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ABSTRACT

Recent studies use geometric deep learning to represent molecules and predict
properties. However, they are computationally expensive in capturing long-range
dependencies and ignore the non-uniformity of interatomic distances. More im-
portantly, few of them consider injecting the biochemical structure knowledge
such as functional groups into model architectures. To overcome such issues,
we introduce Molformer, a variant of the Transformer for molecular representa-
tions that exploits both semantic motifs and 3D spatial information. Specifically,
Molformer extracts motifs based on functional groups and learns customized em-
beddings to store the semantic meanings of those informative substructures. In
order to fully employ 3D geometry, we adopt a convolutional position encoding
to achieve roto-translation invariance, a multi-scale self-attention mechanism to
capture local fine-grained patterns with increasing contextual scales, and an at-
tentive farthest point sampling algorithm to attain the molecular representation.
We validate Molformer across several domains in quantum chemistry, physiol-
ogy, and biophysics. Our experiments show better or competitive performance in
those datasets. Our work provides a promising way to amalgamate 3D geometric
information and make better usage of informative substructures in representing
molecules.

1 INTRODUCTION

Spatial structures are among the most crucial factors to decide molecular properties and understand
their principles of action in the physical world. For example, 3D structures of proteins provide valu-
able information for inferring biological interventions, such as structure-based drug development
and targeted mutagenesis (Senior et al., 2020; Jumper et al., 2021; Baek et al., 2021). In chem-
istry, zeolites show obvious differences in separation properties caused by subtle changes in their
3D geometric compositions (Chai et al., 2020; Pfriem et al., 2021). Apart from that, in the phar-
maceutical industry, the same compounds can have different 3D structures, resulting in different
solubility (Zhang et al., 2017). To sum up, capturing 3D spatial structures is essential to accurately
forecast molecular properties. Based on these facts, researchers have studied molecular represen-
tation learning techniques (Rao et al., 2019) to include 3D spatial information (Zhavoronkov et al.,
2019).

The dominant 3D molecular models are Graph Neural Networks (GNNs) and 3D Convolutional
Neural Networks (3DCNNs) (Derevyanko et al., 2018; Pagès et al., 2019; Townshend et al., 2019).
GNNs create edges by using either chemical bonds or finding the neighbors of each node within a
distance cutoff (Zhang et al., 2020b). They encode pairwise connectivity of atoms and require run-
ning multiple hops for an atom to reach to another. 3DCNNs encode translational and permutational
symmetries, but need to stack deep layers to build direct connections between distant regions, incur-
ring significant computational costs. In contrast, Transformers rely on the self-attention mechanism
to capture long-term dependencies in parallel (Hernández & Amigó, 2021). Meanwhile, Equivariant
Neural Networks (ENNs) (Thomas et al., 2018) have emerged as a new class of methods, where ge-
ometric transformations of their inputs lead to well-defined transformations of outputs. Some ENNs
adopt Transformers as the backbone but fail to surmount the intrinsic drawbacks of this architecture,
including its insensibility to local patterns among non-uniformly distancing atoms and its ineffi-
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ciency to aggregate atom features. Some other Transformer-based methods have been proposed
to fuse distance and graph neighbourhood information (Maziarka et al., 2020; 2021). However,
they take no consideration of employing motifs, which are frequently-occurring substructures in
molecules and can be leveraged to uncover global graph properties.

In this work, we present the Molformer on the basis of all preceding analysis. For the sake of in-
jecting chemical domain knowledge, we construct a motif-template vocabulary based on functional
groups and adopt trainable motif embeddings to maintain the semantic meanings of those essential
substructures. Then with both motifs and atoms as input, Molformer operates on a fully-connected
graph with direct connections between remote regions (Veličković et al., 2017; Joshi, 2020), which
reduces computational burden of multi-hop GNNs and stacked 3DCNNs. However, this character-
istic limits Molformer’s capacity in exploiting local structures and leads to poor generalization in
unseen cases (Qi et al., 2017). Therefore, we propose a Multi-scale Self-Attention (MSA) module
to recognize fine-grained patterns from neighborhoods. Moreover, we introduce a roto-translation
invariant Convolutional Position Encoding (CPE) to depict position relationships among atoms and
their adjacencies. After that, to retain a comprehensive representation of the entire molecule, we
propose an Attentive Farthest Point Sampling (AFPS) module that selects important atoms with the
assistance of the attention score map.

