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ABSTRACT

Multimodal large language models (MLLMs) have made rapid progress in re-
cent years, yet continue to struggle with low-level visual perception (LLVP)—
particularly the ability to accurately describe the geometric details of an image.
In this paper, we first demonstrate this limitation by introducing Geoperception,
a benchmark designed to evaluate an MLLM’s ability to accurately transcribe 2D
geometric information from an image. We then conduct a comprehensive empir-
ical study to explore strategies for improving LLVP performance through the use
of synthetic high-fidelity visual description data. Our findings highlight the ben-
efits of certain model architectures and training techniques, including the use of
CNN-based visual encoders and multi-stage training with a data curriculum. No-
tably, we find that a data curriculum enables models to learn challenging geome-
try understanding tasks which they fail to learn from scratch. Lastly, we develop
Euclid, a family of models specifically optimized for strong low-level geometric
perception. Although trained on synthetic multimodal data, Euclid shows strong
generalization ability on novel real-world geometry shapes. For instance, Euclid
outperforms the best closed-source model in our benchmark by up to 58.56% on
certain Geoperception benchmark tasks and 10.65% on average across all tasks.

1 INTRODUCTION

Multimodal large language models (MLLMs) have rapidly progressed in recent years, demonstrat-
ing remarkable potential in understanding and reasoning about the visual world through the powerful
capabilities of large language models (LLMs) (Liu et al., 2024c;a; Achiam et al., 2023; Team et al.,
2023; Hu et al., 2023; Tong et al., 2024a; Wang et al., 2024a). These models have showcased strong
performance in tasks such as visual question answering (VQA) (Goyal et al., 2017), image caption-
ing (Lin et al., 2014), and multimodal reasoning (Liu et al., 2023) – for example, LLaVA-NeXT-
34B (Liu et al., 2024b) achieves an impressive 83.7% accuracy on the VQAv2 benchmark (Goyal
et al., 2017), a comprehensive natural image VQA benchmark.

While MLLMs achieve impressive results on tasks like VQA, their performance relies on high-level
semantic extraction (Tong et al., 2024b); in contrast, they often fall short on low-level visual per-
ception (LLVP) — i.e., the ability to accurately describe the geometric details of an image, such as
the points, lines, angles, and spatial relationships among its constituent objects. This limitation be-
comes especially apparent in tasks requiring precise visual descriptions, such as mathematical visual
problem solving (Zhang et al., 2024a; Lu et al., 2023), scientific visual understanding (Yue et al.,
2024; Fu et al., 2024a), abstract visual reasoning (Jiang et al., 2024; Ahrabian et al., 2024), and even
simple visual comprehension (Rahmanzadehgervi et al., 2024; Wang et al., 2024b). Furthermore,
LLVP is also vital in real-world applications, including spatial understanding for robotics, medi-
cal image analysis for accurate diagnosis, GUI agents, quality control in manufacturing to detect
subtle defects, autonomous driving systems that rely on exact object localization, and augmented
reality applications that demand precise overlay of virtual objects onto the real world. In this paper,
we study the challenges of LLVP abilities in MLLMs, take steps to understand the root cause, and
improve their performance. Our study focuses specifically on 2D geometry, a domain where com-
ponents and relationships are rigorously defined, and both images and textual descriptions can be
generated at scale synthetically.

We start by developing Geoperception, a 2D geometry multimodal benchmark that focuses exclu-
sively on basic LLVP questions without incorporating higher-order reasoning. Our findings reveal

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Q: What is the point lying o-
     n line YB?
A: D, G

PointLiesOnLine

Q: What is the point lying o-
     n circle with center G?
A: L, H, F

PointLiesOnCircle

Q: Is angle BAC acute or obt-
     use?
A: acute

AngleClassification

Q: Which line is longer, QS -
     or SP?
A: QS

LineComparison

Figure 1: Four examples from our Geoperception dataset. The questions are sourced from the
Geometry-3K corpus (Lu et al., 2021), which compiles problems from two widely-used high school
textbooks. We perform filtering, validation, and generate question-and-answer text for each image.

that current MLLMs consistently struggle on this benchmark. This limitation raises an important re-
search question: what is causing the difficulties exhibited by contemporary MLLMs in LLVP tasks?
We hypothesize the main factor to be the insufficient availability of high-fidelity visual descrip-
tion datasets. Furthermore, in the absence of sufficient data, it is challenging to identify and adopt
architectural choices and training strategies that could improve the effectiveness and efficiency of
LLVP-specific training. To this end, we develop a synthetic dataset engine for large-scale generation
of 2D geometry images paired with high-fidelity textual descriptions. This synthetic dataset enables
us to conduct a comprehensive empirical study with controlled experiments to explore strategies for
improving MLLMs’ performance on LLVP tasks within the 2D geometry domain. Our key insights
include: 1. Scaling LLM size does not benefit LLVP learning. 2. CNN visual encoders are more
suitable in LLVP learning than ViT architectures. 3. Tuning vision encoders does not offer a
strong advantage. 4. Curriculum learning significantly improves a model’s performance, es-
pecially in understanding complex geometric shapes. With these lessons learned, we then train
a family of models—using a carefully designed curriculum of synthetic data—that are specifically
optimized for strong LLVP, which we call Euclid. Upon evaluation, we show that our models excel
on real-world low-level geometric perception tasks.

2 GEOPERCEPTION: A BENCHMARK FOR GEOMETRIC LLVP

Although the shortcomings of MLLMs in LLVP are commonly recognized, there is no comprehen-
sive benchmark that focuses purely on this task. Our goal is to construct a benchmark focusing
solely on the LLVP ability of MLLMs, which is also representative enough of real-world applica-
tions. As a fundamental and broadly representative LLVP ability in many applications, we select
geometry understanding as our domain of dataset construction. Following basic geometry defini-
tions and axioms, we define seven basic geometric LLVP tasks in our benchmark. We include the
full details of benchmark tasks and construction in Appendix B.

Current MLLMs struggle to perceive low-level geometry annotations and relationships. We
evaluate seven leading MLLMs, both open source and closed source. Their performances are shown
in Table 1. Despite the simplicity of Geoperception for humans, it remains a considerable challenge
for even the most advanced MLLMs. Notably, all models fall short of achieving 30% accuracy on
the PointLiesOnLine task and do not outperform the text-only GPT-4o mini model in AngleClassi-
fication task. Closed source models generally outperform open source ones, with Gemini-1.5-pro
attaining the highest average score of 56.98%, followed by gemini-1.5-flash at 54.76%. Among open
source models, Pixtral-12B achieves the best performance with an overall score of 41.95%. Noted
Cambrian-1 (Tong et al., 2024a), which is reported to be trained on Geo-170K (Gao et al., 2023),
a geometry multimodal instruction tuning dataset built on the logical annotation of Geometry-3K,
the same source with Geoperception, still faces challenges in our Geoperception task, despite being
trained on the dataset having the same images and augmented text annotations.

