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A B S T R A C T

Unmanned Aerial Vehicle (UAV) assisted Mobile Edge Computing (MEC) systems provide substantial benefits
for task offloading and communication services, especially in situations where traditional communication
infrastructure is unavailable. Current research emphasizes maintaining communication quality while mini-
mizing total energy consumption and optimizing UAV flight trajectories. However, several issues remain:
First, the energy consumption objective function lacks comprehensiveness, neglecting the impact of UAV
flight energy consumption; second, an effective Deep Reinforcement Learning (DRL) algorithm has not
been employed to address the non-convexity of the objective function; third, there is insufficient discussion
regarding the practical significance of the proposed approach. To address these issues, this paper formulates
an objective function aimed at minimizing MEC energy consumption by considering task offloading decisions,
communication delays, computational energy consumption, and UAV flight energy consumption. We propose
a Population Diversity-based Particle Swarm Optimization-Double Delay Deep Deterministic Policy Gradient
(PDPSO-TD3) algorithm to find the optimal solution, enhance UAV flight trajectories through optimized
offloading decisions, ensure efficient communication, and minimize the total energy consumption of the
MEC system. Furthermore, we discuss the practical applicability of PDPSO-TD3 in detail and present the
proposed scheme. Experimental results demonstrate that compared to the Deep Deterministic Policy Gradient
(DDPG) algorithm, for transmission delay, MEC energy consumption, UAV flight energy consumption, and User
Equipments (UEs) access rate metrics. The proposed PDPSO-TD3 algorithm can improvement the performance
by about 14.3%, 10.1%, 6.1%, and 3.3%, respectively.
1. Introduction

When processing latency-sensitive tasks such as road traffic mon-
itoring, intelligent vehicle navigation and virtual reality [1], mobile
devices often struggle to maintain low power consumption and low
latency due to limitations in computational resources and size [2]. For
this reason, Mobile Edge Computing (MEC) has been proposed as a
solution. Specifically, MEC achieves the goal of reducing transmission
latency by offloading tasks from User Equipments (UEs) to edge servers.
In addition, MEC effectively reduces the proportion of discarded tasks
in time-sensitive operations, thereby improving the Quality of Service
(QoS) for users [3].

However, in emergency situations such as natural disasters, the
infrastructure communication facilities may collapse, which poses a
challenge to the stability of MEC services [4,5]. Fortunately, Unmanned
Aerial Vehicle (UAV) has achieved significant advancements in diverse
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applications, including post-disaster emergency rescue, search oper-
ations, oil and gas field mapping, and critical data acquisition [6,
7]. The authors in [8] proposed the utilization of UAV as a ‘‘mo-
bile aerial base station’’ to provide emergency communication support
when conventional communication facilities fail. Compared with MEC
that rely on ground Base Stations (BSs), UAV can extend wireless cov-
erage, such as Line of Sight (LoS) angles, quickly collect sensitive data,
and support the efficient offloading of computation-intensive tasks in
MEC [9–11].

Based on the above research, we are considering using UAV as
mobile BSs to assist with MEC communication when the commu-
nication system is obstructed. Our goal is to minimize the energy
consumption and transmission delay, and to ensure the reliability of
the communication quality between UAV and UEs. Therefore, adaptive
UAV selection based on dynamic path planning is an important issue.
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 data mining, AI training, and similar technologies. 
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When a UAV acts as relay BSs for communication services, it must fly
o each terminal to provide coverage. However, in practical situations,
he UAV is unable to ascertain the actual location of the UEs in advance
ecause the location of the UEs are random and not fixed. In addition,
he communication rate is also affected by the distance between the

UAV and UEs. Therefore, autonomous real-time path planning and
dynamic adaptation to random UEs are major challenges.