To summarize, our contributions are as follows:

• To the best of our knowledge, we are the foremost to incorporate motifs with knowledge of
functional groups into a Transformer architecture for 3D molecular representation learning.

• We propose a novel MSA to extract local patterns, a roto-translation invariant CPE method
to encode relative distance at a linear computational time cost, and a simple yet effective
downsampling algorithm to gather molecular representations.

• We show significant improvements on several benchmarks in three domains. Code and all
datasets are available at https://github.com/smiles724/Molformer.

2 PRELIMINARIES

Problem Definition. A molecule S = (E,P ) has N atoms and C atom classes, where E =
{e1, ..., eN} ∈ RN×C contains the one-hot atom representations and P = {p1, ...,pN} ∈ RN×3
contains the 3D coordinates of each atom. Each one-hot ei can be converted to a dense vector
xi = eiW

E , with xi ∈ Rdmodel and WE ∈ RC×dmodel being the embedding matrix. The 3D
coordinates of the atom i is a three-dimensional vector pi = [pxi , p

y
i , p

z
i ]. A representation learning

model f acts on S, obtaining its representation r = f(S). Then r is forwarded to a prediction
model g and attain the prediction of a biochemical property ŷ = g(r).

Self-attention Mechanism. The Transformer (Vaswani et al., 2017) has become very successful
due to its core component, self-attention. Given a set of input features {xi}i=1,...,N , the standard
dot-product attention layer is as the following:

qi = fQ(xi), ki = fK(xi), vi = fV (xi), aij = qik
T
j /

√
dk, zi =

N∑
j=1

σ(aij)vj (1)

where {fQ, fK , fV } are embedding transformations, and {qi,ki,vi} are respectively the query, key,
and value vectors with the same dimension dk. aij is the attention that the token i pays to the token
j. σ denotes the Softmax function and zi is the output embedding of the token i. This formula
conforms to a non-local network (Wang et al., 2018), indicating its inability to capture fine-grained
patterns in a local context.

Position Encoding. Self-attention is invariant to permutation of the input (Dufter et al., 2021),
and position encoding ensures that the Transformer will reveal positional information. Position en-
coding methods can be either based on absolute positions or relative distances. The former takes
the raw position information as input and is sensitive to spatial transformations. The latter manip-
ulates the attention score by incorporating relative distances (Guo et al., 2020a; Pan et al., 2021):
aij = qik

T
j /
√
dk + fPE(pi−pj), where fPE(·) is the position encoding function and is translation
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Figure 1: The overall architecture of our Molformer. FFN stands for a feed-forward network. Local
features are shown in purple and orange; yellow corresponds to a global feature.

invariant. The rotation invariance can be further accomplished by taking a L2-norm ||pi − pj ||2
(Chen et al., 2019b).

3 MOLFORMER

Molformer is based on the architecture of Transformer but adopts several significantly different and
novel components (see Figure 1). First, a vocabulary of motif templates is constructed on the basis
of functional groups and we extract all available motifs from each molecule. Then both atoms and
motifs acquire their corresponding embeddings and are forwarded into L feature learning blocks.
Each block consists of a convolutional position encoding, a multi-scale self-attention, and a feed-
forward network. After that, an attentive subsampling method is utilized to adaptively aggregate the
molecular presentation, which is later fed into a predictor to forecast properties in a broad range of
downstream tasks.

3.1 TRAINABLE MOTIF-BASED EMBEDDING

Motifs are frequently-occurring substructure patterns as well as the building blocks of complex
molecular structures. They usually maintain semantic meanings and have great expressiveness of
the biochemical characteristics of the whole molecule (Zhang et al., 2020a). In the chemical com-
munity, researchers have developed a set of standard criterion to recognize motifs with essential
functionalities in molecules (Milo et al., 2002). Despite that, few of prior studies directly incorpo-
rate those informative motifs into their model architectures. To fill this gap, we define a series of
momentous substructures using external domain knowledge, and introduce a trainable motif embed-
dings method to fully exploit them in our Molformer.