3 EMPIRICAL STUDY ON MLLM DESIGN SPACE

We hypothesize the insufficient availability of high-fidelity visual description datasets to be a main
factor involved in this shortcoming. This may be because LLVP is intuitive for humans, and the
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Table 1: Performance (average evaluation score) of different models on Geoperception. POL:
PointLiesOnLine, POC: PointLiesOnCircle, ALC: AngleClassification, LHC: LineComparison, PEP:
Perpendicular, PRA: Parallel, EQL: Equals. As the Random Baseline method, we use GPT-4o-mini,
given the same textual instruction but without an image. The best model for each task is bolded.

Logical Numerical Annotations

Model POL POC ALC LHC PEP PRA EQL Overall

Random Baseline 1.35 2.63 59.92 51.36 0.23 0.00 0.02 16.50

Open Source
Molmo-7B-D (Deitke et al., 2024) 11.96 35.73 56.77 16.79 1.06 0.00 0.81 17.59
Llama-3.2-11B (Dubey et al., 2024) 16.22 37.12 59.46 52.08 8.38 22.41 49.86 35.08
Qwen2-VL-7B (Wang et al., 2024a) 21.89 41.60 46.60 63.27 26.41 30.19 54.37 40.62
Cambrian-1-8B (Tong et al., 2024a) 15.14 28.68 58.05 61.48 22.96 30.74 31.04 35.44
Pixtral-12B (AI, 2023) 24.63 53.21 47.33 51.43 21.96 36.64 58.41 41.95

Closed Source
GPT-4o-mini (Achiam et al., 2023) 9.80 61.19 48.84 69.51 9.80 4.25 44.74 35.45
GPT-4o (Achiam et al., 2023) 16.43 71.49 55.63 74.39 24.80 60.30 44.69 49.68
Claude 3.5 Sonnet (Anthropic, 2024) 25.44 68.34 42.95 70.73 21.41 63.92 66.34 51.30
Gemini-1.5-Flash (Team et al., 2023) 29.30 67.75 49.89 76.69 29.98 63.44 66.28 54.76
Gemini-1.5-Pro (Team et al., 2023) 24.42 69.80 57.96 79.05 38.81 76.65 52.15 56.98
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Figure 2: LLM size experiments. Training loss and testing accuracy curve comparing three choices
of LLM size with a fixed visual encoder and multimodal connector. Training losses are window-
smoothed using a window size of 10 for better visibility.

datasets used to train MLLMs are primarily annotated by humans1. When describing visual in-
formation, humans often overlook LLVP details, assuming such details to be straightforward and
self-evident. Furthermore, in the absence of sufficient datasets, it is challenging to identify and
adopt architectural choices and training strategies that could improve the effectiveness and effi-
ciency of LLVP-specific training. To this end, we develop a synthetic dataset generation engine to
programmatically produce geometry shapes for training our MLLM. We include the full detail of
our dataset generation engine in Appendix F. With the sufficient training dataset, we are able to
conduct fully controlled experiments on different aspects of MLLMs focusing specifically on their
LLVP abilities on geometry domain.

Exploration of MLLM design space. We follow the current most popular design of MLLMs (Liu
et al., 2024c): a visual encoder, a LLM and an MLP connector in between. Although there exists
many ready-to-use MLLMs off the shelf, they differ significantly in many aspects, such as archi-
tectural choices (e.g., vision encoder, LLM, and multimodal connector), training datasets, and hy-
perparameters. Consequently, due to the high cost in re-pretraining the visual encoders or LLMs,
we opt to train our own MLLM with existing vision encoders and LLMs. This is similar with some
recent empirical exploration in MLLM design space (Tong et al., 2024a; McKinzie et al., 2024), but
with our large-scale controllable 2D geometry dataset. Specifically, we start with a typical setting
of MLLMs: CLIP-ViT-L/14 (Radford et al., 2021) as the visual encode, a two layer MLP as multi-
modal connector and the latest Qwen-2.5 series (Team, 2024b) as LLM. During training, we actively
tune the MLP and LLM, while keeping visual encoder frozen.

1This includes both explicit annotation in multimodal instruction-tuning datasets and implicit annotation in
large-scale internet collections of text-image pairs
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Figure 3: Vision encoder experiments. Training loss and testing accuracy (on a 1500 instances
holdout test set) curve comparing eight visual encoders, with a fixed multimodal encoder and LLM.
For a fair comparison, all visual encoder transcribe an image into 256 visual tokens. Training losses
are window-smoothed using a window size of 10 for better visibility.

Lesson 1: Scaling LLM size does not benefit LLVP learning. Reflected in most MLLM re-
leases (Liu et al., 2024a; Tong et al., 2024a; Wang et al., 2024a), scaling up the LLM often results
in improved MLLM performance when trained on the same dataset. However, since their train-
ing datasets are complex mixtures from multiple sources, it is unclear whether this improvement
stems from enhanced language-space reasoning or better visual perception. In contrast, our training
dataset is designed with simplicity in the language space (following specific templates) and focuses
on LLVP abilities. This setup allows us to better isolate and analyze the source of performance
gains, providing clearer insights into the ability to learn better LLVP.

We use three variants of Qwen-2.5 (Team, 2024b): 0.5B, 1.5B, and 3B, while keeping other com-
ponents in the MLLMs consistent and training them on the same dataset. The results are shown
in Fig. 2. First, we observe a sharp decrease in loss at the start of training, which corresponds to
the LLM adapting to answer templates, indicating no significant difficulty across different model
sizes. The subsequent loss decrease after the plateau marks the beginning of learning LLVP, as also
evidenced by the testing accuracy. For LineComparison, Qwen-2.5-1.5B performs the best, while
Qwen-2.5-3B learns most slowly. For PointLiesOnLine, Qwen-2.5-1.5B and Qwen-2.5-3B perform
nearly identically. while Qwen-2.5-0.5B learns relatively slower but eventually reaches a similar fi-
nal performance as the other models. In summary, we do not observe a clear trend that larger LLMs
learn LLVP tasks faster or better2. Based on these findings, we will use Qwen-2.5-1.5B for further
exploration.

