
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EIDETIC LEARNING: AN EFFICIENT AND PROVABLE
SOLUTION TO CATASTROPHIC FORGETTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Catastrophic forgetting – the phenomenon of a neural network learning a task t1
and losing the ability to perform it after being trained on some other task t2 – is
a long-standing problem for neural networks (McCloskey & Cohen, 1989). We
present a method, Eidetic Learning, that provably solves catastrophic forgetting. A
network trained with Eidetic Learning – here, an EideticNet – requires no rehearsal
or replay. We consider successive discrete tasks and show how at inference time an
EideticNet automatically routes new instances without auxiliary task information.
An EideticNet bears a family resemblance to the sparsely-gated Mixture-of-Experts
layer Shazeer et al. (2016) in that network capacity is partitioned across tasks
and the network itself performs data-conditional routing. An EideticNet is easy
to implement and train, is efficient, and has time and space complexity linear in
the number of parameters. The guarantee of our method holds for normalization
layers of modern neural networks during both pre-training and fine-tuning. We
show with a variety of network architectures and sets of tasks that EideticNets are
immune to forgetting. While the practical benefits of EideticNets are substantial,
we believe they can be benefit practitioners and theorists alike. We will release the
code repository containing the EideticNet PyTorch framework upon publication.1

1 INTRODUCTION

0 50000 100000 150000 200000 250000 300000
Training iteration

0.960

0.965

0.970

0.975

0.980

0.985

Ac
cu

ra
cy

Test set accuracy per task

Task 0
Task 1
Task 2
Task 3
Task 4

Task 5
Task 6
Task 7
Task 8
Task 9

Figure 1: Accuracy of an MLP trained on 10 tasks of Permuted MNIST in a single run of our method.
Lines (bands) are a moving average (standard deviation) over a window of 10 steps. See Table 3 for a
comparison with other methods.

While artificial neural networks (ANNs) have been demonstrated time and again to be effective
devices for learning tasks, they are flawed in task retention. The tendency to lose the ability to

1Note to reviewers: we are awaiting the completion of the legal review process, so are not yet able to provide
a URL for our repository.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

perform a task t1 after being trained on a subsequent task ti>1 – catastrophic forgetting – is a long-
standing problem for neural networks (Rumelhart et al., 1986; McClelland et al., 1987; McCloskey &
Cohen, 1989).

Many deep neural networks are overparameterized, or have excess capacity, for a given task. This
is evinced by their ability to minimize training loss even under a random labeling of a training set
(Zhang et al., 2017; 2021). In this work, we demonstrate that excess capacity can be exploited to
prevent catastrophic forgetting. We present a method, Eidetic Learning, that uses an ANN’s excess
capacity to guarantee that an ANN trained this way – an EideticNet – does not forget. Eidetic
Learning is so named because eidetic memory is perfect recall – typically of visual stimuli, although
Eidetic Learning’s guarantees hold for all modalities of input data. Figure 1 illustrates the correctness
of our method and its implementation.

Eidetic Training exploits iterative pruning (Han et al., 2015): after training a task to convergence,
prune neurons until training set accuracy drops below a threshold. Then freeze the unpruned neurons,
delete the synapses from pruned to unpruned neurons (directionally), and recycle the pruned neurons
for subsequent tasks. We employ structured pruning and select neurons to prune using ℓ1 or ℓ2 weight
magnitude pruning, or Taylor pruning (Molchanov et al., 2017).

Figure 2 illustrates the architectural simplicity of EideticNets. A naive partitioning of important
neurons for task ti from unimportant neurons for the task results in disjoint subnetworks and deprives
tasks tj>i the opportunity to learn more efficiently by reusing features learned during ti (Figure 2a).
EideticNets enable this more efficient learning by allowing subsequent tasks to benefit from features
learned during training of previous tasks (Figure 2b)2. There may be some value to defining an
EideticNet consisting of both nested and disjoint subnetworks – imagine, for instance, several nested
layers followed by one or more disjoint layers – but an evaluation of this possibility is out of the
scope of the current work.

Eidetic Learning does not require rehearsal or replay to maintain or improve performance on past or
future tasks. However, to eliminate the need for task IDs at inference time, it trains a final task classifier
on a meta task dataset. The meta task dataset is constructed from all data (xit , yit) ∀t ∈ {1, . . . , T}
from already-trained tasks by seteting the targets yit of each specific task t to t. At inference time, the
task ID is obtained from the task classifier and the appropriate classifier for the instance is invoked.
This is done in a single pass of the body of the network. The hidden states of the ANN’s penultimate
layer are passed first through the task-classification head, then through the selected classifier for the
instance. Alternative approaches, such as passing a new instance through each classifier head and
choosing one or more classifier head predictions based on e.g. entropy, may be useful. Here we solve
this problem in a supervised manner.

A common workflow in industry is to train a deep ANN on a large number of samples from
some modality and domain, then transfer the copious information in its learned representations
to downstream tasks. Transferring to a downstream task can leave the deep ANN’s parameters
unchanged and instead involve training a single new layer (or “head”) atop the hidden states of the
deep ANN. In this scenario, the deep ANN is pre-trained on task t0 and transfer learning means
training on task t1. Optimal performance on downstream tasks sometimes requires updating the
parameters of the deep ANN, however, which prevents parameter reuse across downstream tasks and
raises the inference costs of large-scale deployments. EideticNets address this problem by enabling
a new workflow: train the deep ANN and, for every downstream task ti : i ∈ {1, . . . ,K} that
requires updating the deep ANN, train the deep ANN as an EideticNet to ensure that (1) all of its
learned representations are preserved on the original pre-training task, (2) the downstream tasks are
as accurate as possible, and (3) parameter reuse is preserved and operational expenses are minimized.

