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ABSTRACT

Dropped head syndrome is an issue faced by many individuals af-
fected by neurodegenerative diseases. This makes it impossible for
these people to support their own head with their neck, causes pain
and discomfort, and makes it difficult to perform everyday tasks.
Our long-term goal is to use a powered neck-exoskeleton to re-
store natural neck motion for people with dropped head syndrome.
However, determining how a user would like to move their head is
challenging. We propose to leverage virtual reality as a way to col-
lect coupled eye and head movement data from healthy individuals
to train a machine learning model that can predict user-intended
head movement from eye-gaze alone. We present preliminary re-
sults demonstrating the potential of our learned model. We discuss
our ongoing work to compare our learned model with existing,
non-learning-based methods. Finally, we discuss our future plans to
incorporate human-in-the-loop feedback to enable customization
of an assistive robotic neck exoskeleton for users with dropped
head syndrome.
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1 INTRODUCTION

Dropped head syndrome (DHS) [7, 16] is characterized by the in-
ability of a person to move and raise their head. DHS results from
neck muscle weakness which can arise from diverse causes, includ-
ing central/peripheral neurological pathology (e.g., amyotrophic
lateral sclerosis, Parkinson’s disease) and autoimmune conditions
(e.g., polymyositis) [3, 8, 13, 24]. People with minor or moderate
DHS cannot maintain an upright head posture for extended time
due to fatigue. In severe cases, the head completely drops, resulting
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in a “head-on-chest” posture. DHS causes pain, spinal deformity,
as well as difficulty with respiratory functions, ambulation, and
social interactions, which severely impacts patients’ physical and
emotional well-being and overall quality of life.

Static bracing of a patient’s neck is a common treatment for DHS;
however, these braces are often uncomfortable and ineffective [18,
20]—static braces support the head at the chin, making it difficult
to speak, swallow, and breathe while wearing it. These braces also
do not allow motion for daily tasks (e.g., feeding, horizontal vision,
etc.). Based on our interviews with people with DHS, few patients
use their prescribed neck braces at home, leaving their conditions
untreated and worsening their quality of life. Other treatments for
DHS include reclining wheelchairs and adding straps to a chair.
These solutions, however, are not portable and also do not restore
head-neck motions.

In our prior work [28-30], we invented the world’s first powered
neck exoskeleton, which can provide the much needed assistive
neck motion for people with DHS. However, despite having the
physical hardware capable of moving a patient’s neck, there remains
the question of how the patient would like their head to be moved
and oriented. Using a hand-held device (e.g., joystick, keyboard) to
control the neck exoskeleton is unintuitive and even infeasible for
many patients, especially those whose DHS is a result of widespread
neural degeneration (e.g., amyotrophic lateral sclerosis).

Recently, we have demonstrated the feasibility of using direc-
tional eye gazes to control the neck exoskeleton to perform a track-
ing task in healthy subjects [5]. This control strategy capitalizes on
the fact that eye muscles are generally not affected by neural degen-
eration which presents an inclusive solution for people with DHS
caused by neurodegenerative diseases. However, this control strat-
egy still lacks the necessary intuitiveness because (1) the scheme is
primitive and unnatural, requiring the user to use their eyes as a
joystick to move their head in one of the four cardinal directions,
and (2) the control parameters are fixed, precluding adaptation to
an individual’s behaviors and preferences. Additionally, this con-
trol strategy has only been evaluated in a user studey with healthy
individuals—the efficacy of using eye gaze to control the neck ex-
oskeleton is unknown for patients with DHS. Therefore, there is
a critical need to identify better models for predicting head-neck
movement conditioned on natural eye gaze patterns and to develop
personalization strategies for head-neck movement assistance for
people with DHS.

Our long-term goal is to restore head-neck motions for peo-
ple with DHS through an at-home, personalized, and easy-to-use
wearable robotic solution. In this paper we describe our proposed
approach to leverage virtual reality (VR) to train a machine learning
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model to predict head-neck movements given access only to a pa-
tient’s gaze. We believe VR is an ideal way to collect paired head and
eye movement data which will enable the development of machine
learning models that learn to predict intended head movement from
gaze history. Rather than requiring complex physical environments
for collecting paired head and eye movement data, we argue that
VR provides an inexpensive, flexible, scalable, and highly accurate
method for collecting paired eye and head movement data to train
our predictive models.

