Efficient Algorithms for Learning Depth-2 Neural
Networks with General ReLU Activations

Pranjal Awasthi Alex Tang Aravindan Vijayaraghavan
Google Research Northwestern University Northwestern University
pranjalawasthi @ google.com alextang @u.northwestern.edu aravindv @northwestern.edu
Abstract

We present polynomial time and sample efficient algorithms for learning an un-
known depth-2 feedforward neural network with general ReLLU activations, under
mild non-degeneracy assumptions. In particular, we consider learning an unknown
network of the form f(z) = a'o(W Tz + b), where x is drawn from the Gaussian
distribution, and o () := max(t, 0) is the ReLU activation. Prior works for learn-
ing networks with ReLU activations assume that the bias b is zero. In order to deal
with the presence of the bias terms, our proposed algorithm consists of robustly
decomposing multiple higher order tensors arising from the Hermite expansion of
the function f(x). Using these ideas we also establish identifiability of the network
parameters under minimal assumptions.

1 Introduction

The empirical success of deep learning in recent years has led to a flurry of recent works exploring
various theoretical aspects of deep learning such as learning, optimization and generalization. A
fundamental question in the theory of deep learning is to identify conditions under which one can
design provably time-efficient and sample-efficient learning algorithms for neural networks. Perhaps
surprisingly, even for the simplest case of a depth-2 feedforward neural network, the learning question
remains unresolved. In this work we make progress on this front by studying the problem of learning
an unknown neural network of the form

y=f(z)=a"o(W'z+b). (D

We are given access to a finite amount of samples of the form (z;,y;) drawn i.i.d. from the data
distribution, where each x; is comes from the standard Gaussian distribution A’(0, I), and y; = f(z;).
The goal is to design an algorithm that outputs an approximation of the function f up to an arbitrary
error measured in the expected mean squared metric (squared /5 loss). An efficient learning algorithm
has running time and sample complexity that are polynomial in the different problem parameters
such as the input dimensionality, number of hidden units, and the desired error.

Without any further assumptions on the depth-2 network, efficient learning algorithms are unlikely.
The recent work of [] provides evidence by proving exponential statistical query lower
bounds (even when x is Gaussian) that rule out a broad class of algorithms.

Several recent works have designed efficient algorithms for depth-2 neural networks in the special
setting when the bias term b = 0. One prominent line of work [] give polynomial time
algorithms under the non-degeneracy assumption that the matrix W has full-rank. Another body of
work relaxes the full-rank assumption by de51gn1ng algorithms that incur an exponential dependence
on the number of hldden units [,], or a quasipolynomial dependence when
the coefficients {a; : ¢ € [m]} are all non-negative []. There is little existing literature on
learning neural networks in the presence of the bias term. A notable exception is an approach based
on computing “score functions” [] that applies to certain activations with bias and requires

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

various assumptions that are not satisfied by the ReLU function. The diminished expressivity of
neural networks without the bias terms leads to the following compelling question:

Can we design polynomial time algorithms even in the presence of bias terms in the ReLU units?

We answer the question affirmatively by designing efficient algorithms for learning depth-2 neural
networks with general ReLLU activations, under the assumption that W ,,, has linearly independent
columns (hence m < d). In fact, our algorithms can be extended to work under much weaker
assumptions on W, that allow for m > d (m < O(de) for any constant £ > 1) in a natural smoothed
analysis setting considered in prior works [] (see Theorem 3.2 and Corollary 3.3). An
important consequence of our techniques is the fact that the network parameters are identifiable
up to signs, as long as no two columns of W are parallel, and all the {a; : ¢ € [m]} are non-
zero. Furthermore we show that this ambiguity in recovering the signs is inherent unless stronger
assumptions are made.

Conceptual and technical challenges with bias terms. Similar to prior works [, 1,
our techniques rely on the use of tensor decomposition algorithms to recover the parameters of the
network. In the absence of any bias, it can be shown that the 4th Hermite coefficient of the function

f() takes the form f; = >, a;w®* where w; are the columns of W and a = (ay,az, ...,).
When the columns of W are linearly 1ndependent, existing algorithms for tensor decompositions in
the full-rank setting can be used to recover the parameters [].! However, when bias terms are
present, there are several challenges that we highlight below.

In the presence of biases the kth Hermite expansion of f () takes the form fj, = Yiia; gr (b)) wE",

where g;; is a function that may vanish on some of the unknown b; parameters. This creates a hurdle
in recovering the corresponding w;. A simple example where the above approach fails is when
some of the b; = +1, since the corresponding rank-1 terms vanish from the decomposition of f4.
To overcome this obstacle, we first give a precise expression for the function gy (b;) involving the
(k — 2)th Hermite polynomial (see Lemma 3.5). We then design an algorithm that decomposes
multiple tensors obtained from Hermite coefficients to recover the parameters. We use various
properties of Hermite polynomials to analyze the algorithm e.g., the separation of roots of consecutive
Hermite polynomials is used to argue that each wj is recovered from decomposing at least one of the
tensors.

Secondly, in the presence of the bias terms, recovery of all the parameters (even up to sign ambiguities)
may not even be possible from polynomially many samples. For instance, consider a particular hidden
node with output o(w;' z + b;). If b; is a large positive number then it behaves like a linear function
(always active). Hence if multiple b;s are large positive numbers then one can only hope to recover
a linear combination of their corresponding weights and biases. On the other hand if b; is a large
negative constant then the activation is 0 except with probability exponentially small in |b;|. We cannot
afford a sample complexity that is exponential in the magnitude of the parameters. Furthermore,
when the columns of W are not linearly independent, the tensor decomposition based method will
only recover good approximations up to a sign ambiguity for the terms whose bias does not have very
large magnitude i.e., we recover 4(w,” = + b;) if |b;| is not very large.