Lesson 2: CNN visual encoders are more suitable in LLVP learning than ViT architectures.
We then study the choice of visual encoder architectures, including two families of architectures:
Vision Transformer (ViT) (Dosovitskiy, 2020) and ConvNeXT (Liu et al., 2022); as well as two
visual representation learning objectives: language-supervised learning (Radford et al., 2021) and
self-supervised learning (Oquab et al., 2023). We summarize the visual encoders in our experiment
in Table 4, for all vision encoders in our table, control the number of visual tokens to 256. The re-
sult is shown in Fig. 3. We find that ConvNeXt-XXLarge and ConvNeXt-Large consistently learns
the fastest among all of the visual encoders. Notably, ConvNeXT-Large shows superior learning
performance with the vision transformers which are 3-5 times larger. We hypothesize that CNN
architecture extract visual features globally, effectively preserving low-level visual features. In con-
trast, ViT architectures split images into discrete patches, making it more challenging to retain the
original low-level visual information. Self-supervised learning (SSL) visual encoders, DINO-v2,
struggles to learn the geometry concept; we hypothesis this is due to the weak vision-language rep-
resentation in these models. Surprisingly, although the SigLIP-family is widely-recognized as a
better visual encoder (Tong et al., 2024a; Li et al., 2024a), we find that their performance in learning
basic visual geometry attributes is limited.

2The BLINK (Fu et al., 2024c) benchmark shares similar observations. For example, among 14 tasks,
LLaVA-1.5-13B outperforms its 7B variant in only 4 tasks. Additionally, LLaVA-one-vision (Li et al., 2024a)’s
0.5B variant outperforms its 7B variant by 3.9% and underperforms its 72B variant by only 3.3%.
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Figure 4: Tuning/freezing vision encoder experiments. Testing accuracy (on a 1500 instances hold-
out test set) curve comparing freezing versus tuning the visual encoder during training.

Lesson 3: Tuning vision encoder does not offer strong advantage. By intuition, actively tuning
the visual encoder can help it learn better visual representations which is helpful for LLVP. We aim
to empirically justify the effect of tuning versus freezing the visual encoder. In Fig. 4, we show the
testing accuracy curves of tuning and freezing visual encoders. Surprisingly, we find that compared
with using a frozen encoder, tuning the visual encoder does not help the model learn LLVP faster or
better. This suggests that current visual encoders seem to be able to preserve adequate information
for LLVP, and it’s sufficient to train LLMs to make better use of the visual features. In what follows,
we will freeze the encoder for simplicity.

Figure 6: Curriculum learning experiments. Test accuracy on difficulty level hard of three training
strategies: purely training on difficulty level hard, mixed training of difficulty levels easy/medi-
um/hard, and curriculum training.
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Figure 5: Separate testing accuracy curves
on difficulty levels easy, medium, and hard,
shown over the course of training on a mix-
ture of all difficulty levels.

Lesson 4: Curriculum learning unleashes full po-
tential. Finally, we study training data composi-
tion. In our preliminary experiment Fig. 19, we
observe that the model fails to converge on diffi-
culty level 3 of PointLiesOnLine and difficulty level
2 and 3 of LineComparison. However, when using
mixed training set of all three difficulty levels, the
model achieves convergence, despite using the same
amount of data for each difficulty levels. We hy-
pothesize that including easier levels aids the model
in learning more complex levels. To test this hy-
pothesis, we report the test accuracy for three dif-
ficulty levels separately during the mixed training of
ConvNeXt-XXLarge, in Fig. 5, on both tasks. We notice that the testing accuracy for easier tasks
increase earlier and more quickly than difficulty tasks. In PointLiesOnLine tasks, we notice an appar-
ent plateau for hard level tasks until the model has trained on approximately 20K samples. During
this period, the testing accuracy for easy and medium continue to increase. This suggests that learn-
ing easier shapes can significantly help the model tackle more challenging shapes, comparing with
directly learning the challenging ones, aligning with the principles of curriculum learning.
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While mixed training enables effective spontaneous curriculum learning, we investigate whether a
structured curriculum can further enhance model efficiency on challenging shapes. To this end, we
monitor the model’s performance and dynamically increase the difficulty level of training data (i.e.,
the curriculum stage) based on this performance. Specifically, the model starts by training on the
easy level data. and is evaluated when it finishes a training round, using testing accuracy from the
current level of data. Upon evaluation, if the model achieves an accuracy exceeding a predefined
threshold θ, the framework advances the level to the next. Formally, the update rule for advancing
stages is given by: if accuracys > θ ⇒ c ← c + 1. The model is trained on a total of M
rounds and K steps within each round. To avoid forgetting, we apply data smoothing at each stage.
Specifically, we smooth our dataset distribution over all stages using an exponential attenuation
function: ratios = exp (−α · |stages − c|) , where α denotes the attenuation rate. This ensures that
stages proximal to the current stage receive higher sampling probabilities.

We refer to this as our curriculum training strategy. Specifically, the accuracy threshold for advanc-
ing training stage θ is set to 0.99. We train all the models for M = 30 rounds, each round with
K = 50 steps. The results are shown in Fig. 6. Firstly, we find that all of the models fail to converge
when trained purely on hard level for PointLiesOnLine task. In contrast, the mixed training strategy
shown by the red curve, consistently reaches faster convergence on hard level. Curriculum training
strategy, shown by the purple curve, proves more efficient than mixed training.

4 EUCLID: A FAMILY OF MLLMS FOR GEOMETRIC VISUAL PERCEPTION

We take all of the lessons we learned in the previous sections and train Euclid, a family of MLLMs
specifically designed for strong geometric LLVP. We use the same strategy as the curriculum training
in Section 3, but scale our training to all tasks in Geoperception. For each task, we create N stages
of training dataset shapes with progressively increasing geometric complexity.
Table 2: Performance comparison between Euclid and the best leading open source and closed
source MLLMs on the seven tasks. Note that Euclid is not trained on any of the in-distribution data
from the benchmark tasks below. The best model for each task is bolded.

Logical Numerical Annotations

Model POL POC ALC LHC PEP PRA EQL Average

Random Baseline 0.43 2.63 59.92 51.36 0.25 0.00 0.02 16.37
Pixtral-12B (AI, 2023) 24.63 53.21 47.33 51.43 21.96 36.64 58.41 41.95
Gemini-1.5-Pro (Team et al., 2023) 24.42 69.80 57.96 79.05 38.81 76.65 52.15 56.98

Euclid-ConvNeXt-Large 80.54 57.76 86.37 88.24 42.23 64.94 34.45 64.93
Euclid-ConvNeXt-XXLarge 82.98 61.45 90.56 90.82 46.96 70.52 31.94 67.89

Evaluation results. The results are shown in Table 2. Overall, although only trained on very
simple synthetic geometry shapes, and using only a 1.5B language model, Euclid significantly out-
performs current leading MLLMs in most of the tasks, showing strong generalization abilities on
real-world geometry LLVP. Notably, in the PointLiesOnLine task, which is particularly challenging
for existing MLLMs, Euclid achieves up to 82.98% accuracy, more than three times the performance
of Gemini-1.5-Pro. On all both numerical tasks, LineComparison and AngleClassification, Euclid
keeps superior performance. However, on three annotation tasks, Euclid’s performance is limited.
We hypothesis this is due to the limited setting of our annotation types and styles, making the model
hard to generalize to diverse human geometry annotations.

