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Abstract

Reinforcement learning (RL) offers adaptive solu-
tions to portfolio optimization, yet standard meth-
ods such as proximal policy optimization (PPO)
rely exclusively on historical price data and over-
look the impact of investor sentiment. We intro-
duce sentiment-augmented PPO (SAPPO), a rein-
forcement learning framework that incorporates
real-time sentiment signals extracted from Refini-
tiv financial news. Daily sentiment scores are
generated using LLaMA 3.3. SAPPO integrates
these signals into the PPO advantage function via
a sentiment-weighted term, enabling allocation
strategies that respond to both price movements
and market sentiment. Experiments on a three-
asset portfolio demonstrate that SAPPO increases
the Sharpe ratio from 1.55 to 1.90 and reduces
drawdowns relative to PPO. The optimal con-
figuration uses a sentiment influence parameter
λ = 0.1, as validated through ablation studies and
statistically significant t-tests (p < 0.001). These
findings show that sentiment-aware reinforcement
learning improves trading performance and offers
a robust alternative to purely price-based strate-
gies.

1. Introduction
Portfolio optimization is a fundamental problem in financial
management that aims to allocate resources across various
assets to maximize returns and minimize risk (Markowitz,
1952; Sharpe, 1994; Fabozzi et al., 2007). Traditional ap-
proaches, such as mean-variance optimization, rely primar-
ily on historical data to estimate expected returns and as-
set covariances (Markowitz, 1952; Michaud, 1989). These
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static techniques often struggle to dynamically adapt to
rapidly evolving market conditions, reducing their effec-
tiveness in volatile financial environments (DeMiguel et al.,
2009; Kolm et al., 2014).

The emergence of reinforcement learning, and particularly
deep reinforcement learning, provides promising new solu-
tions to dynamic asset allocation problems by enabling adap-
tive decision-making (Deng et al., 2017; Sutton & Barto,
2018; Wang et al., 2019). RL agents learn optimal alloca-
tion strategies through continuous interaction with financial
environments, adapting policies based on market feedback
(Moody & Saffell, 1998; Moody et al., 2001). DRL extends
these capabilities by employing deep neural networks to
approximate complex value functions and policy decisions,
effectively handling nonlinear and nonstationary market
behaviors (Deng et al., 2017; Ye et al., 2020; Jin et al.,
2023). Prominent DRL algorithms, including PPO and deep
Q-networks (DQN), offer robust frameworks suitable for
continuous action spaces in financial portfolio management
(Schulman et al., 2017; Sutton & Barto, 2018; Wang et al.,
2019; Gu et al., 2020).

Although PPO effectively captures market dynamics based
on historical price data, existing implementations generally
overlook the critical influence of investor sentiment on asset
prices. Financial markets exhibit significant sensitivity to
sentiment-driven investor behaviors, making sentiment anal-
ysis an important supplementary component for accurately
predicting market movements (Tetlock, 2007; Baker & Wur-
gler, 2012; Huang et al., 2023; Kirtac & Germano, 2025).
Advances in NLP and LLMs, such as FinBERT (Araci,
2019)—which is fine-tuned for financial text—and LLaMA
3.3 (Dubey et al., 2024)—a general-purpose model—have
made it feasible to extract and interpret sentiment from
financial news, analyst reports, and market commentary. In-
tegrating sentiment signals into quantitative strategies has
been shown to enhance predictive accuracy, volatility fore-
casting, and overall trading performance (Smales, 2014;
Chen et al., 2022; Jin et al., 2023).

We extend the PPO framework by introducing sentiment-
augmented SAPPO, a novel reinforcement learning model
explicitly incorporating real-time market sentiment into port-
folio optimization. SAPPO integrates daily sentiment scores
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extracted from financial news articles using the LLaMA 3.3
model, a transformer-based architecture. This integration
provides the PPO agent with additional contextual insights
beyond purely historical prices, allowing for more informed
and adaptive allocation decisions.