The parallel between transfer learning and continual learning that we draw in the previous paragraph
highlights an important distinction between EideticNets and some other approaches to catastrophic
forgetting. Other approaches (Kirkpatrick et al., 2017; Ritter et al., 2018; Zenke et al., 2017) see the
scope of catastrophic forgetting as encompassing both representation space and classification space.
EideticNets are designed with representation space in mind and ensure that forgetting is impossible
in representation space. Thus, where some approaches to mitigating catastrophic forgetting have a
single classifier head for all tasks in their reported evaluations, EideticNets have one head per task.

2The sparsity pattern in Figure 2b is the same as that introduced in Golkar et al. (2019) and was discovered
independently by the authors of this manuscript.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

t1 t1 t1 t2 t2

t1 t1 t2 t2

(a) Without nesting, features are disjoint
across tasks.

t1 t1 t1 t2 t2

t1 t1 t2 t2

(b) Nesting efficiently reuses an ANN’s
capacity.

Figure 2: Eidetic Learning eliminates forgetting by preserving important neurons, deleting unim-
portant synapses, and recycling unimportant neurons for subsequent tasks. Preserving important
neurons can be done in several ways. Figure a depicts a network in which the neurons of task t2 are
completely separated from the neurons of task t1. This is an inefficient use of a network’s capacity.
Since task t2 is trained after task t1, allowing the neurons important to t2 to benefit from the features
learned by t1 in the previous layer is more efficient. This latter way is shown as the dashed orange
lines in Figure b. A detailed depiction along with the parameters’ configurations is also provided in
figs. 5a and 5b.

0 25000 50000 75000 100000 125000 150000 175000 200000
Training iterations

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 n

eu
ro

ns
 in

 n
et

wo
rk

Neurons masked
Neurons frozen

Figure 3: In Eidetic Training, the fraction of neurons pruned while training a task increases until
training set accuracy drops, and the unpruned neurons are frozen cumulatively. Figure shows the
progress of training with a ResNet50 trained on Sequential CIFAR100 with five tasks.

Ours is a practical approach with strong guarantees that supports contemporary ANN architectures
without modification, whereas Kaushik et al. (2021) requires a separate batch normalization layer per
task.

Since EideticNets have only a few hyperparameters, and do not require changes to the loss function,
they are in practice quite easy to train. We have developed a PyTorch framework that makes
creating an EideticNet a straightforward task: when writing the class that defines your network,
simply subclass our framework’s EideticNetwork class and specify the relationships among
your network’s layers. An example of code that trains an EideticNet on multiple tasks is shown
in Listing 1. Calling train_task (line 6) automatically selects the minimal subset of neurons
necessary to train a task without loss of accuracy. This code works out of the box without changes to
the network architecture, optimizer, or loss function.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1 model = MyEideticNet()
2

3 for t, train_loader in enumerate(train_loaders):
4 model.prepare_for_task(t)
5 optimizer = optim.AdamW(model.parameters(), lr)
6 model.train_task(
7 train_loader, optimizer=optimizer, ...
8 )

Listing 1: Example of training an EideticNet using our framework.

There are numerous other benefits to EideticNets.

• Efficiency: The time and memory complexity of EideticNets is linear in the number of
parameters and training a task required no rehearsal or replay.

• Robustness: An EideticNet can be trained on significantly different subsequent tasks without
harming performance on existing tasks and – unlike regularization approaches to catastrophic
forgetting – without requiring a additional hyperparameter search just to preserve the tasks
for which the network has already been trained.

• Stability: A neuron is either important or not for the tasks trained so far and its importance
persists across tasks, resulting in a stable training procedure.

• Interpretability: For each new task, EideticNets account for the incremental amount of
capacity required, so calculating the amount of excess capacity remaining for any given
layer in the network is straightforward.

• Maintainability: a layer in an EideticNet can be widened to add more capacity when needed,
because there are no synaptic connections from unimportant neurons in layer ℓ to important
neurons in layer ℓ+ 1.

2 NOTATIONS AND RELATED WORK

Notations. Define a neural network as a function fθ ∈ F : X → Z from function class F
with training data (x0

i , yi) ∈ (X ,Z) parameterized by θ := {Wℓ : ℓ ∈ {1, . . . , L}} with each
Wℓ ∈ RNℓ×Dℓ , where Nℓ is the number of neurons of layer ℓ and Dℓ the input dimensions. Note that
Dℓ = Nℓ−1. Let σ be a pointwise function. Without loss of generality, let σ(x) = x. Consider the
setting in which a neural network is trained on tasks ti : i ∈ {1, . . . ,K}. We denote the parameters
after training task tj as θtj . Let N denote the set of all neurons in an ANN and Nti the smallest set
of neurons necessary to perform task ti.

For a neural network fθtj (xi) to be immune to forgetting, it must guarantee the following conditions
for all tasks ti and layers ℓ.

(I) Persistence: The neurons in layer ℓ important to task ti should remain unchanged during
the training of any subsequent task tj>i.

(II) Resistance: The neurons in layer ℓ − 1 that are not important to ti no longer affect the
ti-important neurons in layer ℓ once training of ti is complete.

