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Abstract

Generative molecular design is becoming an increasingly valuable approach to
accelerate materials discovery. Besides comparably small amounts of polymer data,
also the complex higher-order structure of synthetic polymers makes generative
polymer design highly challenging. We build upon a recent polymer representation
that includes stoichiometries and chain architectures of monomer ensembles and
develop a novel variational autoencoder (VAE) architecture encoding a graph
and decoding a string. Most notably, our model learns a latent space (LS) that
enables de-novo generation of copolymer structures including different monomer
stoichiometries and chain architectures.

1 Introduction

There is a constant demand for novel or improved polymers with superior properties. AI-assisted
in-silico design of molecules is becoming an increasingly valuable approach to accelerate molecular
discovery, yet, generative AI for synthetic polymers is still in its infancy [1]. One reason is that
the overall amount of available, accessible, and sufficiently detailed polymer data is rather small
compared to other domains [2, 3, 4]. Second, unlike small molecules, the definition of an accurate
machine-readable data representation for synthetic polymers is difficult, due to their stochastic nature
and different structural levels [4, 5, 6] (see Figure 1a). Besides monomer types, the latter includes
stoichiometry of monomers, chain architecture, and linking structure, referred to as higher-order
structural information in the following.

Past machine learning (ML) works in polymer informatics often relied on fingerprinting approaches
(see an overview in [5]) which are not suitable for generative design as fingerprints cannot be
mapped back to molecular structures. End-to-end learning making use of string [7, 8, 9] or graph
[10, 11, 12] representations has recently shown to be successful for polymer property prediction
and can also pave the way for generative design given appropriate representations are available.
Walsh et al. [13] propose a data model that captures information from raw materials, over reaction
conditions and processing steps, to material characterization and properties. Aldeghi and Coley [14]
proposed a representation for polymers consisting of monomer graphs connected via weighted edges
reflecting connectivity patterns. Very recently, Schneider et al. [15] introduced a text-based notation
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(G-BigSMILES) building on BigSMILES [16] which extends the BigSMILES to include molecular
weight distributions and connection probabilities of repeat units.

A generative model including higher-order structural information is currently lacking. Encoding
higher-order structure of polymers in a continuous latent space allows for property-guided generation
including connectivity patterns and further. Previous approaches either operate on the repeat unit
level only [8, 17] or work with explicit representations of polymers, i.e. the exact sequence of repeat
units [18]. We propose a Graph-to-String VAE for molecular ensembles that takes chain architecture,
connection probabilities, and monomer stoichiometries into account. Concurrently, Dollar et al. [19]
proposed for the first time a graph-to-string Transformer VAE for small molecular design.

2 Methods

Polymer representations and data set Our work combines a graph [14] and equivalent text-based
representation, shown in Figure 1(a). The graph representation connects monomer graphs through
weighted edges reflecting the probabilities of connections (chain architecture). The string repre-
sentation encodes the stoichiometry and connection probabilities as numbers next to the monomer
SMILES. Prospectively, including the linking structure besides stoichiometry and chain architecture
will be important in future work and can be easily done for the string representation (e.g. using
natural language descriptors) but requires more thought for the graph representation. We train our
model on the data set from Aldeghi and Coley [14] which is built upon the polymer space of Bai et al.
[20]. The data set combines eight A-monomers with 682 B-monomers through stoichiometries of
1:1, 1:3, and 3:1 and three chain architectures (alternating, random, block). This leads to a data set of
42966 copolymers (see Figure 1(c)) including the polymer properties ionization potential and electron
affinity (DFT-calculated). The main model, discussed in this work, is trained on an augmented version
of the data set, as described in Appendix A.2.