To begin with, all motifs are first extracted according to the motif vocabulary, which is built
by functional groups. Practically, we rely on RDKit (Landrum, 2013) to draw them from the
SMILES (Weininger, 1988) representation of each molecule. We assume M motifs {m1, ...,mM}
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are detected in the molecule S, and each motif mi contains a certain number of at least two atoms.
Then we regard each kind of motif as a new type of token and append them to the input. Therefore,
the input for our Molformer becomes {x1, ...,xN ,xm1

, ...,xmM
}, where xmi

is obtained through
an learnable embedding matrix WM ∈ RC′×dmodel and C ′ denotes the number of motif categories.
As for the position of each motif, we adopt a weighted sum of the 3D coordinates of its component
atoms as pmi =

∑
xi∈mi

( wi∑
xi∈mi

wi
) · pi, where wi are the atomic weights.

Our approach requires the model to automatically learn a customized embedding for each motif tem-
plate through backpropagations, which follows a data-driven pattern. In some data-sufficient tasks,
its greatest potential can be unlocked and those motif embeddings can be well trained. Nevertheless,
in the case of few-shot learning or small datasets, each category of motif might only appear rare
times. Those embeddings are not fully tuned and can be extremely biased and noisy, which will do
little helps to the ultimate property prediction.

3.2 CONVOLUTIONAL POSITION ENCODING

To enable roto-translation invariance and take fully advantage of geometric information, instead of
adding a term of fPE(pi − pj), we propose a CPE that applies a convolutional operation to the
interatomic distance D ∈ RN×N :

Acov = Conv2d(D)�A, (2)

where A = [ai,j ]i,j=1,···N ∈ RN×N is the attention matrix, Conv2d(·) denotes a 2D shallow convo-
lutional network with a kernel size of 1× 1, and � is the element-wise product. With multi-headed
self-attention, Acov is expanded in the sense that Acov ∈ RH×N×N , and Conv2d(·) has H output
channels. The CPE method induces O(N) convolution operations on each atom and can drastically
reduce training time when the number of atoms is very large (Wu et al., 2021).

3.3 MULTI-SCALE SELF-ATTENTION

The self-attention mechanism in the Transformer is good at capturing global data patterns but ignores
local context (Guo et al., 2020a). Exploiting local context has proven to be important for 3D spatial
data such as 3D point clouds (Qi et al., 2017). Therefore, we impose a distance-based constraint in
self-attention in order to extract multi-scaled patterns from both local and global contexts.

Guo et al. (2020b) propose to use integer-based distance to limit attention to local word neighbors,
which cannot be used in molecules. This is because different types of molecules have different
densities and molecules of the same type have different spatial regularity, which results in the non-
uniformity of interatomic distances. Normally, small molecules have a mean interatomic distance of
1-2 Å (Angstrom, 10−10m), which is denser than large molecules like proteins with approximately
5 Å on average. To address that, we design a new multi-scale methodology to robustly capture
details. Specifically, we mask atoms beyond a certain distance τs (a real number as opposed to an
integer in Guo et al. (2020b)) at each scale s. We denote dij = ||pi−pj ||2 as the Euclidean distance
between the i-th and j-th atom. The attention calculation is modified as:

aτsij =
qik

T
j · 1{dij<τs}√

dk
, zτsi =

N∑
j=1

σ(aτsij )vj , (3)

where 1{dij<τs} is the indicator function. For small molecules, Equation 3 can be complementally
combined with Equation 2. Then features extracted from S different scales {τs}s=1,...,S as well
as the informative global feature are concatenated together to form a multi-scale representation,
denoted by z′i = zτ1i ⊕ ...⊕zτSi ⊕zglobali ∈ R(S+1)dk . After that, z′i is forwarded into a multi-layer
perceptron to be compressed as z′′i with the original dimension dk.

