixed_simpson 20 20 20 20 20 20 20 20 20 20 20 20
csuite_nonlin_simpson 20 20 20 20 20 20 20 20 20 20 20 20
csuite_nonlingauss 20 20 20 20 20 20 20 20 20 20 20 20
csuite_symprod_simpson 20 20 20 20 20 20 20 20 20 20 20 20
csuite_weak_arrows 20 20 20 20 20 20 20 20 20 20 20 20
csuite_weak_arrows_bt 20 20 20 20 20 20 20 20 20 20 20 20
IHDP 5 5 5 5 5 5 5 5 5 5 5 5
Twins 5 5 5 5 5 5 5 5 5 5 5 5

Table 3: Number of seeds run when computing values in Table 2. For ER/SF graphs, where fewer
than 5 seeds were used, this indicates that some runs exceeded the computational budget.

DML still assumes a linear relationship between treatment and target. DECI solves the task
successfully.

4. nonlin_simpson: Even when the true graph is available, none of our inference methods are
able to recover the true ATE on this more difficult task. We observe non-linear methods
(DECI and DoWhy-nonlinear) to perform similarly to each other and more strongly than the
simple linear adjustment. For the CATE task, the true value is close to 0. This is correctly
identified by both DECI-Gaussian and DECI-Spline. Interestingly, we find both linear
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Method DGa DGa+L DGa+N DSp DSp+L DSp+N PC+L PC+N T+L T+N T+DGa T+DSp
Dataset

csuite_cat_to_cts 0.107 0.210 0.108 0.105 0.194 0.172 0.000 0.000 0.011 0.011 0.000 0.000
csuite_cts_to_cat 0.007 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.009 0.009 0.000 0.000
csuite_large_backdoor 0.724 0.737 0.724 0.041 0.062 0.022 0.000 0.000 0.046 0.028 0.055 0.031
csuite_large_backdoor_bt 0.134 0.125 0.124 0.081 0.077 0.056 0.033 0.006 0.011 0.010 0.037 0.004
csuite_linexp 0.013 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.015 0.015 0.000 0.000
csuite_lingauss 0.435 0.498 0.432 0.454 0.355 0.489 0.000 0.001 0.020 0.022 0.000 0.000
csuite_mixed_confounding 0.371 0.389 0.353 0.369 0.418 0.422 0.000 0.000 0.010 0.010 0.000 0.000
csuite_mixed_simpson 0.524 0.522 0.507 0.585 0.522 0.514 0.000 0.000 0.010 0.008 0.000 0.000
csuite_nonlin_simpson 1.071 0.593 0.976 1.080 1.326 1.409 0.000 0.000 0.283 0.304 0.000 0.000
csuite_nonlingauss 0.014 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.013 0.016 0.000 0.000
csuite_symprod_simpson 0.187 0.162 0.162 0.180 0.000 0.128 0.000 0.000 0.090 0.124 0.000 0.000
csuite_weak_arrows 0.433 0.401 0.426 0.256 0.118 0.075 0.000 0.000 0.160 0.131 0.000 0.008
csuite_weak_arrows_bt 0.104 0.118 0.113 0.093 0.067 0.067 0.000 0.002 0.020 0.017 0.000 0.001
IHDP 0.021 0.000 0.062 0.013 0.048 0.037 0.024 0.024 0.014 0.022 0.000 0.000
Twins 0.018 0.000 0.000 0.004 0.022 0.019 0.023 0.024 0.003 0.009 0.000 0.000

Table 4: Standard deviations for ATE RMSE results.

and non-linear DoWhy variants to overestimate the causal effect when using the backdoor
criterion. We attribute this to DECI solving a lower dimensional problem when estimating
CATE. While DECI simply regresses the conditioning variable onto the effect variable.
The backdoor adjustment employed by DoWhy requires regression from the joint space
of conditioning variables and confounders onto the effect variables. The latter procedure
involves estimating the relative strength of confounders and conditioning variables, which
is a more challenging task.
This dataset provides a challenging causal discovery task. DECI identifies the correct edges
with probability 0.9. It capacity to recover the edge orientation is slightly worse 0.65. This
imperfect causal discovery leads to poor inference for all methods. (potentially because
they get Simpson’s paradox the wrong way around).

5. symprod_simpson: Even with access to the true graph, no inference method is able to
solve this problem. However, we find non-linear methods to clearly outperform linear ad-
justment for both CATE and ATE estimation. Among non-linear methods, performance is
similar for ATE estimation, with DECI-Gaussian performing slightly better than DoWhy-
nonlinear and DECI-Spline slightly worse. However, when estimating CATE, DECI in-
ference present an error twice as low as nonlinear DoWhy. Again, we attribute this to the
backdoor adjustment employed by DoWhy being a more challenging inference task than
the 1d regression on simulated data employed by DECI.
In terms of causal discovery, results are similar to nonlin-simpson with PC failing com-
pletely and DECI obtaining an adjacency score of 0.92 and orientation of 0.7. The im-
perfect graph knowledge hurts causal inference. Again we see the non-linear backdoor
adjustment to perform similarly to DECI for ATE estimation while DECI shows decisively
stronger performance when estimating CATE. As expected, the linear adjustment method
fares poorly in this strongly non-linear setting.

