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ABSTRACT

While numerous works have assessed the generative performance of language
models (LMs) on tasks requiring Theory of Mind reasoning, research into the
models’ internal representation of mental states remains limited. Recent work has
used probing to demonstrate that LMs can represent beliefs of themselves and
others. However, these claims are accompanied by limited evaluation, making it
difficult to assess how mental state representations are affected by model design
and training choices. We report an extensive benchmark with various LM types
with different model sizes, fine-tuning approaches, and prompt designs to study
the robustness of mental state representations and memorisation issues within the
probes. Our results show that the quality of models’ internal representations of the
beliefs of others increases with model size and, more crucially, with fine-tuning.
We are the first to study how prompt variations impact probing performance on
Theory of Mind tasks. We demonstrate that models’ representations are sensitive
to prompt variations, even when such variations should be beneficial. Finally, we
complement previous activation editing experiments on Theory of Mind tasks and
show that it is possible to improve models’ reasoning performance by steering their
activations without the need to train any probe.

1 INTRODUCTION

Modern language models (LMs) trained on next token prediction have demonstrated impressive capa-
bilities, spanning coding, mathematical reasoning, fact verification, and embodied interaction (Wei
et al., 2022; Bubeck et al., 2023). As these models are designed with the ultimate goal of collabo-
rating with humans, it becomes imperative that they complement these skills with an understanding
of humans, in particular their beliefs, emotions, desires, and intentions (Li et al., 2023a). Core to
this understanding is Theory of Mind (ToM) – the ability to attribute mental states to oneself and
others (Premack & Woodruff, 1978). ToM is essential for effective communication and cooperation
with other agents, facilitating interaction and learning from feedback and demonstrations (Saha et al.,
2023). Given its significance, ToM has emerged as a critical milestone in artificial intelligence (AI)
and an important capability when evaluating cutting-edge LMs (Bubeck et al., 2023). Interest in LMs’
generative performance on tasks requiring ToM reasoning has resulted in a wide variety of benchmark
datasets, typically involving question-answering tasks (Le et al., 2019; Gandhi et al., 2023; Kim et al.,
2023; He et al., 2023; Tan et al., 2024; Xu et al., 2024).

Despite showing improved performance on ToM benchmarks compared to earlier models, modern
LMs are still far from perfect (Sap et al., 2022). Text generated by LMs often contains errors that
limit their performance on ToM tasks (Martindale et al., 2019). Previous work has shown that it
is sometimes possible to still obtain correct predictions by probing LMs’ internal representations
(Li et al., 2021; Liu et al., 2023b; Gurnee et al., 2023). In particular, Zhu et al. (2024) have shown
that LMs, when prompted with a story and a belief statement, can represent beliefs from their own
perspective and, to a lesser extent, from the perspective of a character in the story. Their work is an
important first step towards understanding how LMs represent mental states, but it is limited in the
number of models and settings studied, leaving many questions unanswered.

Building and extending on Zhu et al. (2024), we benchmark mental state representations of self and
others in language models through extensive experiments of different LM families, model sizes, fine-
tuning approaches, and prompts. Specifically, we design a set of experiments to address the following
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research questions: RQ1. What is the relation between model size and probing accuracy? RQ2. Does
fine-tuning with instruction-tuning (Wei et al., 2021) and/or reinforcement learning from human
feedback (Christiano et al., 2017; Ouyang et al., 2022, RLHF) have an effect on probing accuracy?
RQ3. Are models’ internal representations of beliefs sensitive to prompt variations? RQ4. Is there a
risk of probes memorising training data due to the large dimensionality of LM representations? RQ5.
Can we enhance LMs’ performance by editing their activations without training dedicated probes?

To answer RQ1, we perform probing experiments on two families of LMs, Llama-2 (Touvron
et al., 2023), and Pythia (Biderman et al., 2023), ranging from models with 70 million to 70 billion
parameters. To address RQ2, we compare the probing performance of models pre-trained solely on
next token prediction with models that have been fine-tuned using instruction-tuning and/or RLHF.
Our experiments reveal that probing accuracy on the beliefs of others increases with model size and,
more crucially, with fine-tuning. To answer RQ3, we repeat our probing experiments using different
variations of the prompt used by Zhu et al.. Specifically, we consider two variations that are expected
to negatively impact LMs’ representations (Random, Misleading), and two that are supposed to have
a positive influence (Time Specification, Initial Belief ). By conducting these experiments, our work
is the first to explore the sensitivity of LMs’ representations to prompting in the context of ToM.
Our findings demonstrate that models’ representations are sensitive to prompt variations, even when
such variations should be beneficial. To address RQ4, we compare our trained probes with a second
set of probes trained only on the representations’ first top k principal components. This requires
learning much fewer parameters and eliminates any possible memorisation issue. We find no strong
evidence of memorisation in the probes, as it is possible to recover most of the accuracy by training
probes on a small subset of principal components of models’ representations. We formulate RQ5 as a
follow-up question to Zhu et al. (2024) who found that probes trained to predict beliefs can be used
to steer models’ activation using inference-time intervention (Li et al., 2023c, ITI) to improve LMs’
downstream performance on ToM tasks. In contrast, we show that by using contrastive activation
addition (Rimsky et al., 2023, CAA), we can steer models’ activations without the need to train any
probe and, in a more generalisable way, obtain significant performance improvements across different
ToM tasks.

In summary, our work makes the following contributions:

1. We report extensive probing experiments with various types of LMs with different model sizes
and fine-tuning approaches, showing that the quality of models’ internal representations of the
beliefs of others increases with model size and, more crucially, fine-tuning.

2. We are the first to study how prompt variations impact belief probing performance, showing that
models’ representations are sensitive to prompt variations, even when such variations should be
beneficial.

3. We show that by using contrastive activation addition it is possible to improve models’ reasoning
performance by steering their activations without the need to train any probe.