Deep Reinforcement Learning (DRL) combines the complex fea-
ure extraction capabilities of Deep Learning (DL) with the adaptive
earning mechanisms of Reinforcement Learning (RL), which can con-
rol the agent running in a complex and dynamic environment, and
hows excellent performance in multi-dimensional continuous action
pace [12]. Therefore, DRL has been applied to solve the autonomous

path planning problem of UAV [13,14].
In [15], the authors proposed a TD3-BC-PPO algorithm to address

the problem of dynamic optimal design under adversarial real-time
conditions, but it did not cover the MEC environment. Some works
in [16–19] indicated that in a system with multiple UAV support-
ng MEC, algorithms such as Double Q-Learning (DQL), Multi-Agent

Deep Deterministic Policy Gradient (MADDPG), and Multi-Agent Dou-
ble Delay Deep Deterministic Policy Gradient (MATD3) can do well
in collaboratively optimizing UAV trajectories and providing computa-
tional services. In [20], the authors used two Deep Q-Network (DQN)
etworks to solve the UAV trajectory constraint optimization problem.
n [21], the authors put forth a joint algorithmic approach that employs

the Population Diversity-based Particle Swarm Optimization (PDPSO)
algorithm to optimize the task offloading strategy and the Deep De-
terministic Policy Gradient (DDPG) algorithm to identify the optimal
UAV trajectory. It is important to note that the aforementioned studies
are based on the expansion of DQL, DDPG and DQN algorithms. In
comparison to Double Delay Deep Deterministic Policy Gradient (TD3),
the algorithms themselves present certain issues, including insufficient
stability and overestimation, which may result in convergence to local
optima and impair the learning ability and exploration performance.

In this paper, we innovatively propose the PDPSO-TD3 algorithm.
The trajectory of the UAV is dynamically optimized based on the
optimal task offloading strategy, aiming to minimize both energy con-
sumption and transmission latency. To the best of our knowledge, this
is the first instance where the PDPSO algorithm and the TD3 algorithm
re combined, resulting in excellent performance. Furthermore, we

specifically take into account the impact of UAV flight power consump-
tion on the total energy consumption of the MEC system, which has
been largely overlooked in previous studies. The main contributions of
this paper are summarized as follows:

(1) Task offloading on the MEC system: We address the co-
operative task offloading strategy for UAV-assisted MEC sys-
tems, which integrates on-device computation by UEs and UAV-
supported partial task processing coupled with offloading. The
strategy aims to minimize the anticipated long-term task ex-
ecution cost, factoring in the temporal disparity between the
UAV partial computation and the UEs local task processing
and service offloading. Through this optimization, we ascertain
the optimal task offloading ratio, thereby formulating the most
efficient task offloading strategy.

(2) UAV flight energy consumption model is proposed: We in-
vestigate the effect of UAV flight energy consumption on the
total energy consumption of MEC systems, incorporating this
parameter into our objective function. Utilizing DRL, we solve
the ensuing non-convex optimization problem, thereby reduc-
ing MEC energy consumption and concurrently optimizing UAV
flight paths.

(3) The PDPSO-TD3 algorithm is innovatively proposed: The
trajectory of the UAV is dynamically updated in real time by
our algorithm, based on the optimal task offloading strategy,
ensuring effective coverage of UEs within the UAV’s commu-
nication range. Our algorithm possesses two distinct features,
 t
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firstly, it utilizes the PDPSO algorithm to determine the optimal
offloading rate for decision-making regarding task offloading.
Secondly, we enhance the TD3 algorithm to achieve optimal
trajectory design for the UAV in a continuous action space,
thereby enhancing real-time communication quality.

(4) Real-world applicability: We specifically address the real-
world applicability of the PDPSO-TD3 algorithm, presenting a
proposed scheme. This includes identifying relevant real-world
scenarios, detailing the application methodologies, and discusses
the expected practical implications. These aspects have been
largely neglected in the existing literature.

The rest of this paper is structured as follows: Section 2 reviews
the related work. Section 3 describes the system model and problem
formulation. Section 4 details the PDPSO-TD3 algorithm. Section 5
discusses the algorithm’s real-world applications. Section 6 provides
experimental results and analysis. Section 7 concludes and suggests
future research directions.