To handle the above issue we proceed in two stages. In the first stage we recover the network
parameters (up to signs) of all the “good” terms, i.e., hidden units with biases of small magnitude. To
handle the “bad” terms (large magnitude bias) we show that a linear functions is a good approximation
to the residual function comprising of the bad terms. Based on the above, we show that one can solve
a truncated linear regression problem to learn a function g(z) that achieves low mean squared error
with respect to the target f(x). The output function g(x) is also a depth-2 ReLU network with at
most two additional hidden units than the target network.

There are several other technical challenges that arise in the analysis sketched above, when there are
sampling errors due to using only a polynomial amount of data (for example, the tensors obtained
from fk may have some rank-1 terms that are small but not negligible, that may affect the robust
recovery guarantees for tensor decompositions). We obtain our robust guarantees by leveraging many
useful properties of Hermite polynomials, and a careful analysis of how the errors propagate.

!Tensor decompositions will in fact recover each ReLU activation up to an ambiguity in the sign. However,
in the full-rank setting, the correct sign can also be recovered (as we demonstrate later in Theorem 3.1).

The rest of the paper is organized as follows. We present preliminaries in Section 1.1 followed
by related work in Section 2. We then formally present and discuss our main results in Section 3.
In Section 4 we present our main algorithm and analysis in the population setting, i.e., under the
assumption that one has access to infinite data from the distribution. We then present the finite sample
extension of our algorithm in Section 5 that achieves polynomial runtime and sample complexity.

1.1 Model Setup and Preliminaries

We consider the supervised learning problem with input € R? drawn from a standard d-
dimensional Gaussian distribution A/(0, I4»4) and labels y generated by a neural network y =
f(z) =a"o(WTz + b), where a,b € R™, W € R4*™ and ¢ is the element-wise ReL.U activation
function, i.e., o(t) = max(t, 0). We denote the column vectors of W as w; € R? withi € [m] and a;
as the 7’th element of vector a, similarly for b and x. We pose a constraint on magnitudes of a, b, W
such that they are all B-bounded for some 1 < B < poly(m, d), i.e. ||a]|co, ||b|loc, [|W]| < B, and

min;e[, |a;| > 1/B. Furthermore, we assume ||w; |2 = 1 without loss of generality. If w; are not

unit vectors, we can always scale a; and b; to |w;||a; and ool respectively so that w,; are normalized.

Iw [

We will denote by @(-) the cumulative density function (CDF) of the standard Gaussian distribution.
Finally, for a matrix M, we will use s; (M) to denote the kth largest singular value of M.

For introduction and further preliminaries regarding poly(-) notation, basics of Hermite polynomials
and tensor decomposition, please refer to Appendix A.

2 Related Work

By now there is a vast literature exploring various aspects of deep learning from a theoretical
perspective. Here we discuss the works most relevant in the context of our results. As discussed
earlier, the recent works of [,] provide polynomial time algorithms for
learning depth-2 feedforward ReLU networks under the assumption that the input distribution is
Gaussian and that the matrix W is full rank. Some of these works consider a setting where the
output is also a high dimensional vector [,], and also consider learning beyond the
Gaussian distribution. However, these works do not extend to the case of non-zero bias.

The work of [] proposed a general approach based on tensor decompositions for learning an
unknown depth-2 neural network that could also handle the presence of the bias terms. The tensor
used in the work of [] is formed by taking the weighted average of a “score” function evaluated
on each data point. In this way their approach generalizes to a large class of distributions provided one
has access to the score function. However, for most data distributions computing the score function
is a hard task itself. When the input distribution is Gaussian, then the score functions correspond
to the Hermite coefficients of the target function f(x) and can be evaluated efficiently. However,
the analysis in [] does not extend to the case of ReLLU activations for several reasons. Their
technique needs certain smoothness and symmetry assumptions on the activations that do not hold
for ReLLU. These assumptions also ensure that all the terms in the appropriate tensor are non-zero.
We do not make such assumptions, and tackle one of the main challenges by showing that one can
indeed recover a good approximation to the network by analyzing multiple higher order tensors.
Furthermore, the authors in [] assume that the biases, and the spectral norm of W are both
bounded by a constant. As a result they do not handle the case of biases of large magnitude where
some of the ReLU units mostly function as linear functions (with high probability).

There have also been works on designing learning algorithms for neural networks without assumptions
on the linear independence of columns of W. These results incur an exponential dependence on either

the input dimensionality or the number of parameters in the unknown network [, 1,
or quasipolynomial dependence when the coefficients {a; : ¢ € [m]} are all non-negative []. In
particular, the result of [] provides a learning algorithm for arbitrary depth neural networks

under the Gaussian distribution with an “FPT” guarantee; its running time is polynomial in the
dimension, but exponential in the number of ReLU units. Given the recent correlational statistical
query lower bounds on learning deep neural networks [, ,], getting a fully
polynomial time algorithm without any assumptions is a challenging open problem, even under
Gaussian marginals.

Polynomial time algorithms with fewer assumptions and beyond depth-2 can be designed if the
activation functions in the first hidden layer are sigmoid functions []. Finally, there is also
extensive literature on analyzing the convergence properties of gradient descent and stochastic gradient
descent for neural networks. The results in this setting implicitly or explicitly assume that the target
function is well approximated in the Neural Tangent Kernel (NTK) space of an unknown network.
Under this assumption these results show that gradient descent on massively overparameterized neural
networks can learn the target [s s s s s s s

) I

3 Main Results

There are two related but different goals that we consider in learning the ReL.U network:

s Achieves low error: Output a ReLU network g(z) = a'To(W'Tx + b') such that the Lo
error is at most ¢ for a given & > 0 i.e., Egn(0,7,,) [(f(2) — g(2))?] < 2.