For any task ti, the persistence condition preserves the weights necessary to perform the task and the
resistance condition ensures that the hidden states entering any layer remain the same ∀xi ∈ X . Note
that the resistance condition is transitive. These conditions are sufficient to guarantee the immutability
of fθtj (xi) during training of any subsequent task. Catastrophic forgetting is thus solved by any
method that guarantees these conditions.

Related works. Catastrophic forgetting is a much-studied problem. Previous work has exploited
the sparsity pattern shown in Figure 2b. Golkar et al. (2019) introduce Continual Learning via Neural
Pruning (CLNP). Using this sparsity pattern, they report state of the art results on Permuted MNIST
with a feed-forward network. We show in Table 3 that our method is competitive. The complexity
of the number hyperparameters of CLNP is linear in the number of layers of a network. Similarly,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Mallya et al. (2018) start with a pre-trained network and learn one separate binary mask, using
a hyperparameter to control the degree of sparsity, for each layer and task. Mallya & Lazebnik
(2018) induce sparsity via iterative pruning with structured weight magnitude pruning. We contrast
our method with this previous work in Table 1. Our method only requires a constant number of
hyperparameters per ANN, which makes it feasible for real-world use cases, we investigate pruning
with scoring on a network-wide normalized scale (Molchanov et al., 2017), instead of per layer, and
provide insights into the interplay between continual learning and normalized scoring. Further, our
method does not require selecting a task ID before performing the forward pass through the ANN.
Finally, the implementation of our method is comprehensive and open source, and is tightly integrated
with PyTorch’s pruning.

Method Open source Hyperparameters Pruning Forward transfer Task IDs
Piggyback ✓ Per-layer and task Weight ✗ Required
PackNet ✓ Per-network Per-task masks ✓ Required
CNLP ✗ Per-layer ℓ1 penalty ✓ Required
Ours ✓ Per-network Weight, Taylor ✓ Not required

Table 1: Comparison of our method to previous sparsity-inducing work on catastrophic forgetting.
No methods support backward transfer of features to previous tasks. We describe an extension to
Eidetic Learning in Section 5 to support backward transfer.

Jung et al. (2020) proposes a regularization-based strategy where consecutive tasks are associated
to important and unimportant neurons. After a task is learned and its important neurons identified,
a regularizer helps to maintain the connection to the important neurons of previous task to prevent
forgetting. It’s unclear whether this works with standard optimization algorithms, as the work employs
proximal gradient descent. Overall, this approach aims for the same goal as Eidetic Training, but the
guarantees of our method are stronger.

Kirkpatrick et al. (2017) intermittently estimate the importance of parameters via the Fisher informa-
tion of the gradients and, during subsequent training, regularize the parameters that are important to
previous tasks to remain close to their pre-trained values. Other methods compute the importance of
parameters online rather than intermittently (Ritter et al., 2018; Zenke et al., 2017). Kao et al. (2021)
investigates catastrophic forgetting in recurrent networks and proposes to combine regularization and
projected gradient descent.

A approach that similarly enables subsets of neurons to specialize on specific tasks is the sparsely-
gated mixture of experts layer (MoE) Shazeer et al. (2016). An MoE layer is a set of discrete layers,
each one trained to specialize in a task or subset of tasks in the training data. The MoE layer is
equipped with a data-conditional routing module that determines which expert has specialized in
a particular input x. An MoE layer and an EideticNet resemble one another in that they support
data-conditional routing. An EideticNet has the advantage of enabling feature reuse across tasks.

Other approaches have been proposed to exploit sparsity in useful ways. Most notable among them,
in relation to our work, are NestedNet (Kim et al., 2018) and Russian Doll Networks (Jiang & Mu,
2021). NestedNet allows for the identification of nested subnetworks within an ANN such that the
innermost network is the smallest and fastest, thereby enabling the selection, for a fixed task t1,
of the subnetwork with the latency and memory characteristics most suited to a target deployment
environment. For both of these approaches, the nesting is within layers. With EideticNets, the nesting
occurs across layers and subsequent tasks tj>i. Evci et al. (2022) describe Head2Toe, an approach to
multitask learning that selects from a pre-trained network the neurons that are important for a given
task.

3 EIDETIC LEARNING: A PRINCIPLED SOLUTION TO CATASTROPHIC
FORGETTING

We now sketch the procedure for training an EideticNet on tasks {t1, . . . , tK} and identify the steps
that enable EideticNets to satisfy both the persistence and resistance conditions. Starting with an
empty set F = ∅ for recording important neurons at each step, task ti+1 is trained with no impact on
previously-trained task ti thus:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

I Via iterative pruning, find Nti , the smallest set of neurons required to perform task ti without
loss of accuracy.

II Persistence: Update the set of frozen neurons F = F ∪Nti .
III Let R = N \ F be the set of neurons to recycle when training ti+1. (These neurons were

pruned in step I of this procedure.)
IV Reinitialize the neurons in R.
V Resistance: Prune the synaptic connections (r, nti) : {r ∈ R ∧ n ∈ Nti} only if r is a

neuron in Wℓ and nti is a neuron in Wℓ+(k≥1).
VI Train ti+1 in a conventional manner.