2. Related works

The integration of UAV, MEC, and DRL has been the subject of
extensive study in a variety of application scenarios, including data
collection [22], collision avoidance [23], target tracking [24], resource
management [25], and task offloading [26]. In this study, we focus on
he trajectory optimization method, task offloading scheme, energy loss
nd transmission delay of UAV assisted MEC, and divide the research

work in related fields into two categories: resource allocation and
trajectory optimization.

2.1. Resource allocation

The first category is focused on the implementation of offloading
strategies and system architectures designed to reduce energy consump-
tion and transmission latency across the system. In [27], the authors
onducted an exhaustive analysis of the computational time and energy
xpenditure associated with task offloading and proposed a pragmatic
trategy to minimize these costs. Subsequent works, as detailed in [28,

29], introduced an alternative iterative scheme that employs block
descent to refine task offloading decisions on MEC servers, thereby
optimizing a cost function that accounts for both energy consumption
and transmission delay. In [30], the authors focused on a MISO UAV-
assisted MEC network and presented a three-stage iterative algorithm
designed to reduce the overall energy usage of the MEC system. Further
advancements were made in [31], where the authors addressed a
heterogeneous MEC system, with the objective of enhancing energy
tilization efficiency through the joint optimization of UAV trajectories
nd computational resource distribution. In [32], a two-stage UAV

operational mode was introduced to effectively manage queued tasks,
rendering resource allocation and trajectory planning more efficient

hile simultaneously reducing energy usage. In [33], the authors pro-
posed an iterative algorithm to streamline UAV trajectories and to
adeptly manage the scheduling of computational resources. In [34],
the authors implemented dynamic orchestration of the ground net-
work, designing a more flexible framework for terrestrial networks that
chieves high-quality network communication while reducing system
nergy consumption and optimizing UAV flight trajectories. In [35],

the authors proposed a dynamic grouping and re-orchestration strategy
for vehicular networks, where the latency model for ground networks
can process data in cloud or edge servers. In future research on UAV-
assisted MEC, this model can be utilized to more effectively evaluate
and optimize communication latency.

Despite the contributions of previous studies, they have not yet
explored the potential of DRL in addressing non-convex optimization
challenges. It is widely recognized that DRL offers significant advan-
ages in the realm of non-convex optimization, particularly when the
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Table 1
Comparison between our work and the existing literature.

References Offload
decision

Communication
latency

Computational
energy consumption

UAV flight energy
consumption

UAV trajectory
optimization

DRL algorithm
update

Real-world
applications

[15] ✓ ✓ ✓

[16] ✓ ✓ ✓ ✓ ✓ ✓

[17] ✓ ✓ ✓ ✓ ✓ ✓

[18] ✓ ✓ ✓ ✓ ✓ ✓

[19] ✓ ✓ ✓ ✓ ✓

[20] ✓ ✓ ✓ ✓

[21] ✓ ✓ ✓ ✓ ✓

[27] ✓ ✓ ✓

[28] ✓ ✓ ✓ ✓

[29] ✓ ✓ ✓ ✓

[30] ✓ ✓ ✓ ✓

[31] ✓ ✓ ✓ ✓ ✓

[32] ✓ ✓ ✓ ✓

[33] ✓ ✓ ✓ ✓

[34] ✓ ✓ ✓ ✓ ✓ ✓

[36] ✓ ✓ ✓ ✓

[37] ✓ ✓ ✓ ✓ ✓ ✓

[38] ✓ ✓ ✓ ✓

[39] ✓ ✓ ✓ ✓

[40] ✓ ✓ ✓ ✓ ✓

[41] ✓ ✓ ✓ ✓

[42] ✓ ✓ ✓ ✓

[43] ✓ ✓ ✓ ✓

[44] ✓ ✓ ✓ ✓ ✓

Our work ✓ ✓ ✓ ✓ ✓ ✓ ✓
r
p
a

f
c
m
e
w
M
o

objective is to achieve global optimal, such as in scenarios involving
MEC resource allocation and the trajectory optimization of UAV. In
contrast to traditional approaches that may be satisfied with local
optima, DRL can learn through interaction with the environment and
ind policies that are either globally optimal or near-optimal. In [36],

the authors proposed an online task offloading framework based on
DRL, which significantly reduced the computational complexity while
making optimal offloading decisions. In [37], the authors studied a