* Parameter recovery: Output W, Zi,g, such that each parameter is e-close (up to permuting
the m co-ordinates of a, b € R™ and reordering the corresponding columns of W).

We remark that the second goal is harder and implies the first; in particular, when € = 0, the second
goal corresponds to identifiability of the model. However in some cases, parameter recovery may be
impossible to achieve (see later for some examples) even though we can achieve the goal of achieving
low error. As we have seen earlier, given N samples if b; > /log N, then cr(wiT x + b;) will be
indistinguishable from the linear function w, = + b w.h.p.; hence if there are multiple such b; € [m)]
with large magnitude, the best we can hope to do is recover the sum of all those linear terms. Our
first result shows that this is the only obstacle when we are in the full-rank or undercomplete setting
i.e., {w; : i € [m]} are linearly independent (in a robust sense).

Theorem 3.1 (Full-rank setting). Suppose ¢ € (0,1) and N > poly(m,d,1/e,1/s8,,(W), B)
samples be generated by a ReLU network f(x) = a' o(W Tz + b) that is B-bounded, and |b;| <
c/log(1/emdB) for all i € [m)]. Then there exists an algorithm that runs in poly (N, m,d) time
and [wiﬁh high probability recovers a;, b;, @; such that lw; — w;ll2 + |a; — a;| + |b; — 51| < e for all
i € [m].

The above theorem recovers all the parameters when the biases {b; : i € [m]} of each ReLU unit
does not have very large magnitude. Moreover even when there are b; of large magnitude, we can
learn a depth-2 ReLLU network g that achieves low error, and simultaneously recover parameters
for the terms that have a small magnitude of b; (up to a potential ambiguity in signs). In fact, our
algorithm and guarantees are more general, and can operate under the much milder condition that
{wP* : i € [m]} are linearly independent for any constant £ > 1; the setting when ¢ > 1 corresponds
to what is often called the overcomplete setting. In what follows, for any constant ¢/ € N we use
poly,(ni,ne,...) to denote a polynomial dependency on n1,na, ..., and potentially exponential
dependence on /.

Theorem 3.2. Suppose { € N be a constant, and € > 0. If we are given N ii.d. samples as
described above from a ReLU network f(z) = a'o(W T2 + b) that is B-bounded then there is
an algorithm that given N > poly,(m,d,1/e,1/s,(W®*), B) runs in poly(N,m,d) time and
with high probability finds a ReLU network g(x) = a’TJ(W’Tﬂc + b') with at most m + 2 hidden
units, such that the Ly error By zr0.1,,) |(f(x) — g(x))?] < 2. Furthermore there are constants
c=c(l) >0,c > 0and signs & € {£1} Vi € [m], such that in poly (N, m, d) time, for all i € [m)]
with |b;| < ey/log(1/(c - mdB)), we can recover (a;, @y, b;), such that |a; — @;| + ||w; — &wil|2 +
b; — &bi| < e/ (mB).

In the special case of £ = 1 in Theorem 3.2, we need the least singular value s, (W) > 0 (this neces-
sitates that m < d). This corresponds to the full-rank setting considered in Theorem 3.1. In contrast to
the full-rank setting, for / > 1 we only require that the set of vectors wi@f, w?e s, wE are linearly
independent (in a robust sense), which one can expect for much larger values of m typically. The
following corollary formalizes this in the smoothed analysis framework of Spielman and Teng [1,
which is a popular paradigm for reasoning about non-worst-case instances []. Combining
the above theorem with existing results on smoothed analysis [] implies polynomial time

learning guarantees for non-degenerate instances with m = O(d*) for any constant £ > 0. Below,

W denotes the columns of W are T-smoothed i.e., randomly perturbed with standard Gaussian of
average length 7 that is at least inverse polynomial (See Section E for the formal smoothed analysis
model and result).

Corollary 3.3 (Smoothed Analysis). Suppose { € N and € > 0 are constants in the smoothed
analysis model with smoothing parameter T > 0, and also assume the ReLU network f(x) =
a'o(W Tz + b) is B-bounded with m < 0.99(‘”?71). Then there is an algorithm that given
N > poly,(m,d,1/e, B,1/7) samples runs in poly (N, m, d) time and with high probability finds a
ReLU network g(z) = o' o(W'" z + V) with at most m + 2 hidden units, such that the Ly error
Eurn (0,100) [(f () — g(2))?] < €% Furthermore there are constants c,c’ > 0 and signs &; €
{£1} Vi € [m], such that in poly(N,m, d) time, for all i € [m] with |b;| < c\/log(1/(e - mdB)),
we can recover (@, W;, b;), such that |a; — @;| + ||w; — &2 + |b; — &bi| < e/ (mB).

While our algorithm and the analysis give guarantees that are robust to sampling errors and inverse
polynomial error, even the non-robust analysis has implications and, implies identifiability of the
model (up to ambiguity in the signs) as long as no two rows of W are parallel. Note that in general
identifiability may not imply any finite sample complexity bounds.

Theorem 3.4 (Partial Identifiability). Suppose we are given samples from a ReLU network f(x) =
a'o(W Tz + b) where min;e () |a;| > 0 and no two columns of W are parallel to each other.
Then given samples, the model parameters (a;,b;,w; : i € [m]) are identified up to ambiguity
in the signs and reordering indices i.e., we can recover {(a;,&b;,&w;) = i € [m]} for some
& e {+1,-1} Vi € [m).