2 RELATED WORK

Machine Theory of Mind Theory of Mind (ToM) has been studied in cognitive science and
psychology for decades (Gurney et al., 2021). Mirroring efforts to understand ToM in humans,
an increasing number of works in the computational sciences have investigated means to equip
AI with similar capabilities. Previously proposed models that aim to implement a machine ToM
have been based on partially observable Markov decision processes (POMDP) (Doshi et al., 2010;
Han & Gmytrasiewicz, 2018), Bayesian methods (Baker et al., 2011; 2017) and deep learning
methods (Rabinowitz et al., 2018; Bara et al., 2021; Wang et al., 2022; Duan et al., 2022; Liu et al.,
2023a; Bortoletto et al., 2024c;a;b). Recent advances in LMs have sparked interest in evaluating
their ToM capabilities. Various benchmarks have been proposed, aiming to measure LMs’ ability to
understand and reason about the beliefs, goals, and intentions of others (Le et al., 2019; He et al.,
2023; Kim et al., 2023; Gandhi et al., 2023; Xu et al., 2024; Tan et al., 2024; Sclar et al., 2023;
Ma et al., 2023b; Wu et al., 2023). Additionally, efforts have been made to enhance LMs’ ToM
through prompting techniques (Zhou et al., 2023b; Moghaddam & Honey, 2023; Wilf et al., 2023). A
new direction of research explores LMs’ internal representation of mental states. Zhu et al. (2024)
demonstrated that LMs linearly encode beliefs from different agents’ perspectives, and manipulating
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these representations can enhance ToM task performance. While Zhu et al.’s work is a crucial initial
step, our work dives deeper into LMs’ internal belief representations, offering a broader insight into
these mechanisms.

Probing neural representations Initially proposed by Alain & Bengio (2017), probing has emerged
as a common method for determining if models represent particular features or concepts. In the
realm of LMs, numerous works used probing to demonstrate that these models acquire rich linguistic
representations. These representations span syntactic and semantic concepts such as syntactic cate-
gories, dependency relations, co-reference, and word meaning (Conneau et al., 2018; Tenney et al.,
2018; 2019; Rogers et al., 2021; Li et al., 2021; Hernandez & Andreas, 2021; Marks & Tegmark,
2023; Liu et al., 2023b). A separate line of work explored if and how LMs represent the world, i.e.,
whether they possess a world model. Li et al. (2021) showed that LMs track the states of entities
within a context. Other works showed that LMs exhibit representations reflecting non-linguistic
concepts in the world, which LMs have never observed (Abdou et al., 2021; Patel & Pavlick, 2022;
Li et al., 2023b; Nanda et al., 2023). An emergent line of work that is particularly relevant to our
work used probing to explore if LMs have agent models, for example, if they can represent beliefs of
self and others (Zhu et al., 2024; Bortoletto et al., 2024a). While representing an important first step
towards understanding the internals of Theory of Mind in LMs, experiments in (Zhu et al., 2024) are
limited in settings and models considered. In this work, we contribute with extensive experiments that
employ a wider variety of LMs and a wider range of settings. Furthermore, we also explore possible
memorisation issues in the probes.

Prompt analysis Research on prompt robustness in LMs is still in its infancy but has quickly
sparked much interest. On one hand, previous work has shown that LMs are vulnerable to prompt
alterations like token deletion or reordering (Ishibashi et al., 2023), biased or toxic prompts (Shaikh
et al., 2023) and similarity to training data (Razeghi et al., 2022). On the other hand, instruction-
tuned models have proved to be more robust against prompt variation, even when using misleading
instructions (Webson & Pavlick, 2022). Other works have shown the importance of input-output
format (Min et al., 2022) and of demonstration example ordering for few-shot performance (Zhao
et al., 2021; Lu et al., 2022; Zhou et al., 2023a). In this work, we shift our focus from analysing how
sensitive model outputs are to how model representations change. Our work, along with (Gurnee
et al., 2023), is one of the first to explore how prompt design affects how accurately models represent
concepts. In particular, Gurnee et al. (2023) have studied whether LMs’ representations of space
and time are robust to prompt variations. In stark contrast, we explore for the first time the effect of
prompt variations on how models represent mental states internally.

Activation editing Recent advancements in NLP have introduced innovative techniques for con-
trolling and manipulating text generation models. While weight editing proposed to modify models’
weights (Meng et al., 2022; Ilharco et al., 2022; Orgad et al., 2023), activation editing has emerged
as an alternative way to influence model behaviour without any additional fine-tuning (Li et al.,
2023b; Hernandez et al., 2023). This approach involves manipulating the internal representations
of models to direct their outputs towards desired outcomes. One notable method in this domain is
inference-time intervention (Li et al., 2023c, ITI), which has been proposed to enhance truthfulness
in LMs. ITI involves training linear probes on contrastive question-answering datasets to identify
“truthful” attention heads and then shifting attention head activations during inference along the
identified truthful directions. In contrast, activation addition (Turner et al., 2023, AA) and contrastive
activation addition (Rimsky et al., 2023, CAA) offer ways to generate steering vectors by only using
LMs’ activations. Zhu et al. have used ITI to show that it is possible to manipulate LMs’ internal
representations of mental states. In this work, we show that using CAA can further improve LMs’
ToM capabilities without the necessity of training any probe. Remarkably, CAA operates at the
residual stream level, eliminating the need for a fine-grained search over attention heads.

3 EXPERIMENTAL SETUP

3.1 PROBING

In line with previous work (Zhu et al., 2024) we linearly decode belief status from the perspective
of different agents by using probing (Alain & Bengio, 2017). Probing involves localising specific
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Noor sees her coworker swapping the milk.
Belief: The milk pitcher contains almond milk. 

 True,  True

Noor does not see her coworker swapping the milk.
Belief: The milk pitcher contains almond milk. 

 True,  False

Story: Noor is working as a barista at a busy
coffee shop. Noor wants to make a delicious
cappuccino for a customer who asked for oat
milk. Noor grabs a milk pitcher and �lls it with
oat milk. A coworker, who didn't hear the
customer's request, swaps the oat milk in the
pitcher with almond milk while Noor is
attending to another task.