We evaluate the performance of SAPPO relative to a base-
line PPO model that relies exclusively on historical price
information. Our comparative analysis employs key finan-
cial performance metrics such as the Sharpe ratio, annual-
ized returns, and maximum drawdown, assessing whether
sentiment-aware reinforcement learning strategies offer tan-
gible improvements over conventional RL techniques. Ex-
perimental results demonstrate that incorporating sentiment
analysis leads to significantly better risk-adjusted returns
and reduced drawdowns. These findings contribute to the
existing literature by showcasing how leveraging financial
sentiment in reinforcement learning frameworks can sub-
stantially enhance the adaptability and robustness of portfo-
lio optimization strategies in dynamic market environments.

2. Related work
Portfolio optimization techniques have significantly evolved
since Markowitz (1952) introduced mean-variance optimiza-
tion. Traditional methods estimate asset returns and covari-
ances from historical financial data, which often limits their
adaptability in volatile market conditions (Michaud, 1989;
DeMiguel et al., 2009). The rigidity inherent in these static
optimization frameworks has motivated researchers to ex-
plore more dynamic and adaptive strategies.

Reinforcement learning provides an alternative approach by
enabling agents to adapt asset allocation decisions through
continuous interaction with the market environment (Moody
& Saffell, 1998; Moody et al., 2001). Deep reinforcement
learning extends these capabilities further, using deep neu-
ral networks to effectively approximate complex, nonlin-
ear market dynamics (Deng et al., 2017; Ye et al., 2020).
Prominent DRL algorithms, including PPO and deep Q-
networks (DQN), have shown robust performance in contin-
uous decision-making scenarios such as portfolio manage-
ment (Schulman et al., 2017; Wang et al., 2019; Gu et al.,
2020).

PPO has gained popularity within financial DRL due to
its stable and effective policy updates in continuous action
spaces (Schulman et al., 2017). PPO optimizes stochas-
tic policies iteratively by maximizing a clipped surrogate
objective function, ensuring incremental updates of policy
parameters. The algorithm employs an advantage function
to evaluate the effectiveness of actions relative to an esti-
mated baseline value. This structure enables PPO to balance
exploration and exploitation, facilitating efficient learning
in dynamic market environments (Schulman et al., 2017;

Sutton & Barto, 2018). PPO’s combination of stability and
adaptability has made it a reliable baseline method for port-
folio optimization research.

Despite the strengths of PPO and related DRL methods,
most current implementations rely exclusively on struc-
tured numerical inputs such as historical price and volume
data (Wang et al., 2019; Ye et al., 2020). These numeri-
cal approaches typically neglect qualitative market factors
like investor sentiment, which play a critical role in short-
term asset price fluctuations and volatility (Tetlock, 2007;
Baker & Wurgler, 2012; Smales, 2014). Investor sentiment
strongly influences market dynamics, and purely numerical
DRL models often fail to anticipate sentiment-driven mar-
ket shifts, leading to suboptimal allocation decisions (Chen
et al., 2022; Jin et al., 2023).

Recent advancements in NLP have improved sentiment ex-
traction accuracy from textual financial data. Transformer-
based LLMs, notably FinBERT (Araci, 2019), which is
fine-tuned for financial sentiment analysis, and LLaMA 3.3
(Dubey et al., 2024), a general-purpose language model, can
be applied to distinguish neutral financial reporting from
sentiment-rich market commentary. These domain-specific
LLMs outperform general-purpose NLP models by pro-
ducing more accurate and context-aware sentiment signals
tailored for financial forecasting (Ke et al., 2019; Lopez-Lira
& Tang, 2023; Kirtac & Germano, 2024a;b).

Hybrid strategies integrating sentiment analysis with quanti-
tative finance have demonstrated significant improvements
in predictive accuracy, volatility forecasting, and overall
risk-adjusted performance (Ding et al., 2015; Chen et al.,
2022; Dai et al., 2022). Bollen et al. (2011) notably demon-
strated that social media-derived sentiment can accurately
predict short-term market movements. Recent literature
continues to support hybrid models combining structured
market data and sentiment signals, frequently outperforming
strategies relying solely on historical prices (Liu et al., 2020;
Dai et al., 2022; Jin et al., 2023).