Moreover given any (§; € {+1,—1} : i € [m]) such that

m m

Zaz gz gzwz Zaz wza and Zazb (I) gz 7 iaibiq)(bi)a (2)
1=1

we have that the set of parameters ((a;, &:b;, Ew; : @ € [m]) also gives rise to the same distribution.

The above theorem shows that under a very mild assumption on W, the parameters can be identified
up to signs. However, this ambiguity in the signs may be unavoidable — the second part of the
Theorem 3.4 shows that any combination of signs that match the zeroth and first Hermite coefficient
gives rise to a valid solution (this corresponds to the d + 1 equations in (2)). Even in the case when all
the b; = 0, we have non-identifiability due to ambiguities in signs whenever the {w; : i € [m]} are
not linearly independent for an appropriate setting of the {a; }; see Claim 4.8 for a formal statement.
On the other hand, Theorem 4.1 gives unique identifiability result in the full-rank setting (as there is
only one setting of the signs that match the first Hermite coefficient in the full-rank setting).

Our results rely on the precise expressions for higher order Hermite coefficients of f(x) given below.

Lemma 3.5. Let f; = Eq~nro,n[f(x)Hey(2)] (with k € N) be the k’th Hermite coefficient (this is
an order-k tensor) of f(x) = a” o(W Tz +b). Then

. exp(— %)
fo= ;ai (bi‘b(bi) + ?) Z a; P 1 w; 3)
V> 2, fi = ;(_1)/@ ca; - Hep_o(b;) - eXp(\/ﬁl) L@ @

m

We prove this by considering higher order derivatives and using properties of Hermite polynomials. A
key property we use here is that the k’th derivative of a standard Gaussian function is itself multiplied
by the k’th Hermite polynomial (with sign flipped for odd k). This significantly simplifies the
expression for the coefficient g(b;) of w?’

We remark that the above lemma may also be used to give an expression for the training objective
for depth-2 ReLLU networks, analogous to the result of [] for ReLLU activations with no bias,
that provides an expression as a combination of tensor decomposition problems of increasing order.
Please refer to Appendix B for more details.

4 Non-robust Algorithm and Analysis

Our algorithms for learning the parameters of f(z) = a ' o(W "2 4 b) decompose tensors obtained

from the Hermite coefficients { fi € (R4)®*} of the function f. In this section, we design an
algorithm assuming that we have access to all the necessary Hermite coefficients exactly (no noise or
sampling errors). This will illustrate the basic algorithmic ideas and the identifiability result. However
with polynomial samples, we can only hope to estimate these quantities up to inverse polynomial
accuracy. In Section 5 we describe how we deal with the challenges that arise from errors. For proofs
for the following lemmas and claims, please refer to Appendix C.

Our first result is a polynomial time algorithm in the full-rank setting that recovers all the parameters
exactly.

Theorem 4.1 (Full-rank non-robust setting). Suppose the parameters {(a;,b;,w;) : i € [m]}
satisfies: (1) a; # 0 forall i € [m), (i) {w; : i € [m]} are linearly independent. Then given
{ ft : 0 <t < 4} exactly, Algorithm I recovers (with probability 1) the unknown parameters a, b and
W in poly(m, d) time.

See Theorem 3.1 for the analogous theorem in the presence of errors in estimating the Hermite
coefficients { f;}. Our algorithm for recovering the parameters estimates different Hermite coefficient

tensors { f; : 0 < ¢ < 4} and uses tensor decomposition algorithms on these tensors to first find the
{w; : i € [m]} up to some ambiguity in signs. We can also recover all the coefficients {b; : ¢ € [m]}
up to signs (corresponding to the signs of w;), and all the {a; : 7 € [m]} (no sign ambiguities). This
portion of the algorithm extends to higher order ¢, under a weaker assumption on the matrix W.

Theorem 4.2. Suppose the parameters {(a;, b;,w;) : i € [m]} satisfies: (i) no two {w; : i € [m]}
are linearly dependent and, (i) for a constant £ € N, {w®" : i € [m]} are linearly independent,
(iii) a; # 0 for all i € [m). Then given {f, : 0 < t < 20 + 2} exactly, Algorithm I in poly,(m, d)
time outputs (with probability 1) {a;,w;, b; : i € [m]} such that we can recover the parameters
up to a reordering of the indices [m] and up to signs i.e., for some {&; € {—1,1} : i € [m]} we
have a; = a;, W; = &w,; and 131- = &;b;. Furthermore, given exact statistical query access to the
distribution N'(0, Iz« q),” there exists an algorithm that runs in time poly(m,d, B) and outputs a

function g(x) such that 0,1,) (f (@) — g(x))2 = 0.

We now describe the algorithm for general ¢ > 1 (this specializes to the full-rank setting for ¢ = 1).

Algorithm 1: Algorithm for order ¢: recover a, b, W given { ft 0<t <2042}

Input: fo, foi1, fero. fors, faert, faesos
1. Let T’ = flatten(fary1, €, £,1) € RY %4 %d and T = flatten(fapy o, £, £,2) € R4 ¥4 x4 e
order-3 tensors obtained by flattening for 41 and fagyo.