RL-based UAV task offloading network, which enabled priority-based
task allocation, UAV power preservation, and trajectory optimization.
The authors of [38] proposed an ICRA method for the UANETs in
a UAV-assisted maritime monitoring system. By employing a DRL al-
gorithm to determine the optimal clustering strategy, they effectively
reduced the transmission latency and enhanced both energy efficiency
and service quality.

2.2. UAV trajectory optimization

The second category of investigation focuses on optimizing UAV
trajectories to reduce task computation latency and MEC system energy
consumption, while also enhancing communication quality. In [39],
the authors enhanced the DQN algorithm for flexible deployment on
UAV and MEC platforms, enabling the planning of UAV flight trajec-
tories that avoided collisions and optimized energy conservation. The
researchers in [40] proposed a two-tiered algorithmic framework. The
irst tier employed the Lagrange multiplier method to address the task

offloading allocation, while the second tier utilized DRL to address
the UAV trajectory optimization, thereby reducing the total energy
consumption of the MEC system. In [41], the authors explored the UAV-
assisted MEC wireless charging scenario, with the goal of maximizing
UAV energy utilization efficiency through the strategic optimization
of UAV trajectories. Additionally, [42] investigated the design of UAV
trajectories within complex 3D environments, aiming to reduce the
costs associated with mission decision-making. It is important to note
that the aforementioned studies overlooked the impact of UAV flight
power consumption on the MEC system. This oversight could lead to an
uneven distribution of computational resources and a potential decline
n the quality of communication services.

In [43], the authors proposed a trajectory control algorithm based
on DRL with the objective of reducing UAV flight power consumption
 l
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in dynamic environments and facilitating real-time decision-making,
thereby optimizing the utilization of the UAV’s limited computational
esources. In [44], the authors considered the impact of UAV flight
ower consumption on multi-UAV-assisted MEC systems and proposed
 JDPB algorithm to address offloading decisions, resource allocation,

and UAV trajectory planning. However, when formulating task offload-
ing strategies, the impact of computation energy consumption and
communication delay should be comprehensively considered. This in-
cludes evaluating the flight power consumption of the UAV, optimizing
its flight trajectory, and solving the non-convex optimization problem
using DRL. Currently, the studies in these areas has not yet formed a
comprehensive framework.

2.3. Literature summary

In this section, we explore the main differences between this study
and the existing literature. Firstly, it is noted that the studies cited in
Refs. [19–21,28–30,32,33], and [39–43] have not incorporated UAV
light energy consumption within their energy consumption models. In
ontrast, the present study integrates task offloading decisions, com-
unication delays, computational energy consumption, and UAV flight

nergy consumption into a more comprehensive objective function,
hich is designed to minimize the energy consumption associated with
EC. Secondly, with respect to the challenge posed by non-convex

bjective functions, the extant literature [27–34] has not employed a
more appropriate DRL algorithm, potentially leading to a propensity for
the algorithm to converge to local optima. To mitigate this limitation,
we introduce an algorithm, denoted as PDPSO-TD3, which is pre-
sented herein for the first time. In comparison with existing algorithms,
PDPSO-TD3 achieves a better balance between the convergence speed
of the algorithm and the quality of the solution, thereby enabling the
identification of the global optimal solution more effectively. Finally,
this study places particular emphasis on the practical applicability of
the PDPSO-TD3 algorithm and proposes a corresponding scheme. This
aspect, which is frequently overlooked in the extant research, is deemed
to be of paramount importance for enhancing the practical applicability
and expediting the industrialization process of pertinent technologies.
Table 1 summarizes the differences between our work and the existing
iterature.
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Fig. 1. MEC system model.