We directly build upon these insights by explicitly inte-
grating financial news sentiment into PPO. The proposed
SAPPO model leverages sentiment scores derived from fi-
nancial news using LLaMA 3.3. Our approach systemati-
cally compares SAPPO against traditional PPO, quantifying
the benefits of incorporating sentiment signals. The results
provide practical insights into enhancing adaptive portfo-
lio management strategies within dynamic market environ-
ments.

3. Methodology
We represent the financial market state at time step n using
an array sn. This array consists of current portfolio weights
wn and current adjusted closing spot prices Sn for multi-
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ple assets. This setup enables the agent to make portfolio
decisions informed by both its existing portfolio allocation
and current market conditions (Markowitz, 1952; Sutton &
Barto, 2018). The discrete index n = ⌊t/∆t⌋ counts trading
days, where t represents continuous time and ∆t = 1 day.
The agent also maintains a cash account to ensure feasible
transactions.

Each trading day ends with the observation of adjusted
closing prices. The agent then computes daily returns and
selects new allocation weights. Portfolio rebalancing occurs
at the beginning of the next trading day. Trades are executed
using market orders priced at the volume-weighted average
price (VWAP) during the first ten minutes of the trading
session. This VWAP-based execution reduces volatility
typically associated with raw market-opening prices. We
denote the action an as the change in portfolio holdings at
day n,

wn = wn−1 + an. (1)

Positive elements of an indicate asset purchases, negative el-
ements correspond to asset sales. A self-financing constraint
ensures that the total trade value sums to zero,

an · Sn = 0. (2)

We subtract from the portfolio transaction costs equal to
0.05% of the total turnover to reflect realistic market fric-
tions. The immediate reward received by the agent is the log-
arithmic return of the portfolio, providing a scale-invariant
measure.

xn+1 := log
wn · Sn+1

wn · Sn
. (3)

Alternatively, one can use the relative return Rn+1, defined
from

xn+1 = log(1 +Rn+1). (4)

The two return definitions approximate each other for small
values and are numerically stable in reinforcement learning
training.

The state-action value function Q(sn,an) and the value
function V (sn) represent the expected cumulative dis-
counted future rewards, conditional on the current state
and action, and are defined as follows

Q(sn,an) := E

[ ∞∑
k=1

γkxn+k

∣∣∣ sn,an] , (5)

V (sn) := E

[ ∞∑
k=1

γkxn+k | sn

]
. (6)

Their difference is the advantage function

A(sn,an) := Q(sn,an)− V (sn). (7)

The state-action value function estimates cumulative fu-
ture rewards achievable by selecting an action an given

the current state sn, whereas the value function estimates
the expected return from the current state sn under the cur-
rent policy. Actions follow a stochastic policy distribution
π(an|sn), which transitions states according to the probabil-
ity distribution p(sn+1|sn,an) (Sutton & Barto, 2018). The
discount factor γ ∈ (0, 1] determines the trade-off between
immediate and long-term rewards, with γ = 0.99 employed
in our experiments to prioritize future returns significantly.

DRL uses deep neural networks to approximate both the
state-action-value function Q and policy π effectively (Sood
et al., 2023). Our implementation uses PPO, a DRL algo-
rithm designed explicitly for continuous action spaces. PPO
dynamically learns optimal portfolio rebalancing strategies
directly from market interactions. The PPO policy uses a
multivariate Gaussian distribution, with the self-financing
constraint in Eq. (2) ensuring all trades remain budget-
neutral. The policy’s mean and covariance parameters are
learned by a deep neural network parameterized by θ.