We hypothesize that head-neck movements can be predicted by
eye movements in multiple gaze conditions (e.g., smooth pursuit,
saccade) using a task-agnostic machine learning model. We test
this hypothesis through validations of predictive models against
ground truth head movement from a dataset collected during a
pilot study with healthy adults interacting with multiple simulated
virtual environments using a virtual reality headset.

2 RELATED WORK

Early neurophysiology studies [2, 9, 11] suggested that the move-
ments of the head and eyes are tightly coupled during visual tasks
through neural pathways like vestibulo-ocular reflex. However, the
design of these studies were limited to controlled environments
and tasks, as well as laboratory-bound equipment. These make it
difficult to translate these early results directly to predict head-neck
motions using eye movements in real-world settings. With mod-
ern wearable sensors, it becomes feasible to study gaze behaviors
and head-eye coordination in real-world settings. For example, re-
cent work collects head-free gaze data during four physical daily
tasks using a wearable system [15] . However, the tasks required
significant physical setup and modification costs and data collec-
tion was limited to participants who had access to the physical
infrastructure. By contrast, we propose to leverage virtual reality
(VR) to enable rapid environment customization and data collec-
tion without requiring large physical spaces or expensive physical
setups. Furthermore, once a VR environment is built, the software
can easily be shared, enabling highly scalable data collection from
anyone with access to the same VR system. Our work is motivated
by prior works showing that a user’s attention can be detected
through gaze and head movement in virtual and augmented reality
settings to enable gaze-based selection and pointing [1, 22, 23, 26];
however, unlike our approach, these prior works do not predict
head movement from gaze, which is necessary to enable head-neck
motion directly from a user’s gaze patterns.

Our paper builds upon our prior efforts to build a powered neck
exoskeleton [28-30]. While the physical hardware has been com-
pleted, there remains the question of a natural interface for inferring
a user’s intended neck motion our prior work focuses on allowing
a user to move their head (north, south, east, or west) by moving
their eyes in the desired cardinal direction [5]. We seek to improve
upon this work by using a recurrent neural network architecture
to predict when and how a user would like their head moved based
on their eye gaze history.

3 PROBLEM STATEMENT

Dropped head syndrome (DHS) is a common problem among indi-
viduals who experience a neurodegenerative disease. This occurs
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Figure 1: (Top) A computer design model of the integration
of the neck exoskeleton and a head-mounted eye-tracker.
(Bottom) A healthy participant using the previous quadrant
approach to control the neck exoskeleton with their eye
movement [5].

when the affected person’s neck no longer has the strength to sup-
port their head. We seek to restore natural head-neck motion via
a powered neck exoskeleton and eye tracking software. Given the
patient’s current head angle, h;, at time t and gaze vector, g;, ob-
tained from an eyetracker, we want to predict the user’s desired
head position for the next time step, flt+1.

4 METHODOLOGY

We propose a solution to this prediction problem that uses coupled
head and eye movement data collected using a virtual reality (VR)
headset to train a Long-term Short-term memory (LSTM) machine
learning model that learns the relationship between the past his-
tory of a person’s eye movement and their intended head-neck
movement. Our key insight is that we can use a VR headset to
easily and accurately track the head and eye movements of healthy
individuals as they interact with a variety of virtual environments.
This enables a highly scalable and flexible platform for collecting
large amounts of coupled head and eye movement data. Using this
data, we propose to train a model to predict future intended head
movement given past eye movement data. Once trained, we plan to
deploy this model on the actual robotic neck exoskeleton to restore
natural head movement to users with DHS by tracking their eye
gaze.

4.1 Powered Neck Exoskeleton

Static neck braces are often used to treat DHS. However, these
braces are often uncomfortable and ineffective and can lead to
pain and breathing problems. This is because the braces tend to
apply pressure underneath the chin which forces the mouth to be
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Figure 2: An image of the Vive Pro Eye used for data collection
and experimentation.

closed. The mechanical neck brace that we propose would solve
these issues by allowing for movement of the head and by applying
pressure at the forehead instead of the chin (Figure 1).