3.4 ATTENTIVE FARTHEST POINT SAMPLING

After having the atom embeddings {z′′i }i=1,...,N , we study how to obtain the molecular repre-
sentation r. For GNNs, several readout functions such as set2set (Vinyals et al., 2015) and GG-
NN (Gilmer et al., 2017) are invented. For Transformer architectures, one way is via a virtual atom.
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Algorithm 1 Pseudocode of Attentive Farthest Point Sampling
Input: The attention score matrix A ∈ RN×N , a Euclidean distance matrix D ∈ RN×N .
Output: K sampled points.
1: Ã←

∑
iAij ∈ RN . sum up the attention matrix along rows

2: D̃ ← D ∈ RN×N . normalize the distance matrix
3: P = {x#},M = {1, 2, ..., N}
4: while length(P) < k do
5: xnew = argmax

i∈M
(min
j∈P

D̃ij + εÃi) . pick up the atom that maximize the objective

6: P .append(xnew),M.remove(xnew)
7: return P

Though as Ying et al. (2021) state, it significantly improves the performance of existing models in
the leaderboard of Open Graph Benchmark (Hu et al., 2020), this way concentrates more on close
adjacent atoms and less on distant ones, and can lead to inadvertent over-smoothing of information
propagation (Ishiguro et al., 2019). Besides, it is difficult to locate a virtual node in 3D space and
build connections to existing atoms. The other way selects a subset of atoms via a downsampling
algorithm named Farthest Point Search (FPS), but it ignores atomic differences and has sensitivity
to outlier points (Pan et al., 2021) as well as uncontrollable randomness. To address these issues, we
propose a new algorithm named AFPS. It aims to sample atoms by not merely spatial distances, but
also their significance in terms of attention scores.

Specifically, we choose the virtual atom x# as the starting point and initialize two lists P = {x#}
andM = {1, ..., N} to store remaining candidate points. Then the process begins with the attention
score matrix A ∈ RN×N and the interatomic distance matrix D ∈ RN×N . It can be easily proved
that each row of A sums up to 1 after the Softmax operation along columns, i.e.

∑
jAij = 1 for

∀i ∈ [N ]. In order to obtain the importance of each atom in the self-attention computation, we ac-
cumulate A along rows and get Ã =

∑
iAij ∈ RN . Besides, we adopt the min-max normalization

to rescale the distance matrix D into values between 0 and 1, and obtain D̃ = D−minD
maxD−minD .

After the above preprocess, we repeatedly move a point xnew from M to P , which ensures that
xnew is as far from P as possible by maximizing D̃ij and also plays a crucial role in attention
computation by maximizing Ãi. Mathematically, the AFPS aims to achieve the following objective:

max
∑
i∈M

( min
j∈P\{i}

D̃ij + εÃi) (4)

where ε is a hyperparameter to balance those two different goals. This process is repeated until P
has reached K points. Algorithm 1 provides a greedy approximation solution to solve this AFPS
optimization objective for sake of computational efficiency.

After that, sampled features {z′′i }i∈P are gathered by a Global Average Pooling layer (Lin et al.,
2013) to attain the molecular representation r ∈ Rdk .

Remarkably, our proposed AFPS has considerable difference and superiority over a body of previous
hierarchical learning approaches (Eismann et al., 2020; 2021). Their subsampling operations are
mainly designed for protein complexities, which have more uniform structures than small molecules.
To be specific, they hierarchically use alpha carbons as the intermediate set of points and aggregate
information at the level of those carbons for the entire complex. However, the structures of small
molecules have no such a stable paradigm, and we provide a universal methodology to adaptively
subsample atoms without any prior assumptions on the atom arrangement.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct extensive experiments on both small and large molecules (proteins) with various tar-
gets, including quantum chemistry, physiology, and biophysics. Table 1 summarises information of
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benchmark datasets, such as the number of tasks and task types, the number of molecules and atom
classes, the minimum and maximum number of atoms, and the density (mean interatomic distances)
of all molecules.

Table 1: Key statistics of datasets from three different categories.