2. Set k! = rank(ﬂatten(fggﬂ, £,¢+1,0)). Run Jennrich’s algorithm [] on 7" to recover
rank-1 terms {/u®* @ u®* @ u; | i € [K']}, where Vi € [K'], u; € S¥! and o, € R.
3. Set k" = rank(ﬂatten(fgprg, £,0+41,0)). Run Jennrich’s algorithm [] on T" to recover

rank-1 terms {0’ ® v¥* @ v®? | i € [k"]}, where Vi € [k"], v; € S*! and o/ € R.
4. Remove duplicates and negations (i.e., antipodal pairs of the form v and —v) from
{ul, U, . .. ,uk/} U {01,1}2, e ,’Uk//} to get W1, W, . . .y Wy
5. Run subroutine RECOVERSCALARS(m, £, {w; : i € [m]}, fo, fg+1, fg+2, fg+3) to get
{'dz,gz RS [m]}
6. If ¢ = 1 (full-rank setting), run Algorithm 3 (FIXSIGNS) on parameters m, f1 and
(@, b, W; < i € [m]) to get (a] = @, b, w! : i € [m)]).
Result: Output {@;,d;,b; : i € [m]}

*This means that for any function h(z,y) that can be computed in polynomial time, one can obtain
Eqe,y[h(z,y)] exactly.

Subroutine Algorithm 2 finds the unknown parameters ai,...,a,, € Rand by, ...,b, € R given
w1y, Wa, . .., Wn. While Algorithm 1 changes a little when we have errors in the estimates, the
subroutine Algorithm 2 remains the same even for the robust version of the algorithm.

Algorithm 2: Subroutine RECOVERSCALARS to recover b; (up to signs) and a; given w; (up to
signs) for all i € [m)].

Input: m, ¢, (w; : i« € [m]), and tensors Ty, Ty41, Ty+2, Ty+3 which are tensors of orders
0,0+ 1,0+ 2,0+ 3 respectively;

if / =1 then

1. For j € {2,3}, solve the system of linear equation ., (;(i)vec(w 527 = vec(Ty) to
recover unknowns {(;(¢) | i € [m]};

2. Foreach i € [m], set b; = —88;, and a; = (o(4) - omebi/?,

else
1. For j € {{,0+ 1, + 2,¢ + 3}, solve the system of linear equation

S ¢ (i)vec(w ®J) = vec(Tj) to recover unknowns {¢;(¢) | i € [m]};
_ Ca+1(0)+q-Cq—1(i)

2. For each i € [m], ¢; := argmax ¢y o403 |((7)], set b; = o) , and

@ = v2m(—1)9¢,(i)eb /2 He, (b;), as described in (34) (Lemma 4. 5)

end
Result: Output (a;,b; : i € [m])

The above two algorithms together recover for all i € [m], the a; and up to a sign the w; and b;. In
the special case of { = 1 which we refer to as the full-rank setting, we can also recover the correct
signs, and hence recover all the parameters.

Algorithm 3: Algorithm FIX SIGNS IN FULL-RANK SETTING.

Input: m, fl € R? and estimates @, Ei, w; for each i € [m];

1. Solve the system of linear equation Y.~ | z;d;w; = f1 to recover unknowns {z; | i € [m]};
2. Set & = sign(z;) for each i € [.

Result: Output (a,, &by, &by € [m])

Algorlthm 1 decomposes two different tensors obtained from consecutive Hermite coefficients
f2p+1, f25+2 to obtain the {w;} up to signs. We use two different tensors because the bias b; could
make the coefficient of the ith term in the decomposmon 0 (e.g., Heop—1(b;) = 0 for f25+1) hence
w,; cannot be recovered by decomposing f24+1 Hence f24+1 can degenerate to a rank m’ < m
tensor, and Jennrich’s algorithm will return only m’ < m eigenvectors that correspond to non-zero
eigenvalues.

The following lemma addresses this issue by showing that two consecutive Hermite polynomials can
not both take small values at any point z € R. This implies a separation between roots of consecutive
Hermite polynomials or , and establishes a “robust” version that will be useful in Section 5. Moreover,
this lemma also shows that when || is not close to 0, at least one out of every two consecutive odd
Hermite polynomials takes a value of large magnitude at x.

Lemma 4.3 (Separation of Roots). Forall k € N,z € R, max{|Hey(x)|,|Hert1(x)|} > /k!/2.

The following claim shows that Jennrich’s algorithm for decomposing a tensor successfully recovers
all the rank-1 terms whose appropriate Hey(b;) # 0. This claim along with Lemma 4.3 shows that
Steps 2-3 of Algorithm 1 successfully recovers all the {w; : i € [m]} up to signs.

Claim 4.4, Let El Ao > LlandT € RExd2xd"3 e g decomposition T = 2211 aiw?el ®w;®£2 ®
©f with {w®* : i € [m]} being linearly independent. Consider matrix M = flatten(T, {5 +

l5,0) € R4 Xdiz”{ and let r := rank(M). Then Jennrich’s algorithm applied with rank r runs in
POly,, 14,14, (M, d) time recovers (w.p. 1) the rank-1 terms corresponding to {i € [m] : |a;| > 0}.
Moreover for each i with |o;| > 0, we have w; = &w; for some &; € {+1,—1}.

wy

The above claim was useful in recovering w; up to a sign ambiguity. The following lemma is useful
for recovering a; parameters (no sign ambiguities) and the b; parameters up to sign ambiguity, once
we have recovered the w; up to sign ambiguity. It uses various properties of Hermite polynomials
along with Lemma 3.5 and Lemma 4.3.

Lemma 4.5. Suppose k € N, k > 2. Suppose for some unknowns 3, z € R with 3 # 0, we are given
values of v; = (—1)7¢§? fHe;(2) Vj € {k,k+ 1,k + 2,k + 3} for some § € {+1,—1}. Then z,3
are uniquely determined by

Yg+1 TG Vg—1 Yq
Forq:= argmax |v4|, {&2=——""——"2— f[=(-1)1—"—)
jelitthr2y Yq He,(£2)

A robust version of this lemma (see Section D.2.2) will be important in the robust analysis of Section 5.
The following claim applies the above lemma for each i € [m] with §;z = b; and § = aie’b?/ 2/\V2m,
to show that Step 5 of the algorithm recovers the correct {(a;, £;b;) }ic[m) given the {§w; }icim)-

Claim 4.6. Given {w; = &w; : i € [m]} where §; € {+1,1} Vi € [m], Step 5 of Alg. I recovers
{(ai, &by, Eiw;) 2 i € [m]}.

