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Abstract

This paper presents a novel solution to tackle001
the challenges that posed by the abundance of002
non-standard addresses, which input by users in003
modern applications such as navigation maps,004
ride-hailing apps, food delivery platforms, and005
logistics services. These manually entered ad-006
dresses often contain irregularities, such as007
missing information, spelling errors, colloquial008
descriptions, and directional offsets, which hin-009
der address-related tasks like address matching010
and linking. To tackle these challenges, we011
propose GeoAgent, a new framework compris-012
ing two main components: a large language013
model (LLM) and a suite of geographical tools.014
By harnessing the semantic understanding ca-015
pabilities of the LLM and integrating specific016
geospatial tools, GeoAgent incorporates spatial017
knowledge into address texts and achieves ef-018
ficient address standardization. Further, to ver-019
ify the effectiveness and practicality of our ap-020
proach, we construct a comprehensive dataset021
of complex non-standard addresses, which fills022
the gaps in existing datasets and proves in-023
valuable for training and evaluating the per-024
formance of address standardization models in025
this community. Experimental results demon-026
strate the efficacy of GeoAgent, showcasing027
substantial improvements in the performance028
of address-related models across various down-029
stream tasks.030

1 Introduction031

With the widespread using of navigation maps (e.g.032

Google Maps), ride-hailing apps (e.g. Uber), food033

delivery platforms (e.g. Uber Eats), and logistics034

services (e.g. Amazon Logistics) in our daily life,035

a significant amount of user-entered addresses have036

been collected. However, these addresses often suf-037

fer from irregularities, such as missing addresses038

and spelling errors (Figure 1(a)), directional offset039

descriptions (Figure 1(b), colloquial descriptions040

(Figure 1(c)) etc. Handling these non-standard ad-041

(a) Address missing and spelling error:
Cake Shop, Guoquan North Road, Shanghai
(b) Directional offset description:
Cake Shop, 20 meters southwest of the intersection of Guoquan
North Road and Guoxue Road, Yangpu District, Shanghai
(c) Colloquial description:
Cake Shop, across from Gate 5 of XX University, Yangpu District, 
Shanghai
Standard address:
Tianxia Cake Shop, 1480 Guoquan North Road, Yangpu District, 
Shanghai

Figure 1: Examples of three non-standard address types
and their corresponding standard addresses. (a) Many
address elements are missing. Description information
in (b) and (c) is highlighted.

dresses presents considerable challenges for sub- 042

sequent downstream tasks such as address match- 043

ing (Lin et al., 2019) and address linking (Huang 044

et al., 2021). 045

To address this issue, the task of Address stan- 046

dardization (Lu et al., 2019) is proposed to correct, 047

complete, and normalize input address data, con- 048

verting non-standard addresses into standard ones. 049

Actually, there are various possible ways to express 050

an address. For example, in Figure 1, phrase a, b 051

and c represent the same geographical location but 052

are totally different in surface expression. This re- 053

quires the model to possess relevant spatial knowl- 054

edge and strong semantic understanding ability, so 055

as to normalize these addresses to the standard one. 056

Conventional methods for address standardiza- 057

tion often rely on character matching and rules, 058

such as splitting address hierarchies based on ad- 059

dress tree (Mengjun et al., 2015) and then complet- 060

ing missing administrative region elements based 061

on a hierarchical address database (Tian et al., 062

2016). Unfortunately, these methods face limi- 063

tations in handling fine-grained non-standard ad- 064

dresses, and shallow rules may not cover all sce- 065

narios. In recent years, with the advancements 066

in deep learning technology, researchers have ex- 067
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plored the use of neural network models to tackle068