Category Dataset Tasks Task Type Molecules Atom
Class

Min.
Atoms

Max.
Atoms

Density
(Å) Metric

Quantum
Chemistry

QM7 1 regression 7,160 5 4 23 2.91 MAE
QM8 12 regression 21,786 5 3 26 1.54 MAE
QM9 12 regression 133,885 5 3 28 1.61 MAE

Physiology BBBP 1 classification 2,039 13 2 132 2.64 ROC-AUC
ClinTox 2 classification 1,478 27 1 136 2.83 ROC-AUC

Biophysics PDBind1 1 regression 11,908 23 115 1,085 5.89 RMSE
BACE 1 classification 1,513 8 10 73 3.24 ROC-AUC

Datasets. We test Molformer on a series of small molecule datasets, containing QM7 (Blum &
Reymond, 2009), QM8 (Ramakrishnan et al., 2015), QM9 (Ramakrishnan et al., 2014), BBBP (Mar-
tins et al., 2012), ClinTox (Gayvert et al., 2016), and BACE (Subramanian et al., 2016) 2. QM7 is a
subset of GDB-13 and composed of 7K molecules with up to 5 heavy atom types. QM8 and QM9
are subsets of GDB-17 with 22k molecules and 133K molecule respectively.

Additionally, we also inspect Molformer’s ability of learning mutual relations between proteins and
molecules on the PDBbind dataset (Wang et al., 2005). We follow Townshend et al. (2020) and
split protein-ligand complexes by protein sequence identity at 30%. As for the target, we predict
pS = − log(S), where S is the binding affinity in Molar unit. In addition, we only use the pocket
of each protein and put pocket-ligand pairs together as the input.

For QM9, we use the exact train/validation/test split as Townshend et al. (2020). For PDBbind,
90% of the data is used for training and the rest is divided equally between validation and test like
Chen et al. (2019c). For others, we adopt the scaffold splitting method with a ratio of 8:1:1 for
train/validation/test as Rong et al. (2020). More implementing details can be found in Appendix A.1

Baselines For small molecules, we compare our approach with a number of state-of-the-art base-
lines. TF_Robust (Ramsundar et al., 2015) takes molecular fingerprints as the input. Graph-
Conv (Kipf & Welling, 2016), Weave (Kearnes et al., 2016), MPNN (Gilmer et al., 2017),
Schnet (Schütt et al., 2018), MEGNet (Chen et al., 2019c), DMPNN (Yang et al., 2019), MGCN (Lu
et al., 2019), AttentiveFP (Xiong et al., 2019), DimeNet++ (Klicpera et al., 2020), SphereNet (Liu
et al., 2021), and SpinConv (Shuaibi et al., 2021) are all graph convolutional models. Graph Trans-
former (Chen et al., 2019a), MAT (Maziarka et al., 2020), R-MAT (Maziarka et al., 2021), SE(3)-
Transformer (Fuchs et al., 2020), and LieTransformer (Hutchinson et al., 2021) are Transformer-
based models.

For PDBbind, we choose six baselines. DeepDTA (Öztürk et al., 2018) and DeepAffinity (Karimi
et al., 2019) take in pairs of ligand and protein SMILES as input. Cormorant (Anderson et al.,
2019) is an ENN that represents each atom by its absolute 3D coordinates. Schnet, 3DCNN and
3DGCN (Townshend et al., 2020) are 3D molecular representation methods.

4.2 RESULTS ON DOWNSTREAM TASKS

Molecules. Table 2 and Table 3 document the overall results of Molformer and baselines on small
molecules datasets, where best performance is marked bold and the second best is underlined for
clear comparison. It can be discovered that Molformer achieves the lowest MAE of 11.6 on QM7 and
0.009 on QM8, beating several strong baselines including DMPNN and Graph Transformer. While

1The total number of proteins in the full, unsplit PDBbind is 11K, but our experiment only uses 4K proteins
at 30% sequence identity. Moreover, the number of atoms is the sum of both the pocket and molecules.

2For BBBP, ClinTox, and BACE, we use RDKit (Landrum, 2013) to procure 3D coordinates from SMILES.
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not all state-of-the-art on QM9, Molformer offers competitive performance in 5 property regres-
sion tasks, which do not require thermochemical energy subtractions. Particularly, we outperforms
all Transformer-based ENNs, including SE(3)-Transformer and LieTransformer. In classification
problems, we surpass all non-pretrained methods and are only inferior to the pretrained GROVE.
This accords to the fact that datasets with fewer samples can gain large improvements through the
self-supervised pretraining (Rong et al., 2020).

Table 2: The performance comparison. For regression tasks including QM7 and QM8, lower is
better. For classification tasks including BBBP, ClinTox, and Bace, higher is better. The methods in
purple are pretrained methods.