5 CONCLUSION

In this work, we highlight the importance of accurate low-level visual perception (LLVP) in MLLMs.
To this end, we first introduce Geoperception, a large-scale multimodal benchmark focused exclu-
sively on geometry-domain LLVP. We find that even top models such as Gemini-1.5-Pro struggle
significantly, although it is straightforward for humans. We then conduct an empirical study to
explore the design space of MLLM training and architectures using the dataset generated by a geo-
metric high-fidelity synthetic-data engine that we develop. Our key insides include that CNN-based
visual encoders outperform ViT in our tasks; and employing a curriculum-based training approach
yields much more model potential than direct task training. Based on insights from this study, we
develop Euclid, a model trained purely on synthetic data generalizes effectively to real-world geo-
metric LLVP tasks, surpassing the leading MLLMs by a substantial margin.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Kian Ahrabian, Zhivar Sourati, Kexuan Sun, Jiarui Zhang, Yifan Jiang, Fred Morstatter, and Jay
Pujara. The curious case of nonverbal abstract reasoning with multi-modal large language models.
arXiv preprint arXiv:2401.12117, 2024.

Mistral AI. Pixtral 12b. https://mistral.ai/news/pixtral-12b/, 2023. Accessed:
2024-09-27.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–
23736, 2022.

Anthropic. The claude 3 model family: Opus, Sonnet, Haiku, March 2024. URL https://
www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.
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APPENDIX

A EXTENDED BACKGROUND AND RELATED WORK

Vision-Language MLLMs. While recent iterations of LLMs feature a standardized model archi-
tecture and pretraining recipe, MLLMs still often differ in design choices for infusing visual inputs.
One popular design is to align continuous visual features with the embedding space of a backbone
LLM (Liu et al., 2024a;b; Dubey et al., 2024; McKinzie et al., 2024; Tong et al., 2024a; Beyer
et al., 2024; AI, 2023; Wang et al., 2024a); another approach involves tokenizing visual inputs to
be trained jointly with language tokens (Team et al., 2023; Team, 2024a). These modules are often
infused with a decoder-only LLM, but others have explored encoder-decoder architectures to inte-
grate a more varied collection of modalities (Alayrac et al., 2022; Mizrahi et al., 2024; Ormazabal
et al., 2024; Bachmann et al., 2024). Our study focuses on decoder MLLMs with a continuous vi-
sual encoder, and we carry out an empirical study to explore the effect of synthetic dataset mixture,
training recipe, and encoder design (Liu et al., 2022; Radford et al., 2021; Zhai et al., 2023; Oquab
et al., 2023).

Geometry-Oriented MLLMs. At the core of these choices is the hardness in designing a module
adept in general visual reasoning (McKinzie et al., 2024; Tong et al., 2024a). In this work, we
explore the optimal design of MLLMs specialized in low-level visual perception, a crucial aspect for
(among other applications) multimodal mathematical understanding (Lu et al., 2023; Zhang et al.,
2024a). This paper supplements prior efforts in improving mathematical reasoning (Gao et al., 2023;
Zhang et al., 2024b; Zhuang et al., 2024; Li et al., 2024b; Peng et al., 2024; Shi et al., 2024b) with a
detailed study on the effect of dataset mixture, curriculum, and visual encoder, to reach a recipe that
elicits strong performance on geometric tasks (Kazemi et al., 2023) that require low-level perception.

Evaluating LLVP. Many benchmarks (Rahmanzadehgervi et al., 2024) have reported that
frontier-class MLLMs struggle with visual perception tasks, which are prerequisites for applica-
tions that emphasize low-level geometric perception (Chen et al., 2024; Fu et al., 2024c), including
mathematical (Yue et al., 2024; Lu et al., 2023; Zhang et al., 2024a; Jiang et al., 2024) and spatial
reasoning (Chen et al., 2024; Fu et al., 2024b). These findings collectively identify that MLLMs ex-
hibit a language prior (Lin et al., 2023)—a preference of textual inputs over visual inputs—leading
to a performance gap between modalities (Wang et al., 2024b; Zhang et al., 2024a; Fu et al., 2024a).
Meanwhile, there lacks a high-quality benchmark that evaluates low-level geometric perception in
MLLMs, and the Geoperception benchmark represents a first effort to narrow this gap. This type of
efforts have led to significant improvements in certain capabilities of MLLMs, such as composition-
ality of objects (Yuksekgonul et al., 2022; Kong et al., 2023).

Improving LLVP. Many prior works study data-driven approaches to improve low-level percep-
tion skills. For example, Gao et al. (2023); Li et al. (2024b); Zhuang et al. (2024) employ a stan-
dardized supervised finetuning recipe, and optionally adjust the training data mixture. This type of
training data is often synthesized from text-only math problems (Lu et al., 2021; Trinh et al., 2024)
or via rule-based systems (Kazemi et al., 2023). In parallel, Vishniakov et al. (2023); Shi et al.
(2024a); Tong et al. (2024b) have explored the design space of visual encoders for general-purpose
vision-language reasoning. We identify best practices over the union of these design spaces, and
then train small MLLMs with strong performance in low-level perception tasks.

Lastly, several works (Schick et al., 2024; Surı́s et al., 2023; Hu et al., 2024) have opted to augment
an MLLM with external APIs that process low-level features with specialized vision modules, such
as object detection (Redmon et al., 2016), segmentation (Kirillov et al., 2023), and depth estima-
tion (Yang et al., 2024). While these agentic frameworks (Wu et al., 2023) present a promising
alternative that directly addresses the shortcomings of visual encoders, they are limited by their
scalability to novel use cases, and may be insufficient for precise tool routing that requires low-level
perception as a primer (Picard et al., 2023; Wu et al., 2024; Buehler, 2024).
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B GEOPERCEPTION BENCHMARK DETAILS

Benchmark Tasks. Although there are many complex geometry problems in textbooks and real-
world, the basic constitutions of it is relatively simple: only five axioms can already underpin all
further geometric shapes and reasoning steps, introduced by Euclid over two thousand years ago.
These axioms involve establishing and extending lines using points (Axioms 1 and 2), construct-
ing circles from a point and a radius (Axiom 3), and defining perpendicularity (Axiom 4) and
parallelism (Axiom 5). Additionally, Euclid provided common notions regarding the properties
of equality. Accordingly, we define seven tasks in our Geoperception dataset: PointLiesOnLine
(POL), PointLiesOnCircle (POC), Parallel (PRA), Perpendicular (PEP), Equal (EQL), AngleClas-
sification (ALC) and LineComparison (LHC). In geometric diagrams, perpendicularity, parallelism,
and equality are often indicated by annotation symbols. Thus, we classify Parallel, Perpendicular,
and Equal as annotated geometry understanding. Meanwhile, PointLiesOnLine, PointLiesOnCir-
cle, AngleClassification, and LineComparison fall under primitive geometry shape understanding,
which includes both logical (PointLiesOnLine, PointLiesOnCircle) and numerical (AngleClassifica-
tion, LineComparison) tasks.