4.2 Data Collection

Data for this project was collected in a VR environment developed
in Unity using the Vive Pro Eye as shown in Figure 2. This device
was used to track how the individuals moved their eyes and head
together throughout a series of testing environments. These tests
include rapid movement, linear smooth pursuit, and curved smooth
pursuit. The data collected includes the following vectors: left eye
gaze direction, right eye gaze direction, and the forward vector
from device orientation representing head angle.

4.2.1 Rapid Movement. The Rapid Movement test is designed to
monitor how an individual glances quickly in different directions
around an environment. Within this test, three cubes are randomly
instantiated within a 60° head rotation of the user. The user is
instructed to look for the cubes and fixate their gaze on them for
a set amount of time before the cube is re-instantiated at a new
location.

4.2.2 Linear Smooth Pursuit. Linear Smooth Pursuit is a test of
how an individual tracks an object moving in a straight line in their
field of view. The user is instructed to track the object as it moves
around within the environment. In this environment, a singular
cube is instantiated in front of the user and moves in a straight line
to a new randomly assigned point with a fixed speed.

4.2.3 Curved Smooth Pursuit. Curved Smooth Pursuit is very sim-
ilar to Linear Smooth Pursuit with the change that now the cube
moves in a randomized arc pattern. The cube then moves with a
fixed angular speed along the arc. The user is instructed to track
the object as it moves through the environment.

4.3 Simulated Gaze Training

Once the data has been collected, we train an LSTM network to
predict the next head angle given the current gaze and head orien-
tation. .

hev1 = fo (g he) (1)
where g; and h; are the gaze vector and the head angle respectively
at time-step t, and fp is the learned model. The LSTM is trained
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to minimize the mean squared error between the predicted and
ground-truth head angle:

£O) =2 3 Ihe— hell @)
t

Figure 3 illustrates the results from when this model is trained
purely on the ground truth data that was collected. What these
results show is that training on this data does not lead to a model
that works in practice due to a very quickly growing compounding
error. The green line in figure 3 illustrates what occurs when the
model is no longer given access to the ground truth head angle
and is instead required to use its own output as an input (as would
occur in an application of this model). We hypothesize that this
is due to how a person’s eye motion is dependent on their head
motion. In other words, if a person’s head were to be rotated too
far or too little, then the resulting eye motion would account for
this prediction error.

To train a more robust model, our insight is to take into account
the vestibulo-ocular reflex of the eye [21]. This reflex stabilizes the
eyes relative to a person’s environment and compensates for head
movements—this reflex is why you can move your head but keep
your eyes fixed on a visual target without your gaze slipping off the
target. When the head is moved, the eyes move the same distance
but in the opposite direction.

To incorporate this insight into our model training, the LSTM
training data is augmented with the following assumption (visu-
alized in Figure 4): at any given time-step, an individual’s gaze is
fixed on a point in space regardless of how their head is oriented.
In terms of vectors, this can be seen as

gr+he=hr+g; ®3)
where h and g are the ground truth head and gaze vectors for time-
step t respectively, h is the predicted head vector for time-step t,
and g is the simulated gaze value using the assumption that the
person is looking at the same point in space at time t, even if we
move the head using the neck exoskeleton.
Rearranging terms we can solve for the assumed human gaze
given a different head position /;:

Ge=hs+gr — hy. 4)
We use this augmented gaze vector for training a robust head angle

predictor. At the beginning of training, we initialize hy = fo(g0, ho),
but for subsequent time-step, we output predictions as

hes1 = fo(ge. he) (5

where the inputs to the model are now predicted values as opposed
to ground truth data. We still minimize the mean-squared error
(Equation 2). Figure 5 shows the naive and augmented training
pipeline for the LSTM. Figure 6 shows the results when training
under this new assumption. We can see that the model’s predictions
are very similar to those of the ground truth. Importantly, the
outputs now account for the error of previous time-steps.

5 ONGOING AND FUTURE EXPERIMENTS

We are currently working on evaluating our learned model both
quantitatively and qualitatively. For initial testing, we plan to take
advantage of another benefit of VR, the ability to simulate and
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(a) Model’s predicted x component of the head angle vector when
trained on ground truth data.
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(b) Model’s predicted y component of the head angle vector when
trained on ground truth data.