Figure 1: Example of false belief from our probing datasets. The labels yp and yo correspond to DP
p

and DP
o , respectively. By manipulating the protagonist’s percepts after the causal event we obtain

two scenarios: true belief and false belief.

concepts in a neural model by training a simple classifier (called a probe) on model activations to
predict a target label associated with the input data. To provide a formal definition, we adopt a similar
notation to the one introduced in (Belinkov, 2022). Let us define an original model f : x 7→ ŷ that is
trained on a dataset DO = {x(i), y(i)} to map input x to output ŷ. Model performance is evaluated by
some measure, denoted PERF(f,DO). A probe gl : fl(x) 7→ ẑ maps intermediate representations of
x in f at layer l to some property ẑ, which is the label of interest. The probe gl is trained on a probing
dataset DP = {x(i), z(i)} and evaluated using some performance measure PERF(gl, f,DO,DP ).
In our case, f is an autoregressive language model that given a sequence of tokens x outputs a
probability distribution over the token vocabulary to predict the next token in the sequence. Our probe
is a logistic regression model gl : ẑ = Wal + b trained on neural activations fl(x) = al to predict
binary belief labels y = {0, 1}.

3.2 DATASET

Following Zhu et al. (2024) we use the BigToM benchmark (Gandhi et al., 2023). BigToM is
constructed using GPT-4 (Achiam et al., 2023) to populate causal templates and combine elements
from these templates. Each causal template is set up with a context and a description of the protagonist
(e.g. “Noor is working as a barista [. . . ]”), a desire (“Noor wants to make a cappuccino”), a percept
(“Noor grabs a milk pitcher and fills it with oat milk”), and a belief (“Noor believes that the pitcher
contains oat milk”). The state of the world is changed by a causal event (“A coworker swaps the oat
milk in the pitcher with almond milk”). The dataset constructs different conditions by changing the
percepts of the protagonist after the causal event, which will result in different beliefs. In this work,
we focus on the Forward Belief setting proposed by (Zhu et al., 2024) in which models have to infer
the belief of the protagonist given the percepts of the causal event, P (belief|percepts). We report
additional details in Appendix A.1.1

Probing datasets We consider two probing datasets: DP
p = {x(i)

p , z
(i)
p }, where the labels z

(i)
p

correspond to ground-truth beliefs from the protagonist perspective, and DP
o = {x(i)

o , z
(i)
o }, where

the labels z(i)o reflect the perspective of an omniscient oracle. DP
p and DP

o are built by pairing each
story in BigToM with a belief statement, as shown in Figure 1. After prompting the model with a
story-belief pair x we cache the residual stream activations fl(x) at the final token position for all
residual streams (see Figure 5).

3.3 MODELS

Zhu et al. (2024) have used two models for their experiments: Mistral-7B-Instruct (Jiang et al., 2023)
and DeepSeek-7B-Chat (Bi et al., 2024) – both being the same size and fine-tuned. In contrast, we
study two families of LMs that offer us options in model sizes and fine-tuning: Pythia (Biderman
et al., 2023) and Llama-2 (Touvron et al., 2023). While Llama-2 offers “chat” versions fine-tuned
using supervised learning and RLHF, Pythia’s open-source training set (Gao et al., 2020) ensures that
there is no data leakage1. Additionally, we consider a version of Pythia-6.9B fine-tuned on a mixture

1Llama-2 was released later than BigToM.
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of open-source instruction datasets (Wang et al., 2024), which we refer to as Pythia-6.9B-chat.2 A
summary of the models we study is reported in Table 2.

3.4 PROBING EXPERIMENTS

We aim to contribute to understanding how LMs represent beliefs of self and others by proposing
a set of extensive probing experiments across LMs that differ in architecture, size, and fine-tuning
approach. Our approach is generally similar to the one used by Zhu et al. (2024), but we make a
different operational choice: While Zhu et al. (2024) trained probes on each attention head for every
layer, we train probes on the residual stream for every layer. We opted to use the residual stream as it
integrates information from both the attention and feed-forward components, potentially encoding
richer representations. Additionally, since the residual activations directly contribute to the final
output predictions, probing them may better align with understanding the model’s behaviour for
downstream tasks.

Model size and fine-tuning We first report experiments to better understand the effect of model
size and fine-tuning on belief probing accuracy. Specifically, we ask the following questions: Is
there a relation between model size and probing accuracy? (RQ1) Does fine-tuning an LM with
instruction-tuning or RLHF have an effect on probing accuracy? (RQ2) To answer these questions
we performed the same probing experiment across all our models and compared the results.

Sensitivity to prompting By using a single prompt design, previous work left the impact of prompt
design on probing accuracy unclear (Zhu et al., 2024). Our second set of experiments aims to explore
how belief representations are sensitive to different prompts. Research on prompt robustness in
language models is still in its infancy and focused mainly on revealing vulnerability to prompt
alternations on downstream performance (Min et al., 2022; Ishibashi et al., 2023; Shaikh et al., 2023;
Leidinger et al., 2023; Sclar et al., 2024). In contrast, we study how the input influences models’
representations by asking: Are models’ internal belief representations robust to prompt variations?
(RQ3) To answer this question we define four prompt variations:

• Random: Following Gurnee & Tegmark (2024), we add 10 random tokens to the belief statement.

• Misleading: Each story is followed by two belief statements, one pertinent to the story and one
randomly chosen from another.

• Time Specification: The prompt specifies that the belief statement refers to the end of the story. We
study this variation because some belief statements can be true (false) at the story’s beginning but
false (true) at the end. For example, consider the story in Figure 1: if Noor does not witness the
swap, in the end, she will believe the pitcher contains almond milk (yp = True). However, if the
same belief is referred to at the beginning of the story, then it is false (yp = False).

• Initial Belief : We explicitly reveal the protagonist’s initial belief (e.g. “Noor believes that the
pitcher contains oat milk”) in the story to test whether it biases the representations of LMs.

While all maintaining conceptual and semantic parity with the Original prompt used in (Zhu et al.,
2024), Random and Misleading are expected to negatively impact LMs’ representations, while Time
Specification and Initial Belief are supposed to have a positive influence. Robust representations of
mental states should exhibit minimal sensitivity to these alterations. Our experiments compare probe
accuracy across different model sizes, fine-tuning, and prompt variations. Examples of prompts are
reported in Appendix A.1.4.