3. System model and problem formulation

It is well known that new energy vehicles depend on real-time
communication and data exchange with the network for tasks includ-
ing autonomous route planning, vehicle monitoring, and application
operation. These services are highly sensitive to network delays. In the
event of a communication base station failure, UAV serve as mobile BSs
to provide communication services. As shown in Fig. 1, in a scenario
where communication is disrupted along a road section, a UAV flies
from the starting point to the end point to offer emergency communi-
cation services to 𝐾 UEs. The positions of both the UAV and the UEs are
specified in 3D coordinate space, with the UEs’ locations and the data
volumes they process being subject to randomness and uncertainty. Due
to the real-time requirements of communication, some tasks necessitate
immediate local response computation. Furthermore, some data may
involve user privacy or security issues, necessitating local computation
rather than offloading to the UAV for assisted computation. This indi-
cates that the task offloading decision will be divided into two types:
either UEs compute all tasks locally, or they offload some tasks to
the UAV for assisted computation, ensuring task timeliness, safety, and
stability.

The total system time slot is set to 𝑇 , each time slot is 𝜒 in
length, and there are 𝑇

𝜒 time slots of equal length. In 𝑡th time slot,
we define the position of the 𝐾 UEs as 𝑆𝑘 (𝑡) =

{

𝑥𝑘 (𝑡) , 𝑦𝑘 (𝑡) , 0
}

∈
R1×3, 𝑘 = 1, 2,… ..., 𝐾. The UAV position is determined as 𝑆𝑢𝑎𝑣 (𝑡) =
{𝑋 (𝑡) , 𝑌 (𝑡) , 𝐻}. Given the relatively flat road surface and the lack of
obstacles or structures that could obstruct wireless communication, the
UAV is configured to maintain a constant altitude 𝐻 . The UAV must
determine its flight trajectory, including direction o𝑡 and velocity 𝑉𝑡, at
each time slot. The UAV’s maximum speed is represented by 𝑉max, and
its positional coordinates are consequently updated as follows:

𝑆𝑢𝑎𝑣 (𝑡 + 1) =
{

𝑋 (𝑡 + 1) = 𝑋 (𝑡) + sin (𝑜𝑡 × 𝜋
)

× 𝑉𝑡
𝑌 (𝑡 + 1) = 𝑌 (𝑡) + cos (𝑜𝑡 × 𝜋

)

× 𝑉𝑡
(1)

The UAV communicates with only one UE in a single time slot,
which is to better observe the UAV flight decision in each time slot.
Considering the realistic scenario, the UAV and UEs are moving and
bounded by a fixed area 𝑆𝑢𝑎𝑣 (𝑡) , 𝑆𝑘 (𝑡) ⩽

{

𝑋𝑠𝑖𝑧𝑒, 𝑌𝑠𝑖𝑧𝑒, 𝐻
}

. The intensive
task that requires computational processing for 𝐾 UEs is denoted as
𝐿𝑘 (𝑡) , 𝑘 = 1, 2,… ..., 𝐾.

In MEC systems, the provisioning of computing and offloading
services for resource-intensive tasks mainly involves two fundamental
components: computation and communication. Furthermore, we specif-
ically examine the impact of UAV flight power consumption on the
4 
Table 2
Main notations.