non-standard address issues (Ye et al., 2022). Re-069

cently, many methods of pre-training in geographic070

text corpus have been proposed (Huang et al., 2022;071

Ding et al., 2023; Gao et al., 2022), or design mod-072

els for specific tasks (Wu et al., 2023). However,073

such methods require a large amount of annotated074

data and are unable to handle common descrip-075

tive information (e.g., 20 meters southwest) in ad-076

dresses.077

With the emergence of large language models078

(LLMs) like ChatGPT, they have demonstrated079

powerful semantic understanding capabilities, lead-080

ing to remarkable performance across multiple081

tasks. Existing work shows that LLMs have some082

coarse-grained geographic knowledge, but it still083

suffer from the following problems according to084

our observations: 1) Spatial Similarity Issues:085

LLMs excel in processing natural language texts086

and understanding their semantics. However, ad-087

dress information processing involves spatial simi-088

larity issues. Geographically close addresses may089

have significant textual differences, such as “No.090

323 Songhan Road, Baoshan District” and “No.091

861 Guofan Road, Yangpu District”. Although092

the two addresses are literally completely differ-093

ent, they are actually very close, located on op-094

posite sides of an intersection. To tackle such095

cases, the model needs spatial knowledge to dis-096

cern spatial correlations. Unfortunately, existing097

LLMs often lack geographic and address-related098

fine-grained knowledge, resulting in unsatisfactory099

results when dealing with addressing-related prob-100

lems. 2) Changes in Geographic Spatial Knowl-101

edge: Geographic information is subject to fre-102

quent changes, with businesses, companies, and103

establishments experiencing relocations, closures,104

and other transformations over time. Large lan-105

guage models store knowledge in parameters, mak-106

ing it difficult for them to adapt to such knowledge107

changes. It requires substantial training costs to108

update these parameters, which makes it challenge-109

able to keep the model up-to-date with the real-110

world changes in address information 3) Deficien-111

cies in Precise Numerical Calculations: Exist-112

ing work indicates that LLMs have deficiencies in113

performing precise numerical calculations(Schick114

et al., 2023). This limitation makes it challenge-115

able for them to handle non-standard addresses that116

involve directional shifts (e.g. figure 1(b)).117

To tackle the above problems, inspired by the118

latest research on LLM Agent (Yang et al., 2023;119

Wang et al., 2023b), we propose GeoAgent, an 120

innovative framework that combines a LLM with 121

geospatial tools. By leveraging the language under- 122

standing and decision-making capabilities of LLMs 123

to interact with geospatial tools, GeoAgent effec- 124

tively processes non-standard addresses. By intro- 125

ducing an address knowledge base, fine-grained 126

geospatial knowledge can be obtained. To main- 127

tain geospatial knowledge efficiently, we store it 128

in an external vector database. This approach sig- 129

nificantly reduces costs compared to re-training 130

the model every time when the knowledge needs 131

updating. Furthermore, our method uses spatial 132

computing tools to achieve accurate spatial offset 133

calculations. 134

Recognizing the lack of a dataset that contains 135

various non-standard addresses, especially those 136

with descriptive information, we construct a com- 137

prehensive dataset for providing non-standard ad- 138

dresses for this task. Our dataset covers complex 139

non-standard address linking, address standardiza- 140

tion, and geocoding, which effectively fills the gaps 141

in existing datasets. We have conducted exten- 142

sive experiments on both our dataset and existing 143

datasets, demonstrating that GeoAgent’s standard- 144

ized processing significantly enhances the perfor- 145

mance of address-related models in downstream 146

tasks. To account for the importance of text posi- 147

tion in address text evaluation, we propose a new 148

standardized metric called GeoRouge, which pro- 149

vides a more comprehensive and relevant evalua- 150

tion for address standardized. 151

Our major contributions are highlighted as fol- 152

lows: 153

• We propose the GeoAgent framework, a novel 154

approach that combines the capabilities of 155

LLM with geospatial tools to address issues 156

related to address text. 157

• Our work includes the construction of a com- 158

prehensive dataset comprising various non- 159

standard addresses, aiming at closely resem- 160

bling real-life scenarios of address text prob- 161

lems. Additionally, we introduce a new metric, 162

GeoRouge, specifically tailored for measuring 163

address standardization performance. 164

• Extensive validation of our framework’s effec- 165

tiveness has been conducted through a series 166

of experiments. The results demonstrate sig- 167

nificant improvements in various tasks when 168

using the normalized data. 169
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Cake Shop, 20 meters southwest of the intersection of Guoquan North 
Road and Guoxue Road, Yangpu District, Shanghai

API 1: Address Mapping

POI Database
Geocoding Model

API 2: Geographical Offset Correction

API 3: Road information

Non-standard address:

Normalization Address
Tianxia CakeShop, 1580 Guoquan North Road, Yangpu District, Shanghai

Input: Address
Example: the 
intersection of
Guoquan North ….

Output: S2 token
Example: 
35b27304a89f

Input: API 1 output& 
description information
Example:(southwest,20
),35b27304a89f

Output: S2 token
Example: 
35b273035897Offset 

Computing

Input: Road name
Example: Guoquan
North Road OPM Map

Output: Road 
information
Example: 
(sencondary highway, 
direction…)

Instruct: For the input address, generate a series of tool calls to 
standardize the address
LLM output：<API3>  <API 1>  <API2>

API 1 Executive
Instruct: Identify the standard address part of the address, that is, the 
content of the standard address does not contain geographical location 
description information (such as: east, northwest, nearby opposite, etc.)
LLM output：< the intersection of Guoquan North Road and Guoxue
Road, Yangpu District, Shanghai>

Instruct: Identify the POI name in this address
LLM output: Cake Shop 
(POI name, address location) -> Normalization Address

Stage #1: LLM Planning

Stage #2: Task Execution

Stage #3:Address Text Normalization

Query
Address1: Cake….,Yangpu,Shanghai
Address2: XX University,…, Shanghai
Candidate：YES✔ No❌

Query
Cake….,Yangpu,Shanghai
Output
(121,50979,31.30102)

Query
Cake…,Yangpu,Shanghai
Output Address 

Base

Query
Cake…,20 meters southewest of …,Shanghai
Standard address
Tianxia Cake Shop, 1480 Guoquan North Road, 
Yangpu District, Shanghai）

Geocoding Address Link Address Match Address Standardization

(A) GeoAgent Design (B)  Geography Tools

(C)  Downstream Tasks

Figure 2: An illustration of GeoAgent. (A) is a demonstration of the GeoAgent workflow. (B) depicts the series of
geography tools and the corresponding inputs and outputs. (C) are some of the downstream tasks related to address
text.

2 Related Work170

Address Standardization Mainstream address171

standardization methods can be divided into two172

categories: standard address matching based, ad-173

dress element split based. Standard address based174

method requires to establish a reference standard175

address database, followed by fuzzy matching ac-176

cording to some rules(Buckles et al., 1994). The177

disadvantage is that it requires a high-quality and178

large-scale standard address database, and the al-179

gorithm bottleneck is quite obvious. Address ele-180

ment split based method split address by adminis-181

trative region element and complete missing ele-182

ments (Tian et al., 2016). The address split meth-183

ods include rule split,statistical model split meth-184

ods(Mengjun et al., 2015) and deep learning meth-185

ods(Li et al., 2018; Matcı and Avdan, 2018; Zhao186

et al., 2019). Due to the diversity and arbitrariness187

of address colloquial expression, these methods188

were limited generalization ability for address com-189

binations that are not present in the training data190

and unable to handle common descriptive infor-191

mation in address. To address such problems, in192

this paper, we propose GeoAgent which combines193

LLM and geospatial tools. LLM’s powerful seman-194

tic understanding ability can handle various address195

expression, and convert the description information 196

in the address into location movement problem is 197

calculated by geospatial tools. 198

Geography Pre-trained Model Pre-trained lan- 199

guage models have achieved excedllent results 200

in many task. Some scholars improve the ad- 201

dress related tasks performance by injecting ge- 202

ographic knowledge into pre-trained models(Gao 203

et al., 2022; Huang et al., 2022; Ding et al., 2023; 204

Deng et al., 2023; Li et al., 2023b). However, these 205

works focused on specific address tasks rather than 206

improving the quality of address data, which is 207

the focus of this work. Recently, some works at- 208

tempt to stimulate geographic knowledge within 209

the LLM(Roberts et al., 2023; Manvi et al., 2023; 210

Gurnee and Tegmark, 2023), but these work shown 211

that there is only contain coarse-grained geographic 212

knowledge in the model. In this paper, we intro- 213

duce fine-grainde knowledge into the LLM by in- 214

teract with knowledge base and geographic tools. 215

Specific Task-Soving with LLM Agent Spe- 216

cific task-soving LLM agents rely on LLMs for pro- 217

ficiency in task decomposition(Wei et al., 2022b), 218

generalization in decision-making, language under- 219

standing capabilites(Wei et al., 2022a), interacts 220

with the environment solves tasks that the llm itself 221

cannot solve well(Wang et al., 2023a; Shen et al., 222
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2023). These agents have diverse applications in223