Memorisation Although linear, our probes possess many learnable parameters – up to 16, 385
for Llama-2-70B. In principle, this allows them to engage in significant memorisation (Alain &
Bengio, 2017). Our final set of probing experiments answers the following question: Are the probes
memorising their training data? (RQ4) To answer this question, before training the probes, we project
the probing datasets DP

p and DP
o onto their k largest principal components using PCA to obtain

probes with substantially fewer parameters.

2https://huggingface.co/allenai/open-instruct-pythia-6.9b-tulu
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Figure 2: Belief probing accuracy across models with different architecture, size and fine-tuning.

3.5 CONTRASTIVE ACTIVATION ADDITION

Our final set of experiments builds upon the findings of Zhu et al. (2024), who showed that employing
trained probes with inference time intervention (Li et al., 2023c, ITI) could enhance LMs’ performance
on ToM tasks. We take a step further and ask: Can we enhance LMs’ performance by manipulating
their activations without the need for training dedicated probes? (RQ5) To find an answer we use
contrastive activation addition (Rimsky et al., 2023, CAA), an extension of activation addition (Turner
et al., 2023, AA) that computes steering vectors to control LMs’ behaviour. Steering vectors are
computed as the average difference in residual stream activations between pairs of positive and
negative instances of a specific behaviour. Formally, given a dataset D of triplets (p, cp, cn), where
p is a prompt, cp is a positive completion, and cn is a negative completion, CAA computes a mean
difference vector vmd

l for layer l as:

vmd
l =

1

|D|
∑

p,cp,cn

al(p, cp)− al(p, cn)

During inference, these steering vectors are multiplied with an appropriate coefficient α and added at
every token position of the generated text after the prompt. CAA has two main advantages over ITI:
First, it eliminates the need to train probes. Second, it operates at the residual stream level, making
it easier to use than methods that intervene on specific attention heads like ITI. While CAA has
been used to control alignment-relevant behaviour, such as hallucinations, refusal, and sycophancy
(Rimsky et al., 2023), we are the first to apply it to enhance LMs’ ToM reasoning. This can be
understood as isolating the direction in the LMs’ latent space corresponding to taking the perspective
of another agent. To evaluate both base and fine-tuned LMs, we rank their answers to the ToM
questions according to pLM (a|q) (Petroni et al., 2019). We adopt the Forward Belief task split used in
(Zhu et al., 2024) to compute the steering vectors. Additionally, we evaluate the transferability of the
CAA steering vectors by applying them to two other BigToM tasks: Forward Action and Backward
Belief. We provide details about these tasks in Appendix A.1.1, and a more detailed explanation of
how ITI works in Appendix A.5.

4 RESULTS

4.1 EFFECT OF MODEL SIZE AND FINE-TUNING

Results from our study on model size and fine-tuning are shown in Figure 2. When considering oracle
beliefs, probing accuracy rapidly converges to 100, with larger models showing faster convergence
rates. The smallest Pythia-70m that performs slightly worse but still achieves 95% accuracy despite
having less than 0.6% of the parameters of Pythia-12B. This finding suggests that even small LMs
can effectively represent beliefs from an omniscient perspective.

For protagonist beliefs, accuracy also increases with model size, although there is a performance
gap between Llama-2 and Pythia. For example, Llama2-13B reaches around 80%, while Pythia-12B
achieves approximately 60%. This gap is likely due to Llama-2 being trained on nearly seven times
more tokens than Pythia. The figure also shows that accuracy at early layers is particularly low across
all models. We speculate that this is due to the initial coding strategy of LMs that uses the first layers
to combine individual tokens into more semantically meaningful representations (Gurnee et al., 2023).
Probes on fine-tuned LMs show significantly better accuracy with improvements of up to 29% for

6
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Figure 3: Sensitivity of protagonist belief probing accuracy to different prompt variations.

0 20
Layer

0

20

40

60

80

100

Ac
cu

ra
cy

Llama-2-7B

0 20
Layer

0

20

40

60

80

100
Llama-2-7B-chat

0 20 40
Layer

0

20

40

60

80

100
Llama-2-13B

0 20 40
Layer

0

20

40

60

80

100
Llama-2-13B-chat

0 50
Layer

0

20

40

60

80

100
Llama-2-70B

0 50
Layer

0

20

40

60

80

100
Llama-2-70B-chat

All 2 10 100 1000

0 2 4
Layer

0

25

50

75

100

Ac
cu

ra
cy

Pythia-70M

0 10 20
Layer

0

25

50

75

100
Pythia-410M

0 10
Layer

0

25

50

75

100
Pythia-1B

0 20
Layer

0

25

50

75

100
Pythia-6.9B

0 20
Layer

0

25

50

75

100
Pythia-6.9B-chat

0 20
Layer

0

25

50

75

100
Pythia-12B

Figure 4: To investigate potential memorisation in the probes, we compare the probing accuracy
obtained by using the original set of activations (All) with the accuracy obtained by considering only
the first n = {2, 10, 100, 1000} principal components. For Llama2: All(7b) = 4096, All(13b) = 5120,
All(70b) = 8192. For Pythia: All(70m) = 512, All(410m) = 1024, All(1b) = 2048, All(6.9b) = 4096,
All(12b) = 5120. We report results for protagonist beliefs. Results for oracle are shown in Figure 8.

Llama2-7B-chat and 26% for Pythia-6.9B-chat with respect to their base version. Fine-tuned 7B LMs
outperform (Llama-2) or are on par (Pythia) with twice as large base models (12/13B), highlighting
the importance of fine-tuning in developing representations of others’ beliefs. This resonates with
cognitive psychology findings that ToM development is closely linked to social communication
(Tomasello, 2010; Sidera et al., 2018; Ma et al., 2023a), which instruction-tuning and RLHF may help
induce in LMs. For larger LMs, the improvements from fine-tuning decrease as model size increases
(Figure 6a). We characterise the relationship between probe accuracy and model size in Figure 6,
where we consider the best probe accuracy for every LM, i.e. the highest accuracy among probes {gl}
trained on {al} for a LM f . For Llama-2 base, the best probe accuracy scales logarithmically with
model size (R2 = 0.98, cf. Figure 6b), whereas for fine-tuned models it scales linearly (R = 1.0,
cf. Figure 6c). For Pythia base, the best probe accuracy also scales logarithmically with model size
(R2 = 0.96, cf. Figure 6d).
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Table 1: Comparison of the effects of ITI (Li et al., 2023c) and CAA (Rimsky et al., 2023) activation
editing methods on three tasks from BigToM (Gandhi et al., 2023). TB denotes a true belief task,
whereas FB denotes a false belief task. The numbers represent accuracy scores, with the difference
in performance compared to no intervention (No int.) indicated as subscripts (ITI − No int. and
CAA − No int.). An asterisk (∗) denotes a statistically significant difference from No int. based on a
McNemar’s test (McNemar, 1947) with p < 0.05.

