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Abstract

We examine a simple stochastic strategy for adapting well-known single-point acquisition
functions to allow batch active learning. Unlike acquiring the top-K points from the pool set,
score- or rank-based sampling takes into account that acquisition scores change as new data
are acquired. This simple strategy for adapting standard single-sample acquisition strategies
performs just as well as compute-intensive state-of-the-art batch acquisition functions, like
BatchBALD or BADGE while using orders of magnitude less compute. In addition to
providing a practical option for machine learning practitioners, the surprising success of the
proposed method in a wide range of experimental settings raises a difficult question for the
field: when are these expensive batch acquisition methods pulling their weight?

1 Introduction

Active learning is a widely used strategy for efficient learning in settings where unlabelled data are plentiful,
but labels are expensive (Atlas et al., 1989; Settles, 2010). For example, labels for medical image data may
require highly trained annotators, and when labels are the results of scientific experiments, each one can
require months of work. Active learning uses information about unlabelled data and the current state of the
model to acquire labels for those samples that are most likely to be informative.

While many acquisition schemes are designed to acquire labels one at a time (Houlsby et al., 2011; Gal et al.,
2017), recent work has highlighted the importance of batch acquisition (Kirsch et al., 2019; Ash et al., 2020).
Acquiring in a batch lets us parallelise labelling. For example, we could hire hundreds of annotators to work
in parallel or run more than one experiment at once. Batch acquisition also saves compute as single-point
selection also incurs the cost of retraining the model for every new data point.

Unfortunately, existing batch acquisition schemes are computationally expensive (Table 1). Intuitively, this
is because batch acquisition schemes face combinatorial complexity when accounting for the interactions
between possible acquisition points. Recent works (Ash et al., 2020; 2021) trade off a principled motivation
with various approximations to remain tractable. A commonly used, though extreme, heuristic is to take the
top-K highest scoring points from an acquisition scheme designed to select a single point.

This paper examines a simple baseline for batch active learning that is competitive with methods that cost
orders of magnitude more across a wide range of experimental contexts. This method is motivated by noticing
that single-acquisition score methods such as BALD (Houlsby et al., 2011) act as a noisy proxy for future
acquisition scores as we motivate in Figure 1. This observation leads us to stochastically acquire points
following a distribution determined by the single-acquisition scores. This simple approach matches a prior
state of the art for batch acquisition (BatchBALD, Kirsch et al. (2019)) despite being very simple. Indeed,
this acquisition scheme has a time complexity of only O(M log K) in the pool size M and acquisition size K,
just like top-K acquisition.

We show empirically that the presented stochastic strategy performs as well or better than top-K acquisition
with almost identical computational cost on several commonly used acquisition scores, making it a strictly-
better batch strategy. Strikingly, the empirical comparisons between this stochastic strategy and the evaluated
more complex methods cast doubt on whether they function as well as claimed. Concretely, in this paper we:
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Table 1: Acquisition runtime (in seconds, 5 trials, ± s.d.). The examined stochastic acquisition methods are
as fast as top-K, and orders of magnitude faster than BADGE or BatchBALD. Synthetic pool set with
M = 10, 000 pool points with 10 classes. BatchBALD and BALD with 20 parameter samples.

K Top-K Stochastic BatchBALD BADGE
10 0.2± 0.0 0.2± 0.0 566.0± 17.4 9.2± 0.3
100 0.2± 0.0 0.2± 0.0 5, 363.6± 95.4 82.1± 2.5
500 0.2± 0.0 0.2± 0.0 29, 984.1± 598.7 409.3± 3.7

• examine a family of three computationally cheap stochastic batch acquisition strategies;

• demonstrate that these strategies are preferable to the commonly used top-K acquisition heuristic;
and

• identify the failure of two existing batch acquisition strategies to outperform this vastly cheaper and
more heuristic strategy.

Outline. In §2, we present active learning notation and commonly used acquisition functions. We propose
stochastic extensions in §3, relate them to previous work in §4, and validate them empirically in §5 on
various datasets, showing that these extensions are competitive with some much more complex active learning
apporaches despite being orders of magnitude computationally cheaper. Finally, we validate some of the
underlying theoretical motivation in §6 and discuss limitations in §7.

2 Problem Setting

The stochastic approach we examine applies to batch acquisition for active learning in a pool-based setting
(Settles, 2010) where we have access to a large unlabelled pool set, but we can only label a small subset of the
points. The challenge of active learning is to use what we already know to pick which points to label in the
most efficient way. Generally, we want to avoid labelling points similar to those already labelled.

Notation. Following Farquhar et al. (2021), we formulate active learning over indices instead over datapoints.
This simplifies the notation. The large, initially fully unlabelled, pool set containing M input points is

Dpool = {xi}i∈Ipool , (1)

where Ipool = {1, . . . , M} is the initial full index set. We initialise a training dataset with N0 randomly
selected points from Dpool by acquiring their labels, yi,

Dtrain = {(xi, yi)}i∈Itrain , (2)

where Itrain is the index set of Dtrain, initially containing N0 indices between 1 and M . A model of the
predictive distribution, p(y | x), can then be trained on Dtrain.

Active Learning. At each acquisition step, we select additional points for which to acquire labels. Although
many methods acquire one point at a time (Houlsby et al., 2011; Gal et al., 2017), one can alternatively
acquire a whole batch of K examples. An acquisition function a takes Itrain and Ipool and returns K indices
from Ipool to be added to Itrain. We then label those K datapoints and add them to Itrain while making
them unavailable from the pool set. That is,

Itrain ← Itrain ∪ a(Itrain, Ipool), (3)
Ipool ← Ipool \ Itrain. (4)

A common way to construct the acquisition function is to define some scoring function, s, and then select the
point(s) that score the highest.
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Probabilistic Model. We assume classification with inputs X, labels Y , and a discriminative classifier
p(y | x). In the case of Bayesian models, we further assume a subjective probability distribution over the
parameters, p(ω), and we have p(y | x) = Ep(ω)[p(y | x, ω)].

BALD. One popular scoring function is Bayesian Active Learning by Disagreement (Houlsby et al., 2011)
which computes the expected information gain between the predictive distribution and the parameter
distribution p(ω | Dtrain) for a Bayesian model. For each candidate pool index, i, with mutual information, I,
and entropy, H, the score is

sBALD(i; Itrain) := I[Y ; Ω |X = xi,Dtrain]
= H[Y |X = xi,Dtrain]− Ep(ω|Dtrain)[H[Y |X = xi, ω]]. (5)

Entropy. Another popular scoring function is the (predictive) entropy (Gal et al., 2017). It does not require
Bayesian models, unlike BALD, and performs worse for data with high observation noise Mukhoti et al.
(2021). It is identical to the first term of the BALD score

sentropy(i; Itrain) := H[Y |X = xi,Dtrain]. (6)

Acquisition Functions. These scoring functions were introduced for single-point acquisition:

as(Itrain) := arg max
i∈Ipool

s(i; Itrain). (7)

For deep learning in particular, single-point acquisition is computationally expensive due to retraining the
model for every acquired sample. Moreover, it also means that labelling can only happen sequentially instead
of in bulk. Thus, single-point acquisition functions were expanded to multi-point acquisition via acquisition
batches in batch active learning. The most naive batch acquisition function selects the highest K scoring
points

abatch
s (Itrain; K) := arg max

I⊆Ipool,|I|=K

∑
i∈I

s(i; Itrain). (8)

Maximizing this sum is equivalent to taking the top-k scoring points, which cannot account for the interactions
between points in an acquisition batch because individual points are scored independently. For example, if
the most informative point is duplicated in the pool set, all instances will be acquired, which is likely wasteful
when we assume no label noise (see also Figure 1 in Kirsch et al. (2019)). Some acquisition functions are
explicitly designed for batch acquisition (Kirsch et al., 2019; Ash et al., 2020). They try to account for the
interaction between points, which can improve performance relative to simply selecting the top-K scoring
points. However, existing methods can be computationally expensive. For example, BatchBALD rarely scales
to acquisition sizes of more than 5–10 points due to its long runtime (Kirsch et al., 2019), as we evidence in
Table 1.