robotics,law and complex reasoning(Dalvi et al.,224

2022; Cui et al., 2023; Pan et al., 2023). In this225

paper, we interact with the environment through226

LLM, introduce fine-grained geographical knowl-227

edge, accurate spatial computation,complete the228

task of address standardization.229

3 GeoAgent230

Before diving into technical details, we formally231

define the Address Standardization task below:232

Address Standardization. We define the ad-233

dress standardization task as the problem of go-234

ing from a non-standard address S to a standard235

address S∗. The standard address refers to the236

address expression that conforms to the address237

writing rules. Taking the Chinese scenario as an238

example, a standard city address expression should239

be “province - city - district - street - street number240

- POI name” (Although our proposed approach is241

language-independent, we provide an analysis of242

different language implementations details in the243

appendix E).244

The core architecture of our framework is shown245

in Figure 2, which consists of three main steps: (1)246

Task planning. Given an address S, the model gen-247

erates a series of task execution sequences. Split-248

ting the address standardization task into smaller249

tasks. (2) Task execution. Execute and return re-250

sults based on the sequence of tasks are generated251

by the LLM. (3) Address text standardization. Ac-252

cording to the results of the previous task, the ad-253

dress text processing process is executed to obtain254

the standardized address S∗. The resulting stan-255

dardized address is the output of the GeoAgent.256

3.1 Task Planning257

The aim of GeoAgent is to enable the LLM to pro-258

cess non-standard addresses in a way that aligns259

with human thinking and intuition. For a non-260

standard address that contains description informa-261

tion, human intuition dictates that we first find the262

location of the standard part address section, which263

is called “Address Mapping”, and then use the de-264

scription to determine the final location, which is265

called “Offset Correction”.266

In this step, as shown in Figure 2, due to the267

variety of description styles of non-standard ad-268

dresses, LLM should generate different tool calls269

based on the input address. For example, for the270

address “Cake Shop, 20 meters southwest of the271

intersection of Guoquan North Road and Guoxue 272

Road, Yangpu District”. LLM plan first calls API 273

3 to query the relevant road information, then calls 274

API 1 to find the real location, and finally calls 275

API 2 directional offset tool based on the type of 276

description information. 277

3.2 Task Execution 278

The task execution step executes all the tasks gen- 279

erated by the Task Planning step. LLM extracts 280

parameters from the input address to pass the tool, 281

we provide prompt API 1 in Figure 2, other API 282

parameters and prompt can be seen in table 6 Here 283

we need to build a tool set to facilitate LLM in 284

executing these tasks, including address mapping 285

tool, offset calculation tool and road information 286

tool. 287

3.2.1 Address Mapping Tool 288

The function of this tool is to map the address text 289

to the corresponding real geographical location. 290

For example, for an address “the intersection of 291

Guoquan North Road and Guoxue Road, Yangpu 292

District”, the output of the tool is “35b27304a89f”, 293

we use Google S21 tokens to represent real geo- 294

graphic locations rather than latitude and longitude. 295

This tool mainly consists of two components: 296

Standard POI Database. We construct a stan- 297

dardized POI (Point of Interest) database contain- 298

ing Shanghai address, which comprises approxi- 299

mately 1.4 million POI address data. We organize 300

the database in the format of “standard address 301

-S2token” pairs. 302

Geocoding Model. To improve the generaliza- 303

tion of the address mapping tool, we train a Geocod- 304

ing model to deal with the address inputs that do 305

not exist in the standard POI database. We model 306

the mapping between address and location in the 307

real world as a seq-to-seq problem in this paper, 308

aiming to capture potential correlations between 309

tokens. 310

Specifically, we choose transformers (Vaswani 311

et al., 2017) as the model architecture. By encod- 312

ing the input address text and decoding it into S2 313

tokens, the model can learn the semantics and cor- 314

relations between addresses and spatial locations. 315

The model is trained on the Geocoding dataset men- 316

tioned in the experiment. The implementation de- 317

tails for the model can be seen in the Appendix A.2. 318

Address text differs from the normal text in that 319

the tokens at the beginning of the sequence are 320

1https://s2geometry.io
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more important and represent a larger range (Chi-321

nese address conventions, in English may be re-322

versed). When prediction errors occur at these to-323

kens, the resulting deviation from the true position324

is greater. Taking into consideration the character-325

istics of address text, we use GeoEntropy as loss326

function, it is defined as follows:327

LGeo = − 1

N

N∑
i=1

l∑
i=1

ws · Li (1)328

In equation(1), N represents the number of sam-329

ples, and l represents the sequence length. ws is330

a one-dimensional weight matrix with dimensions331

equal to the sequence length. We assign higher332

weights to tokens located closer to the beginning,333

indicating their higher importance. Li represents334

the loss function for the i-th token, computed ac-335

cording to the formula shown below:336

Li =
T∑

c=1

wt ·
(
ytrue,i,c · log(ypred,i,c)

)
(2)337

In equation(2), T represents the number of cate-338

gories for S2 tokens. Each layer of S2 encoding has339

16 possible values, including 6 English letters (a to340

f) and 10 Arabic numerals (0 to 9). Within the same341

layer, the distances between different tokens vary.342

To account for these differences in token distances,343

we design a weight matrix W with dimensions of344

T ∗ T . The weight assigned to tokens increases345

as the distance between them becomes larger. We346

have verified the effectiveness of our loss function347

design, see detail in Appendix B348

3.2.2 Offset Calculation Tool349

The function of this tool is to perform spatial calcu-350

lations based on the description information. The351

input of this tool is the descriptive information ele-352

ment extracted by the LLM from the non-standard353

address, and the results of the address mapping354

tools. The output of the tool is the position after355

displacement according to the description informa-356

tion. This tool mainly consists of two components:357

Directional Descriptions Offset. Directional358

offset description is a common way to express ad-359

dresses, with the format of a direction followed by360

a distance, such as “200 meters southeast”. We361

utilize spatial calculation tools2 to perform spatial362

calculations based on the initial location obtained363

2https://github.com/shapely/shapely

in address mapping tool, along with the displace- 364

ment direction and distance. 365

Colloquial descriptions offset. The colloquial 366

description is a vague description of the location, 367

such as “nearby”, “next to”, “opposite”, and so on. 368

We need to perform corresponding actions based 369

on the specific type of colloquial description pro- 370

vided through LLM. Take “opposite” as an exam- 371

ple. When the parameter “opposite” is received, the 372

tool queries the result of the road information tool. 373

The tool determines the displacement direction ac- 374

cording to the direction of the road and displace- 375

ment distance according to the width of the road, 376

then performs spatial calculation to obtain the final 377

geographic location of the input address. When the 378

argument is “next to” or “near”, we will take the 379

results of the address mapping tool as the output of 380

this tool, because these verbal expressions are very 381

close and the error is within our acceptable range. 382

3.2.3 Road Information Tool 383

The purpose of this tool is to obtain more accurate 384

displacement direction and displacement distance. 385

we observe that directional displacement descrip- 386

tions are often based on roads, such as “50 meters 387

northwest of the intersection of XX Road and XX 388

Road”, or they involve two addresses that are di- 389

rectly connected by a road. Therefore, if there are 390

roads within 50 meters of the starting point that 391

have an angle deviation from the displacement di- 392

rection within ±22.5 degrees, the direction of those 393

roads is considered as the displacement direction. 394

we introduce road network information from OPM 395

(OpenStreetMap 3) to improve the accuracy of the 396

displacement direction. 397

The input is the name of the road, and the output 398

is the information of the road, including the direc- 399

tion of the road and the level information of the 400

road (such as the main road, the rural slip road, etc., 401

the road width can be inferred by the road level). 402

This tool provides a more accurate displacement 403

direction and enhances the precision of location 404

displacement. 405

3.3 Address Text Standardization 406

In this step, we use geographic location informa- 407

tion and the original non-standard address text to 408

standardize the input address. The LLM recognizes 409

the POI name from the non-standard address and 410

then performs a query in POI database based on 411

the geospatial location and POI name. If the query 412

3https://www.openstreetmap.org
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is successful, the corresponding address in the stan-413