Freezing the important neurons for ti in step II ensures that EideticNets satisfy the persistence
condition. Before proceeding to train task ti+1, we reinitialize the unimportant neurons that were
pruned in step I. To satisfy the resistance condition, we prune their synaptic connections to neurons
in F in downstream layers. Once pruned, those synaptic connections are guaranteed to remain so,
because the connections are pruned by setting to 0 an input dimension of a neuron in the frozen set F .
Both conditions are satisfied and EideticNets thus cannot forget.

3.1 LAYERS OF AN EIDETIC NETWORK

We now describe how EideticNets are implemented within the layers of an ANN. At the end of this
section, we also propose an argument for why making self-attention layers of Transformers (Vaswani
et al., 2017) immune to catastrophic forgetting is challenging if not impossible.

Linear The linear layer simply applies the following operation to its input feature map x

Linear(x) = Wx+ b, (1)

where the bias b is optional, e.g., removed when that layer is followed by batch-normalization. During
training, both parameters W , b are trained. To extract excess capacity, we employ structured pruning
on W by zeroing-out multiple rows based on our pruning strategy. However, this is not enough to
ensure that subsequent training tasks will not impact the current task. In fact, we also need to ensure
that the remaining nonzero entries of W do not interact with already pruned units from the previous
layer–since those will be re-initialized and trained in subsequent tasks. As such, we also need to
propagate the previous layer’s pruning to the columns of W . Pruning of the bias vector b is done
simply by using the output unit pruning mask of W .

Convolution The convolutional layer is also a Linear layer, as in Equation (1), but with a special
structure on the parameters W and (optionally) b. In particular, if the input to the convolutional
layer is flattened as a vector x then the convolution operation makes W a circulant-block-circulant
matrix. In that setting, the structured pruning and previous layer pruning propagation is applied to the
channel dimensions. That is, during pruning, we select which of the output channels filters to entirely
prune, i.e., all the input_channels × width × height parameters for each output_channel filter. Then,
we also need to pruning the input_channels filters, i.e., for all the output_channels × width × height
parameters based on the previous layer pruning.

Batch normalization Recall that batch normalization (BN) Ioffe & Szegedy (2015) shifts and
scales the entries of the its input using four additional parameters µ,σ,β,γ. Define xk as kth

entry of feature map x and µk, σk, βk, γk as the kth entries of the BN parameter vectors µ,σ,β,γ,
respectively. Then we can write the BN layer mapping as

BN(z)k =
zk − µk

σk
γk + βk. (2)

The parameters µ,σ are computed as the element-wise mean and standard deviation of zℓ during
each mini-batch learning step, and as their moving average at evaluation time. The parameters β,γ
are learned.

In EideticNets, a BN layer is handled precisely as follows. The learnable parameters (β,γ) are
pruned and frozen according to the previous linear or convolutional pruning mask. Normally, during

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

training of subsequent tasks, the statistics µ,σ will continue to adapt to each new task. To guarantee
perfect preservation of the previously-trained tasks in BN layers, we also to (i) make the β,γ of the
previous tasks stay in evaluation mode when training subsequent tasks, and (ii) ensure that β,γ’s
internal running statistics are not updated.

This guarantees that BN layers perfectly retain statistics specific to a task ti and do not drift during
subsequent training. This is one of the key benefits of our method and our choice to employ structured
pruning makes this possible.

Residual connections It is common to add residual connections to deep ANNs to aid optimization.
Our strategy works the same regardless of the actual architecture of the internal block. Consider the
following case:

Rz +ReLU(BN(2)(W (2)ReLU(BN(1)(W (1)z)))). (3)

Hence, a typical residual block with two nonlinear layers. The internal block pruning for
W (2),W (1),BN(2),BN(1) should follow the previously introduced rule. But then, we also need to
handle R carefully as otherwise the output of the residual layer would shift with subsequent task
training (that would change parts of the output distribution of z). To ensure that we preserve our
guarantees, we can simply prune R as follows. Use the input unit mask of W (1) for the input units
of R (which are made so that the task separation is respected by construction), and use the output
unit mask of W (2) (or BN(2) since they are the same) for the output units of R. That construction
holds regardless of the use of nonlinearity in Equation (3), the use of BN, or the number of internal
layers–as long as the first and last layers’ constraints are the ones ported to R.

Recurrent and LSTM layers. Our proposed solution can be implemented with recurrent and gated
models out-of-the-box. In fact, all those models involve Linear operations (recall Equation (1)) and
element-wise nonlinearites and gates. Hence, once simply need to ensure that the relationship between
adjacent linear layers is known, e.g., in a vanilla RNN this would be between the input-hidden matrix
and the hidden-hidden recurrent matrix within a layer, and between the hidden-hidden recurrent
matrix of a layer,and the input-hidden matrix of the next layer, and ensure that the constrained are
respected between them. then, the use of the nonlinearity will not impact the results. An evaluation
of recurrent networks is out of scope for the current work?

4 EXPERIMENTS

In all experiments in this paper, we employed structured pruning. On each pruning iteration, we
selected the same percentage of neurons in each layer to prune. The selected neurons are those with
the lowest score. The scoring function is fixed during a particular experiment. Neuron scores are
either the p-norm, p ∈ {1, 2}, or the Taylor score (Molchanov et al., 2017). To limit the time required
for iterative pruning, we limited the maximum number of training epochs to recover from one pass of
pruning to a fixed number, and we designed the recovery loop to exit when training set accuracy is
within the threshold. All models are trained with the nested features of Figure 2b.