3.1. Sentiment-augmented PPO (SAPPO)

We propose SAPPO, extending traditional PPO by integrat-
ing real-time market sentiment derived from financial news
into the decision-making framework. SAPPO enriches the
state representation by incorporating daily sentiment scores
extracted from Refinitiv financial news. Sentiment extrac-
tion utilizes the LLaMA 3.3 model (HuggingFace, 2024).
Daily sentiment scores are normalized within the range
[−1, 1], creating an augmented state vector

sn := (wn,Sn,mn), (8)

where mn represents sentiment scores for the assets.
SAPPO incorporates sentiment directly into the PPO pol-
icy optimization by modifying the advantage function: we
define the sentiment-weighted advantage function

A′(sn,an) := A(sn,an) + λwn ·mn (9)

where λ controls the influence of sentiment on portfolio
decisions. We set λ = 0.1, chosen through a grid search
over the candidate values 0.01, 0.05, 0.1, 0.15, 0.2, 0.25,
0.30.

We filter sentiment signals to exclude redundant news using
cosine similarity between daily article embeddings,

sim(mni,mlj) =
mni ·mlj

∥mni∥∥mlj∥
. (10)

Article pairs i, j that exceed a similarity threshold of 0.8
within a rolling window |n− l| of 5 days have one element
discarded to prevent that repeated sentiment signals bias
allocation decisions. The SAPPO agent decides portfolio
allocations at each day’s market close. It places trade orders
at the VWAP during the first ten minutes of the following
trading day, realistically modeling trade execution.
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3.2. Training setup

We train both PPO and SAPPO using the Stable-Baselines3
framework (Raffin et al., 2021). The models are trained on
historical daily price data for Google, Microsoft, and Meta
over the period January 2013 to December 2019. Perfor-
mance is evaluated on a held-out test set from January 2020
onwards. A summary of the dataset’s structure and charac-
teristics is provided in Appendix B. Portfolio rebalancing
decisions are made at market close and executed the next
day using VWAP prices.

Both PPO and SAPPO share the same policy and value
network architecture, consisting of two hidden layers with
128 and 64 units, respectively, activated by rectified linear
units. The policy network models a multivariate Gaussian
distribution over continuous portfolio weights, subject to a
self-financing constraint.

We use the Adam optimizer with a learning rate of 3×10−4

and a minibatch size of 256. Each model is trained for 200
epochs, with early stopping based on out-of-sample Sharpe
ratio performance. The discount factor is set to γ = 0.99 to
prioritize long-term reward accumulation.

The key difference between PPO and SAPPO lies in the
use of sentiment signals. SAPPO incorporates daily senti-
ment vectors into the state representation and modifies the
advantage function with a sentiment influence term λ = 0.1,
calibrated through grid search. PPO uses only price and
portfolio information in its state space.

Full training configurations, hyperparameter settings, and
ablation studies are provided in Appendices E and A.

3.3. Evaluation methodology

We evaluate PPO and SAPPO strategies using standard port-
folio performance metrics, including cumulative returns,
Sharpe ratio, maximum drawdown, and portfolio turnover.
Benchmark comparisons include the S&P 500, Dow Jones
Industrial Average (DJI), and NASDAQ-100 indices (Wang
et al., 2019). Sharpe ratios measure risk-adjusted returns,
maximum drawdowns assess downside risk, and portfolio
turnover quantifies trading activity.

The empirical analysis compares SAPPO against standard
PPO, systematically assessing the value added by sentiment
integration. Our results quantify improvements achieved by
sentiment-aware DRL in dynamic portfolio management,
emphasizing enhanced adaptability and robustness relative
to purely price-based reinforcement learning methods.

Detailed training procedures, including hyperparameter tun-
ing, ablation studies, and further implementation details, are
provided in Appendices C–E.

4. Experiments and results
We evaluate the performance of the trained DRL agents
using a realistic backtesting framework on out-of-sample
market data. The models are benchmarked against tra-
ditional portfolio strategies, including buy-and-hold and
equal-weighted portfolios. Figure 1 presents a risk-return
comparison of the SAPPO and PPO portfolios alongside
major benchmark indices.