Model architecture and hyperparameters The model is a graph-to-string VAE, encoding the
polymer graph to a latent representation z and decoding it to the corresponding polymer string. The
information content in each representation is equivalent. As graph encoder we use a re-implementation
[21] of the edge-centered message passing graph neural network (wDMPNN) as in [14] and for
decoding we develop a transformer. The encoder is composed of one wDMPNN layer (with k=3)
and subsequently two parallel wDMPNNs, one for each µ and σ with a node feature dimension
of 300 and global mean pooling. µ and σ are then compressed and reparametrized [22] to the
latent bottleneck z with a dimension of 32 which is fed to the transformer decoder consisting of
four sequential layers with each four attention heads. Notably, in addition to the encoder-decoder
attention, calculated between z and previously generated token embeddings, we concatenated z
with each token embedding after the positional encoding (in the following called improved latent
space feeding) slightly different to Fang et al. [23] who added it element wise. We vary between
two tokenization strategies, a simple SMILES-based tokenization (SM-tokenization) and one with
an extended vocabulary based on the Regression Transformer (RT-tokenization)[24]. More details
are provided in Appendix A.3. We further train the VAE in a normal setup (with β = 1) and with
cyclical KL annealing [25] (β-schedule). We also test the impact of the weighted cross entropy over
normal cross entropy as reconstruction loss function, as frequencies of tokens are uneven.
In addition, we train a supervised model variation using property information on the original labelled
data set. We add a feed-forward neural network for both polymer properties (two output neurons)
using the latent space as input and add an additional loss term (see Appendix A.4).

Evaluation metrics The evaluation of different model architectures and training procedures is based
on the common quantitative metrics: reconstruction, validity, novelty, and uniqueness, as outlined in
Table 2 in the Appendix. During inference, i.e. the novel generation of molecules from latent codes,
we use beam search with beam_size = 5 to decode the polymer strings. While the reconstruction is
evaluated on the test set, the other metrics are evaluated for 16000 polymers which we sampled from
Gaussian noise (sampled set). Furthermore, we qualitatively compared LS structures using UMAP
dimensionality reduction to evaluate the structure of the encoded hierarchical information [26].
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Figure 1: (a) Structural levels of polymers: Monomers, combination of monomers and stoichiometry,
chain architecture, chain linking structure (not considered in our work) (b) The graph-2-string VAE
during training encodes a graph [14] to a continuous representation z which is fed to a transformer
decoder to reconstruct the polymer as string. (c) The model is trained and tested on the data set
in [14] and an augmented version. (d) In inference mode, we sample from the trained latent space to
decode novel polymers.

3 Results

We perform several experiments on the model architecture and training procedure (see Table 1), using
five seeds each and reporting mean and standard deviation. Our best performing model leads to
accurately reconstructed polymers (92%) including their higher-order structural information (chain
architecture and stoichiometry) as well as to novel (77%) and unique (39%) newly generated polymers.
For this model, both reconstructed test set and generated sample set consist of >99.5% chemically
valid molecules. The validity of generated molecules is comparable to SOTA models for small
molecule design benchmark data sets, such as MOSES [27] and ZINC [28], however, novelty and
uniqueness are lower. This is likely due to MOSES and ZINC covering a much broader chemical
space, i.e. 1.6M and 250K molecules respectively, in comparison to the data set we use which covers
only 690 monomer chemistries.
As shown in Figure 2(a)-(c), the trained latent space is structured mostly according to A-monomer
type, while the different stoichiometries and chain architectures can be found throughout the latent
space. When sampling 512 molecules around a seed molecule, we observe changes in the monomers,
stoichiometry, and chain architecture, as shown in Figure 2(e) and (f). In Appendix B.4, we addition-
ally show an example of stepwise interpolation between two known molecules, revealing how changes
in the latent space change the decoded polymers. The main sources of novelty during sampling
are novel combinations of monomers, stoichiometry, and chain architecture and novel monomer
chemistries. Novel stoichiometries and chain architectures are not yet observed, since the data set
only comprises three classes each.
We also trained a property-guided model, based on model configuration 6. In Appendix B.3, we
show that the property-guided LS is less organized according to the type of A-monomer but also
considers the stoichiometry. Also, we observe property gradients in the LS. However, compared
the unsupervised model trained on the augmented data set, the property-guided model shows lower
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novelty (31.03%) and uniqueness (13.43%) when sampling, most likely due to the dataset.
The code and data used in this study can be found at https://github.com/GaVogel/G2SVAE/ under
MIT license.

Influence of training procedure We find that across different model architectures, the use of
the augmented data set, as described in Appendix A.2, increases not only the novelty but also the
reconstruction accuracy on the same test set. The increase in novelty is expected since we increased
the number of possible A-monomers. We further observe that the use of cyclical KL annealing
[25] improves the LS organization (see Appendix B.1) and convergence of the network as well as
reconstruction accuracy, novelty, and uniqueness, i.e. compare models 1 and 3 in Table 1.