To select hyperparameters, we hold out 10% of the training set, train for three tasks, and choose
the set of hyperparameters with the best held-out set accuracy averaged across the three tasks. The
crucial hyperparameters are the pruning step size and the (training set accuracy) threshold for when
to stop pruning. The models and datasets with which we perform experiments, and the pruning
hyperparameters we searched for each, are shown in Table 2.

All networks were trained using the Adam optimizer and no weight decay on a single NVIDIA V100
GPU with 16 GB of on-chip memory.

Model architectures are as defined in Section 6.1.

Permuted MNIST To evaluate our approach on the Permuted MNIST (PMNIST) dataset, we use
the same setup as (Golkar et al., 2019) and others: a 2-hidden layer feed-forward network with 2000
hidden units, a learning rate of 0.002, the Adam optimizer, and a batch size of 256.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Dataset # Tasks Step sizes Stop thresholds Batch size Learning rate
MLP Permuted MNIST 10 1%, 5% .1%, 1% 256 2e-4

ResNet18 Imagenette 5 1%, 5% .3%, 3% 32 1.25e-5
ResNet50 CIFAR-100 5 1%, 5% .3%, 3% 256 1e-4

Table 2: Experimental setup and pruning hyperparameters used during hyperparameter search. The
step size is the percentage of neurons to prune in one pruning iteration and the stop threshold is the
percentage below the maximum-achieved training set accuracy at which iterative pruning stops. Once
the stop threshold is reached, the weights from the previous pruning iteration are restored, and Eidetic
Learning moves onto the next task.

The hyperparameter grid for this task included Dropout (Srivastava et al., 2014) with probabilities
{0, .03, .10}, due to the width of the layers. The grid also included whether to reduce the learning rate
by half between training and pruning. The best hyperparameters found when evaluating by holding
out 10% of the training set were: Taylor pruning, a step size of 5%, a stop-pruning threshold of 0.1%,
and a dropout probability of 0.1, and reducing the learning rate by half before starting to prune. The
results of the hyperparameter search for PMNIST are shown in Table in the appendix.

When training the final model, we used early stopping with a patience of 10 epochs on the training
set accuracy and a maximum number of 5 recovery epochs. The results of the final model are shown
in Figure 1. Once a task has been trained, accuracy on it remains constant as subsequent tasks are
trained. The competitiveness of our method on PMNIST is shown in Table 3.

Table 3: Mean and standard deviation of our method on 10 tasks of Permuted MNIST with 2000
neurons in each of the 2 hidden layers.

Method Accuracy (%)
Single Task SGD 98.48 ± 0.05
Kirkpatrick et al. (Kirkpatrick et al., 2017) 97.0
Zenke et al. (Zenke et al., 2017) 97.2
Cheung et al. (Cheung et al., 2019) 97.6
Golkar et al. (Golkar et al., 2019) 98.42 ± 0.04
Ours 98.31 ± 0.09

Deep networks We trained a deep residual network, ResNet50, with Sequential CIFAR100 with 10
tasks. We were only able to evaluate ℓ1 and ℓ2 weight magnitude pruning in this setting, due to the
tendency of Taylor pruning not to prune the layers of a network uniformly. We discuss this future in
the final section of this manuscript. The results are shown in Table 4.

High-resolution images To show the scalability of our method to high-resolution images, we
evaluate our method on 224× 224 images from Imagenette (Howard, 2019), a subset of images from
the ImageNet dataset (Deng et al., 2009). The images belong to 10 classes that are easy to classify
accurately. As such, they are likely to be classified correctly early in training. We evaluate on the
dataset in a sequential setting, with classes grouped in pairs across 5 tasks.

We trained ResNet50 with a batch size 32 with learning rate 1.25e-5. We fixed the early stopping
patience for pre-training at 10 epochs and did not reduce the learning rate after pre-training. The
maximum number of recovery training epochs during iterative fine-tuning was 10. We show per-
task accuracy in Table 5 averaged across three runs with different random seeds. We observe that

Table 4: Mean and standard deviation over 3 independent runs of accuracy of ResNet50 on Sequential
CIFAR100 with 5 tasks.

Task 0 Task 1 Task 2 Task 3 Task 4

80% (±0.01) 78% (±0.02) 75% (±0.03) 70% (±0.04) 75% (±0.03)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Mean and standard deviation over 3 independent runs of accuracy of ResNet18 on Sequential
Imagenette with 5 tasks.

Task 0 Task 1 Task 2 Task 3 Task 4

88% (±0.00) 67% (±0.10) 81% (±0.07) 84% (±0.01) 77% (±0.08)

EideticNets are able to produce strong per-class performances, even when learning the last task, i.e.,
when the remaining excess capacity is reduced from the previous 4 tasks.

0 25000 50000 75000 100000 125000 150000 175000 200000
Training iteration

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Test set accuracy per task

Task 0
Task 1
Task 2

Task 3
Task 4
Task 5

Figure 4: Test set accuracy of ResNet50 trained on Sequential CIFAR100 with five tasks.