Model Method Forward Belief Forward Action Backward Belief
TB FB Both TB FB Both TB FB Both

Llama-2-7b No int. 44 44 44 44 44 44 44 44 44
ITI 44+0 44+0 44+0 54+10 54+10 54+10 54+10 54+10 54+10

CAA 66∗+22 71∗+27 54+10 66∗+22 57∗+13 54+10 60∗+16 74+30 54+10

Llama-2-7b-chat No int. 56 56 55 69 55 37 56 56 55
ITI 58+2 58+2 57+2 69+0 55+0 37+0 58+2 60+3 57+2

CAA 70+14 72∗+16 57+2 69+0 67+12 53+16 66+10 84∗+27 57∗+2
Llama-2-13b No int. 52 44 35 59 50 37 46 49 33

ITI 52+0 45+1 35+0 64+5 61+11 46+9 48+2 59+10 42+9

CAA 85∗+33 88∗+44 66∗+31 71∗+12 69∗+19 55∗+18 75∗+29 92∗+43 59∗+26
Llama-2-13b-chat No int. 84 56 47 78 51 38 72 48 31

ITI 84+0 65+9 59+12 78+0 58+7 47∗+9 72+0 60+12 48+17

CAA 97∗+13 94∗+38 91∗+44 80∗+2 71∗+20 54∗+16 97+25 94∗+46 87∗+56
Llama-2-70b No int. 90 87 78 93 52 48 73 53 32

ITI 90+0 90+3 78+0 94+1 55+3 50+2 77+4 58+5 37+5

CAA 99∗+9 97∗+10 95∗+17 94∗+1 80∗+28 73∗+25 94+21 92∗+39 83∗+51
Llama-2-70b-chat No int. 69 75 56 86 56 52 63 59 52

ITI 69+0 76+1 59+2 86+0 56+0 52+0 63+0 60+1 54+2

CAA 92∗+23 97∗+22 89∗+32 87∗+1 75∗+19 60∗+8 88+25 92∗+33 80+28

Pythia-70m No int. 41 41 37 46 45 41 44 41 37
ITI 54+13 54+13 54∗+17 54+8 54+9 54∗+13 54+10 54+13 54+17

CAA 62∗+21 56∗+15 54∗+17 59∗+13 60∗+15 58∗+17 63+19 56∗+15 54∗+17
Pythia-410m No int. 48 45 45 44 44 44 44 47 44

ITI 55+7 62∗+17 52+7 54∗+10 54∗+10 54+10 60+16 63+16 56+12

CAA 67∗+19 64∗+19 61∗+16 56∗+12 63∗+19 56∗+12 69+25 63∗+16 60+16

Pythia-1b No int. 44 44 44 44 44 44 44 44 44
ITI 54+10 54+10 54+10 54+10 54+10 54+10 54+10 54+10 54+10

CAA 59∗+15 62∗+18 54+10 57+13 59+15 56+12 57+13 60+16 54+10

Pythia-6.9b No int. 44 44 44 44 44 44 44 44 44
ITI 45+1 54+10 44+0 54+10 54+10 54+10 54+10 54+10 54+10

CAA 56+12 71∗+27 55+11 55+11 63+19 55+11 55+11 71∗+27 55+11

Pythia-6.9b-chat No int. 55 54 28 36 64 20 44 67 30
ITI 57+2 54+0 28+0 44+8 71+7 32+12 44+0 67+0 30∗+0
CAA 68+13 65+11 57∗+29 54+18 75+11 48∗+28 58∗+14 67+0 54∗+24

Pythia-12b No int. 44 44 44 44 44 44 44 44 44
ITI 54+10 54+10 54+10 54+10 54+10 54+10 54+10 54+10 54+10

CAA 54+10 64∗+20 54+10 60+16 58+14 55+11 54+10 67+23 54+10

4.2 SENSITIVITY TO PROMPTING

Figure 3 compares protagonist probe accuracy across various prompt variations for different models,
considering their architecture, size, and fine-tuning. As can be seen from the figure, providing the
protagonist’s Initial Belief in the story yields higher probe accuracy compared to the Original prompt
(Figure 1). Accuracy for all the other prompt variations is generally lower than Original. On one
hand, misleading prompts hurt performance across all models. This finding resonates with Webson
& Pavlick (2022) who found that instruction-tuned models, despite being more robust, are still
sensitive to misleading prompts. On the other hand, Time Specification unexpectedly does not help
in disambiguating belief states in different time frames, as we hypothesised in §3.4. Additionally,
models show sensitivity to Random tokens placed before the belief statement. Results for oracle
beliefs are reported in Figure 7 and indicate that models maintain high accuracy. Misleading prompts
slightly reduce performance to around 95%. In summary, these experiments show that LMs possess
robust belief representations when taking an omniscient perspective, whereas their representations of
others’ beliefs are more susceptible to prompt variations.
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4.3 MEMORISATION EFFECTS IN THE PROBES

Figure 4 and Figure 8 show probe accuracies obtained by training a probe on the top k principal
components of the intermediate representations for protagonist and oracle, respectively. Specifically,
we consider k = {2, 10, 100, 1000}, spanning several orders of magnitude. For models with hidden
dimensions smaller than 1000, we skip this value. For all models, it is generally possible to recover
most of the original accuracy by training probes on a number k of principal components of the
activations that is more than one order of magnitude smaller, indicating no strong evidence of
memorisation in the probes.