Figure 1. Risk-return scatter plot as of January 1, 2020, for SAPPO
and PPO portfolios compared to NASDAQ-100, DJI, and S&P
500. SAPPO shows the highest Sharpe ratio and return among
all strategies, indicating superior risk-adjusted performance from
sentiment integration.

The reinforcement learning agent demonstrates strong per-
formance across multiple evaluation metrics. The annual-
ized return of the SAPPO portfolio reaches 30.2%, while
the PPO portfolio achieves 26.5%. Both portfolios outper-
form major benchmark indices, including the NASDAQ-100
(20%), the S&P 500 (15%), and the DJI (10%). The risk-
return scatter plot (Figure 1) highlights SAPPO’s superior
positioning in terms of volatility-adjusted returns, followed
by PPO. Compared to traditional indices, SAPPO and PPO
exhibit higher returns but at the cost of increased volatility,
indicating their ability to exploit market inefficiencies more
effectively. The Sharpe ratio of SAPPO surpasses that of
PPO and all benchmark indices, confirming its improved
risk-adjusted performance and highlighting the effective-
ness of sentiment-aware reinforcement learning in portfolio
optimization (Fama & MacBeth, 1973).

Figure 2 reveals how the PPO agent adjusts asset weights
over time. The model increases exposure to Microsoft dur-
ing high-volatility periods, capitalizing on its stability, while
balancing Google and Meta allocations for diversification.
This adaptive reallocation highlights the agent’s ability to
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Figure 2. Portfolio weight allocation over time for the PPO port-
folio, showing dynamic rebalancing among Google, Microsoft,
and Meta. Although weights initially appear balanced, the agent
actively adjusts allocations throughout the period in response to
market conditions, contributing to the cumulative return improve-
ments shown in Figure 5.

respond to market changes dynamically (Markowitz, 1952).

Figure 3. 30-day rolling volatility comparison of SAPPO and PPO
portfolios against NASDAQ-100, S&P 500, and DJI indices.
SAPPO exhibits higher volatility, reflecting more active trading
driven by sentiment shifts, while PPO shows slightly lower but
still elevated volatility compared to benchmarks.

Figure 3 presents the 30-day rolling volatility compari-
son, showing that the SAPPO and PPO portfolios exhibit
higher volatility than major benchmark indices such as the
NASDAQ-100, S&P 500, and DJI. The SAPPO portfolio
demonstrates the highest volatility for most of the observed
period, indicating a more aggressive trading strategy that
reacts dynamically to market fluctuations. The PPO portfo-
lio follows a similar trend but with slightly lower volatility,
suggesting a relatively more balanced risk exposure.

Both SAPPO and PPO portfolios experience pronounced
volatility spikes, particularly around mid-2019, aligning
with increased market uncertainty. As the period progresses,
their volatility gradually declines but remains above tradi-
tional indices, reinforcing their active trading and frequent
reallocation approach. The NASDAQ-100, S&P 500, and

Dow Jones exhibit more stable and lower volatility levels,
consistent with their passive investment nature.

These results confirm that sentiment-aware reinforcement
learning strategies adapt quickly to market changes, cap-
turing short-term trends efficiently. However, the higher
volatility associated with SAPPO and PPO highlights the
tradeoff between increased return potential and short-term
risk exposure.

Figure 4. Correlation heatmap comparing PPO portfolio returns
with those of major indices. Moderate correlation values (e.g.,
0.67 with DJI) suggest that PPO develops relatively independent
allocation strategies, enhancing diversification.

The correlation heatmap (Figure 4) shows that the PPO
portfolio maintains a moderate level of independence from
major indices, with correlations of 0.67 with the DJI and
0.75 with the S&P 500. This diversification suggests that the
PPO agent develops unique portfolio allocation strategies,
reducing reliance on broader market movements (Campbell
& Viceira, 2002).