Figure 3: Results from model trained on the ground truth
data collected. The blue line represents the ground truth head
angle. The orange line shows the model’s output when always
using the ground truth inputs. The green line demonstrates
what occurs when the model uses its own output for the next
time-step’s input. The red dashed line shows when training
data ends and validation data begins.

pilot assistive neck movements without requiring users to wear a
physical neck exoskeleton. We plan to use the eye tracking in the
VR headset, but ignore the user’s actual head movements—we will
ask the user to not move their head, but even if they do, the VR field
of view will not change. Then by tracking their gaze we can predict
their intended head movement using our model and use the output
of our model to change the VR field of view. In this way we can
safely and easily test our assitive neck movements first in virtual
environments, even with healthy individuals. Then once our model
works well in simulation, we can port it over to the physical robot.

In the near future, we plan to compare our gaze-conditioned,
head movement prediction model with two baseline, non-learning
models. The first baseline is a direct implementation of the quadrant
based approach from prior work [5]. The second baseline model
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Figure 4: We perform data augmentation on the gaze vector
to enable more robust LSTM training. The augmented gaze
vector §; is based on the vestibulo-ocular reflex [21]: when
looking at an object, the eyes rotate counter to head rotations
to keep the object in the field of view.

is an extension of the quadrant method that computes a vector
between the current head angle vector and the gaze vector. The
head is then rotated in the direction of this vector. This comparison
will provide an understanding of the benefits and drawbacks of a
machine learning approach versus more predefined approaches to
this issue.

5.1 Quantitative Analysis

We propose two methods for quantitatively measuring the perfor-
mance of the learned model versus the baseline methods. The first
approach involves providing users with a clicker that they will
use to indicate moments in which the model did not meet their
preferences. The second method will be to implement a scoring
metric into the simulated virtual environments to measure how
well the individuals performed with each model.

5.1.1  Preference Analysis. Providing users with a clicker to provide
feedback over each model will allow us to gain an understanding
of the preferences between models for each individual. While un-
dergoing each of the simulated virtual environments, users will
be instructed to press the clicker anytime that the model does not
rotate their head in a way that they found natural and comfort-
able. This method of analysis will provide a quantitative metric of
preference over each model.

5.1.2  Performance Analysis. The next approach for quantitative
analysis will be focused on analyzing the performance of each user
within the virtual environments. This will take the form of adding
a scoring metric to each environment (e.g. amount of time spent
focused on a cube). This will provide an understanding of how well
each model performed with respect to keeping the desired object
within a reasonable field of view.
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(b) Augmented LSTM training pipeline based on
the vestibulo-occular reflex.

Figure 5: A comparison of two different methods for training
the LSTM to predict future head angles. In (a) the model al-
ways recieves the ground-truth head position as input. This
leads to low loss, but when executed at test time (where pre-
dicted head positions become the inputs at the next timestep)
leads to poor performance due to compounding errors. In (b)
we address the problem of compounding errors by training
the model using both the predicted head angle as input as
well as using an augmented gaze vector based on the assump-
tion that a person’s gaze will stay fixed on the same point in
space, even if their head had been at a different angle (Fig-
ure 4 and Equation 4).

5.2 Qualitative Analysis

The qualitative differences between the learned model and the
baseline methods will be measured using a Likert scale survey
where individuals will be asked to evaluate the comfort, speed,
responsiveness, etc. of each approach. This survey will provide
feedback on how each individual felt about the described methods
outside of just incorrect movements measured by the quantitative
analysis.

5.3 Testing on Physical Hardware

For this project, all testing and data collection was done in virtual
reality. This is because only healthy individuals were used as par-
ticipants, and healthy individuals would have a natural tendency
to resist the forces being applied by the neck brace. This could lead
to potentially skewed or flawed data as a result. In virtual reality,
however, we can simply disable head rotation tracking and force
the camera to rotate using our model regardless of how participants
are rotating their heads.
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(a) Model’s predicted x component of the head angle vector when
trained on simulated gaze data.
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(b) Model’s predicted y component of the head angle vector when
trained on simulated gaze data.