Benchmark Construction. Thanks to the precise annotated logical forms for geometric diagrams
from Geometry-3K (Lu et al., 2021), we are able to build a large scale benchmark based on it,
focusing just on geometric LLVP without requiring any further reasoning. Four examples from
Geoperception are illustrated in Fig. 1.

Data Filtering. Geoperception is sourced from the Geometry-3K (Lu et al., 2021) corpus, which
offers precise logical forms for geometric diagrams, compiled from popular high-school textbooks.
However, certain points in these logical forms are absent in the corresponding diagrams. To resolve
this, we use GPT-4o-mini MLLM to confirm the presence of all points listed in the logical forms.
This process filters the 3,002 diagrams to retain 1,584, where at least one logical form fully rep-
resents its points in the diagram. A random inspection of 100 annotations reveals only two errors,
indicating high annotation accuracy.

Converting Logical Forms Into Questions. We convert logical forms into question-and-answer
pairs for each of the seven tasks in Geoperception. In the Equals task, for example, we directly
convert the logical form (e.g., Equals(LengthOf(Line(Q, T)), 86)) into a question-
answer pair (e.g., Q: What is the length of line QT as annotated? A: 86).
For PointLiesOnLine, two points on the line are chosen to form the question, with the remain-
ing points on the line as the answer. Similarly, for PointLiesOnCircle, we ask which points lie
on the circle, using its center as the basis for the question. For Parallel and Perpendicular,
we represent each line by two points and query which other lines are parallel or perpendicular to it.
In AngleClassification, we ensure the queried angle is in the range of [10, 80] ∪ [100, 170]
degrees to avoid ambiguity. For LineComparison, we ensure that the shorter line is less than
70% of the length of the longer line. Since multiple equivalent questions can be generated for a sin-
gle logical form (e.g., a line containing five points generates 5P2 equivalent questions), we randomly
select one to avoid redundancy. Table 3 summarizes the question statistics for each task, as well as
the number of images involved. Extended examples from Geoperception are illustrated in Fig. 7.

Statistics. In Table 3, we provide more details on the Geoperception benchmark, such as the num-
ber of logic forms present before and after filtering, the number of questions, and the number of
images. AngleClassification and LineComparison are directly derived from points co-
ordinates without filtering.

Evaluation Details. During evaluation, we carefully craft the evaluation prompts for each question
type to ensure the clarity, the full prompts can be found in Appendix E. We use greedy sampling
during evaluation to get deterministic results. Additionally, GPT-4o-mini without image input is
used for generating the random baseline, employing the same textual instructions.

The open source models include Molmo-7B-D (Deitke et al., 2024), Cambrian-1-8B (Tong et al.,
2024a), Qwen2-VL-7B (Wang et al., 2024a), Llama-3.2-11B (Dubey et al., 2024), and Pixtral-
12B (AI, 2023). The closed-source models include GPT-4o-mini (Achiam et al., 2023), GPT-4o
(Achiam et al., 2023), Claude-3.5-Sonnet (Anthropic, 2024), Gemini-1.5-flash (Team et al., 2023),
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Predicate # LF Before Filter # LF After Filter # Q # I

PointLiesOnLine 6988 2567 1901 924
PointLiesOnCircle 1966 1240 359 322

Parallel 222 123 106 101
Perpendicular 1111 680 1266 456

Equals 6434 4123 4436 1202
AngleClassification - - 2193 1389

LineComparison - - 1394 1394

Table 3: Statistics of the five predicates in our Geoperception dataset. Including number of logic
forms before filter, after filter and the number of questions and images.

and Gemini-1.5-pro (Team et al., 2023). Additionally, GPT-4o-mini without image input is used for
generating the random baseline, employing the same textual instructions. To prevent stretching, all
images are padded to square dimensions before being fed into the models. During evaluation of a
given question by an MLLM, let G denote the ground truth set of answers, and let P denote the
predicted set of answers; then the evaluation score is defined as

Evaluation score =


|P |
|G|

if P ⊆ G,

0 otherwise.
(1)
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Q: What is the point lying o-
     n line JL?
A: R

Q: What is the point lying o-
     n line ZX?
A: N

                                                  PointLiesOnLine

Q: What is the point lying o-
     n line AB?
A: E

Q: What is the point lying o-
     n line RN?
A: Q

Q: What is the point lying o-
     n circle with center P?
A: T, S, R, Q

Q: What is the point lying o-
     n circle with center K?
A: L, J

                                                  PointLiesOnCircle

Q: What is the point lying o-
     n circle with center Z?
A: X, C

Q: What is the point lying o-
     n circle with center F?
A: A, C, B, D, E

Q: What is the line parallel-
      to line BE?
A: CD

Q: What is the line parallel-
      to line NQ?
A: OP

                                                  Parallel

Q: What is the line parallel-
      to line EB?
A: CD

Q: What is the line parallel-
      to line CD?
A: BE, AB, AE

Q: What is the line perpendi-
     cular to line ZW?
A: YZ

Q: What is the line perpendi-
     cular to line CB?
A: AC

                                                  Perpendicular

Q: What is the line perpendi-
     cular to line LF?
A: LM, KM, GH, HJ, KL, GJ

Q: What is the line perpendi-
     cular to line VS?
A: RT, TV, RV

Q: What is the length of lin-
     e NM as annotated?
A: 39

Q: What is the measure of an-
     gle ABC as annotated?
A: 2x

                                                  Equals

Q: What is the measure of an-
     gle JKL as annotated?
A: 70

Q: What is the line in the d-
     iagram that is equal to l-
     ine VU?
A: ZV, VZ

Q: Is angle SUV acute or obt-
     use?
A: obtuse

Q: Is angle JKL acute or obt-
     use?
A: obtuse

                                                  AngleClassification

Q: Is angle CBD acute or obt-
     use?
A: acute

Q: Is angle WVX acute or obt-
     use?
A: acute

Q: Which line is longer, AB -
     or AC?
A: AC

Q: Which line is longer, AE -
     or ED?
A: AE

                                                  LineComparison

Q: Which line is longer, JM -
     or JL?
A: JL

Q: Which line is longer, RQ -
     or QT?
A: RQ

Figure 7: Examples of our Geoperception dataset.
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C FUTURE DIRECTIONS.