dardized POI database is taken as the output of this414

step. If the query fails, we integrate the address415

information from the original address text.416

POI Database Linking Based on the original417

input address’s POI name identified by LLM, along418

with the geographic location information, we make419

another attempt to match it with the POI database420

based on a comprehensive evaluation of both POI421

name similarity and S2 token similarity. If a suc-422

cessful match is found, the standardized address423

from the standard POI database is returned as the424

standardization result.425

Address information integration Based on the426

geographic location information, we utilize the427

open-source OPM library for reverse geocoding428

to perform error correction and completion on the429

original input address. This process involves the430

following steps:431

Administrative area standardization: The ad-432

dress location information in the open-source OPM433

library is used to correct and complete the admin-434

istrative area at all levels in the original address435

text.436

Road name standardization: For original input437

texts that lack road information or contain errors438

with multiple road names, we standardize the road439

by selecting the closest road based on the road net-440

work data. We also clean up additional descriptive441

information, such as directions. By incorporating442

the recognized original POI name, we obtain the443

final standardized result.444

3.4 Instruction Tuning445

In order to enable LLM to call tools in the way we446

want (such as calling APIs with <> symbols and447

passing parameters with [] symbols), we manually448

built some dialog instructions containing tool calls449

based on the non-standard addresses mentioned450

above, and then extended them with ChatGPT. For451

the model finetuning and tool call dialogues, see452

the Appendix A.3.453

4 Experiments454

In this section, we present the results of the GeoA-455

gent standardized address on four address-related456

tasks (address matching, geocoding, address stan-457

dardization, and address linking) compared to the458

original non-standard address and the construction459

process of our dataset.460

Task Train Dev Test
Geocoding 7540K 76K 76k
Address Linking 175k 4K 4k
Address standardization 175k 4k 4k

Table 1: Statistics of our dataset

4.1 Dataset Construction 461

Considering that there is no relevant dataset for 462

non-standard addresses, especially the problem of 463

containing descriptive information, we construct a 464

non-standard dataset containing descriptive infor- 465

mation based on some heuristic rules and a stan- 466

dard POI database. The dataset contains 3 address- 467

related downstream tasks (geocoding, address link- 468

ing, address standardization), and the dataset size 469

is shown in the table 1. We construct non-standard 470

addresses that conform to human writing habits by 471

the following method: 472

Address Missing: For a standard address, we 473

adopt the following strategies with 15% probabil- 474

ity: delete administrative area entities, delete char- 475

acters, and replace characters. This is in line with 476

the handwritten address in the administrative area 477

entity and characters missing, spelling errors, etc. 478

Address Descriptive Information: We design al- 479

gorithm 1 to add description information to an ad- 480

dress based on the direction and distance between 481

addresses in the POI database. The details of the 482

algorithm can be viewed in the Appendix D.1. 483

ChatGPT expanding: Our approach to data con- 484

struction is based on heuristic rules, but rules obvi- 485

ously can’t cover everyone’s language habits. Since 486

ChatGPT has demonstrated excellent in-context 487

learning capabilities, we use ChatGPT to enrich the 488

expression of descriptive information in addresses, 489

our prompt can be viewed in the Appendix D.2. 490

The statistics of our dataset as shown in Table 1, 491

through the above methods, we construct about 492

7700K non-standard addresses. 183K of this data 493

is allocated to address standardization and address 494

linking tasks, and the rest is used for geocoding 495

tasks. An example of the dataset is shown in Ap- 496

pendix D.3. 497

4.2 Evaluation Metrics and Baseline 498

Address Standardization. we choose the paid ser- 499

vice provided by the logistics service provider with 500

the largest number of domestic users as the base- 501

line, we use AS-1 to refer to it.The evaluation met- 502

ric we choose is the edit distance, which measures 503
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the average edit distance between the non-standard504