We now complete the proof of the non-robust analysis for any constant ¢ > 0.

Proof of Theorem 4.2. The proof follows by combining Claim 4.4 and Claim 4.6, along with
Lemma 4.3. Let Q1 = {’L : ‘Hegg_l(bi” > 0} and Q)2 = {Z : |H€2@+1(bi)‘ > 0} From
Claim 4.4, Step 2 recovers all the rank-1 terms in ()1 with probability 1; hence we obtain in particular
{&w; € S471 | i € Q} for some signs & € {+1, —1}. Similarly, in Step 3 we recover w.p. 1, the
{&w; € S471 | i € Q) for some ¢; € {1,—1}.

From Lemma 4.3, we know that no « € R is a simultaneous root of Heayy1(x), Heapq2(2). Hence
Q1 UQ2 = {1,2,...,m}. Thus we obtain {&w; € S4~1 : i € [m]} in Step 4 for some signs
& € {1,—1} for all ¢ € [m]. Finally using Claim 4.6, we recover for each ¢ € [m], the a;,&;b; € R
corresponding to &;w;.

Next, in order to recover a function g(x) of zero Lo error we set up a linear regression problem.
Given x € R? consider a 2m dimensional feature space ¢(z) where ¢(7)2; = a;0(&w, x + €:b;)
and ¢(x)2i11 = a;o(—&w, x — &b;). Then is is easy to see that the target network f(x) can be
equivalently written as f(z) = *Tgb(x) for some vector 5*. Hence we can recover another vector
f3 of zero Lo error by solving ordinary least squares, i.e, 3 = E[¢(z) " ¢(z)]'E[¢(z)y].> Notice
that both the expectations can be calculated exactly given exact statistical query access to the data
distribution. In Section D.3 we provide a more general analysis of the above argument with finite

sample analysis that will let us approximate f(x) up to arbitrary accuracy in the presence of sampling
errors. O

We now complete the proof of recovery in the full-rank setting.

Proof of Theorem 4.1. We first apply Theorem 4.2 (and its above proof) with £ = 1. We note that the
conditions are satisfied since sy, (W) > 0 and all the a; # 0. Theorem 4.2 guarantees that the first
5 steps of Algorithm 1 recovers (with probability 1) for each i € [m], a;, b; = &;b; and w; = &w;
for some &; € {+1,1}. From Lemma 3.5, we have that

m m

fl = Zaﬁl)(bi)wi = Z z;‘ai@i, for Zz* = flq)(bl) Vi € [m],
=1 =1

and ®(b;) is the Gaussian CDF and restricted to (0, 1). Moreover the {w; : i € [m]} are linearly
independent. Hence there is a unique solution (z; : i € [m]) to the system of linear equations in the
unknowns (z; : ¢ € [m]) in step 6 of Algorithm 1, and &; = &; as required. Hence (a;, &;b;, &W; :
i € [m]) are the true parameters of the network (up to reordering indices). O

3We remark that using Claim D.14, we can further consolidate the terms to get a ReLU network with at most
m + 2 hidden units.

Proof of Identifiability (Theorem 3.4): Theorem 3.4 follows by verifying that the conditions of
Theorem 4.2 hold for £ = m. Conditions (i) and (iii) follow from the conditions of Theorem 3.4.

We now verify condition (ii). For a matrix U with columns {u; : i € [m]}, the krank(U) (denoting
the Kruskal-rank) is at least k iff every k of the m columns of U are linearly independent. Note that
krank(U) < rank(U) < m. The krank increases under the Khatri-Rao product.

Fact 4.7 (Lemma A.4 of [1. For two matrices U,V with m columns, krank(U © V) =
min(krank(U) 4 krank(V') — 1,m).

Non-identifiability of signs when {w; : i € [m]} are not linearly independent. Theorem 4.1
shows that when the {w; : ¢ € [m]} are linearly independent, the model is identifiable. The
following claim shows that even in the special setting when the biases b; = 0 Vi € [m], whenever the
(wj : i € [m]) are linearly dependent, the model is non-identifiable (for appropriate (a; : i € [m]))
because of ambiguities in the signs (Theorem 4.2 also shows it is identifiable up to this sign ambiguity).

Claim 4.8. Suppose wi, ..., w,, are linearly dependent. Then there exists a1, ..., a,, (notall 0)
and signs &1,&a, ..., &m € {£1} with not all +1 such that the ReLU networks f and g defined as

m

flx) = Zaia(w;x), g(z) = Zam(@wg—x) satisfy f(z) = g(x) Vo € RY.

=1 =1
5 Robustness Analysis

In this section, we prove Theorem 3.1 and Theorem 3.2 which give polynomial time and sample
complexity bounds for our algorithms. In the previous section we showed that given oracle access to
{ fk} we can recover the exact network parameters a, b, W (or at least up to signs). In reality, we can
only access polynomially many samples in polynomial time, and we will have sampling errors when
estimating { f; }. Therefore, given data generated from the target network (1, 41), ..., (n, yn), we
will approximate fk through the empirical estimator

N
1
Ti= ;yiHek(xi) (©6)

Observe that T}, is an unbiased estimator for fk We first show using standard concentration bounds
that for any > 0, with N > poly(d*, m, B,1/n) samples, the empirical estimates with high

probability satisfies V¢ € [k], ||&||lr == ||Tv — fellr < n (see Appendix D.1). Hence for any
constant k, with polynomial samples, we can obtain with high probability, estimates for the tensors
{Ty, T1,..., Ty} that are accurate up to any desired inverse-polynomial error.