Our work examines the potential of using synthetic multimodal data to improve MLLM perfor-
mance in low-level geometric perception tasks. However, there are still directions that remain under-
explored:

1. Automatic curriculum learning. Incorporating a more diverse dataset, including varied ge-
ometric shapes and different domain dataset, introduces challenges in defining the learning
order. Rule based definition and manual curation may become impractical, necessitating
automated strategies like hard negative sampling to organize the curriculum based on train-
ing loss or testing accuracy. This approach could streamline the process, reduce human
effort, provide more suitable and efficient curriculum learning orders.

2. Using a more-diverse training dataset. Currently, the text portion of our synthetic multi-
modal training data uses a restricted set of templates, and the model trained on such tem-
plates could fail to generalize to other question types; it could therefore be beneficial to
increase the diversity of our training images as well as the instruction-following formats.

3. Generalizing to other task domains. In this work, our study is focused on data from 2D
geometry, as it provides a focused test bed of fundamental tasks. We believe the lessons
we learn from this domain can be effectively generalized to a broader set of downstream
domains that benefit from high-quality LLVP.
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D EXPERIMENT DETAILS IN EMPIRICAL STUDY AND EUCLID TRAINING.

Experimental setting for empirical study. We use PointLiesOnLine and LineComparison as the
test bed tasks for the exploration. For each task, we carefully create three levels with incremental
difficulties. We name them as difficulty level easy, medium and hard. Based on the insight from
our preliminary experiments, to increase the difficulty levels, for PointLiesOnLine, we increase the
complexity of geometry shapes as is shown in Fig. 16, for LineComparison, we increase the total
number of letters in letter pool while mixing geometry shapes. To report stable results, we run the
training for three times and report the best run among them (i.e., having the lowest overall training
loss or testing accuracy).

Table 4 summarize the visual encoder we use in our empirical study.
Table 4: Summary of Visual Encoders

Model Params Objective

ConvNeXt Large@512 200M CLIP
ConvNeXt XXLarge@512 847M CLIP
ViT-g/14@224 1.01B CLIP
ViT-H/14@224 632M CLIP
ViT-L/14@224 303M CLIP
SigLIP@224 (ViT) 428M CLIP-like
DINOv2 Giant@224 (ViT) 1.14B Self-Sup
DINOv2 Large@224 (ViT) 304M Self-Sup

Experimental setting for Euclid training. For models, we select the best visual encoder archi-
tecture we found in our investigation, ConvNeXt, including ConvNeXt-Large@512 and ConvNeXt-
XXLarge@512, and keep the same multimodal connector (2 layers MLP) and LLM (Qwen2.5-1.5B-
instruct). The accuracy threshold for advancing training stage θ is set to 0.99. All models are trained
on N = 3 stages with manually curated geometry shapes and M = 50 rounds with K = 500 steps
in each round, and the batch size is 64 for each training step. The total training dataset volume for
both of the models is 1.6M.

Question: What is the 
point lying on line TY?

Ground truth: W     

Prediction: X

Figure 8: An error case where Euclid fails to
predict the correct point on a line, potentially dis-
tracted by the annotation “x”.

Euclid error analysis. We take a deep look into
Euclid’s prediction on Geoperception and find that
its performance is hindered when diagrams are heav-
ily annotated. An example is shown in Fig. 8, where
a line is annotated by “x”, preventing the model from
choosing the correct point. We hypothesize that in-
corporating training data with more diverse annota-
tion types and geometry shapes could help the model
with such scenarios.
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E PROMPTS FOR THE GEOPERCEPTION DATASET EVALUATION

PROMPT TEMPLATE FOR THE POINTLIESONLINE TASK

Answer me directly just with the all points lie on the line
mentioned in the question (do not include the point mentioned in
the question).
Answer template:
(If only one point) The other point is: "your point".

Or
(if multiple points) The other points are: "your points".

For example:
The other point is: A

Or
The other points are: A, B, C

Figure 9: TEMPLATE FOR THE POINTLIESONLINE TASKS

PROMPT TEMPLATE FOR THE POINTLIESONCIRCLE TASK

Answer me directly just with the all points lie on the circle
mentioned in the question.
Answer template:
(If only one point) The point is: "your point".

Or
(If multiple points) The points are: "your points".

For example:
The point is: A

Or:
The points are: A, B, C

Figure 10: TEMPLATE FOR THE POINTLIESONCIRCLE TASKS

PROMPT TEMPLATE FOR THE PARALLEL TASK

Answer me directly just with the all lines which are parallel
to the line mentioned in the question (do not include the line
mentioned in the question).
Answer template:
(If only one line) The line is: "your line".

Or
(If multiple lines) The lines are: "your lines".

For example:
The line is: BC

Or:
The lines are: BC, DE

Figure 11: TEMPLATE FOR THE PARALLEL TASKS
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PROMPT TEMPLATE FOR THE PERPENDICULAR TASK

Answer me directly just with the all lines which are perpendicular
to the line mentioned in the question (do not include the line
mentioned in the question).
Answer template:
(If only one line) The line is: "your line".

Or
(If multiple lines) The lines are: "your lines".

For example:
The line is: BC

Or:
The lines are: BC, DE

Figure 12: TEMPLATE FOR THE PERPENDICULAR TASKS

PROMPT TEMPLATE FOR THE EQUALS TASK

Answer me directly just with the annotations presented on the
image.
Answer template:
The annotation is: "your annotation".

For example:
The annotation is: 2x+4

Or:
The annotations is: 90

Figure 13: TEMPLATE FOR THE EQUALS TASKS

PROMPT TEMPLATE FOR THE ANGLE CLASSIFICATION TASK

Answer me directly just with the classification of the angle
mentioned in the question.
Answer template:
The angle is: "your angle".

For example:
The angle is: acute

Or:
The angle is: obtuse

Figure 14: TEMPLATE FOR THE ANGLE CLASSIFICATION TASKS

PROMPT TEMPLATE FOR THE LINECOMPARISON TASK

Answer me directly just with the longer line mentioned in the
question.
Answer template:
The longer line is: "your line".

For example:
The longer line is: BC

Or:
The longer line is: DE

Figure 15: TEMPLATE FOR THE LINECOMPARISON TASKS
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F DETAILS FOR TRAINING DATA ENGINE

Geometry Dataset Generation Engine

A B C = triangle A B C; 

D = midpoint B C

A B C = triangle A B C; 

D = midpoint A B; 

E = midpoint A C

A B C = triangle A B C; 

D = midpoint B C; 

E = midpoint A C; 

F = intersection_ll A D B E

… … …

Figure 16: Three geometry logical shapes, of in-
creasing complexity, used in our empirical study.
Our geometry image generation engine is able to
produce infinite visual instances for each of these
logical shapes. All letters are randomly sampled
from the alphabet and reassigned to each of the
points before drawing.