Table 1: Evaluation metrics (reconstruction, novelty, and uniqueness) reported for six different model
configurations. We varied training procedure (β-schedule; use/no use of cyclical KL annealing),
latent space feeding (z-feeding; with options concat.: our improved latent space feeding and E-D-att.:
encoder-decoder attention between latent code z and token embeddings), tokenization strategy (tok;
with options SM: SMILES-based tokenization and RT: Regression Transformer-like tokenization),
and loss function (loss; with options ce: cross-entropy and wce: weighted cross-entropy).

Model configuration Metrics in %

Nr. β-schedule z-feeding tok loss reconstruction novelty uniqueness

1 no concat. SM ce 44.40 ± 16.74 59.17 ± 11.86 14.34 ± 5.03
2 yes E-D-att. SM ce 16.20 ± 12.31 74.40 ± 23.10 18.64 ± 4.67
3 yes concat. SM ce 59.70 ± 26.19 73.53 ± 9.78 29.83 ± 5.49
4 yes concat. RT ce 91.07 ± 3.67 75.97 ± 3.30 39.00 ± 4.31
5 yes concat. SM wce 50.72 ± 11.70 74.51 ± 10.28 28.72 ± 5.58
6 yes concat. RT wce 92.12 ± 2.36 76.89 ± 6.40 39.43 ± 3.61

Influence of model architecture Our architectural change how the latent representation z is fed
to the Transformer decoder significantly improves LS organization and the considered evaluation
metrics. The model using the default encoder-decoder attention, with the encoder output being a
single z vector per sample (configuration 2), performs poorly regarding reconstruction and is also
limited in terms of uniqueness, as shown in Table 1. Our modification (see Section 2) improves
the performance in terms of reconstruction and uniqueness (see configuration 3). In Appendix B.2,
we further show differences in the LS organization and a detailed view on the evaluation metrics
including chemical validity in the extended results B.5 in Tables 3 and 4. It becomes apparent that
our modification mainly improves the reconstruction accuracy of the monomer chemistries and the
uniqueness of newly generated samples, implying that this architectural change could possibly also
improve Transformer-based VAEs for small molecules.
Further, we investigated how the tokenization strategy and the reconstruction loss function affect the
model performance. Comparing model configurations 3 and 4 as well as 5 and 6, we observe for both
loss functions that using the RT tokenization substantially increases the reconstruction accuracy and
validity of novel samples, and also improves the robustness as seen in the standard deviation of the
metrics in Table 1. The RT tokenization distinguishes between the numerical tokens in the polymer
strings, which are part of the stoichiometry and the chain architecture, and the numbers indicating ring
structures in the SMILES. In the extended results in Table 3, we see that the RT tokenization improves
the reconstruction accuracy of stoichiometry and chain architecture and with it the full reconstruction.
Moreover, we find that using the weighted cross-entropy loss slightly improves the evaluation metrics.
However, the improvements are small compared to the other architectural changes.
Note, that we see a high standard deviation across different random initializations in the model
metrics in Table 1. During the training mode, the reconstruction accuracy does not show this behavior
(Model 6: 99.04±0.10%, Model 5: 98.80±0.09%). This indicates, that the main source of variation
lies in the autoregressive decoding procedure during the inference mode. Extensive hyperparameter
tuning, e.g. complexity of the decoder and latent dimensions, and changes in the polymer string
representation (less repetitive) could likely decrease the gap in training and inference stability.
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Figure 2: Figures (a)-(c) show a UMAP projection of the trained latent space of model configuration
6 colored by (a) monomer A type, (b) stoichiometry, and (c) chain architecture. Figure (d) shows the
influence of structural levels of a polymer on the electron affinity (eV). While the largest influence
is attributed to monomer combinations, for a fixed monomer combination stoichiometry and chain
architecture have a non-negligible influence on the polymer property. Figure (e) shows example
molecules sampled from a seed molecule with changes in (i) B-monomer, (ii) A- and B-Monomer,
(iii) only the stoichiometry, and (iv) B-monomer and the chain architecture. Figure (f) shows the
frequency of structural changes for 512 sampled molecules, in red indicating novel monomers.