BatchBALD. Kirsch et al. (2019) extend BALD to batch acquisition using the mutual information between
the parameter distribution and the joint distribution of the predictions of multiple point in an acquistion
batch: this mutual information is the expected information gain for an acquistion batch. Kirsch et al. (2019)
greedily construct an acquisition batch by iteratively selecting the next unlabelled pool point that maximizes
the joint score with the already selected points. This is 1− 1/e-optimal as the expected information gain is
submodular (Krause & Golovin, 2014). They note that their approach is computationally expensive, and
they only consider acquisition batches of up to size 10.

BADGE. Ash et al. (2020) propose Batch Active learning by Diverse Gradient Embeddings: it motivates
its batch selection approach using a k-Determinantal Point Process (Kulesza & Taskar, 2011) based on the
(inner product) similarity matrix of the scores (gradients of the log loss) using hard pseudo-labels (the highest
probability class according to the model’s prediction) for each pool sample. See also Kirsch & Gal (2022) for
a more detailed analysis. In practice, they use the intialization step of k-MEANS++ with Euclidian distances
between the scores to select an acquisition batch. BADGE is also computationally expensive.
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Table 2: Summary of stochastic acquisition variants. Perturbing the scores si themselves with ϵi ∼
Gumbel(0; β−1) i.i.d. yields a softmax distribution. Log-scores result in a power distribution, with as-
sumptions that are reasonable for active learning. Using the score-ranking, ri finally is a robustifying
assumption. β is included for completeness; we use β := 1 in our experiments—except for the ablation in §6.1.

Perturbation Distribution Probability mass
si + ϵi Softmax ∝ exp βsi

log si + ϵi Power ∝ sβ
i

− log ri + ϵi Soft-rank ∝ r−β
i
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Figure 1: Acquisition scores at individual acquisition
step t are only a loose proxy for later scores at t +
n (here: t = 0). Specifically, the Spearman rank-
correlation between acquisition scores on the zerot-
th and n’th time-step falls with n. While top-K
acquisition incorrectly implicitly assumes the rank-
correlation remains 1, stochastic acquisitions do not.
Using Monte-Carlo Dropout BNN trained on MNIST
at initial 20 points and 73% initial accuracy; score
ranks computed over test set.
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Figure 2: Performance on Repeated-MNIST with 4
repetitions (5 trials). Up and to the right is better
(↗). PowerBALD outperforms (top-K) BALD and
BADGE and is on par with BatchBALD. This is
despite being orders of magnitude faster. Acquisition
sizes: BatchBALD–5, BADGE–20, others–10. See
Figure 10 in the appendix for an ablation study of
BADGE’s acquisition size.

3 Method

Selecting the top-K points at acquisition step t amounts to the assumption that the informativeness of these
points is independent of each other. This leads to the pathology that if the most informative pool point is
duplicated in the pool set, each instance would be selected (up to the acquisition batch size). This is clearly
wrong.

Another way to view this is to split batch acquisition into multiple steps of size 1. We select the top pool
sample by acquisition score and retrain the model once for each possible class label for this point. We then
compute the averaged acquisition scores on the pool set given each of these models weighted by the original
model’s probability of each class label. We select the top pool sample by this new (averaged) score, and
repeat the process, exponentially branching out as necessary. This is equivalent to the top-K acquisition
batch selection in BatchBALD (Kirsch et al., 2019), but it is clear that the informativeness of the pool
samples will not be independent of each other: Of course, the acquisition scores for models trained with these
additional points will be different from the first set of scores. After all, the purpose of active learning is to
add the most informative points—those that will update the model the most. Yet selecting a top-K batch in
one step implicitly assumes that the score ranking will not change due to these points. We provide empirical
confirmation in Figure 1 that, in fact, the ranking of acquisition scores at step t and t + K is decreasingly
correlated as K grows when we retrain the model for each acquired point. Figure 3 also illustrates this on
MNIST. Moreover, as we will see in §6, this effect is the strongest for the most informative points.
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Figure 3: BALD scores for 1000 randomly-chosen points from the MNIST dataset (hand-written digits). The
points are colour-coded by digit label and sorted by score. The model used for scoring has been trained to
90% accuracy first. If we were to pick the top scoring points (e.g. scores above 0.6), most of them would be
8s, even though we can assume that after acquiring the first couple of them our model would consider them
less informative than other available data. Points are slightly jittered on the x-axis by digit label to avoid
overlaps.

Instead, we investigate the use of stochastic sampling as an alternative to top-K acquisition, which implicitly
acknowledges the uncertainty within the batch acquisition step using a simple noise process model governing
how scores change. We motivate and investigate the theory behind this in §6, but given how simple the
examined methods are, this theory only obstructs their simplicity. Specifically, we examine three simple
stochastic extensions of single-sample scoring functions s(i; Itrain) that make slightly different assumptions.
These methods are compatible with conventional active learning frameworks that typically take the top-K
highest scoring samples. For example, it is straightforward to adapt entropy, BALD, and other scoring
functions for use with these extensions.

These stochastic acquisition distributions assume that future scores differ from the current score by a
perturbation. We model the noise distribution of this perturbation as the addition of Gumbel-distributed
noise ϵi ∼ Gumbel(0; 1), which is used frequently for modelling extrema.

Why is this sensible? Intuitively, to select the k-th point, we want to take into account how much additional
information (increase in acquisition scores) the still-to-be-selected additional K − k points will provide. As
such we want to model the maximum over all possible additional candidate points. The maximum of a set of
random variables that follow an exponential distribution is known to be well approximated by a Gumbel
distribution in the sample limit (Gumbel, 1954) 1, and anecodotally, acquisition scores are similar to a
truncated exponential distribution (‘80/20’ rule). Note that this is a very rough approximation—we do
not claim that the distribution of acquisition scores really truncated exponential (see also Figure 7c for a
visualization).

At the same time, the choice of a Gumbel distribution for the noise is also one of mathematical convenience,
in the spirit of a straightforward baseline. For example, the maximum of sets of many other standard
distributions, such as the Gaussian distribution, is not analytically tractable. Taking the highest-scoring
points from a distribution perturbed with Gumbel noise is equivalent to sampling from a softmax distribution2

without replacement.

This follows from the Gumbel-Max trick (Gumbel, 1954; Maddison et al., 2014) and, more specifically, the
Gumbel-Top-K trick (Kool et al., 2019). We provide a short proof in appendix B.2. Expanding on Maddison
et al. (2014):

1See also the following Math StackExchange thread.
2Also known as Boltzmann/Gibbs distribution.

5



Under review as submission to TMLR

Proposition 3.1. For scores si, i ∈ {1, . . . , n}, and k ≤ n and β > 0, if we draw ϵi ∼ Gumbel(0; β−1)
independently, then arg topk{si + ϵi}i is an (ordered) sample without replacement from the categorical
distribution Categorical(exp(β si)/

∑
j

exp(β sj), i ∈ {1, . . . , n}).

β ≥ 0 is a ‘coldness’ parameter, which represents the expected rate at which the scores change as more data
is acquired. In the spirit of providing a simple and surprisingly effective baseline without hyperparameters,
we fix β := 1. For β →∞, this distribution will converge towards top-K acquisition. Whereas for β → 0, it
will converge towards uniform acquisition. We examine ablations of β in §6.1.

We apply the perturbation to three quantities in the three sampling schemes: the scores themselves, the
log scores, and the rank of the scores. Perturbing the log scores assumes that scores are non-negative and
uninformative points should be avoided. Perturbing the ranks can be seen as a robustifying assumption that
requires the relative scores to be reliable but allows the absolute scores to be unreliable. We summarise the
three versions with their associated sampling distributions are in Table 2.