Method QM7 QM8 BBBP ClinTox BACE

TF-Robust (Ramsundar et al., 2015) 120.6 0.024 0.860 0.765 0.824

GraphConv (Kipf & Welling, 2016) 118.9 0.021 0.877 0.845 0.854
Weave (Kearnes et al., 2016) 94.7 0.022 0.837 0.823 0.791
MPNN (Gilmer et al., 2017) 113.0 0.015 0.913 0.879 0.815
Schnet (Schütt et al., 2018) 74.2 0.020 0.847 0.717 0.750
DMPNN (Yang et al., 2019) 105.8 0.014 0.919 0.897 0.852
MGCN (Lu et al., 2019) 77.6 0.022 0.850 0.634 0.734
Attentive FP (Xiong et al., 2019) 126.7 0.028 0.908 0.933 0.863

Graph Transformer (Chen et al., 2019a) 47.8 0.010 0.913 - 0.880
MAT (Maziarka et al., 2020) 102.8 - 0.728 - 0.846
R-MAT (Maziarka et al., 2021) 68.6 - 0.746 - 0.871
GROVElarge (Rong et al., 2020) 89.4 0.017 0.911 0.884 0.858
GROVElarge (Rong et al., 2020) 72.6 0.012 0.940 0.944 0.894
Molformer 11.5 0.009 0.926 0.941 0.884

Table 3: Comparison of MAE on QM9. The methods in orange are Transformer-based methods.
Target (Unit) εHOMO (eV) εLUMO (eV) ∆ε (eV) µ (D) α (bohr3)

MPNN (Gilmer et al., 2017) .043 .037 .069 .030 .092
Schnet (Schütt et al., 2018) .041 .034 .063 .033 .235
MEGNet full (Chen et al., 2019c) .038 .031 .061 .040 .083
DimeNet++ (Klicpera et al., 2020) .024 .019 .032 .029 .043
SphereNet (Liu et al., 2021) .024 .019 .032 .026 .047
SpinConv (Shuaibi et al., 2021) .026 .022 .047 .027 .058

SE(3)-Transformer (Fuchs et al., 2020) .035 .033 .053 .051 .142
LieTransformer-SE(3) (Hutchinson et al., 2021) .033 .029 .052 .061 .104

Molformer .021 .026 .039 .045 .086

Protein. Table 4 reports the Root-Mean-Squared Deviation (RMSD), the Pearson correlation (Rp),
and the Spearman correlation (Rs) on PDBbind. Molformer achieves the lowest RMSD among all
baselines and the best Pearson and Spearman correlations. As Wu et al. (2018) claim, appropriate
featurizations which contains pertinent information is significant for PDBbind. However, an impor-
tant observation in our work is that deep learning approaches with the full exploitation of 3D geo-
metric information can perform better than conventional methods like DeepDTA and DeepAffinity,
which use a set of physicochemical descriptors but ignore 3D structures.

5 ABLATION STUDY AND DISCUSSION

5.1 WHAT ARE THE EFFECTS OF EACH COMPONENT

We investigate the effectiveness of different modules of our Molformer in Table 5. It can be observed
that CPE substantially boosts model’s performance compared with the naive method that immedi-
ately adds 3D coordinates as the atom input feature. In addition, AFPS is found to produce better
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Table 4: Comparison of RMSD, Rp, and Rs on PDBbind.
Method Geometry RMSD Rp Rs

DeepDTA (Öztürk et al., 2018) Non-3D 1.565 0.573 0.574
DeepAffinity (Karimi et al., 2019) Non-3D 1.893 0.415 0.426

Schnet (Schütt et al., 2018) 3D 1.892 0.601 -
Cormorant (Anderson et al., 2019) 3D 1.429 0.541 0.532
3DCNN (Townshend et al., 2020) 3D 1.520 0.558 0.556
3DGCN (Townshend et al., 2020) 3D 1.963 0.581 0.647

Molformer 3D 1.417 0.623 0.651

predictions than the control group, which utilizes the virtual node as the molecular representation.
Moreover, MSA significantly reduces RMSD from 17.6 to 11.6 on QM7, but its improvements in
QM8 are much smaller. This phenomenon indicates that MSA is an appropriate way to alleviate the
problem of inadequate training in small datasets. It endows Molformer with capability to extract lo-
cal features by regulating the scope of self-attention. However, as the data size gets larger and larger,
Molformer does not require the assistance of MSA to abstract local patterns, since the parameters of
CPE is properly trained. What’s more, the trainable motif-level embedding leads to a MAE decrease
of 2.1 in QM7 and a RMSD drop of 0.011 in PDBbind, indicating its effectiveness in both small
molecules and proteins.