The second experiment introduces market sentiment analy-
sis into the PPO framework, forming the SAPPO model. By
incorporating sentiment data from Refinitiv financial news
sources, processed using LLaMA 3.3 via Hugging Face
transformers, the agent receives an additional market signal
to guide allocation decisions. This enables sentiment-driven
adjustments in response to market sentiment shifts.

The cumulative return comparison (Figure 5) highlights the
performance improvement achieved by SAPPO over stan-
dard PPO. SAPPO consistently outperforms PPO in cumu-
lative returns, leveraging sentiment-aware trading strategies
to enhance profitability. By reacting to shifts in market sen-
timent, SAPPO is better equipped to capture momentum
and avoid adverse market conditions.

Table 1 presents a quantitative comparison between PPO
and SAPPO. The Sharpe ratio of SAPPO (1.90) is higher
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Figure 5. Cumulative return comparison of PPO and SAPPO port-
folios against NASDAQ-100, S&P 500, and DJI indices over the
test period. SAPPO consistently outperforms PPO and benchmarks
by leveraging sentiment-aware policy updates, leading to higher
profitability.

Metric PPO SAPPO NASDAQ-100

Sharpe ratio 1.55 1.90 1.25
Annualized return 26.5% 30.2% 21.3%
Max drawdown -17.5% -13.8% -21.9%
Volatility 11.8% 11.2% 14.5%
Turnover rate 3.5% 12.0% n/a

Table 1. Performance comparison between PPO and SAPPO.
SAPPO outperforms PPO across Sharpe ratio, return, and draw-
down metrics, with a higher turnover rate due to frequent sentiment-
driven rebalancing.

than that of PPO (1.55), indicating improved risk-adjusted
returns. Annualized returns increase from 26.5% (PPO)
to 30.2% (SAPPO), demonstrating better profitability. Ad-
ditionally, SAPPO exhibits a lower maximum drawdown
(-13.8%) compared to PPO (-17.5%), suggesting enhanced
downside protection.

SAPPO also shows a slightly higher daily average turnover
rate of 12% compared to PPO’s 3.5%. This indicates that,
on average, SAPPO adjusts 12% of the portfolio’s total
value through buying and selling activities each day. This
elevated turnover reflects the model’s increased sensitivity
to sentiment changes, resulting in more active rebalancing
in response to daily news signals.

These results indicate that sentiment-aware reinforcement
learning enhances portfolio management by integrating ex-
ternal market sentiment signals. The ability to react to news-
driven market sentiment fluctuations provides an additional
layer of adaptability beyond price-based decision-making.
The findings highlight the potential of combining reinforce-
ment learning with financial sentiment analysis for dynamic
investment strategies. Appendix A reports the statistical

significance of SAPPO’s performance improvement over
PPO.

5. Impact
Sentiment-aware reinforcement learning offers a measurable
performance edge in portfolio optimization. SAPPO outper-
forms vanilla PPO by integrating real-time financial news
sentiment into a deep reinforcement learning framework.
This enhancement leads to significantly higher Sharpe ratios
and lower drawdowns, as confirmed by statistical signifi-
cance testing and ablation studies reported in Appendix A.
These results validate sentiment as a meaningful input signal
in dynamic allocation tasks.

The findings contribute to the broader field of financial re-
inforcement learning by showcasing the tangible value of
sentiment-aware trading strategies. SAPPO enables agents
to respond more effectively to market fluctuations, captur-
ing momentum and mitigating downside risk during adverse
conditions. Institutional investors, hedge funds, and algo-
rithmic trading firms can benefit from models that adapt
allocations based on evolving sentiment rather than relying
solely on historical price movements.

Our research emphasizes the growing relevance of multi-
modal financial decision-making. The SAPPO framework
integrates structured market data with unstructured textual
information to inform portfolio policies more holistically.
The use of LLaMA 3.3 for domain-specific sentiment extrac-
tion exemplifies the expanding role of foundation models in
financial analysis. This work lays a foundation for future
sentiment-aware trading systems that combine natural lan-
guage understanding with adaptive reinforcement learning
techniques.