Soft-Rank Acquisition. This first variant only relies on the rank order of the scores and makes no
assumptions on whether the acquisition scores are meaningful beyond that. It thus uses the least amount of
information from the acquisition scores. It only requires the relative score order to be useful and ignores
the absolute score values. If the absolute scores provide useful information, we would expect this method to
perform worse than the variants below, which make use of the score values. As we will see, this is indeed
sometimes the case .

Ranking the scores s(i; Itrain) with descending ranks {ri}i∈Ipool such that s(ri; Itrain) ≥ s(rj ; Itrain) for
ri ≤ rj and smallest rank being 1, we sample index i with probability psoftrank(i) ∝ r−β

i with coldness β.
This is invariant to the actual scores. We can draw ϵi ∼ Gumbel(0; β−1) and create a perturbed ‘rank’

ssoftrank(i; Itrain) := − log ri + ϵi. (9)

Following Proposition 3.1, taking the top-K points from ssoftrank is equivalent to sampling without replacement
from the rank distribution psoftrank(i).

Softmax Acquisition. The next simplest variant uses the actual scores instead of the ranks. Again, it
perturbs the scores by a Gumbel-distributed random variable ϵi ∼ Gumbel(0; β−1)

ssoftmax(i; Itrain) := s(i; Itrain) + ϵi. (10)

However, this makes no assumptions about the semantics of the absolute values of the scores: the softmax
function is invariant to constants shifts. Hence, the sampling distribution will only depend on the relative
scores and not their absolute value.

Power Acquisition. For many scoring functions, the scores are non-negative, and a score close to zero
means that the sample is not informative in the sense that we do not expect it will improve the model—we
do not want to sample it. This is the case with commonly used score functions such as BALD and entropy.
BALD measures the expected information gain. When it is zero for a sample, we do not expect anything to
be gained from acquiring a label for that sample. Similarly, entropy is upper-bounding BALD, and the same
consideration applies. This assumption also holds for other scoring functions such as the standard deviation
and variation ratios; see appendix B.1. To take this into account, the last variant models the future log scores
as perturbations of the current log score with Gumbel-distributed noise

spower(i; Itrain) := log s(i; Itrain) + ϵi. (11)

By Proposition 3.1, this is equivalent to sampling from a power distribution

ppower(i) ∝
(

1
s(i; Itrain)

)−β

. (12)

This may be seen by noting that exp(β log s(i; Itrain)) = s(i; Itrain)β . Importantly, as scores → 0, the
(perturbed) log scores → −∞ and will have probability mass → 0 assigned. This variant takes the absolute
scores into account and avoids data points with score 0.
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In Summary. Given the above considerations, when using BALD, entropy, and other appropriate scoring
functions, power acquisition is the most sensible. Thus, we expect it to work best. Indeed, we find this to be
the case in the toy experiment on Repeated-MNIST (Kirsch et al., 2019) depicted in Figure 2. However, even
soft-rank acquisition works well in practice, suggesting that the choice of score perturbation is not critical for
its effectiveness; see also appendix §D for a more in-depth comparison. In the rest of the main paper, we
focus on power acquisition, we include results for all methods in §C.

4 Related Work

Researchers in active learning (Atlas et al., 1989; Settles, 2010) have identified the importance of batch
acquisition as well as the failures of top-K acquisition using straightforward extensions of single-sample
methods in a range of settings including support vector machines (Campbell et al., 2000; Schohn & Cohn,
2000; Brinker, 2003; Guo & Schuurmans, 2007), GMMs (Azimi et al., 2012), and neural networks (Sener &
Savarese, 2018; Kirsch et al., 2019; Ash et al., 2020; Baykal et al., 2021).

Many of these methods aim to introduce structured diversity to batch acquisition that accounts for the
interaction of the points acquired in the learning process. In most cases, the computational complexity
scales poorly with the acquisition size (K) or pool size (M), for example because of the estimation of
joint mutual information (Kirsch et al., 2019), the O(KM) complexity of using a k-means++ initialisation
scheme (Ash et al., 2020), which approximates k-DPP-based batch active learning (Bıyık et al., 2019), or
the O(M2 log M) complexity of methods based on K-centre coresets (Sener & Savarese, 2018) (although
heuristics and continuous relaxations can improve this somewhat). In contrast, we examine simple and
efficient stochastic strategies for adapting well-known single-sample acquisition functions to the batch setting.
The proposed stochastic strategies are based on observing that acquisition scores would change as new points
are added to the acquisition batch and modelling this difference for additional batch samples in the most
naive way, using Gumbel noise. The presented stochastic extensions have the same complexity O(M log K)
as naive top-K batch acquisition, yet outperform it, and they can perform on par with above more complex
methods.

For multi-armed bandits, it has been shown that adding noise to the scores, specifically via Thompson
sampling, is effective for choosing informative batches (Kalkanli & Özgür, 2021). Similarly, in reinforcement
learning, stochastic prioritisation has been employed as prioritized replay (Schaul et al., 2016) which may be
effective for reasons analogous to those motivating the approach examined in this work.

While stochastic sampling has not been extensively explored for acquisition in deep active learning, most
recently it has been used as an auxiliary step in diversity-based active learning methods that rely on clustering
as main mechanism (Ash et al., 2020; Citovsky et al., 2021). Kirsch et al. (2019) empirically find that
additional noise in the acquisition scores seems to benefit batch acquisition but do not investigate further.
Fredlund et al. (2010) suggest modeling single-point acquisition as sampling from a “query density” modulated
by the (unknown) sample density p(x) and analyze a binary classification toy problem. Farquhar et al. (2021)
propose stochastic acquisition as part of de-biasing actively learned estimators.

Most relevant to this work, and building on Fredlund et al. (2010) and Farquhar et al. (2021), Zhan et al.
(2022) propose a stochastic acquisition scheme that is asymptotically optimal. They normalize the acquisition
scores via the softmax function to obtain a query density function for unlabeled samples and draw an
acquisition batch from it, similar to SoftmaxEntropy. Their method aims to achieve asymptotic optimality
for active learning processes by mitigating the impact of bias. In contrast, in this work, we examine multiple
stochastic acquisition strategies based on score-based or rank-based distributions and apply these strategies
to several single-sample acquisition functions, such as BALD and entropy (and standard deviation, variation
ratios, see Figure 11); and we focus on active learning in a (Bayesian) deep learning setting. As such our
empirical results and additional proposed strategies can be seen as complementary to their work.

Thus, while stochastic sampling is generally well-known within acquisition functions, to our knowledge, this
work is the first3 to investigate simple stochastic sampling methods entirely as alternatives to naive top-K

3A workshop version was presented at ICML 2021, and the first submission of this work was concurrent to Zhan et al. (2022).
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acquisition in (Bayesian) deep active learning and to compare them to more complex approaches in various
settings.

5 Experiments

In this section, we empirically verify that the presented stochastic acquisition methods (a) outperform top-K
acquisition and (b) are competitive with specially designed batch acquisition schemes like BADGE (Ash et al.,
2020) and BatchBALD (Kirsch et al., 2019); and are vastly cheaper than these more complicated methods.

To demonstrate the seriousness of the possible weakness of recent batch acquisition methods, we use a range of
datasets. These experiments show that the performance of the stochastic extensions is not dependent on the
specific characteristics of any particular dataset. Our experiments include computer vision, natural language
processing (NLP), and causal inference (in §6.1). We show that stochastic acquisition helps avoid selecting
redundant samples on Repeated-MNIST (Kirsch et al., 2019), examine performance in active learning for
computer vision on EMNIST (Cohen et al., 2017), MIO-TCD (Luo et al., 2018), Synbols (Lacoste et al.,
2020), and CLINC-150 (Larson et al., 2019) for intent classification in NLP. MIO-TCD is especially close to
real-world datasets in size and quality. In appendix C.5, we further investigate edges cases using the Synbols
dataset under different types of biases and noise.