address and the corresponding standard address in505

the POI database.506

In address standardization tasks, the importance507

of n-grams located at the beginning of the text is508

obviously greater than those located at the end (in509

Chinese address text, the administrative regions510

are arranged from large to small, from the front to511

the back, which is opposite to English addresses).512

For example, for the address “No. 2005 Guoquan513

North Road, Yangpu District, Shanghai”, admin-514

istrative areas “Yangpu” and “Shanghai”, the tra-515

ditional gram-based metrics (Rouge (Lin, 2004),516

BLEU(Papineni et al., 2002)) are of the same im-517

portance in the calculation. However, from the518

point of view of address accuracy, the importance519

of “Shanghai” is greater than “Yangpu”, and if the520

prediction is wrong, the actual location error is521

greater.522

Therefore, we propose a new metric for the ad-523

dress standardization task, called “GeoROUGE-N”,524

inspired by ROUGE metrics used in text generation525

tasks. The GeoROUGE-N metric assigns higher526

weights to n-grams with higher importance. The527

GeoROUGE-N formula is as follows:528

GeoROUGE−N = LP ·

∑
gramn∈S

wi · vmatch[i]∑
gramn∈S

wi

(3)529

vmatch is a one-dimensional vector with a dimen-530

sion equal to the number of n-grams. For the i-th531

gram, if it is successfully matched in the candidate,532

vmatch[i] is 1, otherwise it is 0. wi is the weight533

based on the position of the gram in the text, with534

higher weights assigned to grams located closer to535

the beginning of the text. The specific formula is536

shown below:537

wi = (1− i

n
) ∗ (1− λ) + λ (4)538

LP =

{
1, if c < r

exp(1−c/r) if c ≥ r
(5)539

Here, i represents the index of the gram in the540

sequence, n represents the length of the gram se-541

quence, and λ represents the minimum threshold542

for the weight. LP is the length penalty coefficient,543

which is used to penalize excessively long texts.544

c is the length of the candidate text and r is the545

length of the reference text.546

Geocoding. The Geocoding task takes as input 547

an address text and outputs the real geographic loca- 548

tion coordinates corresponding to the address. The 549

Geocoding task is a basic service for many map- 550

ping applications. Therefore, we choose the paid 551

geocoding service provided by the two map appli- 552

cations with the largest number of users in China to 553

illustrate the effectiveness of our method. we use 554

GC-1 and GC-2 to refer to them, without specifying 555

their names to avoid commercial competition. The 556

evaluation metrics follow the ERNIE-Geo setting, 557

using “Accuracy@N km” as the evaluation metric. 558

It represents the percentage of samples in which 559

the predicted distance from the true distance is less 560

than N km. In our experiments, we set N to 0.1 561

and 1. In addition, we also provide a more granular 562

evaluation metric, “Average distance”, measured in 563

meters. It represents the average distance between 564

the predicted distance and the true distance. 565

Address Matching. The goal of the address 566

matching task is to determine whether two differ- 567

ent address texts refer to the same geographic entity. 568

The task takes two address texts as input and out- 569

puts a label indicating whether they match, with 570

the type “exact match”, “partial match”, or “not 571

match”. We conducted the experiment at the Shang- 572

hai address in the GeoGlue(Li et al., 2023a). 573

The baseline models we choose for compar- 574

ison are three strong generic PTMs, including 575

BERT(Devlin et al., 2019), RoBERTa(Liu et al., 576

2019),StructBert(Wang et al., 2019), MGeo(Ding 577

et al., 2023), Among them, MGeo performs pre- 578

training on geographic corpus and sets a unique 579

pre-training task to learn location information in 580

the map. The models are all of the base model 581

size and are trained for 3 epochs on the training set. 582

For the PTM+GeoAgent experiments, the model is 583

also trained and tested on the training and valida- 584

tion data after being normalized by GeoAgent. We 585

use Precision, Recall, and Macro F1 as evaluation 586

metrics, and the results are shown in Table 3. 587

Address Linking. The task of Address Linking 588

is to link an input address to a standard address 589

in a standard POI database. Our approach to this 590

task is a combination of pre-ranking and ranking. 591

We first filter the candidate addresses based on 592

the input address’s district, and then the model 593

scores the candidate addresses, recalling the top 5 594

candidates with the highest scores. Our evaluation 595

metric is MRR@5, which is a measure commonly 596

used for evaluating linking algorithms. we choose 597

the MGeo as the baseline. 598
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Method AED GR-1 GR-2 GR-3 GR-4
Non-standard 12.12 0.739 0.677 0.645 0.618
AS-1 15.27 0.738 0.608 0.519 0.438
GeoAgent 3.742 0.926 0.892 0.871 0.852

Table 2: Address standardization results. AED indicates
the average edit distance. GR-N is GeoRouge-N grams.

Method Precision Recall F1
Bert 0.814 0.699 0.738
+GeoAgent 0.769 0.733 0.749
RoBERTa 0.739 0.669 0.691
+GeoAgent 0.809 0.760 0.774
StructBert 0.727 0.656 0.679
+GeoAgent 0.834 0.769 0.792
Mgeo 0.809 0.741 0.762
+GeoAgent 0.761 0.767 0.763

Table 3: The results of different models on the address
matching. +GeoAgent indicates the results of the model
on address that have been standardized by GeoAgent.

4.3 Overall results599

Address standardization results. Our results are600

shown in Table 2. Non-standard indicates the dif-601

ference between the original non-standard address602

and the corresponding standard address. It can be603

observed that GeoAgent significantly reduces the604

edit distance (-8.378). GeoAgent also achieved605

very high scores in the GeoRouge-N metric, with606

no significant decay in grams 1, 2, 3, and 4. This607

shows that GeoAgent is able to take into account608

the importance of the order of address elements.609

The results show that it is necessary to process the610

description information in non-standard address in611

the process of address standardization. We provide612

a case study of the task in the Appendix C.1613

Geocoding results. The Table 5 shows the re-614

sults of geocoding for non-standard address and615

address standardized by GeoAgent, the average616

distance error is reduced by 66.55M and 42.41M,617

respectively. This proves the necessity and validity618

of standardizing non-standardized addresses. In619

addition, the average error of GeoAgent is 53.06m,620

and the Ac@100M is 86.6%. This shows that621

GeoAgent’s method of splitting non-standardized622

addresses into standard address mapping and de-623

scription information offset steps is effective. We624

provide a case study of the task in the Appendix C.2625

Address matching results. GeoAgent’s stan-626

dardization of non-standard addresses improves627

the performance of all models, with the largest628

Method MRR@5
Mgeo 0.698
Mgeo+GeoAgent 0.744

Table 4: Address linking results

Method Ac@100M Ac@1KM AD(m)
GC-1 0.579 0.920 535.65
+GeoAgent 0.590 0.938 469.10
GC-2 0.626 0.904 396.46
+GeoAgent 0.617 0.942 354.05
GeoAgent 0.866 0.977 53.05

Table 5: The performance of the different geocoding
apis, +GeoAgent indicates the performance of the api
on addresses that have been standardized by GeoAgent.
AD indicates the average error distance.

improvements seen in RoBERTa (+8.3 %) and 629

StructBert (+11.3 %). The results of combining 630

GeoAgent with StructBert surpass the SOTA model 631

MGeo, demonstrating the effectiveness of GeoA- 632

gent. To further analyze the reasons, we analyze 633

the prediction changes for each class and found 634

that GeoAgent increases the similarity between part 635

match addresses and reduces the similarity between 636

not match addresses through the standardization 637

process, greatly increasing the model’s classifica- 638

tion accuracy for these two classes. Details will be 639

analyzed in the Appendix C.3. 640

Address linking results.The results of address 641

linking are shown in Table 4, which demonstrates 642

that GeoAgent helps improve the performance of 643

SOTA models in their domain of expertise (from 644

69.8% to 74.4%). 645

5 Conclusion 646

In conclusion, this paper introduces GeoAgent, a 647

novel solution designed to address the challenges 648

posed by non-standard addresses frequently input 649

by users in modern applications. We utilize LLM 650

task planning ability and tool utilization ability 651

to make up for LLM lack of fine-grained spatial 652

knowledge and accurate spatial calculation prob- 653

lems, leading to efficient address standardization. 654

Additionally, we create an extensive dataset of com- 655

plex non-standard addresses, which bridges the 656

gaps in existing datasets. The experimental results 657

demonstrate the effectiveness of GeoAgent, as it 658

showcases significant enhancements in the perfor- 659

mance of address-related models across various 660

downstream tasks. 661
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Limitations662