Notation Definition

𝐾 The count of UEs
𝑇 Total duration of the MEC system
𝜒 The length of each time slot
𝑆𝑘 (𝑡) Coordinate position of UEs in time slot
𝑆𝑢𝑎𝑣 (𝑡) Coordinate position of UAV in time slot
𝑉𝑡, 𝑉max UAV flight speed and maximum speed constraint
𝑜𝑡 The flight direction of the UAV
𝐿𝑘 (𝑡) Task data size generated by the UEs
ℎ𝑘 (𝑡) The channel gain between the UAV and UEs
𝐵𝑢 Uplink bandwidth
𝛽0 The channel gain at a distance of 1 m
𝛿20 The noise power generated by UAV communication
𝜑𝑘 (𝑡) Task offloading strategy
𝑃𝑢𝑠𝑒𝑟 The communication transmission power of UEs
𝐼𝑘 (𝑡) Communication link validity
𝑇 𝑇 𝑟𝑎
𝑘 (𝑡) Transmission delay caused by partial task offloading

𝛼𝑘 (𝑡) Task offloading ratio
𝐸𝑇 𝑟𝑎

𝑘 (𝑡) Energy consumption generated by communication
𝑃𝑢𝑎𝑣 Transmit power of the UAV.
𝑇 𝐶 𝑜𝑚
𝑘,𝑙 𝑜𝑐 (𝑡) The delay for UEs local computation

𝑓𝑢𝑠𝑒𝑟 The local computing resources of UEs
𝐶𝑢𝑠𝑒𝑟 The CPU computation cycles for UEs when performing local
𝑇 𝐶 𝑜𝑚
𝑘,𝑝𝑎𝑟 (𝑡) The delay caused by the UEs executing partial computations.

𝑇 𝐶 𝑜𝑚
𝑘,𝑢𝑎𝑣 (𝑡) The delay caused by UAV assisted computing

𝐶𝑢𝑎𝑣 The CPU computation cycles required for the UAV
𝑓𝑢𝑎𝑣 The computing resources of UAV
𝐸𝐶 𝑜𝑚

𝑘,𝑙 𝑜𝑐 (𝑡) Energy consumption from local computation by the UEs.
𝐾𝑢𝑠𝑒𝑟 The CPU capacitance index of UEs
𝐸𝐶 𝑜𝑚

𝑘,𝑝𝑎𝑟 (𝑡) Energy consumption incurred during UEs partial computation
𝐾𝑢𝑎𝑣 The CPU capacitance index of UAV
𝐸𝐶 𝑜𝑚

𝑘,𝑢𝑎𝑣 (𝑡) Energy consumption incurred during UAV task computation.
𝑇𝑝𝑎𝑟 (𝑡) Partial tasks compute the total delay incurred.
𝐸𝑝𝑎𝑟 (𝑡) Total energy consumption from partial task computation.
𝑇 (𝑡) Total transmission delay of MEC.
𝐸 (𝑡) Total energy consumption of MEC.
𝐸𝑢𝑎𝑣 (𝑡) The flight energy consumption of the UAV in 𝑡th time
𝜔 Calculate the weights used
𝜗 UAV flight energy consumption weight

overall energy consumption of the MEC system. In the subsequent
sections, we will detail these components in subsections, define the
problem, and propose our solution. For clarity, Table 2 provides a
summary of the main notations used throughout this paper.

3.1. Communication model

When the BSs fail to provide reliable communication service, the
UAV is required to function as the mobile BSs for communicating with
UEs, and the channel gain ℎ𝑘 (𝑡) between them is determined based on
real-time positioning. We do not consider the downlink transmission
here, that is [29]:

ℎ𝑘 (𝑡) =
𝛽0

𝐻2 + ‖

‖

𝑆𝑢𝑎𝑣 (𝑡) − 𝑆𝑘 (𝑡)‖‖
2

(2)

‖

‖

𝑆𝑢𝑎𝑣 (𝑡) − 𝑆𝑘 (𝑡)‖‖ denotes the spatial separation between the UAV
and UEs within a 3D continuous action space, while 𝛽0 represents the
channel gain based on the initial distance, which we have set as 1 m in
this context.