Here, we consider both BALD and predictive entropy as scoring functions. We examine other scoring functions
on Repeated-MNIST in appendix C.2.1 and observe similar results. For the sake of legible figures, we focus
on power acquisition in this section, as it fits BALD and entropy best: the scores are non-negative, and zero
scores imply uninformative samples. We show that all three methods (power, softmax, softrank) perform
similarly in appendix D.

We are not always able to compare to BADGE and BatchBALD because of computational limitations of
those methods. BatchBALD is computationally infeasible for large acquisition sizes (> 10) because of time
constraints, cf. Table 1. When possible, we use BatchBALD with acquisition size 5 as baseline. Similarly,
BADGE runs out of memory for large dataset sizes, such as EMNIST ‘ByMerge’ with 814,255 examples.

Figures interpolate linearly between available points, and we show 95% confidence intervals.

Experimental Setup & Compute. We document the experimental setup and model architectures in detail
in appendix C.1. Our experiments used about 25,000 compute hours on Titan RTX GPUs.

Runtime Measurements. We emphasize that the stochastic acquisition strategies are much more com-
putationally efficient compared to specialised batch-acquisition approaches like BADGE and BatchBALD.
Runtimes, shown in Table 1, are essentially identical for top-K and the stochastic versions. Both are orders
of magnitude faster than BADGE and BatchBALD even for small batches. Unlike those methods, stochastic
acquisition scales linearly in pool size and logarithmically in acquisition size. Runtime numbers do not include
the cost of retraining models (identical in each case). The runtimes for top-K and stochastic acquisition
appear constant over K because the execution time is dominated by fixed-cost memory operations. The
synthetic dataset used for benchmarking has 4,096 features, 10 classes, and 10,000 pool points.

Repeated-MNIST. Repeated-MNIST (Kirsch et al., 2019) duplicates MNIST a specified number of times
and adds Gaussian noise to prevent perfect duplicates. Redundant data are incredibly common in industrial
applications but are usually removed from standard benchmark datasets. The controlled redundancies in the
dataset allow us to showcase pathologies in batch acquisition methods. We use an acquisition size of 10 and 4
dataset repetitions.

Figure 2 shows that PowerBALD outperforms top-K BALD. While much cheaper computationally, cf. Table 1,
PowerBALD also outperforms BADGE and even performs on par with BatchBALD. For BatchBALD, we use
an acquisition size of 5, and for BADGE of 20. Note that BatchBALD performs better for smaller acquisition
sizes while BADGE (counterintuitively) performs better for larger ones; see Figure 10 in the appendix for an
ablation. BatchBALD, BALD, and the stochastic variants all become equivalent for acquisition size 1 when
individual points are sampled, which performs best Kirsch et al. (2019).
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(a) EMNIST (Balanced) (5 trials)
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(b) EMNIST (ByMerge) (5 trials)

0.96 0.97 0.98 0.99
Accuracy

0

5000

10000

15000M
in

 T
ra

in
in

g 
Se

t S
ize

PowerBALD
BADGE
BALD
Uniform

(c) MIO-TCD (3 trials)
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(d) Synbols with minority groups (10 trials)

Figure 4: Performance on various datasets. BatchBALD took infeasibly long on these datasets & acquisition
sizes. (a) EMNIST ‘Balanced’: On 132k samples, PowerBALD (acq. size 10) outperforms BatchBALD (acq.
size 5) and BADGE (acq. size 40). (b) EMNIST ‘ByMerge’: On 814k samples, PowerBALD (acq. size 10)
outperforms BatchBALD (acq. size 5). BADGE (not shown) OOM’ed, and BatchBALD took > 12 days for
115 acquisitions. (c) MIO-TCD: PowerBALD performs better than BALD and on par with BADGE (all acq.
size 100). (d) Synbols with minority groups: PowerBALD performs on par with BADGE (all acq. size 100).

Computer Vision: EMNIST. EMNIST (Cohen et al., 2017) contains handwritten digits and letters
and comes with several splits: we examine the ‘Balanced‘ split with 131,600 samples in Figure 4a4 and the
‘ByMerge‘ split with 814,255 samples in Figure 4b. Both have 47 classes. We use an acquisition size of 5 for
BatchBALD, of 40 for BADGE, and of 10 otherwise.

We see that the stochastic methods outperform BatchBALD on it and both BADGE and BatchBALD on
‘Balanced’ (Figure 4a). They do not have any issues with the huge pool set in ‘ByMerge‘ (Figure 4b). In the
appendix, Figures 24 and 25 show results for all three stochastic extensions, and Figure 16 shows an ablation
of different acquisition batch sizes for BADGE. For ‘ByMerge’, BADGE ran out of memory on our machines,
and BatchBALD took more than 12 days for 115 acquisitions when we halted execution.

Computer Vision: MIO-TCD. The Miovision Traffic Camera Dataset (MIO-TCD) (Luo et al., 2018)
is a vehicle classification and localisation dataset with 648,959 images designed to exhibit realistic data
characteristics like class imbalance, duplicate data, compression artefacts, varying resolution (between 100
and 2,000 pixels), and uninformative examples; see Figure 9 in the appendix. As depicted in Figure 4c,
PowerBALD performs better than BALD and essentially matches BADGE despite being much cheaper to
compute. We use an acquisition size of 100 for all methods.

Computer Vision: Synbols. Synbols (Lacoste et al., 2020) is a character dataset generator which can
demonstrate the behaviour of batch active learning under various edge cases (Lacoste et al., 2020; Branchaud-

4This result exactly reproduces BatchBALD’s trajectory in Figure 7 from Kirsch et al. (2019).
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Charron et al., 2021). In Figure 4d, we evaluate PowerBALD on a dataset with minority character types and
colours. PowerBALD outperforms BALD and matches BADGE. Further details as well as an examination of
the ‘spurious correlation’ and ‘missing synbols’ edge cases (Lacoste et al., 2020; Branchaud-Charron et al.,
2021) can be found in appendix C.5.

Natural Language Processing: CLINC-150. We perform intent classification on CLINC-150 (Larson
et al., 2019), which contains 150 intent classes plus an out-of-scope class. This setting captures data seen in
production for chatbots. We fine-tune a pretrained DistilBERT model from HuggingFace (Wolf et al., 2020)
on CLINC-150 for 5 epochs with Adam as optimiser. In appendix C.6, we see that PowerEntropy shows
strong performance compared to Entropy and performs almost on par with BADGE. This demonstrates that
our technique is domain independent and can be easily reused for other tasks.

In Summary. We have verified that stochastic acquisition functions outperform top-K batch acquisition in
several different settings and perform on par with more complex methods such as BADGE or BatchBALD.
Moreover, we refer the reader to Jesson et al. (2021), Murray et al. (2021), Tigas et al. (2022), Holmes et al.
(2022) for additional works that use the proposed stochastic acquisition functions in this paper and provide
further empirical validation.

6 Further Investigations

In this section, we examine and validate assumptions about the underlying score dynamics by examining the
scores across acquisitions. We further hypothesise about when top-K acquisition is the most detrimental to
active learning.

Acquisition Asymptotics of Bayesian Models. For well-specified and well-defined Bayesian parametric
models, the posterior distribution of the model parameters converges to the true parameters as the number
of data points increases (Van der Vaart, 2000).

For such models and assuming that the predictions are independent given the model parameters, the total
correlation between the predictions decreases as the number of training points increases, as the posterior
distribution of the model parameters becomes more concentrated around the true parameters:

TC[Y1, . . . , YK | x1, . . . , xK ,Dtrain]→ 0 as |Dtrain| → ∞. (13)

This can be proved by noting that in the finite data limit, the posterior parameter distribution converges to
the true model parameters, and the marginal distribution then factorizes. This means that the predictions
become more independent as the number of training points increases and fully independent in the infinite
data limit.