In this section, we provide all geometry shapes we
use for Euclid training, including the pseudocode for
generating text describing the geometry shapes and
diagram examples.

Our geometry dataset generation engine is built on
AlphaGeometry (Trinh et al., 2024). Given an in-
put formal language describing a geometry shape,
the geometry engine is able to render infinite ac-
tual geometry images (exampled in Fig. 16 with full
metadata (e.g. point coordinates) then create dif-
ferent types of accurate textual annotations to train
MLLMs with corresponding images.

F.1 PSEUDOCODE
FOR TRAINING TEXTUAL DATASET SYNTHESIS

Algorithm 1 Data Synthesis for the POINTLIESONLINE Task

1: Input: data info, points set
2: Output: data
3: for points set ∈ data info do
4: for (A, B) ∈ permutations(points set, 2) do
5: all rest points ← [p for p in points set if p not in [A,

B]]
6: for rest points ∈ permutations(all rest points) do
7: verb agreement ← ’is’ if len(rest points) == 1 else

’are’
8: rest points ← [f"{p}" for p in rest points]
9: rest points ← sorted(rest points)

10: question ← ’What is the point lying on line ’ + A + B +
’?’

11: answer ← ’The point lying on line ’ + A + B + ’ ’ +
verb agreement + ’ ’ + ’, ’.join(rest points)

12: gt ← ’’.join(rest points)
13: data ← {’question’: question, ’answer’: answer, ’gt’:

gt}
14: end for
15: end for
16: end for

Algorithm 2 Data Synthesis for the POINTLIESONCIRCLE Task

1: Input: data info
2: Output: data
3: point set ← random.choice(list(data info.items()))
4: center point ← point set[0]
5: target points ← point set[1]
6: target points ← sorted(target points)
7: question ← ’What are the point lying on circle ’ + center point

+ ’?’
8: answer ← ’The point lying on circle ’ + center point + ’ are ’

+ ’, ’.join(target points)
9: gt ← ’’.join(target points)

10: data ← {’question’: question, ’answer’: answer, ’gt’: gt}

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 3 Data Synthesis for the ANGLECLASSIFICATION Task

1: Input: data info
2: Output: data
3: angle ← data info
4: angle options ← [f’{angle[1][0]}{angle[1][1]}{angle[1][2]}’,

f’{angle[1][2]}{angle[1][1]}{angle[1][0]}’]
5: angle letter ← random.choice(angle options)
6: angle class ← ’acute’ if angle[0] < 90 else ’obtuse’
7: question ← ’Is angle ’ + angle letter + ’ acute or obtuse?’
8: answer ← ’Angle ’ + angle letter + ’ is ’ + angle class
9: gt ← angle class

10: data ← {’question’: question, ’answer’: answer, ’gt’: gt}

Algorithm 4 Data Synthesis for the LINECOMPARISON Task

1: Input: data info
2: Output: data
3: names ← [data info[0][1], data info[1][1]]
4: lengths ← [data info[0][0], data info[1][0]]
5: if lengths[0] > lengths[1] then
6: longer name, shorter name ← names[0], names[1]
7: else
8: longer name, shorter name ← names[1], names[0]
9: end if

10: data ← [
11: { ’question’: ’Which line is longer, ’ + longer name + ’ or ’

+ shorter name + ’?’,
12: ’answer’: ’The longer line is ’ + longer name,
13: ’gt’: longer name },
14: { ’question’: ’Which line is longer, ’ + shorter name + ’ or

’ + longer name + ’?’,
15: ’answer’: ’The longer line is ’ + longer name,
16: ’gt’: longer name }
17: ]
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Algorithm 5 Data Synthesis for the PARALLEL Task

1: Input: data info
2: Output: data
3: points set← data info
4: for line points ∈ points set do
5: for (A, B) ∈ permutations(line points, 2) do
6: all rest lines ← [p for p in points set if p !=

line points]
7: gts ← [‘’.join(
8: f‘{p}’ for line in all rest lines for p in line)
9: ]

10: rest point pairs ← []
11: for rest line ∈ all rest lines do
12: C, D ← random.sample(rest line, 2)
13: rest point pairs.append([C, D])
14: end for
15: all possible answer ← ‘, ’.join(
16: [f‘{C}{D}’ for C, D in rest point pairs]
17: )
18: verb agreement ← ‘is’ if len(rest point pairs) == 1 else

‘are’
19: question ← ‘What is the line parallel to line ’ + A + B +

‘?’
20: answer ← (
21: ‘According to the diagram, the line parallel to ’ +
22: A + B + verb agreement + all possible answer
23: )
24: gt ← ‘, ’.join(gts)
25: data ← {
26: ‘question’: question, ‘answer’: answer, ‘task’: task,

‘gt’: gt
27: }
28: end for
29: end for
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Algorithm 6 Data Synthesis for the PERPENDICULAR Task

1: Input: data info
2: Output: data
3: source lines, target lines← data info
4: all possible answer ← []
5: gts ← target lines ▷ Randomly choose two points from each target line
6: for target line ∈ target lines do
7: C, D ← random.sample(target line, 2)
8: all possible answer.append(f‘{C}{D}’)
9: end for

10: verb agreement ← ‘is’ if len(all possible answer) == 1 else
‘are’

11: for (A, B) ∈ permutations(source line, 2) do
12: question ← ‘What is the line perpendicular to line ’ + A + B

+ ‘?’
13: answer ← (
14: ‘According to the diagram, the line perpendicular to ’ +
15: A + B + verb agreement + ‘, ’.join(all possible answer
16: )
17: gt ← ‘, ’.join(gts)
18: data ← {
19: ‘question’: question, ’, ‘answer’: answer, ’‘ask’: task,

‘gt’: gt
20: }
21: end for
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Algorithm 7 Data Synthesis for the EQUAL Task

1: Input: data info
2: Output: data
3: statement, content ← data info.split(‘;’)
4: if statement == ‘angles value’ then
5: angle letter, angle measure ← content.split(‘=’)
6: angle letter ← random.choice([angle letter,

angle letter[::-1]])
7: question ← ‘What is the measure of angle ’ + angle letter +

‘ as annotated?’
8: answer ← ‘Angle ’ + angle letter + ‘ is annotated as ’ +

angle measure
9: gt ← angle measure

10: else if statement == ‘segments value’ then
11: segment letter, segment length ← content.split(‘=’)
12: segment letter ← random.choice([segment letter,

segment letter[::-1]])
13: question ← ‘What is the length of line ’ + segment letter +