4.4 CONTRASTIVE ACTIVATION ADDITION

We finally compare models’ accuracy on three BigToM tasks in Table 1. Each model has been
evaluated three times: without any intervention, using ITI, and using CAA. Hyperparameter details
can be found in Appendix A.6. Note that we use steering vectors computed using the Forward Belief
task for all three tasks to test their generalisability.

As can be seen from the table, performance without intervention is generally lower across tasks and
model sizes, with the larger Llama-2-70B and Llama-2-70B-chat models exhibiting higher accuracy.
Performance for Pythia models of different sizes does not change much, with the fine-tuned Pythia-
6.9B-chat often showing better performance on single true belief (TB) and false belief (FB) tasks
but not on their conjunction (Both). ITI demonstrates modest improvements over no intervention for
Llama-2 models. Improvements for Pythia models are consistent and higher, up to +17. The only
exception is Pythia-6.9B-chat, for which ITI is not always beneficial.

CAA consistently delivers the most substantial accuracy improvements across all models and tasks,
up to +56 for Llama-2-13B-chat on the (Backward Belief ), which Gandhi et al. have identified as the
hardest task. Despite its relatively small size, Llama-2-13B-chat excels in all three tasks when using
CAA. Larger 70B models often achieve accuracies close to or exceeding 90%. Smaller models like
Pythia-70M and Pythia-410M also show significant gains with CAA, though the absolute performance
is still lower than Llama-2. Overall, our results indicate that it is possible to effectively enhance
ToM reasoning in LMs without needing to train any probe, which yields even improved results.
Furthermore, we show that CAA steering vectors generalise well, yielding substantial performance
gains across all ToM tasks.

5 LIMITATIONS AND FUTURE WORK

Our study focused on expanding experiments from the model perspective, examining architectures,
sizes, fine-tuning, and prompt design, all within the same dataset. A natural extension of our work
is replicating these experiments across multiple datasets and more model families. Given the rapid
pace of new language model releases, studying all available models is impractical, particularly
considering computational resource constraints. Nevertheless, our approach can be adopted to support
new benchmarks or to evaluate newly released models as they become available. Finally, while
in this work we focused on beliefs, our experimental approach can be adapted to investigate how
LMs represent desires, emotions, intentions, or preferences. Future research exploring other types of
mental states can use our findings to determine whether similar or distinct patterns emerge.

6 CONCLUSION

Our study addresses a significant gap in understanding LMs by investigating their internal represen-
tation of mental states. We conducted an extensive benchmark involving various LM types, sizes,
fine-tuning approaches, and prompt designs to examine the robustness of these representations. Our
findings reveal that scaling LMs’ size and, in particular for smaller LMs, fine-tuning are key to devel-
oping representations of others’ beliefs. We are the first to demonstrate that such prompt variations
influence model representations, and we also demonstrate the feasibility of enhancing models’ ToM
reasoning by steering their activations without training any probe. Overall, our work contributes
valuable insights into the factors influencing LMs’ mental state representations, shedding light on
avenues for improving their performance in ToM tasks.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

A.1.1 BIGTOM

BigToM (Gandhi et al., 2023) is constructed using GPT-4 (Achiam et al., 2023) to populate causal
templates and combine elements from these templates. Each causal template is set up with a context
and a description of the protagonist (e.g. “Noor is working as a barista [. . . ]”), a desire (“Noor wants
to make a cappuccino”), a percept (“Noor grabs a milk pitcher and fills it with oat milk”), and a belief
(“Noor believes that the pitcher contains oat milk”). The state of the world is changed by a causal
event (“A coworker swaps the oat milk in the pitcher with almond milk”). The dataset constructs
different conditions by changing the percepts of the protagonist after the causal event, which will
result in different beliefs – true or false. Gandhi et al. (2023) generated 200 templates and extracted
25 conditions from each template, resulting in 5,000 test samples. In this work, following Zhu et al.
(2024) and Gandhi et al. (2023) we focused on the 6 most important conditions, corresponding to
true and false beliefs on the following three tasks:
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• Forward Belief : given the protagonist’s percepts of the causal event, infer their belief:
P (belief|percept).

• Forward Action: infer the protagonist’s action given their desire and percepts of the causal event.
Before inferring the action, one would need to first implicitly infer the protagonist’s belief:∑

belief P (action|percept,belief,desire).
• Backward Belief : infer the protagonist’s belief from observed actions. This requires to first implicitly

infer the protagonist’s percepts:
∑

percepts P (belief|action,percept,desire).

The dataset was released under the MIT license and can be accessed at https://github.com/
cicl-stanford/procedural-evals-tom. We report one example for each task in the
boxes below, where the text defining true belief or false belief task is shown in blue and red,
respectively.

Example of Forward Belief

Noor is working as a barista at a busy coffee shop. Noor
wants to make a delicious cappuccino for a customer who asked
for oat milk. Noor grabs a milk pitcher and fills it with
oat milk. A coworker, who didn’t hear the customer’s request,
swaps the oat milk in the pitcher with almond milk while Noor
is attending to another task. Noor sees her coworker swapping
the milk. Noor does not see her coworker swapping the milk.
Does Noor believe the milk pitcher contains oat milk or
almond milk?
a) Noor believes the milk pitcher contains oat milk.
b) Noor believes the milk pitcher contains almond milk.

Example of Forward Action

Noor is working as a barista at a busy coffee shop. Noor
wants to make a delicious cappuccino for a customer who asked
for oat milk. Noor grabs a milk pitcher and fills it with
oat milk. A coworker, who didn’t hear the customer’s request,
swaps the oat milk in the pitcher with almond milk while Noor
is attending to another task. Noor sees her coworker swapping
the milk. Noor does not see her coworker swapping the milk.
What will Noor do?
a) Noor will make the cappuccino using the milk in the
pitcher.
b) Noor will open the fridge once again to take out the oat
milk and replace the almond milk with oat milk.