6. weak_arrows: When the true causal DAG is available we find that both DoWhy methods
solve this ATE problem while both DECI methods predict slightly suboptimal ATE values.
In terms of causal discovery, DECI clearly outperforms PC with the spline noise model
again proving more reliable and leading to better ATE estimates. Although no methods
are able to solve the task, we find that non-linear DoWhy with the DECI-spline graphs
performs best. We hypothesize that the amortised function structure employed by DECI
suffers in very densely connected graphs with weak edges, like is the case here.

7. large_backdoor: With access to the true graph, DECI methods outperform both Dowhy
variants for both ATE and CATE estimation. DECI-spline performs best and is able to
solve both problems. When faced with many confounders, adjustment procedures suffer
from large variance. As a result, despite the non-linearity of the functional relationships at
play, the simpler linear backdoor adjustment outperforms the non-linear DML approach.
On the other hand, DECI’s simulation based approach is not disadvantaged in this setting.
Following the trend of the previous datasets, PC performs poorly in terms of causal dis-
covery, biasing downstream inference methods which perform poorly in terms of ATE and
CATE estimation. DECI discovery is more reliable, an effect most noticeable when using
the spline noise models. With the DECI-Spline posterior over graphs, both DECI-spline
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and linear DoWhy are able to solve the ATE problem and DECI-spline is the only method
capable of solving the CATE task. For both tasks and noise models DECI outperforms
non-linear DoWhy, again showing its invariance to the size of potential adjustment set.

G.2.2 Discussion of Mixed-type CSuite Results

1. cat_to_cts: Causal discovery proves a bottleneck for this mixed type dataset. With access
the true graph, all methods to approximately as well as one another, PC appears to find the
right graph more frequently than DECI.

2. cts_to_cat: Here, causal discovery is more successful with DECI, outperforming PC.
Likely this is due to the fact that the incorrect graph X2 → X1 does not admit an ad-
ditive noise structure, and so can be discounted. With the right graph, DECI has a higher
variance but similary accurate estimate of the ATE compared to DoWhy.

3. mixed_simpson: As with its sister dataset ‘nonlin_simpson’, causal discovery appears to
be difficult here for all methods. With access to the true graph, DECI and DoWhy are
equally able to estimate the treatment effects.

4. large_backdoor_binary_t: Here, DECI spline has a large margin over DECI Gaussian,
and comes close to the true graph performance. It appears that DoWhy struggles, even
with the true graph, likely due to the higher variance incurred by the maximal adjustment
strategy.

5. weak_arrows_binary_t: Again, we see DECI spline appearing to be the most effective
discovery method, but with the best ATE estimation then coming from combining it with
DML.

6. mixed_confounding: this dataset appears to present a challenge for discovery for all meth-
ods. With access to the true graph, it appears that DECI is the most accurate ATE estimator,
with linear methods in particular being somewhat off.

G.3 Synthetic Graph Experiments

We test the performance of DECI on ATE estimation with random graphs as described in section 4.1.
For each graph, we randomly generate interventional data for up to five random interventions. We
chose the effect variable as the last variable in the causal order that has not yet been used for data
generation. For each effect variable we chose the intervention by randomly traversing the graph up
to three edges away from the effect variable.

Table 2 shows the performance of the ATE estimation of DECI and all baselines on the synthetic
graph data. We only show results for methods that have a runtime of less than one day. Figure 9
shows the runtimes for the different methods. DECI has consistently the lowest runtime and scales
best to larger graphs. While the runtime of DECI stays approximately constant for various graphs,
the runtime of the ATE estimation baselines increases with more complex graphs. In general, the
methods using the true graph outperform the methods that also perform causal discovery. Further, no
method strongly outperforms all other methods with DECI being a strong competitor to the already
established DML methods. Lastly, we can see that DECI is capable of performing causal discovery,
data imputation and ATE estimation in an end-to-end fashion without degrading performance.

G.4 Summary of ATE estimation results

Table 5 shows a summary of the rank of different methods aggregated over the following 27 datasets:

• 13 CSuite datasets: 6 are theoretically identifiable continuous non-linear ANMs, 1 is con-
tinuous linear Gaussian, 6 are mixed type

• IHDP and Twins benchmark datasets

• 6 ER graphs, 3 with Gaussian noise and 3 with spline noise

• 6 SF graphs, 3 with Gaussian noise and 3 with spline noise
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Figure 9: Runtime of End-to-end ATE estimation methods on synthetic graphs.
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Table 5: Method rank on different (CSuite, Twins, IHDP and ER/SF) datasets, ranking by median
ATE RMSE. We present mean±1 s.e. of the rank over 27 datasets. Supporting data in Table 2. Bold
indicates the possible top methods, accounting for error bars. We treat methods with access to the
true graph separately.