‘ as annotated?’
14: answer ← ‘Line ’ + segment letter + ‘ is annotated as ’ +

segment length
15: gt ← segment length
16: else if statement == ‘angles’ then
17: angle1, angle2 ← content.split(‘=’)
18: angle1 ← random.choice([angle1, angle1[::-1]])
19: angle2 ← random.choice([angle2, angle2[::-1]])
20: query angle ← random.choice([angle1, angle2])
21: answer angle ← angle2 if query angle == angle1 else angle1
22: question ← ‘What is the angle in the diagram that is equal

to angle ’ + query angle
23: answer ← ‘Angle ’ + query angle + ‘ is equal to angle ’ +

answer angle
24: gt ← answer angle
25: else if statement == ‘segments’ then
26: segment1, segment2 ← content.split(‘=’)
27: segment1 ← random.choice([segment1, segment1[::-1]])
28: segment2 ← random.choice([segment2, segment2[::-1]])
29: query segment ← random.choice([segment1, segment2])
30: answer segment ← segment2 if query segment == segment1 else

segment1
31: question ← ‘What is the segment in the diagram that is equal

to segment ’ + query segment
32: answer ← ‘Segment ’ + query segment + ‘ is equal to segment

’ + answer segment
33: gt ← answer segment
34: end if
35: data ← {
36: ‘question’: question, ‘answer’: answer, ‘task’: task,

‘gt’: gt
37: }
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F.2 GEOMETRY SHAPES USED FOR EUCLID TRAINING

GEOMETRY SHAPE GENERATION CODE

PointLiesOnLine
(stage 1) A B C = triangle A B C; D = midpoint B C
(stage 1) A B C = triangle A B C; D = midpoint B C; O = circle O A B C
(stage 2) A B C = triangle A B C; D = midpoint A B; E = midpoint A C
(stage 2) A B C = triangle A B C; D = midpoint A B; E = midpoint A C; O = circle O A B C
(stage 3) A B C = triangle A B C; D = midpoint B C; E = midpoint A C; F = intersection ll A D B E
(stage 3) A B C = triangle A B C; D = midpoint B C; E = midpoint A C; F = intersection ll A D B E; O

= circle O A B C
PointLiesOnCircle

(stage 1) A B = segment A B; C = on circle C A B
(stage 1) A B = segment A B; C = on circle C A B; D = on circle D A B
(stage 1) A B = segment A B; C = on circle C A B; D = on circle D A B; E = on circle E A B
(stage 1) A B = segment A B; C = on circle C A B; D = on circle D A B; E = on circle E A B; F =

on circle F A B
(stage 1) A B = segment A B; C = on circle C A B; D = on circle D A B; E = on circle E A B; F =

on circle F A B; G = on circle G A B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A B; F =

on circle F A B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A B; F =

on circle F A B; G = on circle G A B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A B; F =

on circle F A B; G = on circle G A B; H = on circle H A B
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint A C
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint A C; F = on circle

F A B
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint A C; F = on circle

F A B; G = on circle G A B
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint A C; F = on circle

F A B; G = on circle G A B; H = on circle H A B
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint A C; F = on circle

F A B; G = on circle G A B; H = on circle H A B; I = on circle I A B
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A B; F =

on circle F A B; G = on circle G A B; H = on circle H A B; I = midpoint B C
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint B C
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = lc tangent E C A
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A B; F =

on circle F A B; G = on circle G A B; H = lc tangent H C A
AngleClassification

(stage 1) A B C = triangle A B C
(stage 3) A B C = triangle A B C; D = midpoint B C
(stage 3) A B C = triangle A B C; D = midpoint B C; E = midpoint A C; F = intersection ll F A D B E

LengthComparison
(stage 1) A B C = triangle A B C
(stage 2) A B C = triangle A B C; D = midpoint B C
(stage 3) A B C = triangle A B C; D = midpoint A B; E = midpoint A C

Parallel
(stage 1) A B C = triangle A B C; D = midpoint A B; E = midpoint A C
(stage 1) A B C = triangle A B C; D = midpoint A B; E = midpoint A C
(stage 1) A B C = triangle A B C; D = midpoint A B; E = midpoint A C
(stage 2) A B C = triangle A B C; D = parallelogram A B C D
(stage 3) A B C = triangle A B C; D = midpoint A B; E = midpoint A C; F = midpoint B C

Perpendicular
(stage 1) A B C = triangle A B C; D = foot A B C
(stage 1) A B C = r triangle A B C
(stage 1) A B = segment A B; C = eq triangle C A B; D = eq triangle D A B; E = on circle E A B
(stage 2) A B C = triangle A B C; D = foot A B C; E = foot C A B
(stage 2) A B C = r triangle A B C; D = foot A B C
(stage 2) A B C = triangle A B C; O = circle A B C; D = foot O A B; E = foot O C A
(stage 3) A B C D = rectangle A B C D; E = intersection ll A C B D
(stage 3) A B C = triangle A B C; O = incenter A B C; D = foot O A C; E = foot O B C; F = foot O A

B
(stage 3) A B C = r triangle A B C; D = foot A B C; E = foot D A B
(stage 3) A B C = triangle A B C; D = foot A B C; E = foot C A B; F = foot B A C

Equal
(stage 1) A B C = triangle A B C; D = midpoint C B
(stage 1) A B C = triangle A B C; D = midpoint C B; O = circle O A B C
(stage 1) A B C = triangle A B C; D = angle bisector B A C, on line D C B
(stage 2) A B C = triangle A B C; D = midpoint A B; E = midpoint A C
(stage 2) A B C = triangle A B C; D = midpoint A B; E = midpoint A C; O = circle O A B C
(stage 2) A B C = triangle A B C; D = midpoint A B; E = midpoint A C

(stage 3) A B C = triangle A B C; O = circle A B C; D = on circle D O C, angle bisector C A B

Figure 17: GEOMETRY SHAPE GENERATION CODE FOR EUCLID TRAINING
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Figure 18: Examples of the geometry diagrams used to train Euclid, the diagrams are generated by
our dataset engine.
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G ADDITIONAL EXPERIMENTAL RESULTS
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Figure 19: Result of our preliminary experiments, we use a standard setting of MLLMs: an OpenAI-
CLIP@224 as visual encoders (Radford et al., 2021), two-layer MLP as multimodal connector and
Qwen-2.5-1.5B as language model. We find that the model can reach convergence in some of the
easy tasks, while struggle to learn hard tasks. We also find mixed training is better than separate
training, given the same amount of training data in each difficulty level.
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Figure 20: The complete result of the effect of LLM size. The finding is similar with Fig. 2.
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Figure 21: The complete result of the effect of different visual encoders. The finding is similar
with Fig. 3.
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Figure 22: The complete result of the effect of tuning visual encoders. The finding is similar
with Fig. 4.
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