The total correlation is defined as:

TC[Y1, . . . , YK | x1, . . . , xK ,Dtrain] :=
∑

i

H[Yi | xi,Dtrain]︸ ︷︷ ︸
top-K Entropy

−H[Y1, . . . , YK | x1, . . . , xK ,Dtrain]︸ ︷︷ ︸
‘Batch Entropy’

., (14)

We can also write the total correlation as difference between top-K BALD and BatchBALD:

TC[Y1, . . . , YK | x1, . . . , xK ,Dtrain] =
∑

i

I[Yi; Ω | xi,Dtrain]︸ ︷︷ ︸
top-K BALD

− I[Y1, . . . , YK ; Ω | x1, . . . , xK ,Dtrain]︸ ︷︷ ︸
BatchBALD

. (15)

As the total correlation converges to 0, the top-K BALD term (first term) becomes equal to the BatchBALD
term (the second term on the right side), and the same happens for top-K entropy and ‘BatchEntropy’, which
we similarly define.

Thus, for well-specified and well-defined Bayesian parametric models, the top-K acquisition functions will
eventually become equivalent to the BatchBALD and ‘BatchEntropy’ acquisition functions as the number of
training points increases. This tells us that top-K acquisition is the most detrimental to active learning in the
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Figure 5: Rank correlations for BALD scores on MNIST between the
initial scores and later scores of the top- or bottom-scoring 1%, 10% and
100% of test points (smoothed with a size-10 Parzen window). Rank-
orders decorrelate faster for the most informative samples and in the
early stages of training. The top-1% scorers’ ranks anti-correlate after
roughly 40 (100) acquisitions unlike the bottom-1%. Later in training,
the acquisition scores stay more strongly correlated. This suggests the
acquisition size could be increased later in training.
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Figure 6: Top-K acquisition hurts
less later in training (BALD on
MNIST). At t ∈ {20, 100} (blue),
we keep acquiring samples using the
BALD scores from those two steps.
At t = 20 (orange), the model per-
forms well for ≈ 20 acquisitions; at
t = 120 (green), for ≈ 50; see §6.

earlier stages of learning, when the total correlation between the predictions is still high. This is consistent
with our empirical results below (‘Increasing Top-K Analysis’).

At the same time, as the number of training points increases and the model parameters concentrate, the
expected information gain (BALD) also decreases. The mutual information with a deterministic variable is
always 0, and thus:

I[Y ; Ω | x,Dtrain]→ 0 as |Dtrain| → ∞. (16)

This asymptotic behavior is a trivial but important result, as it tells us that the expected information gain
(BALD) will eventually become uninformative as the number of training points increases and no better than
random acquisition, and the important question is: when? Given that we only have noisy estimators, this
determines until when active learning is of use compared to random acquisition.

Many different active learning methods that are considered non-Bayesian nevertheless approximate the
expected information gain or the expected predictive information (Kirsch & Gal, 2022; Smith et al., 2023),
which is an expected total correlation. Hence, the considerations apply to those methods, too.

Finally, we can also note that estimators like in BatchBALD which use Monte-Carlo samples of the param-
eters are bounded by the log of the number of Monte-Carlo samples, which means that they can become
uninformative rather quickly: For example, BatchBALD greedily chooses the t-th acquisition samples in the
batch by maximizing I[Y ; Ω | x, Yt−1, xt−1, . . . , Y1, x1Dtrain] for remaining pool samples x. As we have:

log M ≥ I[Y1, . . . , YK ; Ω | x1, . . . , xK ,Dtrain] =
K∑

i=1
I[Y ; Ω | x, Yy, xy, . . . , Y1, x1Dtrain], (17)

the estimator for I[YK ; Ω | xK , YK−1, xK−1, . . . , Y1, x1Dtrain]→ 0 for increasing K as the overall estimate is
bounded by log M . For M = 100 parameter samples, we have log10 M = 2, and thus BatchBALD could
become uninformative after only 2 acquisitions for a classification problem with 10 classes—if there were at
least two maximally diverse and uncorrelated points in the pool set.

Rank Correlations Across Acquisitions. In Section 3, we made the following assumptions: (1) the
acquisition scores st at step t are a proxy for scores st′ at step t′ > t; (2) the larger t′ − t is, the worse a
proxy st is for s′

t; (3) this effect is the largest for the most informative points.

We demonstrate these empirically by examining the Spearman rank correlation between scores during
acquisition. Specifically, we train a model for n steps using BALD as single-point acquisition function. We
compare the rank order at each step to the starting rank order at step t. To denoise the rankings across n,
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Figure 7: AUROCs for BALD scores on MNIST between the initial scores and later scores of the top- or
bottom-scoring 1%, 10% and 50% of test points (smoothed with a size-10 Parzen window). AUROC between
original points as ‘ground truth’ and later scores as predictors. This is equivalent to the probablity that
the acquisition score at n for a point in t = 0’s top or bottom 1%, etc. is larger than points outside. This
tells us how likely other points outside the batch have higher acquisition scores. This ignores the ranking of
points otherwise. (a, b) Points in the top quantiles are superseded by other points in the top quantiles in
the later acquisitions to a large degree. This is much more pronounced early in the training than later. The
bottom quantiles are more stable. (c) The overall score distributions at steps t = 0, 100 are visualized and
the relevant top and bottom quantiles are marked.

we smooth the rank correlations with a Parzen window of size 10 and to reduce the effect of noise to the rank
order, we round all scores to 2 decimal places. This especially removes unimportant rank changes for points
with low scores around 0.

Figure 1 shows that acquisition scores become less correlated as more points are acquired. Figure 5a shows
this in more detail for the top and bottom 1%, 10% or 100% of scorers of the test set across acquisitions
starting at step t = 0 for a model initialised with 20 points. The top-10% scoring points (solid green) quickly
become uncorrelated across acquisitions and even become anti-correlated. In contrast, the points overall
(solid blue) correlate well over time (although they have a much weaker training signal on average). This
result supports all three of our hypotheses.

At the same time, we see that as training progresses and we converge towards the best model, the order of
scores becomes more stable across acquisitions. In Figure 5b the model begins with 120 points (t = 100),
rather than 20 (t = 0). Here, the most informative points are less likely to change their rank—even the
top-1% ranks do not become anti-correlated, only de-correlated. Thus, we hypothesise that further in training,
we might be able to choose larger K.

To provide a different analysis, we also consider the more direct question in Figure 7 of how likely other
samples have higher acquisition scores at t + n than the top samples from t for different quantiles (1%, 10%,
50%) of the test set. As a sanity check, we also examine the bottom quantiles. This is equivalent to computing
the AUROC between the original points as ‘ground truth’ and later scores as predictors. Specifically, we
set up a binary classification with the top or bottom 1%, 10% or 50% of the test set as positive and the
rest as negative. These results match the previous ones and provide another validation for the mentioned
assumptions.

Increasing Top-K Analysis. Another way to investigate the effect of top-K selection is to freeze the
acquisition scores during training and then continue single-point ‘active learning’ as if those were the correct
scores. Comparing this to the performance of regular active learning with updated single-point scores allows
us to examine how well earlier scores perform as proxies for later scores. We perform this toy experiment on
MNIST, showing that freezing scores early on greatly harms performance while doing it later has only a small
effect (Figure 6). For frozen scores at a training set size of 20 (73% accuracy, t = 0), the accuracy matches
single-acquisition BALD up to a training set size of roughly 40 (dashed orange lines) before diverging to a
lower level. But when freezing the scores of a more accurate model, at a training set size of 120 labels (93%
accuracy, t = 100), selecting the next fifty points according to those frozen scores performs indistinguishably
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Figure 8: Effect of changing β. (a) Repeated-MNISTx4 (5 trials): PowerBALD outperforms BatchBALD for
β = 8. (b) IHDP (400 trials): At high temperature (β = 0.1), CausalBALD with power acquisition is like
random acquisition. As the temperature decreases, the performance improves (lower √ϵPEHE), surpassing
top-K acquisition.

from step-by-step acquisition (dashed green lines). This result shows that top-K acquisition hurts less later
in training but can negatively affect performance at the beginning of training.