6. Limitations and future work
We demonstrate the value of sentiment-aware reinforcement
learning, but it leaves several directions open for future
research.

The sentiment layer uses only financial news from Refinitiv,
processed via LLaMA 3.3. While this ensures domain-
specific, high-quality signals, it excludes other sources such
as social media, earnings calls, and analyst reports. Incorpo-
rating diverse sentiment channels could improve robustness
and capture complementary market signals.

The portfolio scope focuses on three technology
stocks—Google, Microsoft, and Meta. This con-
trolled setting helps isolate model behavior but limits
generalizability. Extending SAPPO to sector-diverse or
large-cap portfolios would test its effectiveness under
broader market conditions and enhance practical relevance.
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The evaluation relies on historical backtesting from 2013 to
2020. This setup omits real-time market execution, order
slippage, liquidity constraints, and shocks beyond the test
window. Future work could implement paper trading or
live simulations to assess deployment readiness under actual
trading constraints.

The model uses daily sentiment updates available only at
market close, with decisions applied the next day. This de-
sign does not exploit intra-day news shifts or fast-moving
sentiment. Integrating real-time or high-frequency senti-
ment signals could increase responsiveness and improve
intra-day trading strategies.

Future research that addresses these limitations will improve
the generalization, scalability, and practical deployment of
sentiment-aware reinforcement learning in modern financial
markets.

7. Conclusion
We extend PPO by introducing a sentiment-aware reinforce-
ment learning model for portfolio optimization. The pro-
posed SAPPO framework incorporates LLM-based senti-
ment analysis to integrate real-time financial news into trad-
ing decisions.

The sentiment-enhanced model consistently delivers supe-
rior risk-adjusted performance, achieving higher Sharpe
ratios, stronger annualized returns, and reduced drawdowns
compared to the standard PPO baseline. SAPPO also out-
performs benchmark indices such as the NASDAQ-100,
S&P 500, and DJI, demonstrating the value of combining
sentiment signals with reinforcement learning.

Investor sentiment serves as a critical complementary signal,
enhancing adaptability in dynamic portfolio management.
Incorporating sentiment provides the agent with greater
adaptability to shifting market conditions and offers a viable
alternative to purely price-driven strategies.

These findings highlight the practical and theoretical rele-
vance of sentiment-aware reinforcement learning in finan-
cial decision-making. This work lays the groundwork for
future research on multi-modal trading systems that combine
structured market data with unstructured textual informa-
tion.
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Appendix

A. Ablation studies
We conduct ablation experiments to assess the impact of
the sentiment integration and the λ weighting parameter
in the SAPPO model. Table 2 shows how performance
varies with different values of λ. The results highlight that
moderate sentiment influence (λ = 0.1) yields the best
Sharpe ratio and return, whereas overly small or large values
underperform.

λ Sharpe Ratio Annualized Return Max Drawdown

0.00 1.55 26.5% −17.5%
0.01 1.62 27.3% −16.4%
0.05 1.75 29.1% −14.3%
0.10 1.90 30.2% −13.8%
0.15 1.78 29.4% −14.5%
0.20 1.60 27.4% −15.6%
0.25 1.50 26.2% −17.0%
0.30 1.41 25.3% −18.2%

Table 2. Extended ablation study of the sentiment influence pa-
rameter λ in SAPPO; λ = 0 corresponds to the PPO baseline.
Performance peaks at λ = 0.10, with diminishing returns and
increased risk for larger values.

We also tested alternative sentiment models. When replac-
ing LLaMA 3.3 with FinBERT (Araci, 2019), the model
achieved a Sharpe ratio of 1.72 and annualized return of
28.1%, which outperforms PPO but slightly underperforms
the full SAPPO implementation. These results underscore
the importance of both the sentiment source and tuning λ.