Method Mean rank

DECI Gaussian (DGa) 6.26± 0.60
DECI Gaussian DoWhy Linear (DGa+L) 8.37± 0.50
DECI Gaussian DoWhy Nonlinear (DGa+N) 8.52± 0.51
DECI Spline (DSp) 6.04± 0.68
DECI Spline DoWhy Linear (DSp+L) 7.78± 0.60
DECI Spline DoWhy Nonlinear (DSp+N) 6.63± 0.66
PC + DoWhy Linear (PC+L) 8.87± 0.41
PC + DoWhy Nonlinear (PC+N) 7.54± 0.45

True graph DECI Gaussian (T+DGa) 3.74± 0.47
True graph DECI Spline (T+DSp) 4.19± 0.56
True graph DoWhy Linear (T+L) 4.87± 0.58
True graph DoWhy Nonlinear (T+N) 5.20± 0.71

G.5 Learning in Non-identifiable Settings with the Help of Graph Priors

We investigate the utility of prior knowledge over causal graphs for causal discovery and end2end
inference in non-identifiable and difficult to identify settings. Specifically, we generate 2 datasets
composed of 2000 training examples each. The first is composed of only linear relationships be-
tween variables and Gaussian additive noise, making the causal graph non-identifiable. The second
dataset also uses linear functions but has a mix of exponential and Tanh-Gaussian noise. Although
identifiable, discovery in this latter setting is challenging.

We introduce prior knowledge about graph sparseness through the weighted adjacency matrixW0 ∈
[0, 1]D×D, with zero entries encouraging sparser graphs. The resulting informed DECI prior is

p(G) ∝ exp
(
−λs∥G−W0∥2F − ρ h(G)2 − αh(G)

)
,

with the scalar λs regulating the strength of the prior beliefs encoded in W0.

We compare DECI inference with access to the true graph to end-to-end DECI inference. In the
latter case we consider a PC prior, which is the CP-DAG provided by PC. We consider different
prior strengths, i.e. the value of the entries of W0, between 0 and 1. We also experiment with
introducing the true-graph as a prior of this form, yielding what we refer to as the “informed prior”.

In the non-identifiable case, we find both DECI (prior strength 0) and PC discovery to provide
incorrect graphs. Interestingly, providing the PC CPDAG as a prior for DECI can yield large gains
in terms of causal discovery due to a variance reduction effect. These gains do not translate to
better ATE estimation, where performance is not improved over the uninformative prior. Providing
knowledge of the true graph does help causal inference, with a more confident prior yielding better
results.

In the difficult identifiable case, the PC prior does provide gains to DECI. We find the optimal prior
strength to be 0.5: a balanced combination of PC and DECI discovery is most reliable, while using
exclusively one of the two algorithms yields worse results. In this identifiable setting informed DECI
discovery is able to obtain perfect ATE estimation performance with a prior strength as low as 0.2.

G.6 Understanding Robustness to Unobserved Confounders

To evaluate the robustness of DECI to the presence of unobserved confounders, we introduced a
new CSuite datasets. Fork nonlin. Gauss has the graph shown in Figure 12a and uses nonlinear
functions with Gaussian exogeneous noise. We trained DECI on the data from observed variables
only (as shown in Figure 12), as well as on the full dataset treating all variables as observed. Table 6
shows the results.
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Figure 10: Causal discovery and inference results obtained on a 9 node linear Gaussian dataset,
where the graph is non-identifiable without prior knowledge. We perform DECI inference with
the true graph and DECI end2end inference with different priors. Informed prior refers to using a
smoothed version of the true graph as the prior. PC prior refers to using the CP-DAG outputted by
PC as the prior mean W0. The prior strength indicates how much prior mass is placed on the mean
prior graph W0 and how much is spread across all other DAGs.
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Figure 11: Causal discovery and inference results obtained on a 9 node linear non-Gaussian dataset,
difficult to identify without prior knowledge. We perform DECI inference with the true graph and
DECI end2end inference with different priors. Informed prior refers to using a smoothed version of
the true graph as the prior. PC prior refers to using the CP-DAG outputted by PC as the prior mean
W0. The prior strength indicates how much prior mass is placed on the mean prior graph W0 and
how much is spread across all other DAGs.

Table 6: ATE RMSE results on CSuite Fork nonlin. Gauss dataset with unobserved confounders.
Method ATE RMSE (mean ± s.e. from 5 seeds)

DECI Gaussian (DGa) 0.034 ± 0.007
DECI Spline (DSp) 0.036 ± 0.009

DECI Gaussian (DGa) full observability 0.019 ± 0.002
DECI Spline (DSp) full observability 0.018 ± 0.002

X1X2 X3

(a) Fork. Treatment X2, outcome X3.

Figure 12: CSuite graph with unobserved confounders.
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