Overview of Analysis. The error in the tensors 7} introduces additional challenges that we
described in Section 1. The analysis is technical and long, but we now briefly describe the main
components.

(i) Recall from Section 1, that when there are errors, it may not even be possible to recover the
parameters of some ReLU units! In particular when the bias b; is large in magnitude, the ReLU
unit will be indistinguishable from a simple linear function. It will contribute negligibly to any of
the higher order Hermite coefficients, and hence will be impossible to recover them individually
(especially if there are multiple such units). For a desired recovery error € > 0, the m hidden ReLU
units are split into groups (for analysis)

G = {i € [m]||b:| <O(y/log(1/(e - mdB)))}, and P = {1,2,...,m} \ G.

We aim to recover all of the parameters of the units corresponding to G up to signs. For the terms in
P, we will show the existence of a linear function that approximates the total contribution from all
the terms in P.

(ii) The tensor decomposition steps (steps 2-3) are simpler in the no-noise setting: the parameter
w; of the ith ReLLU unit can be recovered (up to sign ambiguity) as long its bias b; is not a root of
Hegp_1. When there is noise, there could be terms i € [m] for which b; are not roots of He_o(x),
and yet their signal can get swamped by the sampling error in the tensor. We can only hope to

recover those & < m components whose corresponding coefficient is above some chosen threshold
71 (the other terms are considered as part of the error tensor). However a technical issue that arises is
that the robust recovery guarantees for tensor decomposition algorithms lose polynomial factors in
different parameters including the least singular value (sy(-)) of the factor matrices. Hence, for each
of step 2 and 3, we argue that recovery is possible only if the coefficient of the corresponding term is
significantly large, and this may give reasonable estimates for only a subset of these m terms with
coefficients > ¢.

(iii) When decomposing two consecutive tensors Ty and Toy o, we use Lemma 4.3 to argue that
each i € GG will have a large coefficient in at least one of these two tensors. Hence we can stitch
together estimates {w; : ¢ € G} which are accurate up to a sign and small error. This will in turn be
used to recover a;, b; for ¢ € G, with properties of Hermite polynomials used to ensure that the errors
do not propagate badly.

(iv) We argue that the other ReLU units in P = [m] \ G can be approximated altogether using a linear
function. This is obtained by subtracting from estimates 7, 77 with the corresponding terms from G.

(v) The above arguments let us compute good approximations to the parameters for the units
in G, but only up to signs. In order to use this to learn a good predictor for f(x) we consider
solving a truncated linear regression problem in an expanded feature space. At a high level, for

each i € G, given estimates (a;, W;, b;) we consider an expanded feature representation for this

unit into an 8-dimensional vector where each coordinate is of the form &;,a;0 (&, W; - « + &i,b;)
for &,,&,, &, € {—1,+1}.* Repeating this for every i € G it is easy to see that there is a linear
function in the expanded space that approximates the part of the function f(z) that depends on units
in G. Combining with the previous argument that the units in P = [m] \ G can be approximated
by a linear function in the original feature space, we deduce that there is an O(d + m) dimensional
feature space where f(z) admits a good linear approximation. We then solve a truncated least squares
problem in this space to obtain our final function g(x) that approximates f(x) in Lo error.

We will state the main claims and intermediate steps that prove the robustness of the algorithm and
establish Theorems D.1, 3.1, 3.2 in Appendix D.

6 Conclusion

In this paper, we designed polynomial time algorithms for learning depth-2 neural networks with
general ReLU activations (with non-zero bias terms), and gave provable guarantees under mild
non-degeneracy conditions. The results of this work are theoretical in nature, in trying to understand
whether efficient algorithms exist for learning ReL.U networks; hence we believe they do not have
any adverse societal impact. We addressed multiple challenges for learning such ReLLU network with
non-zero bias terms throughout our analyses, that may be more broadly useful in handling bias terms
in the ReLU activations. We also proved identifiability under minimal assumptions and adopted
the framework of smoothed analysis to establish beyond-worst-case guarantees. The major open
direction is to provide similar guarantees for networks of higher depth.

7 Acknowledgement

The last two authors are supported by the National Science Foundation (NSF) under Grant No. CCF-
1652491, CCF-1637585 and CCF-1934931.

References

[ADHT19] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained
analysis of optimization and generalization for overparameterized two-layer neural
networks. In International Conference on Machine Learning, pages 322-332. PMLR,
2019. 4

“While this portion of the algorithm works more generally with ambiguities in the sign of a;, b;, and w;, in
our case, the sign ambiguity of w; and b; are coordinated, and the sign of the a; are also recovered correctly;
hence a 2-dimensional vector suffices in this case. Moreover the terms can be consolidated to get an equivalent
ReLU network with at most |G| + 2 hidden units (see Claim D.14 and Lemma D.12).