These observations lead us to ask whether we could dynamically change the acquisition size: with smaller
acquisition batches at the beginning and larger ones towards the end of active learning. We leave the
exploration of this for future work.

6.1 Ablation: Changing β

So far, we have set β = 1 in the spirit of examining a simple baseline without additional hyperparameters. The
results above show that this already works well and matches the performance of much more expensive methods,
raising questions about their value. In addition, however, tuning β may be able to further improve performance.
In the following, we show that other values of β can yield even higher performance on Repeated-MNIST and
when estimating causal treatment effects; we provide additional results in appendix E.

Repeated-MNIST. In Figure 8a, we see that for PowerBALD the best-performing value, β = 8, outperforms
BatchBALD.

Causal Treatment Effects: Infant Health Development Programme. Active learning for Conditional
Average Treatment Effect (CATE) estimation Heckman et al. (1997; 1998); Hahn (1998); Abrevaya et al.
(2015) on data from the Infant Health and Development Program (IHDP) estimates the causal effect of
treatments on an infant’s health from observational data. Statistical estimands of the CATE are obtainable
from observational data under certain assumptions. Jesson et al. (2021) show how to use active learning to
acquire data for label-efficient estimation. Among other subtleties, this prioritises the data for which matched
treated/untreated pairs are available.

We follow the experiments of Jesson et al. (2021) on both synthetic data and the semi-synthetic IHDP dataset
(Hill, 2011), a commonly used benchmark for causal effects estimation. In Figure 8b we show that power
acquisition performs significantly better than both top-K and uniform acquisition, using an acquisition size
of 10 in all cases with further. We provide additional results on semi-synthetic data in appendix E.2. Note
that methods such as BADGE and BatchBALD are not well-defined for causal-effect estimation, while our
approach remains applicable and is effective when fine-tuning β.

Performance on these tasks is measured using the expected Precision in Estimation of Heterogeneous Effect
(PEHE) (Hill, 2011) such that √ϵPEHE =

√
E[(τ̃(X)− τ(X))2] (Shalit et al., 2017) where τ̃ is the estimated

CATE and τ is CATE (i.e. a form of RMSE).
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Limitations. Although we highlight the possibility for future work to adapt β to specific datasets or score
functions, our aim is not to offer a practical recipe for this to practitioners. Our focus is on showing how even
the simplest form of stochastic acquisition already raises questions for some recent more complex methods.

7 Discussion & Conclusion

We have demonstrated a surprisingly effective and efficient baseline for batch acquisition in active learning.
Our stochastic method is orders of magnitude faster than sophisticated batch-acquisition strategies like
BADGE and BatchBALD while retaining comparable performance in many settings. Compared to the flawed
top-K batch acquisition heuristic, it is never worse: we see no reason to continue using top-K acquisition.

Importantly, our work raises serious questions about these current methods. If they fail to outperform
such a simple baseline in a wide range of settings, do they model the interaction between points sufficiently
well? If so, are the scores themselves unreliable? We call on future work in batch active learning to at least
demonstrate that it can outperform our simple strategy.

At the same time, our framework opens doors for improved methods. Although our stochastic model is put
forward for its computational and mathematical simplicity, future work could explore more sophisticated
modelling of the predicted score changes that take the current model and dataset into account. In its simplest
form, this might mean adapting the temperature of the acquisition distribution to the dataset or estimating
it online. Our experiments also highlight that the acquisition size could be dynamic, with larger batch sizes
acceptable later in training.
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A Ethical impact

We do not foresee any ethical risks related to this work. Insofar as our sampling method reduces computational
costs, applications might benefit from reduced resource consumption. Our method appears to be better than or
as good as alternatives on evaluations examining the ability to learn from data with under-represented groups
and on evaluations that measure the difference between performance for the most- and least-represented
groups, which may aid algorithmic fairness (see C.5).

B Method

B.1 Other scoring functions

Following Gal et al. (2017), we also examine using variation ratios (least confidence) and standard deviation
as scoring functions.

Variation Ratio. Also known as least confidence, the variation-ratios is the complement of the least-confindent
class prediction:

svariation-ratios(i; Itrain) := 1−max
y

p(y |X = xi). (18)

This scoring function is non-negative and a score of 0 means that the sample is uninformative: a score of 0
means that the respective prediction is one-hot, which means that the expected information gain is also 0 as
can be easily verified. Thus, variation ratios matches the intuitions behind power acquisition.

Standard Deviation. The standard deviation score function measures the sum of the class probability
deviations and is closely related to the BALD scores:

sstd-dev(i; Itrain) :=
∑

y

√
Varp(ω)[p(y |X = xi, ω)]. (19)

This scoring function is also non-negative, and no variance for the predictions implies a zero expected
information gain and thus an uninformative sample. Thus, the standard deviation should also perform well
with power acquisition.

B.2 Proof of Proposition 3.1

First, we remind the reader that a random variable G is Gumble distributed G ∼ Gumbel(µ; β) when its
cumulative distribution function follows p(G ≤ g) = exp(− exp(− g−µ

β )).

Furthermore, the Gumbel distribution is closed under translation and positive scaling:
Lemma B.1. Let G ∼ Gumbel(µ; β) be a Gumbel distributed random variable, then:

αG + d ∼ Gumbel(d + αµ; αβ). (20)

Proof. We have p(αG + d ≤ x) = p(G ≤ x−d
α ). Thus, we have:

p(αG + d ≤ x) = exp(− exp(−
x−d

α − µ

β
)) (21)

= exp(− exp(−x− (d + αµ)
αβ

)) (22)

⇔αG + d ∼ Gumbel(d + αµ; αβ). (23)

We can then easily prove Proposition 3.1 using Theorem 1 from Kool et al. (2019), which we present it here
slightly reformulated to fit our notation:

19



Under review as submission to TMLR

(a) A good example in MIOTCD dataset.

(b) An example of duplicated sam-
ples in the dataset.

(c) An example of class
confusion between mo-
torcycle and bicycle.

(d) An example of heavy
compression artefact.

(e) An example of low reso-
lution samples.

Figure 9: MIO-TCD Dataset is designed to include common artifacts from production data. The size and
quality of the images vary greatly between crops; from high-quality cameras on sunny days to low-quality
cameras at night. (a) shows an example of clean samples that can be clearly assigned to a class. (b)(c)(d)
and (e) show the different categories of noise. (b) shows an example of many near-duplicates that exist in
the dataset. (c) is a good example where the assigned class is subject to interpretation (d) is a sample with
heavy compression artefacts and (e) is an example of samples with low resolution which again is considered a
hard example to learn for the model.

Lemma B.2. For k ≤ n, let I∗
1 , . . . , I∗

k = arg topk{si + ϵi}i with ϵi ∼ Gumbel(0; 1), i.i.d.. Then I∗
1 , . . . , I∗

k is

an (ordered) sample without replacement from the Categorical
(

exp si∑
j∈n

exp sj
, i ∈ {1, . . . , n}

)
distribution, e.g.

for a realization i∗
1, . . . , i∗

k it holds that

P (I∗
1 = i∗

1, . . . , I∗
k = i∗

k) =
k∏

j=1

exp si∗
j∑

ℓ∈N∗
j

exp sℓ

where N∗
j = N\

{
i∗
1, . . . , i∗

j−1
}

is the domain (without replacement) for the j-th sampled element.

Now, it is easy to prove the proposition:
Proposition 3.1. For scores si, i ∈ {1, . . . , n}, and k ≤ n and β > 0, if we draw ϵi ∼ Gumbel(0; β−1)
independently, then arg topk{si + ϵi}i is an (ordered) sample without replacement from the categorical
distribution Categorical(exp(β si)/

∑
j

exp(β sj), i ∈ {1, . . . , n}).