First of all, our experiment was conducted on the663

Chinese address. Although our proposed method664

framework is language-independent, it may require665

some minor changes to generalize our method to666

other languages due to the conventions of address-667

ing in different languages (GeoLoss, GeoRouge).668

Secondly, limited by our resources, we chose669

Chatglm-6B as the LLM BackBone, which has670

limited ability to follow and understand the instruc-671

tions. In order to make the model output in the672

format we want, we made fine-tune. As the size673

of the LLM increases and the ability to understand674

and follow instructions improves, the model can be675

output in the desired format via In-context learning,676

skipping the step of fine tuning.677

Finally, because our method consists of multi-678

ple steps, cascading errors can occur.For example,679

the average error of Geocoding is 50 meters, if680

the address happens to be at the junction of two681

administrative regions, then it may lead to the ad-682

ministrative region prediction error, although this683

is relatively rare.684
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0.001. The data is shuffled, and the training set874

and test set are divided. The model is trained for 3875

epochs with a batch size of 8 on 4 GTX3090s. The876

max input/output token length of the model is set877

to 200. For the language model’s generation func-878

tion, the following hyper-parameters are used: max879

length: 200, temperature: 0, do sample: False. All880

other parameters follow the default settings. The881

parameters of Lora are as follows: rank: 8, Lora882

alpha: 32, Lora dropout: 0.1, Lora layer: 0-27.883

A.2 Geocoding model884

We choose the transformer as the network structure885

for the address mapping model. The number of at-886

tention heads is 8, and the dimension of the hidden887

state is 512. The training batch size is 1024, and888

we use AdamW as the optimizer with a learning889

rate of 1e-4 and weight decay of 0.02. We train890

the model for 50 epochs on 4 GTX3090 GPUs and891

select the epoch with the best performance on the892

validation set as the final checkpoint.893

We have design a loss function for the894

address mapping model, Which includes two895

loss weights: sequence loss weight Ws and896

token loss weight Wt. The sequence loss897

weight is an 12-dimensional vector, we set it to898

[1,1,1,1,1.35,1.30,1.25,1.20,1.15,1.10,1.05,1]. The899

token loss weight Wt is a 16*16 matrix, please900

visit our GitHub repository to learn more about the901

specific parameters.902

A.3 LLM Instruction Sample903

We followed the example in the Table 6, built904

2K data, and trained 3 epoch of Chatglm using905

Lora. The fine-tuning parameters are shown in906

Appendix A.1. The aim of finetuning is to make907

the output format of the model conform the prede-908

fined format (such as wrapping street names with909

<[]> symbols, shown in Table 6), rather than to in-910

ject fine-grained geographical knowledge. In larger911

models with greater language understanding(such912

as ChatGPT), the fine-tuning process might be re-913

placed by in-context learning prompt.914

B Loss Function Ablation Study915

We investigate the impact of a loss function de-916

signed for the address mapping task on the perfor-917

mance of address mapping, as shown in Table 7.918

We choose the baseline model trained with the orig-919

inal CrossEntropy Loss as the loss function, while920

keeping the remaining parameters unchanged. It921

can be observed that the GeoEntropy, designed 922

specifically for the characteristics of address map- 923

ping, can effectively improve the model’s predic- 924

tion performance compared to the original CrossEn- 925

tropy Loss. The average distance between the pre- 926

dicted S2token and the true geographic location 927

was reduced from 236.34 meters to 180.89 meters 928

(-55.45 meters), and the proportion of predicted 929

distances within 100 meters of the true distance 930

increased from 65.5% to 74.3% (+8.8%). These 931

results demonstrate that weighting the output se- 932

quence positions and types helps the model capture 933

the correlation between address text and real loca- 934

tions. 935

C Case study 936

C.1 Address standardization case 937

As shown in Table 2 of our paperIt can be observed 938

that GeoAgent significantly reduces the edit dis- 939

tance (8.378), while the API service even shows 940

an increase in edit distance relative to the original 941

non-standard address. As the specific algorithm of 942

the API-provided address standardization service is 943

not transparent, we can only analyze it based on the 944

API data. It may be due to the fact that the service 945

relies on POI address database characters for error 946

correction and completion, which cannot handle 947

addresses containing descriptive information well. 948

The no-standard address “No. 356, Aomen 949

Road, Sanxiang Building, 246 meters south of 950

Shibachuan (Jiangning Road Branch), Putuo Dis- 951

trict, Shanghai” was standardized by AS-1 as: 952

“Shibachuan (Jiangning Road Branch), No. 356 953

Aomen Road, Changshou Road Subdistrict, Putuo 954

District, Shanghai”. However, the correct address 955

is “Shibachuan (Jiangning Road Branch), No. 1228 956

Jiangning Road, Putuo District, Shanghai (160 me- 957

ters walk from Exit 4 of Jiangning Road Subway 958

Station)”. For addresses that do not contain descrip- 959

tive information, such as address element missing 960

:“B2 D-065, Paris Spring (Pu Jian Branch), No. 961

118 Jian, Pudong District”, AS-1 output: “D-065, 962

B2, Paris Spring (Pu Jian Branch), No. 118 Pu Jian 963

Road, Tangqiao Street, Pudong New Area, Shang- 964

hai”, is very close to the standard address.It can 965

be seen that AS-1 only removes the descriptive in- 966

formation by extracting features, without properly 967

understanding and processing the descriptive infor- 968

mation. This also shows that in the task of address 969

standardization, it is very necessary to process the 970

description information in the address 971
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Table 6: A summary of API call examples

APIs API Call
Templates

Prompt Examples

Instructions Inputs Outputs

API
1

<at[]>

“Use the <at[]>tag
to mark the stan-
dard address por-
tion in this ad-
dress:”

Cake Shop, across from
Gate 5 of XX University ,
Yangpu District, Shanghai

Cake Shop, across from
<at[]>Gate 5 of XX Uni-
versity , Yangpu District,
Shanghai

API
2

<go[direction,
distance] >

“Use the
<go[]>tag to
mark the geo-
graphic location
descriptive infor-
mation in this
address:”

Cake Shop, 20 meters
southwest of the intersec-
tion of Guoquan North
Road and Guoxue Road,
Yangpu District, Shanghai

Cake Shop,
<go[southwest,20]>20
meters southwest of the
intersection of Guoquan
North Road and Guoxue
Road, Yangpu District,
Shanghai

<go[colloquial]>
Cake Shop, across from
Gate 5 of XX University ,
Yangpu District, Shanghai

Cake Shop, <go[across
from]>across from Gate 5
of XX University , Yangpu
District, Shanghai

API
3

<rb[road
name]>

“Use the <rb[]>tag
to mark the road
in this address:”