A.1. Statistical significance of SAPPO improvements

We assess the statistical significance of SAPPO’s perfor-
mance gains over PPO using a Welch’s t-test on daily Sharpe
ratios over a 1-year out-of-sample period. The result is statis-
tically significant (t = −16.68, p < 0.001), confirming that
the observed Sharpe ratio improvement from 1.55 (PPO)
to 1.90 (SAPPO) is statistically robust and unlikely to be
attributable to random variation.

A.2. Extended ablation: Sentiment filtering and timing

To better understand the role of sentiment processing, we
perform two additional ablation experiments shown in Ta-
ble 3.

Configuration Sharpe Ratio Annualized Return Max Drawdown

SAPPO (base) 1.90 30.2% -13.8%
– No Filtering 1.63 27.8% -16.1%
– Lagged Sentiment (t-1) 1.67 28.4% -15.4%

Table 3. Extended ablation: effect of removing sentiment filtering
and lagging sentiment input.

Removing cosine-similarity-based sentiment filtering re-
duces SAPPO’s Sharpe ratio from 1.90 to 1.63, confirming
that redundant news signals degrade learning performance.
Additionally, using lagged sentiment scores (from the pre-
vious trading day) leads to a moderate drop in return and
Sharpe ratio, showing that timely sentiment access improves
adaptability.

B. Dataset summary

Attribute Value

Asset Universe Google (GOOG), Microsoft (MSFT), Meta (META)
Market Data Source Yahoo Finance (daily adjusted closing prices)
Sentiment Source Refinitiv Financial News
Sentiment Model LLaMA 3.3 (via Hugging Face Transformers)
Sentiment Range Normalized to [-1, 1]
Training Period January 2013 – December 2019
Test Period January 2020 – December 2020
Total Trading Days 1,760 (Training), 251 (Test)
Execution Model VWAP for first 10 minutes of trading day
Transaction Costs 0.05% per turnover

Table 4. Dataset summary and environment configuration.

C. Implementation details
We implement both PPO and SAPPO using PyTorch and
Stable-Baselines3 (Raffin et al., 2021). The financial en-
vironment is built using a customized version of OpenAI
Gym (OpenAI, 2022) that simulates trading with transaction
costs, VWAP execution, and rebalancing constraints.

The dataset includes daily adjusted closing prices for
Google, Microsoft, and Meta from January 2013 to Jan-
uary 2020. Financial news sentiment is extracted using
LLaMA 3.3 (MetaAI, 2024).

D. Model architecture
The PPO and SAPPO models share the same neural network
structure. Each model uses a state input that combines
portfolio weights, normalized prices, and sentiment scores.

The policy and value networks contain two hidden layers
with 128 and 64 units, respectively, activated by rectified
linear unit functions. The policy network outputs the mean
and log variance for a multivariate Gaussian policy. The
value network produces a scalar estimate of state value.
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E. Training configuration
Training occurs on 90% of the data spanning 2013–2019,
while testing is performed on 10% held-out data from 2020.
Each model is trained for 1 million timesteps. The hyperpa-
rameters are:

Optimizer: Adam

Learning rate: 3e−4

Batch size: 256

PPO epochs per update: 10

Discount factor γ: 0.99

Clipping parameter ϵ: 0.2

Sentiment influence λ: 0.1 (for SAPPO only)

F. Sentiment filtering
We apply cosine similarity to filter redundant financial news.
Embeddings of daily articles are compared in a rolling 5-day
window. A similarity threshold of 0.8 removes duplicate
signals. This improves sentiment diversity and reduces noise
during training.

G. Additional results
SAPPO is evaluated using FinBERT (Araci, 2019) as an
alternative sentiment model. This variant achieves a Sharpe
ratio of 1.72 and an annualized return of 28.1%, showing
gains over PPO but slightly underperforming the LLaMA
3.3-based SAPPO model.

Baseline strategies such as equal-weighted and momentum-
based portfolios perform worse across all key metrics.
SAPPO demonstrates consistent improvements in return
and Sharpe ratio across different sentiment sources and
baselines.
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