Table 5: Effects of each module on QM7, QM8 and PDBbind (RMSD). ME stands for the trainable
motif embedding method.

CPE AFPS MSA ME QM7 QM8 PDBbind

1 - - - - 63.2 0.0205 1.925
2 X - - - 17.6 0.0104 1.489
3 X X - - 17.0 0.0103 1.455
4 X - X - 11.6 0.0098 1.423
5 X - - X 15.2 - 1.443
7 X X X - 13.7 0.0099 1.428
6 X X X X 11.5 - 1.417

5.2 HOW USEFUL IS THE TRAINABLE MOTIF-BASED EMBEDDINGS?

How to determine motifs are critical and crucial to our proposed trainable motif-based embeddings.
In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the
molecule’s characteristic chemical reactions. The same functional group will undergo the same or
similar chemical reactions regardless of the rest of the molecule’s composition (Smith, 2020). There-
fore, we define motifs on the basis of functional groups and explore the contribution of four different
categories. Specifically, we consider four common functional groups, including groups that contain
only carbon and hydrogen (Hydrocarbons), groups that contain halogen (Haloalkanes), groups that
contain oxygen, and groups that contain nitrogen (see the left part in Figure 2). The ablations (see the
right part in Figure 2) demonstrate that Molformer can gain improvements from all sorts of motifs,
where Hydrocarbons and Haloalkanes are the most and the least effective kinds, respectively. This
is in line with the fact that Hydrocarbons occur most frequently in organic molecules. Moreover,
our model achieves the best performance when all categories of the motifs are integrated, implying
a promising direction to discover more effective motifs.

6 RELATED WORKS

6.1 3D MOLECULAR REPRESENTATION

Deep learning has been widely applied to predict molecular properties during past decades. Small
molecules are usually represented as lower-dimensional representations such as 1D linear sequence,
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Figure 2: The left is the four different categories of motifs that we apply in Molformer based on
functional groups. The right is the ablation study of those groups in QM7 and BBBP.

including amino acid sequences and SMILES (Weininger, 1988), or 2D chemical bond graphs. In
spite of that, more evidence indicates that 3D space structures lead to better modelling and superior
performance. 3D models becomes a popular way to capture these complex geometries in a variety
of bio-molecular applications using CNNs (Anand-Achim et al., 2021; Jiménez et al., 2018) and
GNNs (Cho & Choi, 2018). Nonetheless, aforementioned methods have hardly been extended to
the self-attention mechanism that is proven to be good at grabbing contextual feature (Tang et al.,
2018) and long-range dependencies (Vaswani et al., 2017).

Attempts have been undertaken to address that issue throughout Transformers. Initially, molecules
are in the form of SMILES to obtain corresponding representations (Honda et al., 2019; Pesciullesi
et al., 2020; Morris et al., 2020; Rao et al., 2021) and conduct pretraining (Chithrananda et al.,
2020). Some researchers combine the characteristics of GNN and Transformer to solve generative
tasks (Ingraham et al., 2019) or fulfill equivariance (Fuchs et al., 2020).

6.2 MOTIF-BASED METHOD

Motifs have been proven to benefit many tasks from exploratory analysis to transfer learning (Hen-
derson et al., 2012). Various algorithms have been proposed to exploit motifs for contrastive learn-
ing (Zhang et al., 2020a), self-supervised pretraining (Rong et al., 2020; Zhang et al., 2021), and
generation (Jin et al., 2020). However, none of previous work tries to embody those informative
motifs in their model architectures.