Proof. As ϵi ∼ Gumbel(0; β−1), define ϵ′
i := βϵi ∼ Gumbel(0; 1). Further, let s′

i := βsi. Applying Lemma B.2
on s′

i and ϵ′
i, arg topk{s′

i + ϵ′
i}i yields (ordered) samples without replacement from the categorical distribution

Categorical( exp(β si)∑
j

exp(β sj)
, i ∈ {1, . . . , n}). However, multiplication by β does not change the resulting indices

of arg topk:

arg topk{s′
i + ϵ′

i}i = arg topk{si + ϵi}i, (24)

concluding the proof.
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C Experiments

C.1 Experimental setup & compute

Full code for all experiments will be available at anonymized_github_repo.

Frameworks. We use PyTorch. Repeated-MNIST and EMNIST experiments use PyTorch Ignite. Synbols
and MIO-TCD experiments use the BaaL library https://github.com/baal-org/baal (Atighehchian et al.,
2020). Predictive parity is calculated using FairLearn (Bird et al., 2020). The CausalBALD experiments use
https://github.com/anndvision/causal-bald (Jesson et al., 2021).

Compute. Results shown in Table 1 were run inside Docker containers with 8 CPUs (2.2Ghz) and 32 Gb of
RAM. Other experiments were run on similar machines with Titan RTX GPUs. The Repeated-MNIST and
EMNIST experiments take about 5000 GPU hours. The MIO, Synbols and CLINC-150 experiments take
about 19000 GPU hours. The CausalBALD experiments take about 1000 GPU hours.

Dataset Licenses. Repeated-MNIST is based on MNIST which is made available under the terms of the
Creative Commons Attribution-Share Alike 3.0 license. The EMNIST dataset is made available as CC0
1.0 Universal Public Domain Dedication. Synbols is a dataset generator. MIO-TCD is made available
under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CLINC-150 is made available under the terms of Creative Commons Attribution 3.0 Unported License.

C.1.1 Runtime measurements

The synthetic dataset used for benchmarking has 4,096 features, 10 classes, and 10,000 pool points. VGG-16
models (Simonyan & Zisserman, 2015) were used to sample predictions and latent embeddings.

C.1.2 Repeated-MNIST

The Repeated-MNIST dataset is also constructed following Kirsch et al. (2019) with duplicated examples
from MNIST with isotropic Gaussian noise added to the input images (standard deviation 0.1).

We use the same setup as Kirsch et al. (2019): a LeNet-5-like architecture with ReLU activations instead of
tanh and added dropout. The model obtains 99% test accuracy when trained on the full MNIST dataset.
Specifically, the model is made up of two blocks of a convolution, dropout, max-pooling, ReLU with 32 and
64 channels and 5x5 kernel size, respectively. As classifier head, a two-layer MLP with 128 hidden units
(and 10 output units) is used that includes dropout between the layers. We use a dropout probability of
0.5 everywhere. The model is trained with early stopping using the Adam optimiser and a learning rate of
0.001. We sample predictions using 100 MC-Dropout samples for BALD. Weights are reinitialized after each
acquisition step.

C.1.3 EMNIST

We follow the setup from (Kirsch et al., 2019) with 20 MC dropout samples. We use a similar model as for
Repeated-MNIST but with three blocks instead of two. Specifically, we use 32, 64, and 128 channels and 3x3
kernel size. This is followed by a 2x2 max pooling layer before the classifier head. The classifier head is a
two-layer MLP but with 512 hidden units instead of 128. Again, we use dropout probability 0.5 everywhere.

C.1.4 Synbols & MIO-TCD

The full list of hyperparameters for the Synbols and MIO-TCD experiments is presented in Table 3. Our
experiments are built using the BaaL library (Atighehchian et al., 2020). We compute the predictive parity
using FairLearn (Bird et al., 2020). We use VGG-16 model (Simonyan & Zisserman, 2015) trained for 10
epochs using Monte Carlo dropout for acquisition (Gal et al., 2017) with 20 dropout samples.

In Figure 9, we show a set of images with common problems that can be find in MIO-TCD.
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Table 3: Hyper-parameters used in Section 5 and C.5

Hyperparameter Value
Learning rate 0.001

Optimizer SGD
Weight decay 0
Momentum 0.9

Loss function Crossentropy
Training duration 10

Batch size 32
Dropout p 0.5

MC iterations 20
Query size 100
Initial set 500

C.1.5 CLINC-150

We fine-tune a pretrained DistilBERT model from HuggingFace (Wolf et al., 2020) on CLINC-150 for 5
epochs with Adam as optimiser. Estimating epistemic uncertainty in transformer models is an open research
question, and hence, we do not report results using BALD and focus on entropy instead.

C.1.6 CausalBALD

Using the Neyman-Rubin framework (Neyman, 1923; Rubin, 1974; Sekhon, 2008), the CATE is formulated
in terms of the potential outcomes, Yt, of treatment levels t ∈ {0, 1}. Given observable covariates, X, the
CATE is defined as the expected difference between the potential outcomes at the measured value X = x:
τ(x) = E[Y1 −Y0 | X = x]. This causal quantity is fundamentally unidentifiable from observational data
without further assumptions because it is not possible to observe both Y1 and Y0 for a given unit. However,
under the assumptions of consistency, non-interference, ignoreability, and positivity, the CATE is identifiable
as the statistical quantity τ̃(x) = E[Y | T = 1, X = x]− E[Y | T = 0, X = x] (Rubin, 1980).

Jesson et al. (2021) define BALD acquisition functions for active learning CATE functions from observational
data when the cost of acquiring an outcome, y, for a given covariate and treatment pair, (x, t), is high.
Because we do not have labels for Y1 and Y0 for each (x, t) pair in the dataset, their acquisition function
focusses on acquiring data points (x, t) for which it is likely that a matched pair (x, 1− t) exists in the pool
data or has already been acquired at a previous step. We follow their experiments on their synthetic dataset
with limited positivity and the semi-synthetic IHDP dataset (Hill, 2011). Details of the experimental setup
are given in (Jesson et al., 2021), we use their provided code, and implement the power acquisition function.

The settings for causal inference experiments are identical to those used in Jesson et al. (2021), using the
IHDP dataset (Hill, 2011). Like them, we use a Deterministic Uncertainty Estimation Model (van Amersfoort
et al., 2021), which is initialised with 100 datapoints and acquire 10 datapoints per acquisition batch for 38
steps. The dataset has 471 pool points and a 201 point validation set.

22



Under review as submission to TMLR

C.2 Repeated-MNIST
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Figure 10: Repeated-MNIST x4 (5 trials): acquisition size ablation for BADGE. Acquisition size 20 performs
best out of {10, 20, 40}. Hence, we use that for Figure 2.

BADGE Ablation. In Figure 10, we see that BADGE performs best with acquisition size 20 on Repeated-
MNISTx4 overall. BADGE 40 and BADGE 20 have the highest final accuracy, cf. BADGE 10 while BADGE
20 performs better than BADGE 40 for small training set sizes.

C.2.1 Other scoring functions
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Figure 11: Repeated-MNIST x4 (5 trials): Performance for other scoring functions. Entropy, std dev,
variation ratios behave like BALD when applying our stochastic sampling scheme.

In Figure 11 shows the performance of other scoring functions than BALD on RepeatedMNIST x4.
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C.2.2 Redundancy ablation
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Figure 12: Repeated-MNIST (5 trials): Performance ablation for different repetition counts.

In Figure 12, we see the same behaviour in an ablation for different repetition sizes of Repeated-MNIST.

C.3 MIO-TCD
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(a) BALD
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(b) Entropy

Figure 13: MIO-TCD (5 trials).

In Figure 13, we see that power acquisition performs on par with BADGE with both BALD and entropy as
underlying score functions.