Cake Shop, 20 meters
southwest of the intersec-
tion of Guoquan North
Road and Guoxue Road,
Yangpu District, Shanghai

Cake Shop, 20 meters
southwest of the intersec-
tion of Guoquan North
Road <rb[Guoquan North
Road]>and Guoxue Road
<rb[Guoxue Road]>,
Yangpu District, Shanghai

Loss Ac@100M Ac@1KM AD(m)
CrossEntropy 0.655 0.958 236.34
GeoEntropy 0.743 0.968 180.89

Table 7: Ablation results in loss function

C.2 Geocoding case972

As described in section 5.2, the Geocoding task973

takes address text as input and aims to parse the974

input address into its corresponding real-world ge-975

ographic location. Figure 3 shows a typical exam-976

ple from the experiment. The blue markers rep-977

resent the Geocoding results for non-standardized978

addresses, the green markers represent the Geocod-979

ing results standardized by GeoAgent, and the red980

markers represent the true geographic location of981

the address.982

For non-standardized address input text (text983

marked in blue), both API 1 and API 2 have sig-984

nificant errors (329.7 meters and 135.1 meters, re-985

spectively). GeoAgent achieves the best perfor-986

mance(93.1 meters) by splitting non-standardized 987

addresses into two stages: standard address map- 988

ping and location offset. 989

After the input address is standardized by GeoA- 990

gent, it was successfully linked to the standard 991

address library, and the results are very impressive 992

when the standardized address is used as the in- 993

put for API calls. This indicates that map service 994

providers, based on their massive data resources, 995

can map standard addresses to very accurate po- 996

sitions. However, when an address contains de- 997

scriptive information, it can greatly increase the 998

error, which also demonstrates the importance of 999

standardizing non-standardized addresses. 1000

C.3 Address matching case 1001

To investigate the reasons why standardized ad- 1002

dress text can improve the performance of address 1003

matching tasks, we take StructBert as an example 1004

and analyze the model’s prediction performance be- 1005

fore and after address standardization on each class 1006

in the GeoGLUE dataset, as shown in Table 10. 1007
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API 1 : 329.7m

API 2: 135.1m

GeoAgent: 93.1m

GeoAgent+API 1: 10.2m

GeoAgent+API 2: 15.5m

Target POI

Input address: 356 Aomen Road, Puxi District, Shanghai, 246 
meters south of Sanxiong Building, Eat Eight Sichuan

Target address: 1228 Jiangning Road, Putuo District, Shanghai, 
160 meters walk from Exit 4 of Jiangning Road Subway Station, 

Eat Eight Sichuan (Jiangning Road Branch)

Input address: 1228 Jiangning Road, Putuo District, Shanghai, 
160 meters walk from Exit 4 of Jiangning Road Subway Station, 

Eat Eight Sichuan

Figure 3: Geocoding case

Our analysis reveals that GeoAgent increases1008

the text similarity between addresses with exact1009

matches and reduces the text similarity between1010

addresses with non-matches through the standard-1011

ization process. This greatly improves the model’s1012

classification performance for these two classes,1013

with F1 scores increasing by 8% and 17%, respec-1014

tively. By standardizing missing and incorrect ad-1015

dress elements, addresses with partial matches have1016

the same prefix, making it easier to discern the1017

labels for partial matches, resulting in a 12% im-1018

provement in performance.1019

For example, for the original data labeled as1020

non-matching “address1: No. 206, Lane 999,1021

Pinglu Road, Shanghai; address2: Building 206,1022

Wenxiang Mingyuan, No. 3088, Wenxiang Road,1023

Songjiang District, Shanghai”, after standardiza-1024

tion, it becomes “address1: No. 206, Lane1025

999, Pinglu Road, Jing’an District, Shanghai; ad-1026

dress2: Building 206, Wenxiang Mingyuan, No.1027

3088, Wenxiang Road, Songjiang District, Shang-1028

hai”. This increases the difference between non-1029

matching addresses, which helps to improve the1030

performance of this type.1031

For two models (Bert, MGeo) that have made1032

only modest progress, we analyze the bad cases1033

to find out why. We found an overall trend, the1034

accuracy and recall rate of the model are improved1035

for the two categories of partial matching and non-1036

matching, but the precision of the model is de-1037

creased for the category of full matching.The rea- 1038

son is that after GeoAgent address standardization, 1039

the text similarity between the two addresses is 1040

improved, so the model may mistakenly predict 1041

that the partially matched data is a full match. But 1042

StructBert and Roberta have stronger semantic un- 1043

derstanding ability and can effectively distinguish 1044

it. The detailed results are shown in the table 8 and 1045

table 9. 1046

For example, address 1: "Qianming Cun She, 1047

Qingping Road, Qingpu District, Shanghai", ad- 1048

dress 2: "Qianming Cun Bridge G50, Qingpu Dis- 1049

trict", after GeoAgent standardization, address 2 1050

becomes: "Qianming Cun Bridge, G50, Xujing 1051

Town, Qingpu District, Shanghai". The similar- 1052

ity between the two addresses becomes higher at 1053

the text level. For Bert, by encoding the text as 1054

a vector and then calculating the Cos similarity 1055

of the two vectors, may not be able to distinguish 1056

this small difference, so the two addresses are in- 1057

correctly predicted to full match, The actual re- 1058

sults is not match. For MGeo, its text-only train- 1059

ing method is very similar to Bert, which trains 1060

the model through MLM pre-training task. Al- 1061

though the MGM (Masked Geographic Modeling) 1062

pre-training task is added to learn location infor- 1063

mation, this module is more relevant to situations 1064

with geo-location information (such as latitude and 1065

longitude) input.So it makes the same mistake as 1066

the Bert. 1067
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Class Precision Recall F1
Full Match 1(-0.33) 0.583(+0.083) 0.736(+0.07)
Part Match 0.615(+0.079) 0.66(+0.034) 0.64(+0.054)
Not Match 0.82(+0.066) 0.848(+0.038) 0.837(+0.049)

Table 8: The performance of Bert in the three types
(full match, partial match, and no match), with the result
of GeoAgent processing in parentheses

Class Precision Recall F1
Full Match 0.818(-0.126) 0.75(+0) 0.782(-0.06)
Part Match 0.782(-0.055) 0.5(+0.16) 0.61(+0.08)
Not Match 0.827(+0.037) 0.974(-0.088) 0.895(-0.02)

Table 9: The performance of MGeo in the three types
(full match, partial match, and no match), with the result
of GeoAgent processing in parentheses