10

[APVZ14]

[AZLS19]

[BBVO04]

[BCMV14]

[BCPV19]

[BCV14]

[Bha97]
[BJW19]

[CB18§]

[CKM20]

[Dan17]

[DFS16]

[DK20]

[DKKZ20]

[DV21]

[DZPS19]

Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning polynomials
with neural networks. In International conference on machine learning, pages 1908—
1916. PMLR, 2014. 4

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. In International Conference on Machine Learning, pages
242-252. PMLR, 2019. 4

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004. 32

A. Bhaskara, M. Charikar, A. Moitra, and A. Vijayaraghavan. Smoothed analysis of
tensor decompositions. In Proceedings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing, STOC ’ 14, page 594-603, New York, NY, USA, 2014. Association
for Computing Machinery. 14, 18, 35

Aditya Bhaskara, Aidao Chen, Aidan Perreault, and Aravindan Vijayaraghavan.
Smoothed analysis in unsupervised learning via decoupling. In Proceedings of the
60th Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE,
2019. 4, 35

Aditya Bhaskara, Moses Charikar, and Aravindan Vijayaraghavan. Uniqueness of tensor
decompositions with applications to polynomial identifiability. In Maria Florina Balcan,
Vitaly Feldman, and Csaba Szepesvari, editors, Proceedings of The 27th Conference
on Learning Theory, volume 35 of Proceedings of Machine Learning Research, pages
742-778, Barcelona, Spain, 2014. PMLR. 9, 14

Rajendra Bhatia. Matrix Analysis, volume 169. Springer, 1997. 30

Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified
neural networks in polynomial time. In Conference on Learning Theory, pages 195-268.
PMLR, 2019. 1, 3

Lénaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS’18, page 3040-3050, Red
Hook, NY, USA, 2018. Curran Associates Inc. 4

Sitan Chen, Adam R Klivans, and Raghu Meka. Learning deep relu networks is fixed-
parameter tractable. arXiv preprint arXiv:2009.13512, 2020. 1, 3

Amit Daniely. Sgd learns the conjugate kernel class of the network. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17,
page 2419-2427, Red Hook, NY, USA, 2017. Curran Associates Inc. 4

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural
networks: The power of initialization and a dual view on expressivity. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc., 2016. 4

[lias Diakonikolas and Daniel M. Kane. Small covers for near-zero sets of polynomials
and learning latent variable models. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
184-195. IEEE, 2020. 1, 3

Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, and Nikos Zarifis. Algorithms
and sq lower bounds for pac learning one-hidden-layer relu networks. In Conference on
Learning Theory, pages 1514-1539. PMLR, 2020. 1, 3

Amit Daniely and Gal Vardi. From local pseudorandom generators to hardness of
learning. In Mikhail Belkin and Samory Kpotufe, editors, Conference on Learning
Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, volume 134 of
Proceedings of Machine Learning Research, pages 1358-1394. PMLR, 2021. 3

Simon S. Du, Xiyu Zhai, Barnabas P6czos, and Aarti Singh. Gradient descent prov-
ably optimizes over-parameterized neural networks. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. 4

11

[GGIT20]

[GK19]

[GKLW19]

[GLM18]

[GVX14]

[Har70]

[JGH21]

[JGKA19]

[JSAI1S5]

[LXST19]

[Moi18]
[MRT18]
[0'D14]
[Rou20]
[STO4]
[Tur50]

[Vij20]

Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, and Adam Klivans.
Superpolynomial lower bounds for learning one-layer neural networks using gradient
descent. In International Conference on Machine Learning, pages 3587-3596. PMLR,
2020. 3

Surbhi Goel and Adam R Klivans. Learning neural networks with two nonlinear layers
in polynomial time. In Conference on Learning Theory, pages 1470-1499. PMLR, 2019.
1,4

Rong Ge, Rohith Kuditipudi, Zhize Li, and Xiang Wang. Learning two-layer neural net-
works with symmetric inputs. In International Conference on Learning Representations,
2019. 2,3

Rong Ge, Jason D. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks
with landscape design. In International Conference on Learning Representations, 2018.
1,3,5

Navin Goyal, Santosh Vempala, and Ying Xiao. Fourier pca and robust tensor de-
composition. STOC 14, page 584-593, New York, NY, USA, 2014. Association for
Computing Machinery. 14

R. Harshman. Foundations of the parafac procedure: Models and conditions for an
"explanatory" multi-model factor analysis. 1970. 2, 6, 13, 14

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks (invited paper). In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2021, page 6, New York, NY,
USA, 2021. Association for Computing Machinery. 4

Majid Janzamin, Rong Ge, Jean Kossaifi, and Animashree Anandkumar. Spectral
learning on matrices and tensors. Foundations and Trends in Machine Learning, 12, 11
2019. 13

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-
convexity: Guaranteed training of neural networks using tensor methods. arXiv preprint
arXiv:1506.08473,2015. 1,2, 3

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve
as linear models under gradient descent. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019. 4

Ankur Moitra. Algorithmic Aspects of Machine Learning. Cambridge University Press,
2018. 14

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018. 32

Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, USA,
2014. 14

Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms. Cambridge Univer-
sity Press, 2020. 4, 12

Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM, 51(3):385-463, 2004. 4, 35

Paul Turdn. On the zeros of the polynomials of legendre. Casopis pro péstovini
matematiky a fysiky, 75(3):113-122, 1950. 16

Aravindan Vijayaraghavan. Beyond the Worst-Case Analysis of Algorithms, chapter
Efficient Tensor Decomposition. In [1, 2020. 13, 17, 35

12

	Introduction
	Model Setup and Preliminaries

	Related Work
	Main Results
	Non-robust Algorithm and Analysis
	Robustness Analysis
	Conclusion
	Acknowledgement
	More Preliminaries
	Hermite Polynomials
	Tensor Decomposition

	Expressions for the Hermite Coefficients
	Proofs in Section 4
	Robust Analysis for general
	Estimating the Hermite coefficients
	Recovering the parameters under errors
	Recovery of weight vectors wi for the terms in G
	Recovering error for the parameters ai, bi for terms i G.

	Learning Guarantees via Linear Regression
	Wrapping up the proofs

	Smoothed Analysis