Example of Backward Belief

Noor is working as a barista at a busy coffee shop. Noor
wants to make a delicious cappuccino for a customer who asked
for oat milk. Noor grabs a milk pitcher and fills it with
oat milk. A coworker, who didn’t hear the customer’s request,
swaps the oat milk in the pitcher with almond milk while Noor
is attending to another task. Noor opens the fridge again and
reaches for the oat milk. Noor makes the cappuccino using the
milk in the pitcher.
Does Noor believe the milk pitcher contains oat milk or
almond milk?
a) Noor believes the milk pitcher contains oat milk.
b) Noor believes the milk pitcher contains almond milk.
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A.1.2 LINEAR PROBES

Our probing approach is illustrated in Figure 5. For our experiments, we cache activations at the
residual stream level. To perform ITI and compare it to CAA, we also cache attention heads activations.
We trained the probes using the L-BFGS solver (Liu & Nocedal, 1989) with L2 penalty with inverse
of regularisation strength 10 for a maximum of 1000 iterations. We use zero as random seed.

tokens embed +

...

unembed logits

MLP

+ ...

layer 

Story: Noor is working as a
barista at a busy coffee shop [...]

Belief: The milk pitcher contains
almond milk.

Figure 5: Given a tokenised input, we cache the internal activations for all attention heads hi,
i = 0, . . . ,H − 1, and residual streams. In our experiments, we use residual stream activations.

A.1.3 LANGUAGE MODELS

A detailed summary of the models we use in this work is shown in Table 2. Pythia was released under
the Apache 2.0 license. Llama-2 is licensed by Meta for both researchers and commercial entities
(Touvron et al., 2023). For all the models, we set the temperature to zero.

Table 2: The 12 models used in this work. The checkmark indicates we additionally study the fine-
tuned (Chat) version of the model.

LM Size + Chat Tokens dmodel Layers

Llama-2 (Touvron et al., 2023)
7B ✓ 2T 4096 32

13B ✓ 2T 5120 40
70B ✓ 2T 8192 80

Pythia (Biderman et al., 2023)

70M 300B 512 6
410M 300B 1024 24

1B 300B 2048 16
6.9B ✓ 300B 4096 32
12B 300B 5120 40

A.1.4 EXAMPLES OF PROMPT VARIATIONS

Default prompt

Story: Noor is working as a barista at a busy coffee shop.
Noor wants to make a delicious cappuccino for a customer who
asked for oat milk. Noor grabs a milk pitcher and fills it
with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk
while Noor is attending to another task. Noor does not see
her coworker swapping the milk.
Belief: Noor believes the milk pitcher contains oat milk.
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Random prompt

Story: Noor is working as a barista at a busy coffee shop.
Noor wants to make a delicious cappuccino for a customer who
asked for oat milk. Noor grabs a milk pitcher and fills it
with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk
while Noor is attending to another task. Noor does not see
her coworker swapping the milk.
Belief: 장士 decided [_ countries sections behoSOUR gminy bef
Noor believes the milk pitcher contains oat milk.

Misleading prompt

Story: Noor is working as a barista at a busy coffee shop.
Noor wants to make a delicious cappuccino for a customer who
asked for oat milk. Noor grabs a milk pitcher and fills it
with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk
while Noor is attending to another task. Noor does not see
her coworker swapping the milk.
Belief: Noor believes the milk pitcher contains oat milk.
Belief: The water valve is closed.

Time specification prompt

Story: Noor is working as a barista at a busy coffee shop.
Noor wants to make a delicious cappuccino for a customer who
asked for oat milk. Noor grabs a milk pitcher and fills it
with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk
while Noor is attending to another task. Noor does not see
her coworker swapping the milk.
Belief: In the end, Noor believes the milk pitcher contains
oat milk.

Initial belief prompt

Story: Noor is working as a barista at a busy coffee shop.
Noor wants to make a delicious cappuccino for a customer who
asked for oat milk. Noor grabs a milk pitcher and fills it
with oat milk. Noor believes that the milk pitcher contains
oatmilk. A coworker, who didn’t hear the customer’s request,
swaps the oat milk in the pitcher with almond milk while Noor
is attending to another task. Noor does not see her coworker
swapping the milk.
Belief: Noor believes the milk pitcher contains oat milk.

A.2 MODEL SIZE AND FINE-TUNING

To characterise the relationship between probe accuracy and model size we consider the best probe
accuracy for every LM, i.e. the highest accuracy among probes {gl} trained on {al} for a LM f . For
Llama-2 base, the best probe accuracy scales logarithmically with model size (R2 = 0.98, Figure 6b),
whereas for fine-tuned models it scales linearly (R = 1.0, cf. Figure 6c). For Pythia base, the best
probe accuracy also scales logarithmically with model size (R2 = 0.96, Figure 6d).
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Figure 6: To characterise the relationship between probe accuracy and model size we consider the
best probe accuracy for every LM, i.e. the highest accuracy among probes {gl} trained on {al} for a
LM f . (a) Best accuracy for Llama-2 models of different size. Numbers on the vertical dotted lines
indicate the gain in accuracy between base and fine-tuned model of the same size. (b) Logarithmic fit
for Llama-2 base. (c) Linear fit for Llama-2 fine-tuned (chat). (d) Logarithmic fit for Pythia base.

A.3 SENSITIVITY TO PROMPTING

Accuracy on oracle belief probing for different prompt variations are reported in Figure 7.
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Figure 7: Sensitivity of protagonist belief probing accuracy to different prompt variations.

A.4 DIMENSIONALITY REDUCTION

Oracle probe accuracy obtained by considering only the first n = {2, 10, 100, 1000} principal
components are shown in Figure 8.

A.5 INFERENCE-TIME INTERVENTION

Inference-time intervention (Li et al., 2023c, ITI) employs a two-step process. First, it trains a probe
for each attention head across all layers of a LM. These probes are evaluated on a validation set, and
the top-k heads with the highest accuracy are selected. Subsequently, during inference, ITI steers the
activations of these top heads along the directions defined by their corresponding probes. Formally,
ITI can be defined as an additional term to the multi-head attention:

xl+1 = xl +

H∑
h=1

Qh
l

(
Atthl (P

h
l xl) + ασh

l θ
h
l

)
where xl is the residual stream at layer l, H is the number of attention heads, α ∈ R+ is a coefficient,
σh
l is the standard deviation of activations along the direction identified by the probe trained on

attention head h at layer l, and θhl is zero ofr not-selected attention heads.
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Figure 8: (Oracle) To investigate potential memorisation in the probes, we compare the probing
accuracy obtained by using the original set of activations (All) with the accuracy obtained by
considering only the first n = {2, 10, 100, 1000} principal components. For Llama2: All(7b) = 4096,
All(13b) = 5120, All(70b) = 8192. For Pythia: All(70m) = 512, All(410m) = 1024, All(1b) = 2048,
All(6.9b) = 4096, All(12b) = 5120.