Figure 6: Results from model trained using the simulated
gaze assumption. The blue line represents the ground truth
head angle. The orange line shows the model’s output when
using its prior output as its new input. The red dashed line
shows when training data ends and validation data begins.

5.4 Expanding Virtual Reality Environments

Currently, the data for this project is being collected in trivial envi-
ronments designed to measure one specific aspect of the relation-
ship between gaze and head movements. For future development,
we are expanding these environments to more realistic settings
such as a driving simulator or a job simulator. This will allow us to
capture the true natural movements of an individual in a dynamic
environment.

5.5 Human-in-the-Loop Feedback and
Adaptation

The previously demonstrated LSTM model may be potentially good
enough to give some sense of mobility back to individuals affected
by dropped head syndrome; however, Figure 6 still shows a decent
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amount of error particularly around the positive and negative ex-
tremes. We also hypothesize that different individuals may have
varying levels of head-eye coordination. This necessitates that the
model be continually trained while in use to adapt to the user.

In the future, we plan to develop an approach that can be used
for customizing continuous, gaze-controlled action (e.g., head-neck
motion). Prior work has shown that human-in-the-loop feedback
can enable and customize text-to-speech typing interfaces using
gaze as the input [10, 17]; however, these prior works focus on tasks
where finite actions (e.g., keys or words to select) are necessary.
Other prior works have aimed to teach autonomous agents via
sparse human feedback through user clicks [14, 27] or pairwise
preference labels over a robot behavior [4, 6]. These prior works
assume the human is a bystander who passively observes a robot’s
behavior and offers feedback.

We postulate that similar strategies can be developed to allow pa-
tients to customize the control of a neck exoskeleton while wearing
the device. Prior works on adapting exoskeleton controllers have
focused on either a small set of carefully selected control parame-
ters (e.g., peak torque and its timing [12]) or objectives based on
well-defined repetitive tasks (e.g., gait) using physiological signals
(e.g., electromyography [19] and oxygen intake [31]). Other prior
work customizes exoskeleton control by asking the user to compare
two different controllers to learn their preference (e.g., during walk-
ing [25]); however, these comparisons are often difficult to make—it
is often the case that two possible controllers are good and bad
in different ways. To address the above technological barriers for
the proposed application, we will incorporate inclusive online hu-
man feedback (through a clicker) to adapt the gaze control of the
neck exoskeleton for diverse head-eye coordination behaviors (e.g.,
saccade, smooth pursuit, etc.).

5.6 Testing on Users with Dropped Head
Syndrome

Individuals experiencing dropped head syndrome would be a better
demographic to test on as they would be the ones to actually use an
implemented version of this system. It is also probable that these
individuals may have different tendencies or preferences than the
healthy individuals used in this study.

6 CONCLUSION

This work proposes our preliminary steps towards novel method
of assisting head-neck motion leveraging machine learning and
virtual reality. We use virtual reality to collect paired head and
eye movement data from users interaction with virutal worlds.
We then train a general LSTM network to predict a user’s head-
neck motion given current head and eye data. Our results show
that a naive implementation results in compounding errors and
poor performance. To remedy this, we propose and evaluate an
augmented training scheme inspired by the vestibulo-ocular reflex.
Training an LSTM on this augmented data results in a dramatic
increase in head movement prediction accuracy.

Given these promising preliminary results, we are excited about
the many different avenues for future work and improvement. In
the future, we plan to use human-in-the-loop feedback to enable
our LSTM prediction model to be continually trained to conform
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to user preferences with the help of a discriminator network. We
hypothesize that the discriminator network could be trained on
clicker feedback from the user which is necessary as users suffering
from a neurodegenerative disease may not be able to provide any
more feedback than a clicker. We propose a variety of experiments
to both quantitatively and qualitatively measure the benefits and
shortcomings of our proposed method compared to two baseline
methods. This involves measuring both user preferences as well
as model performance. We then describe the long-term directions
of this work which includes testing on individuals experiencing
dropped head syndrome with the physical neck exoskeleton in
Figure 1, exploring different VR environments for data collection
and model evaluation, and implementing a variety of potential
human-in-the-loop feedback methods for lifelong learning.
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