Effect of task classifier on per-class accuracy As mentioned, EideticNets do not require knowl-
edge of the task ID at inference time. This is in sharp contrast with other methods and we believe
this is more aligned with real-world scenarios. EideticNets effectively assign the task ID of a new
instance. To illustrate the impact of this capability on performance, we compare task routing with an
EideticNet to oracle task routing using a small and a large network. Table 7 shows MNIST-5 and
CIFAR10-5 and with a small MLP trained with Eidetic learning using ℓ1, ℓ2, and Taylor pruning,
the evolution of the per-class performances with the trained task router, against an oracle task router.
As shown, the per-class performance varies if the task router had perfect test performance. Table 8
shows task routing results with ResNet50 an CIFAR100-5 in which the average drop in per-class
accuracy is 1.8%. There is indeed a performance gap to be closed by better task routing mechanisms,
especially when going to more complex tasks (CIFAR10-5). While Eidetic Learning already provides
competitive performance in their current realization, we believe that this is an interesting avenue for
future research.

5 CONCLUSIONS AND FUTURE WORK

Aspects of our method are incompatible with some desiderata of a continual learning method.

Forward transfer of features allows subsequent tasks tj>i to benefit from features learned during
training of a previous task ti (cf. Figure 2b). Backward transfer allows previous tasks to benefit
from subsequently-learned features. Eidetic Learning, as presented, only supports forward transfer.
It can be straightforwardly extended to support backward transfer as follows: to enable backward
transfer from t2 to t1, apply Eidetic Learning after training t2 to free excess neurons, then re-train t1
and only allow updates to the newly-freed neurons and to the t1 classifier head. This preserves the
previously-trained neurons of t1 and allows the new neurons of t1 to benefit from the neurons of t2.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Whether this requires replay using the data on which t1 was initially trained depends on whether the
data distribution is stationary.

In task-incremental learning, tasks are learned in a discrete sequence of phases and classes do
not overlap between tasks. In class-incremental learning (CIL), classes can overlap between tasks
(Masana et al., 2022; Gummadi et al., 2022). Eidetic Learning currently assumes a task incremental
learning setting and does not address class-incremental learning. Future work may extending Eidetic
Learning to support class-incremental learning and other more challenging settings in the future.

Some of the experimental setups we report results on in this paper could only be run with weight
magnitude pruning. We observed that Taylor pruning (Molchanov et al., 2017) does not uniformly
prune across layers. It tends to prune neurons towards a network’s output first. Consequently, it’s
possible for a task to be trained and pruned to the point of its training set accuracy falling below
the stop threshold before some capacity in each layer has been pruned. This violates the principles
we enumerated in Section 3. On the other hand, weight magnitude pruning of a fixed percentage
of neurons across all layers of a network is indiscriminate and, we believe, results in some excess
capacity in some layers of a network not being pruned. Future work on hybrid approaches that use
Taylor and weight magnitude pruning may result in more compact and more accurate networks.

We have presented Eidetic Learning and demonstrated – with a variety of architectures and combi-
nations of datasets – that they exploit an ANN’s excess capacity to prevent catastrophic forgetting.
Once an EideticNet learns a task, it retains it perfectly. We advise the reader of inherent constraints
on the effective use of EideticNets. Training one to good effect requires that excess capacity exists
in the ANN. Excess capacity is a function of several factors, such as a neural network’s ambient
dimensionality and number of layers as well as the complexity of the task implied by the dataset. A
given neural network may have excess capacity with respect to one task ti but not to another tj . We
advise prudent adoption of EideticNets and hope they are of benefit in industry, academic, and other
contexts.

REFERENCES

Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen. Superposition
of many models into one. Advances in neural information processing systems, 32, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Utku Evci, Vincent Dumoulin, Hugo Larochelle, and Michael C Mozer. Head2toe: Utilizing
intermediate representations for better transfer learning. In International Conference on Machine
Learning, pp. 6009–6033. PMLR, 2022.

Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Continual learning via neural pruning. arXiv
preprint arXiv:1903.04476, 2019.

Meghna Gummadi, David Kent, Jorge A Mendez, and Eric Eaton. Shels: Exclusive feature sets
for novelty detection and continual learning without class boundaries. In Conference on Lifelong
Learning Agents, pp. 1065–1085. PMLR, 2022.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet, March
2019. URL https://github.com/fastai/imagenette.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Borui Jiang and Yadong Mu. Russian doll network: Learning nested networks for sample-adaptive
dynamic inference. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 336–344, 2021.

10

https://github.com/fastai/imagenette


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-
importance based adaptive group sparse regularization. Advances in neural information processing
systems, 33:3647–3658, 2020.

Ta-Chu Kao, Kristopher Jensen, Gido van de Ven, Alberto Bernacchia, and Guillaume Hen-
nequin. Natural continual learning: success is a journey, not (just) a destination. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 28067–28079. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/ec5aa0b7846082a2415f0902f0da88f2-Paper.pdf.

Prakhar Kaushik, Adam Kortylewski, Alex Gain, and Alan Yuille. Understanding catastrophic
forgetting and remembering in continual learning with optimal relevance mapping. In Fifth
Workshop on Meta-Learning at the Conference on Neural Information Processing Systems, 2021.

Eunwoo Kim, Chanho Ahn, and Songhwai Oh. Nestednet: Learning nested sparse structures in
deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114
(13):3521–3526, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
7765–7773, 2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple
tasks by learning to mask weights. In Proceedings of the European conference on computer vision
(ECCV), pp. 67–82, 2018.

Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van
De Weijer. Class-incremental learning: survey and performance evaluation on image classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5513–5533, 2022.