7 CONCLUSION

In this study, we present a universal neural architecture, Molformer, for 3D molecular representa-
tions. Our model extracts motifs with semantic meanings from each molecule based on functional
groups and learn customized embeddings to facilitate property predictions. Moreover, it adopts a
convolutional position encoding method to make a full use of spatial information and augments the
self-attention mechanism with multiplicate scales to catch local features. Furthermore, a simple
but efficient downsampling algorithm is introduced to better accumulate representations of an entire
molecule. Our experiments show the superiority of our model on various scientific domains.
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A EXPERIMENTAL SETUP

A.1 EXPERIMENTAL DETAILS

Molformer Architecture. A standard Molformer has 6 multi-scale self-attention layers, and each
layer has 3 scales and 8 heads. Normally, scales are set by τ = [ρ2 , ρ, 2ρ], where ρ is the density of
each corresponding dataset. The number of selected atoms K and the weight ratio ε in AFPS is set
as 4 and 0.1, respectively. We use ReLU as the activation function and a dropout rate of 0.1 for all
layers. The input embedding size is 512 and the hidden size for FFN is 2048.

For BBBP and ClinTox, we use Molformer with 2 multi-scale self-attention layers with 4 heads. The
scales are 0.8, 1.6, and 3.0 Å. The dropout rate is 0.2 and 0.6 for BBBP and ClinTox, respectively.
For BACE, we use a standard Molformer but with a dropout rate of 0.2.

Training Details. We use Pytorch (Paszke et al., 2019) to implement Molformer and data paral-
lelism in two GeForce RTX 3090. An Adam (Kingma & Ba, 2014) optimizer is used and a lambda
scheduler is enforced to adjust it. We apply no weight decay there. Each model is trained with 300
epochs, except for PDBbind where we solely train the model for 30 epochs. For QM7 and QM8, we
use a batch size of 64 and a learning rate of 10−4. For QM9, we use a batch size of 256 and a learning
rate of 10−3. All hyper-parameters are tuned based on validation sets. For all molecular datasets, we
impose no limitation on the input length and normalise the values of each regression task by mean
and the standard deviation of the training set. We used grid search to tune the hyper-parameters of
our model and baselines based on the validation dataset.

Motif Generation. We adopt RDKit (Landrum, 2013) to search motifs. However, QM8 and QM9
do not provide SMILES representations but only 3D coordinates, thus we cannot pull out motifs
from these datasets. As for PDBbind, we only extract motifs of small molecules and leave out
motifs in proteins.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 CONFORMATION CLASSIFICATION

Task and Data. In order to explore the influence of multiple conformations, we introduce a new
task, conformation classification, to evaluate model’s capacity to differentiate molecules with var-
ious low-energy conformations. We use the recent GEOM-QM9 (Axelrod & Gomez-Bombarelli,
2020) experiments. More specifically, GEOM-QM9 is an extension to QM9 dataset. It contains
multiple conformations for most molecules, while the original QM9 only contains one.

We randomly draw 1000 different molecules from GEOM-QM9, each with 20 different conforma-
tions. Models are required to distinguish the molecular type given different conformations. We
take a half of each molecular conformations as the training set and another half as the test split.
Since it is a multi-class classification problem with 1000 classes, we compute the micro-average and
macro-average ROC-AUC as well as the accuracy for numerical evaluations.

Results. Molformer achieves a micro-average and macro-average ROC-AUC of 1.0 and 1.0, and
an accuracy of 0.999. This indicates strong robustness of our model against different spatial confor-
mations of molecules.

B.2 AFPS VS. FPS.

To have a vivid understanding of the atom sampling algorithm, we conducted a case study on a
random crystal (see Figure 3). Points selected by FPS are randomized and exclude vital atoms like
the heavy metal Nickel (Ni). With the adoption of AFPS, sampled points include Ni and Nitrogen
(N) besides that they keep remote distances from each other. Moreover, FPS integrates too many
features of trivial atoms like Hydrogen (H) while misses out key atoms, which will significantly
smooth the molecular representations and lead to poor predictions. This illustrative example firmly
shows the effectiveness of our AFPS to offset disadvantages of the conventional FPS in 3D molecular
representation.

15



Under review as a conference paper at ICLR 2022

Figure 3: Sampled points using FPS and AFPS. We do not show dummy nodes there.
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