C.4 EMNIST
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Figure 14: EMNIST (Balanced) (5 trials): Per-
formance with BALD.
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Figure 15: EMNIST (ByMerge) (5 trials): Per-
formance with BALD.
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In Figure 14 and 15, we see that PowerBALD outperforms BALD, BatchBALD, and BADGE.
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Figure 16: EMNIST (Balanced) (5 trials): acquisition size ablation for BADGE.

BADGE Ablation. In Figure 16, we see that BADGE performs similarly with all three acquisition sizes.
Acquisition size 10 is the smoothest.

C.5 Edge cases in Synbols

We use Synbols (Lacoste et al., 2020) to demonstrate the behaviour of batch active learning in artificially
constructed edge cases. Synbols is a character dataset generator for classification where a user can specify the
type and proportion of bias and insert artefacts, backgrounds, masking shapes, and so on. We selected three
datasets with strong biases supplied by Lacoste et al. (2020); Branchaud-Charron et al. (2021) to evaluate
our method. The experimental settings are described in appendix C.1.

For these tasks, performance evaluation includes ‘predictive parity’, also known as ‘accuracy difference’,
which is the maximum difference in accuracy between subgroups—which are, in this case, different coloured
characters. This measure is used most widely in domain adaptation and ethics (Verma & Rubin, 2018). We
want to maximise the accuracy while minimising the predictive parity.
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Figure 17: Performance on Synbols Spurious Correlations (3 trials) with BALD. Stochastic acquisition
matches BADGE and BALD’s predictive parity and performance, which is reassuring as stochastic acquisition
functions might be affected by spurious correlations.
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Spurious Correlations. This dataset includes spurious correlations between character colour and class. As
shown in Branchaud-Charron et al. (2021), active learning is especially strong here as characters that do not
follow the correlation will be informative and thus selected.

We compare the predictive parity between methods in Fig. 17b. We do not see any significant difference
between our method and BADGE or BALD. This is encouraging, as stochastic approaches might select more
examples following the spurious correlation and thus have higher predictive parity, but this is not the case.
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Figure 18: Synbols Minority Groups (3 trials): Performance on BALD. PowerBALD outperforms BALD and
matches BADGE for both accuracy and predictive parity.

Minority Groups. This dataset includes a subgroup of the data that is under-represented; specifically,
most characters are red while few are blue. As Branchaud-Charron et al. (2021) shows, active learning can
improve the accuracy for these groups.

Our stochastic approach lets batch acquisition better capture under-represented subgroups. In Figure 18a,
PowerBALD has an accuracy almost identical to that of BADGE, despite being much cheaper, and outperforms
BALD. At the same time, we see in Figure 18b that PowerBALD has a lower predictive parity than BALD,
demonstrating a fairer predictive distribution given the unbalanced dataset.
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Figure 19: BALD
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Figure 21: Performance on Synbols Missing Characters (3 trials). In this dataset with high aleatoric
uncertainty, PowerBALD matches BADGE and BALD performance. PowerEntropy significantly outperforms
Entropy which confounds aleatoric and epistemic uncertainty.

26



Under review as submission to TMLR

Missing Synbols. This dataset has high aleatoric uncertainty (input noise). Some images are missing
information required to make high-probability predictions—these images have shapes randomly occluding
the character—so even a perfect model would remain uncertain. Lacoste et al. (2020) demonstrated that
entropy is ineffective on this data as it cannot distinguish between aleatoric and epistemic uncertainty (input
noise and model uncertainty), while BALD can do so. As a consequence, entropy will unfortunately prefer
samples with occluded characters, resulting in degraded active learning performance. For predictive entropy,
stochastic acquisition largely corrects the failure of entropy acquisition to account for missing data (Figure 21)
although PowerEntropy still underperforms BADGE here. For BALD, we show in Figure 19 in the appendix
that, as before, our stochastic method performs on par with BADGE and marginally better than BALD.

C.6 CLINC-150
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Figure 22: Performance on CLINC-150 (10 trials). PowerEntropy performs much better than entropy, which
only performs marginally better than uniform, and almost on par with BADGE.

In Figure 22, we see that PowerEntropy performs much better than entropy which only performs marginally
better than the uniform baseline. PowerEntropy also performs better than BADGE at low training set
sizes, but BADGE performs better in the second half. Between ≈ 2300 and 4000 samples, BADGE and
PowerEntropy perform the same.
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D Comparing Power, Softmax and Soft-Rank

D.1 Empirical Evidence
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Figure 23: Repeated-MNIST (5 trials): Performance with all three stochastic strategies.

Repeated-MNIST. In Figure 23, power acquisition performs best overall, followed by soft-rank and then
softmax.
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Figure 24: EMNIST (Balanced) (5 trials): Per-
formance with all three stochastic strategies with
BALD. PowerBALD performs best.
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Figure 25: EMNIST (ByMerge) (5 trials): Per-
formance with all three stochastic strategies with
BALD. PowerBALD performs best.

EMNIST. In Figure 24 and 25, we see that PowerBALD performs best, but Softmax- and SoftrankBALD
also outperform other methods. BADGE did not run on EMNIST (ByMerge) due to out-of-memory issues
and BatchBALD took very long as EMNIST (ByMerge) has more than 800,000 samples.
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Figure 26: MIO-TCD (3 trials): Performance with all three stochastic strategies.

MIO-TCD. In Figure 26, we see that all three stochastic acquisition methods perform about equally well.
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Figure 27: Synbols edge cases (3 trials): Performance with all three stochastic strategies.

Synbols. In Figure 27, power acquisition seems to perform better overall—mainly due to the performance in
Synbols Missing Characters.
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Figure 29: Score distribution for power and softmax acquisition of BALD scores on MNIST for varying
Coldness β at t = 0. Linear and log plot over samples sorted by their BALD score. At β = 8 both softmax
and power acquisition have essentially the same distribution for high scoring points (closely followed by the
power distribution for β = 4). This might explain why the coldness ablation shows that these β to have very
similar AL trajectories on MNIST. Yet, while softmax and power acquisition seem transfer to RMNIST, this
is not the case for softrank which is much more sensitive to β. At the same time, power acquisition avoids
low-scoring points more than softmax acquisition.
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Figure 28: CLINC-150 (10 trials): Performance with
all three stochastic strategies.

CLINC-150. In Figure 28, all three stochastic methods perform similarly.

D.2 Investigation

To further examine the three stochastic acquisition variants, we plot their score distributions, extracted from
the same MNIST toy example, in Figure 29. Power and softmax acquisition distributions are similar for
β = 8 (power, softmax) and β = 4 (softmax). This might explain why active learning with these β shows
similar accuracy trajectories.

We find that power and softmax acquisition are quite insensitive to β and thus selecting β = 1 might generally
work quite well.
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E Effect of changing β

E.1 Repeated-MNIST
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Figure 30: Repeated-MNIST: β ablation for *BALD.
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E.1.1 MIO-TCD and Synbols
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Figure 31: MIO-TCD and Synbols: β ablation for *BALD.
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Figure 32: MIO-TCD and Synbols: β ablation for *Entropy.
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E.2 CausalBALD: synthetic dataset
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(a) Overall Ablation (Subset)
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(b) Low Temperature Only
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Figure 33: CausalBALD: Synthetic Dataset. (a) At a very high temperature (β = 0.1), PowerBALD behaves
very much like random acquisition, and as the temperature decreases the performance of the acquistion
function improves (lower √ϵPEHE). (b) Eventually, the performance reaches an inflection point (β = 4.0) and
any further decrease in temperature results in the acquisition strategy performing more like top-K. We see
that under the optimal temperature, power acquisition significantly outperforms both random acquisition
and top-K over a wide range of temperature settings.

We provide further β ablations for CausalBALD on the entirely synthetic dataset which is used by Jesson
et al. (2021). This demonstrates the ways in which β interpolates between uniform and top-K acquisition.

E.3 CLINC-150
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Figure 34: Performance CLINC-150: β ablation for *Entropy.
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