4 Conclusion

We develop a novel Graph-to-string VAE for generative polymer design that takes monomer com-
binations, stoichiometry, and chain architectures into account. The model is able to generate new
polymer structures including higher-order structural information with high chemical validity, high
novelty, and acceptable uniqueness.
As discussed, the main limitations of the current approach are the limited diversity of the data set
and the need for further hyperparameter tuning. The data set incorporates the information about
chain architecture and stoichiometry, yet it covers only a small part of the polymer space and was
built up computationally using a combinatorial approach. The limited variability in the data set most
likely causes lower uniqueness and novelty scores than in generative models for small molecules.
Furthermore, we highlight the need for further hyperparameter tuning as we observe larger variations
of the evaluation metrics for different initializations during inference of the model.
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A Additional details on method

A.1 Motivation for choice of architecture

The choice of encoder and decoder type aims to leverage the strengths of both molecular graph (2D)
and molecular string (1D) representations. The recently published polymer graph representation
and wDMPNN architecture [14] have shown promising results in structure-to-property learning for
polymers. Decoding this type of graph in a generative setup, however, necessitates a more intricate
development of a tailored graph decoder. Contrary, using a transformer-based decoder only requires
extending the molecular string to polymers, including stoichiometry and chain architecture. Notably,
we use concatenation of the latent embeddings with token embeddings to condition the string decoder
on the latent embeddings learned by the graph encoder, which especially improves the information
flow of the latent embedding during the autoregressive string generation.

A.2 Data augmentation and data split

We randomly split the original data set in train- (80%), validation- (10%), and test set (10%). Since
the data set is an exhaustive combination of monomers, stochiometries, and chain architectures, the
different data sets are at present highly similar. For future investigations a datasplit that excludes e.g.,
certain monomer combinations should additionally be investigated.
We increased the amount and diversity of training data by allowing B-B monomer combinations in
the training set. To introduce more variety in Monomer A, we combined all B-monomers with 20
randomly selected B-monomers, stoichiometries, and chain architectures. This increases the training
data by approximately a factor of three. The UMAP plot in Figure 2a shows that the augmented
polymer data and the original data are separated, most likely due to the still higher frequency of the
original A monomers.

A.3 Polymer string tokenization

The two tokenization strategies differ in how numbers in the polymer strings are tokenized. The
SM-tokenization uses the same vocabulary for the digits in the SMILES string and the digits in
the floating point numbers. The RT-tokenization is adopted from the Regression Transformer [24]
which distinguishes digits in SMILES and the digits in floating point numbers. We demonstrate the
difference using the number 0.125 and the monomer string [*:1]c1cc2sc3cc([*:2])sc3c2s1. In red we
highlighted the tokens that are encoded with the same vocabulary but represent a different meaning.

SM-tokenization: 0.125 → 0 . 1 2 5

SM-tokenization: [*:1]c1cc2sc3cc([*:2])sc3c2s1 → [* :1 ] c 1 c c 2 s c 3 c c ( [* :2 ] ) s c 3
c 2 s 1

Using the RT-tokenization, the digits in floating point numbers are enriched by the information of
their decimal position (..,0,-1,-2, -3, ...) which mitigates this issue of using the same vocabulary:

RT-tokenization: 0.125 → 0_0 . 1_-1 2_-2 5_-3

RT-tokenization: [*:1]c1cc2sc3cc([*:2])sc3c2s1 → [* :1 ] c 1 c c 2 s c 3 c c ( [* :2 ] ) s c 3 c
2 s 1

A.4 Loss function

The loss function for the VAE training consists of two terms, the reconstruction loss and the Kullback-
Leibler (KL) divergence which is weighted with the parameter β ≥ 0.

L = Lrecon + β · LKL (1)

For the reconstruction loss term Lrecon, we use cross-entropy based on the polymer string representa-
tion, which is typically used to evaluate language models. Moreover, we use weighted cross-entropy
which accounts for the frequency of tokens of the vocabulary in the training set by assigning higher
weights to less frequent tokens. This means that the model penalizes wrong predictions of less
frequent tokens more. For the property-guided model variation, we add an additional loss term
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LMSEy1,y2 that is the sum of the mean squared errors for the two properties (ionization potential and
electron affinity) scaled by α, in our study set to 0.1 to balance the contribution of the loss terms.

L = Lrecon + β · LKL + α · LMSEy1,y2 (2)

A.5 Definition of evaluation metrics

Table 2 shows the definition of the metrics that are used to evaluate different models.

Table 2: Metrics used for evaluation of different experiments.