D Dataset Construction Details1068

D.1 Descriptive Information Construction1069

As shown in Algorithm 1, the algorithm takes as1070

input the standard address u that has undergone1071

the address entity missing process. The algorithm1072

searches for a POI v within a distance of less than1073

500 meters from u. If the distance between u and v1074

satisfies the condition in line 3 of the algorithm, we1075

use spatial calculation tools to obtain the relative1076

direction and distance between u and v as the de-1077

scriptive information. Similarly, if u and v satisfy1078

the condition in line 7 of the algorithm, “nearby”1079

is returned as the descriptive information. If the1080

distance between u and v satisfies the condition1081

in line 10 of the algorithm, “next to” is returned1082

as the descriptive information. Following the for-1083

mula in line 13 of the algorithm, we combine the1084

address u after the address entity missing process1085

with the descriptive information and the POI name1086

of v to obtain the final non-standard address with1087

descriptive information.1088

For simplicity, we use “u.ad” to denote the miss-1089

ing address of u, “desc” to denote the descriptive1090

information, and “v.name” to denote the name of1091

the POI v. The final non-standard address with de-1092

scriptive information is obtained by combining the1093

address u after the address entity missing process1094

with the descriptive information and the POI name1095

of v.1096

D.2 ChatGPT Expanding Prompt1097

we use ChatGPT (gpt-3.5-turbo) in this paper to1098

enrich the expression of descriptive information in1099

addresses. To do so, we adopt the In-Context Learn-1100

ing (ICL) approach and use prompts to provide in-1101

Algorithm 1: Non-standard Address Con-
struction
Input: Standard addresses in the address

database
Output: Non-standard addresses containing

descriptive information
1 for each address u in the address database

do
2 for each address v in the address

database and u != v do
3 if 20 <distance(u, v) <500 then
4 calculate the direction m and

distance n of u relative to v;
5 desc = m + n;
6 end
7 else if 10 <distance(u, v) <20 then
8 desc = “nearby”;
9 end

10 else if 5 <distance(u, v) <10 then
11 desc = “next to”;
12 end
13 Non-standard address = u.ad + desc

+ v.name;
14 add the non-standard address to the

non-standard address list;
15 end
16 end

put instructions and three examples, as shown in 1102

Table 11. 1103

D.3 Dataset sample 1104

An example of the dataset we built is shown in 1105

Table 12, where we provide examples of inputs 1106

and outputs for each task. Note that in the table, 1107

the input address is in English, but it is actually in 1108

Chinese in the dataset. 1109

For an geocoding task, the input is a non- 1110

standard address and the output is the actual spatial 1111

location of that address (S2token). For an address 1112

Standardization task, the output is the correct ad- 1113

dress for that address. For the address linking task, 1114

the output is the index of the corresponding stan- 1115

dard address in the standard address library. In 1116

the address linking task, the model will sort all 1117

the addresses in the standard address library based 1118

on their degree of association with the input ad- 1119

dress, and we will determine the performance of 1120

the task based on whether the top 5 addresses with 1121

the highest degree of association contain the correct 1122
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StructBert StructBert+GeoAgent
Class Precision Recall F1 Precision Recall F1
Exact match 0.875 0.583 0.70 0.818 0.750 0.782
Paritial match 0.50 0.638 0.560 0.840 0.583 0.688
Not match 0.808 0.746 0.776 0.846 0.974 0.905

Table 10: The performance of StructBert in the three types

Prompt

Given an address, we aim to rephrase the descriptive information related to the location. Descriptive information
refers to additional details about the location, such as “234 meters to the south”, “nearby”, “opposite”, “next to”, etc.

Demonstrations

Input: Red Swallow Food Business located 409 me-
ters northwest of Cheng Ye Bath, No. 266 Xinhua
West Road, Zhangyan Town, Jinshan District, Shang-
hai.

Output: Red Swallow Food Business is located 409
meters northwest of Cheng Ye Shower Room, No.
266 Xinhua West Road, Zhangyan Town, Jinshan
District, Shanghai.

Input: Beside Industrial and Commercial Bank of
China, 20 Fengbin Road, Chongming District, is
Yixuan Cultural Communication.

Yixuan Cultural Communication is located near In-
dustrial and Commercial Bank of China, 20 Fengbin
Road, Chongming District.

No. 8-2, Zhongyi Residence, Gaoxi Village, is lo-
cated about 150 meters southwest of the intersection
of Ting’an Road and Pudong North Road, Pudong
New District, Shanghai.

8-2, Zhongyi Residence, Gaoxi Village, is located
about 150 meters southwest of the intersection of
Ting’an Road and Pudong North Road, Pudong New
District, Shanghai.

Demonstrations End

Table 11: The details of the prompt design for ChatGPT expanding

answer.1123

E Generalized Discussion1124

Due to the complexity of Chinese address (there1125

is no symbol to separate the address, and the ex-1126

pression forms are diverse), compared with other1127

languages, Chinese address is very challenging, so1128

we choose Chinese address as the research object.1129

However, our framework(GeoAgent) are lan-1130

guage independent.Specifically, we model the ad-1131

dress standardization task in two steps: first, get1132

the real world location of the address part in the1133

address text, and second, offset the location accord-1134

ing to the description information. This framework1135

is not tied to the language itself and can be gener-1136

alized to use in different languages. To implement1137

the above steps, it is up to the LLM to determine1138

the use and order of the geographic tools based on1139

the different input addresses.1140

Next we discuss how our work can be applied1141

to languages with different styles of expression -1142

using English as an example. The expression of1143

address in English is different from that in Chinese.1144

It is customary to arrange the address elements1145

according to the size of administrative area from 1146

small to large, which is the opposite of Chinese. So 1147

to use our method in English addresses, you only 1148

need to make the following changes. LLM: Choose 1149

a LLM with English ability. Modify the GeoLoss: 1150

If you want to train a model that maps addresses to 1151

specific locations yourself, you just need to modify 1152

the weights of the GeoLoss to give higher scores to 1153

the parts that represent larger administrative areas. 1154

Modify GeoRouge: If you need to use GeoRouge 1155

for addresses with administrative areas arranged 1156

from smallest to largest, simply change the formula 1157

1− i/n in Wi in formula (4) to i/n. 1158
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Task Input Output
Geocoding Opposite Huicai Restaurant, No. 652, Libao Road,

Ma Town, Jiading District, Shanghai
35b26bc225f5

Address
Standard-
ization

Opposite Huicai Restaurant, No. 652, Libao Road,
Ma Town, Jiading District, Shanghai

Huiwei Huicai Restaurant ,No. 2350
Baoan Road, Jiading District, Shanghai

Address
Linking

Opposite Huicai Restaurant, No. 652, Libao Road,
Ma Town, Jiading District, Shanghai

index in POI database

Table 12: dataset sample
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