James L McClelland, David E Rumelhart, PDP Research Group, et al. Parallel distributed processing,
volume 2: Explorations in the microstructure of cognition: Psychological and biological models,
volume 2. MIT press, 1987.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations, 2017. URL https://openreview.net/forum?id=SJGCiw5gl.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations for
overcoming catastrophic forgetting. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_
files/paper/2018/file/f31b20466ae89669f9741e047487eb37-Paper.pdf.

David E Rumelhart, James L McClelland, PDP Research Group, et al. Parallel distributed processing,
volume 1: Explorations in the microstructure of cognition: Foundations. The MIT press, 1986.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/ec5aa0b7846082a2415f0902f0da88f2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ec5aa0b7846082a2415f0902f0da88f2-Paper.pdf
https://openreview.net/forum?id=SJGCiw5gl
https://proceedings.neurips.cc/paper_files/paper/2018/file/f31b20466ae89669f9741e047487eb37-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/f31b20466ae89669f9741e047487eb37-Paper.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 3987–3995.
PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/zenke17a.
html.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v70/zenke17a.html
https://proceedings.mlr.press/v70/zenke17a.html
https://openreview.net/forum?id=Sy8gdB9xx


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

6 SUPPLEMENTARY MATERIAL

Authors may wish to optionally include extra information (complete proofs, additional experiments
and plots) in the appendix. All such materials should be part of the supplemental material (submitted
separately) and should NOT be included in the main submission.

6.1 MODELS USED IN THIS STUDY

• MLP (Permuted MNIST only): 2 hidden layers with 2000 neurons in the input and hidden
layers.

• ResNet18: ResNet18 with one additional convolutional layer for each skip connection.
• ResNet50: ResNet50 adapted for low-resolution images for evaluation on Sequential CI-

FAR100. The first layer has filters of size 3× 3 instead of 7× 7, and the first max pooling
layer is removed.

To support pruning, the ResNets used in this study have one additional convolutional layer per skip
connection. A standard ResNet has skip connections of the form f(x) + x. These networks have
f(x) + g(x) and the extra convolutional layer g is pruned to jointly match the sparsity of the output
of a block f(x) and the layer that produced x.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameter sweep results of ResNet18 with Imagenette

Average accuracy Pruning type Pruning step size Stop threshold Early stopping patience Frozen

74.61 2 0.01 0.00 10 0.95
83.96 2 0.01 0.03 10 0.27
75.18 2 0.05 0.00 10 0.90
83.21 2 0.05 0.03 10 0.32

∼X ∅ ∼X ∅
∅ 0.8 ∅ 0.6

∅ 0.4 ∅ 0.3

∅ 1.0 ∅ 0.9

Wℓ+1

∼X ∼X ∼X ∼X

0.9 0.5 0.7 0.2

∼X ∼X ∼X ∼X

0.3 0.2 0.3 0.9

Wℓ

1

1

1

1

xℓ−1

xℓ

(a) Eidetic Network without feature sharing. A synapse (as an edge in the undirected the network
graph) is deleted if it connects a neuron that is unimportant for task ti to a neuron that is important
for task ti.

∼X ∼X ∼X ∼X

∅ 0.8 ∅ 0.6

∅ 0.4 ∅ 0.3

∅ 1.0 ∅ 0.9

Wℓ+1

∼X ∼X ∼X ∼X

0.9 0.5 0.7 0.2

∼X ∼X ∼X ∼X

0.3 0.2 0.3 0.9

Wℓ

1

1

1

1

xℓ−1

xℓ

(b) Eidetic Network with feature sharing. A synapse (as an edge in the directed of the network graph)
is deleted if it connects a neuron that is unimportant for task ti to a neuron that is important for task
ti.

Figure 5: Consider a feed-forward ANN with layers ℓ, ℓ + 1 trained on some task ti. Omitting
for convenience the non-linearity σ and the bias b, processing the input xℓ−1 vector of all 1s
entails the matrix-vector products W ℓxℓ−1 and W ℓ+1xℓ. We show them here as the composition
W ℓ+1(W ℓxℓ−1). Imagine that the smallest set of neurons required to perform t is determined to
be Nt := {W ℓ

2 ,W
ℓ
4 ,W

ℓ+1
2 ,W ℓ+1

3 ,W ℓ+1
4 } (white). For task ti, the excess capacity consists of all

other neurons, and the neurons to recycle, R when training ti+1 are {W ℓ
1 ,W

ℓ
3 ,W

ℓ+1
1 } (blue in W ℓ,

red in W ℓ+1). While training ti, we prune the neurons R and permanently delete their synaptic
connections to the important neurons (blue ∅s in W ℓ). When training of ti is complete, we reinitialize
the neurons in R from some random variable X . Figure a illustrates the naive approach that leads to
the complete partitioning of task ti from tj>i (cf. Figure 2a). The efficient nested feature sharing that
EideticNets enable is shown in Figure b (cf. Figure 2b).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Per-class accuracy with learned task classifier (top row) and oracle task classifier (bottom
row) for different dataset and pruning methods, using a small MLP model. For each group, the top
row is the EideticNet performance.