Metric Data Definition

Reconstruction test set Percent of correctly reconstructed molecules
Validity test set, sampled set Percent of valid molecules evaluated using RDKit’s

molecular structure parser [29]
Novelty sampled set Percent of molecules not present in training set [29]
Uniqueness sampled set Percent of unique molecules [29]
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B Additional results

B.1 Cyclical KL annealing vs. normal VAE training

Cyclical KL annealing [25] schedules the parameter β between 0 and 1 during training. We use five
cycles over 20 epochs, with 0-ratio=0.2, increase-ratio=0.5, 1-ratio=0.3. From Figure 3, we can draw
the conclusion that cyclical KL annealing slightly improves latent space organization, i.e. monomer
A types are clustered better in Figure 3b than Figure 3a. Furthermore, in Tables 3 and 4, we see the
improvements in reconstruction, novelty and uniqueness metrics. The loss in validity can be mainly
attributed to invalid chain architecture and stoichiometry (monomer validity is around 99%) and is
mitigated when using the RT tokenization.

(a) (b)

Figure 3: UMAP plots of trained latent space for (a) normal VAE with β = 1 until convergence and
(b) using cyclical KL annealing for 20 epochs and then β = 1 until convergence.

B.2 Feeding of latent space to Transformer

Figures 4(a),(c), and (e) show that the model using only encoder-decoder attention mostly organizes
the latent space according to the chain architecture and stoichiometry and less to the monomer
chemistry. Despite chain architecture and stoichiometry influencing polymer properties (see Figure 2)
the monomer types are the predominant structural factor for polymer properties and should therefore
intuitively be the main focus for LS organization. The model with our improved latent space
feeding learns to prioritise the monomer chemistry over the stoichiometry and chain architecture.
(see Figure 4(b),(d), and (f)). Moreover, our implementation improves the evaluation metrics as
demonstrated in Table 1 and Tables 3 and 4.

B.3 Property-guided model training

Figures 5 show the latent space arrangements for the model with joint property prediction from
the latent space, as described in Section 2. Compared to the unsupervised model variation, we
observe that the latent space is structured less according to monomer A type but more according
to the stoichiometry and property (here: electronic affinity) values. One advantage of this model
variation is that the latent space shows gradients for the polymer properties, potentially facilitating
property-guided inverse design using gradient-based optimization in the latent space.

B.4 Interpolation between two molecules

We performed stepwise interpolation between two known molecules, i.e. between two latent codes
zm1 and zm2. Here, we created ten latent codes zi,m1→m2, i ∈ {1, 2, 3, . . . , 10}., by interpolating
elementwise in equidistant steps between the latent codes of the start and end molecule. Figure 6
visualizes the interpolation path between two copolymers, with monomer A in the upper part and
monomer B in the lower part. We observe that the stoichiometry and chain architecture are changing
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(a) (b)

(c) (d)

(e) (f)

Figure 4: UMAP plots of trained latent space with A-monomer type, chain architecture (random,
block, alternating), and stoichiometry (3:1, 1:1, 1:3) as color labels for two different model archi-
tectures. (a), (c), (e): Feeding of latent code z is implemented only via encoder-decoder attention
(model configuration 2). (b), (d), (f): Improved latent space feeding, additionally concatenating z
with the token embeddings after positional encoding (model configuration 3).
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(b) (c)

(a)

Figure 5: Latent space of property-guided model architecture trained on original data set. UMAP
plots are colored by (a) A-monomer type, (b) stoichiometry (3:1, 1:1, 1:3) and (c) Electron affinity.

less frequently. In contrast, the monomer chemistry changes already for smaller variations in the
latent vector. None of the intermediates are found in our data set, all are novel and valid copolymers.

3:1, random 3:1, random 3:1, block 1:1, random 1:1, random 1:1, random 1:1, random

Start molecule

2x 2x 1x 1x 2x 2x 2x
End molecule

Figure 6: Step-wise interpolation path between two molecules revealing how changes in latent space
lead to changes in the decoded polymer (highlighted in blue). The path shows changes in monomer A
(upper molecules), monomer B (bottom molecules), stoichiometry and chain architecture. The green
number indicates if multiple steps decode to the same polymer.
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B.5 Extended results tables

In the extended results, we report more details on the single metrics, e.g. the reconstruction accuracy
of the different structural levels (monomers, stoichiometry, chain architecture), and all five runs for
each model. Table 3 shows the metrics related to the reconstructed test data and Table 4 shows the
metrics related to the novel sampled data as described in Section 2.
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Table 3: Extended results on reconstructed data
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Table 4: Extended results on newly generated data
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