A.6 ACTIVATION EDITING HYPERPARAMETERS

Table 3 reports results obtained on the three BigToM tasks with the hyperparameters used for ITI (Li
et al., 2023c) and CAA (Rimsky et al., 2023). We report an example of prompt used for evaluation in
the box below.

Prompt used for downstream evaluation (Section 4.4)

Answer the questions based on the context. Keep your answer
concise, few words are enough, maximum one sentence. Answer
as ’Answer:<option>)<answer>’.

Story: Noor is working as a barista at a busy coffee shop.
Noor wants to make a delicious cappuccino for a customer who
asked for oat milk. Noor grabs a milk pitcher and fills it
with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk
while Noor is attending to another task. Noor does not see
her coworker swapping the milk.
Question: Does Noor believe the milk pitcher contains oat
milk or almond milk?
Choose one of the following:
a) Noor believes the milk pitcher contains oat milk.
b) Noor believes the milk pitcher contains almond milk.
Answer:

A.7 COMPUTE RESOURCES

We ran our experiments on a server running Ubuntu 22.04, equipped with eight NVIDIA Tesla
V100-SXM2 GPUs with 32GB of memory and Intel Xeon Platinum 8260 CPUs.

A.8 CODE

Our code is provided as supplementary material and it will be made public under the MIT licence at
https://www.link-will-be-here.com.
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Table 3: Activation intervention: comparison between ITI (Li et al., 2023c) and CAA (Rimsky et al.,
2023). For ITI, the subscript indicates the value of the coefficient αITI used: AccαITI

. For CAA, the
subscript indicates first the value of the coefficient α used and second the layer l at which intervention
takes place: AccαCAA,l.

Model Method Forward Belief Forward Action Backward Belief
TB FB Both TB FB Both TB FB Both

Llama-2-7b No int. 44 44 44 44 44 44 44 44 44
ITI 440.0 440.0 440.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0
CAA 662.0,11 711.0,31 542.0,0 662.0,11 572.0,12 542.0,2 602.0,11 741.0,31 542.0,2

Llama-2-7b-chat No int. 56 56 55 69 55 37 56 56 55
ITI 5815.0 5815.0 5715.0 690.0 550.0 370.0 5810.0 6010.0 5710.0
CAA 701.0,11 721.5,10 571.0,1 690.0,0 671.5,11 531.5,12 661.0,11 841.5,10 571.0,0

Llama-2-13b No int. 52 44 35 59 50 37 46 49 33
ITI 520.0 4515.0 350.0 6415.0 6120.0 4620.0 4820.0 5920.0 4220.0
CAA 852.0,12 882.0,14 662.0,12 711.5,10 692.0,13 551.0,39 752.0,10 922.0,13 591.5,12

Llama-2-13b-chat No int. 84 56 47 78 51 38 72 48 31
ITI 840.0 6515.0 5915.0 780.0 5815.0 4715.0 720.0 6015.0 4815.0
CAA 971.0,12 941.0,12 911.0,12 801.5,11 711.0,13 541.5,13 971.5,10 941.5,12 871.5,12

Llama-2-70b No int. 90 87 78 93 52 48 73 53 32
ITI 900.0 9020.0 780.0 9415.0 5520.0 5015.0 7710.0 5815.0 3710.0
CAA 992.0,16 971.5,19 951.5,18 941.5,2 802.0,19 731.5,18 942.0,18 922.0,19 831.5,19

Llama-2-70b-chat No int. 69 75 56 86 56 52 63 59 52
ITI 690.0 7610.0 5910.0 860.0 560.0 520.0 630.0 6010.0 5410.0
CAA 921.5,18 971.5,25 891.5,18 871.5,17 751.0,19 601.0,19 881.5,18 921.0,19 801.5,18

Pythia-70m No int. 41 41 37 46 45 41 44 41 37
ITI 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0
CAA 621.0,2 561.0,1 541.5,1 591.0,2 601.0,3 581.0,2 631.0,2 561.0,2 541.5,1

Pythia-410m No int. 48 45 45 44 44 44 44 47 44
ITI 5520.0 6220.0 5220.0 5420.0 5420.0 5420.0 6020.0 6320.0 5620.0
CAA 672.0,4 642.0,4 612.0,0 562.0,6 631.5,12 562.0,6 692.0,4 632.0,0 602.0,0

Pythia-1b No int. 44 44 44 44 44 44 44 44 44
ITI 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0
CAA 592.0,8 622.0,5 542.0,0 572.0,4 592.0,10 562.0,4 572.0,3 602.0,5 542.0,0

Pythia-6.9b No int. 44 44 44 44 44 44 44 44 44
ITI 4520.0 5420.0 440.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0
CAA 561.5,12 711.5,9 552.0,23 552.0,4 631.5,11 552.0,4 552.0,23 711.5,9 552.0,23

Pythia-6.9b-chat No int. 55 54 28 36 64 20 44 67 30
ITI 5715.0 540.0 280.0 4415.0 7115.0 3215.0 440.0 670.0 300.0
CAA 681.5,15 651.5,12 571.5,11 541.5,10 751.5,5 481.5,10 581.5,15 670.0,0 541.5,10

Pythia-12b No int. 44 44 44 44 44 44 44 44 44
ITI 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0
CAA 542.0,0 642.0,9 542.0,0 602.0,11 582.0,11 552.0,12 542.0,0 672.0,10 542.0,0

A.9 SOCIETAL IMPACT

While our work is foundational and remains distant from specific applications with direct societal
impact, it’s important to recognise the ethical implications of modelling and predicting mental
states. Handling sensitive aspects of individuals’ inner experiences and emotions requires careful
consideration to avoid reinforcing biases or misunderstanding psychological nuances.
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