ℓ1

mnist 99.39 99.74 97.77 97.92 99.08 98.32 98.12 98.15 97.74 96.83
99.69 99.74 98.06 98.32 100 98.32 98.75 98.44 97.84 97.82

cifar10 63.40 64.70 36.30 34.30 54.30 44.30 54.10 47.80 62.00 63.40
80.60 71.50 76.60 38.90 79.20 53.40 94.20 54.50 79.90 66.60

ℓ2

mnist 99.29 99.47 97.77 99.41 98.17 97.53 98.85 99.22 95.38 97.22
99.80 99.74 97.87 99.70 99.29 97.87 99.37 99.42 95.69 98.81

cifar10 55.10 68.90 43.40 35.00 36.00 38.70 67.00 60.70 65.60 65.10
79.70 72.40 80.40 38.80 70.90 56.50 93.90 66.20 85.40 66.60

taylor
mnist 98.88 99.56 99.22 98.02 98.57 97.87 98.23 98.54 97.43 97.22

99.29 99.56 99.42 98.61 99.29 97.98 99.37 99.22 98.97 98.12

cifar10 54.90 68.00 36.60 30.30 44.60 41.60 58.70 60.40 53.80 64.50
69.20 89.60 61.60 64.30 64.70 61.70 77.80 73.50 80.00 64.50

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Per-class accuracy of ResNet50 with CIFAR-10 with oracle task (Oracle) routing and with
task routing via a learned task classifier (Eidetic). The average reduction in accuracy using task
routing is -1.8%. The average accuracy of oracle and task routing are 56.4% and 54.6%, respectively.

Class Oracle Eidetic Delta Class Oracle Eidetic Delta

00 76.33 76.00 -0.33% 50 44.67 43.67 -1.0%
01 70.33 69.67 -0.67% 51 53.00 52.00 -1.0%
02 41.67 40.67 -1.0% 52 63.67 63.33 -0.33%
03 32.67 32.67 0.0% 53 80.33 79.33 -1.0%
04 44.33 42.00 -2.3% 54 69.67 69.33 -0.33%
05 60.00 54.67 -5.3% 55 34.33 28.33 -6.0%
06 64.67 62.67 -2.0% 56 71.67 71.33 -0.33%
07 61.67 55.00 -6.7% 57 63.00 62.67 -0.33%
08 69.33 68.00 -1.3% 58 70.33 70.00 -0.33%
09 72.67 70.33 -2.3% 59 53.33 51.00 -2.3%
10 39.33 33.67 -5.7% 60 77.33 76.33 -1.0%
11 44.33 40.33 -4.0% 61 56.00 53.00 -3.0%
12 71.67 65.33 -6.3% 62 54.67 54.33 -0.33%
13 52.00 51.00 -1.0% 63 51.67 49.67 -2.0%
14 46.67 45.67 -1.0% 64 34.00 31.67 -2.3%
15 64.00 63.00 -1.0% 65 29.67 27.67 -2.0%
16 64.67 63.67 -1.0% 66 59.00 57.67 -1.3%
17 73.00 72.67 -0.33% 67 44.00 38.67 -5.3%
18 55.00 54.00 -1.0% 68 80.33 79.67 -0.67%
19 53.00 52.00 -1.0% 69 68.00 67.67 -0.33%
20 77.67 75.67 -2.0% 70 60.67 60.33 -0.33%
21 76.33 72.33 -4.0% 71 66.67 64.33 -2.3%
22 51.00 49.33 -1.7% 72 27.00 24.33 -2.7%
23 74.33 74.00 -0.33% 73 37.00 35.67 -1.3%
24 66.00 64.00 -2.0% 74 42.00 37.67 -4.3%
25 44.33 41.67 -2.7% 75 66.33 66.00 -0.33%
26 45.33 44.67 -0.67% 76 77.33 76.67 -0.67%
27 42.00 39.33 -2.7% 77 44.00 43.00 -1.0%
28 70.67 70.33 -0.33% 78 51.33 45.33 -6.0%
29 54.33 54.00 -0.33% 79 57.00 55.00 -2.0%
30 57.67 55.00 -2.7% 80 31.33 28.00 -3.3%
31 53.67 52.67 -1.0% 81 64.33 64.33 0.0%
32 53.67 52.67 -1.0% 82 76.33 76.33 0.0%
33 48.00 43.00 -5.0% 83 49.00 48.33 -0.67%
34 63.67 61.00 -2.7% 84 37.33 34.33 -3.0%
35 41.00 40.33 -0.67% 85 59.00 58.00 -1.0%
36 65.67 63.67 -2.0% 86 56.33 55.33 -1.0%
37 54.67 54.33 -0.33% 87 59.67 59.33 -0.33%
38 43.33 41.67 -1.7% 88 51.67 51.33 -0.33%
39 73.00 71.00 -2.0% 89 58.67 58.00 -0.67%
40 54.33 51.67 -2.7% 90 53.67 53.33 -0.33%
41 71.00 70.67 -0.33% 91 60.67 58.00 -2.7%
42 64.00 63.67 -0.33% 92 49.67 46.33 -3.3%
43 68.33 66.33 -2.0% 93 29.33 26.67 -2.7%
44 28.33 26.67 -1.7% 94 85.00 84.33 -0.67%
45 37.00 34.00 -3.0% 95 54.67 54.00 -0.67%
46 42.33 40.33 -2.0% 96 47.33 46.00 -1.3%
47 48.33 47.00 -1.3% 97 55.33 54.67 -0.67%
48 86.33 85.00 -1.3% 98 34.00 31.33 -2.7%
49 69.67 68.00 -1.7% 99 56.33 51.67 -4.7%

16


	Introduction
	Notations and Related work
	Eidetic Learning: A Principled Solution to Catastrophic Forgetting
	Layers of an Eidetic Network

	Experiments
	Conclusions and Future Work
	Supplementary Material
	Models used in this study