Uplink bandwidth 𝐵𝑢 required by UEs is uniformly allocated when
the UAV, serving as an aerial base station, engages in communica-
tion with UEs to facilitate offloading of computationally intensive
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tasks. Consequently, the data transmission rate 𝑟𝑘 (𝑡) can be defined as
ollows [24]:

r𝑘 (𝑡) =
𝐵𝑢
𝐾

log2

(

1 + 𝑃userℎ𝑘 (𝑡)
𝛿20

)

(3)

The UAV communication is affected by noise interference, with a
oise power is 𝛿20 . UEs’ communication transmission power is 𝑃user .

To establish efficient communication links 𝐼𝑘 (𝑡) with UEs and en-
sure timely offloading transmission of all computing tasks 𝐿k (𝑡) gener-
ted by UEs within a single time slot, we define the minimum uplink
ate 𝜅 as follows:

𝜅 =
𝐿k (𝑡)
𝜒

(4)

Effective communication between UAV and UEs can only be
achieved if the minimum communication requirements are met. There-
fore, 𝐼𝑘 (𝑡) ∈ {0, 1}, where 1 indicates a successful establishment
f communication link, while the opposite indicates communication
ailure.

𝐼𝑘 (𝑡) =

{

1, 𝑟𝑘 (𝑡) > 𝜅
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

The binary representation is utilized to express our task offloading
olicy 𝜑𝑘 (𝑡). When 𝜑𝑘 (𝑡) = 1, UEs offload a portion of the data to UAV
or assisted computing. It is important to note that when 𝜑𝑘 (𝑡) = 0, the
ask data is computed entirely locally on UEs without any interaction
ith UAV.

𝜑𝑘 (𝑡) =
{

1, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑜𝑓𝑓 𝑙 𝑜𝑎𝑑
0, 𝑡𝑜𝑡𝑎𝑙 𝑙 𝑜𝑐 𝑎𝑙 (6)

When 𝜑𝑘 (𝑡) = 1, UEs will offload a portion of their computing tasks
to UAV, resulting in the transmission delay between them as stated
below:

𝑇 𝑇 𝑟𝑎
𝑘 (𝑡) =

𝛼𝑘 (𝑡)𝐿𝑘 (𝑡)𝜑𝑘 (𝑡)
𝑟𝑘 (𝑡)

(7)

In the 𝑡th time slot, UEs locally generate tasks 𝐿𝑘 (𝑡). To facilitate
auxiliary computation, 𝐿𝑘 (𝑡) needs to allocate a portion of these tasks
o UAV at an allocation ratio of 𝛼𝑘 (𝑡).

The total energy consumption resulting from the communication
between UAV and UEs can be inferred as follows:

𝐸𝑇 𝑟𝑎
k (𝑡) = 𝑃𝑢𝑎𝑣𝑇

𝑇 𝑟𝑎
k (𝑡) =

𝑃𝑢𝑎𝑣𝛼𝑘 (𝑡)𝐿𝑘 (𝑡)𝜑𝑘 (𝑡)
𝑟𝑘 (𝑡)

(8)

where 𝑃𝑢𝑎𝑣 represents transmit power of the UAV.

3.2. Computation model

Task computation consists of two components: the local compu-
ation performed by UEs and the involvement of UAV in executing
 portion of the computational tasks to support UEs. Local computa-
ion refers to UEs independently handling all the computation tasks,
.e., when the offloading strategy is 0. Correspondingly, when the

offloading strategy is 1, it means UAV assumes a portion of the com-
utational tasks from UEs, the delay for UEs entirely local computation
s [18]:

𝑇 𝐶 𝑜𝑚
𝑘,𝑙 𝑜𝑐 (𝑡) =

(

1 − 𝜑𝑘 (𝑡)
)

𝐿𝑘 (𝑡)𝐶𝑢𝑠𝑒𝑟

𝑓𝑢𝑠𝑒𝑟
(9)

We define the limited local computing resources of UEs as 𝑓𝑢𝑠𝑒𝑟.
The number of CPU cycles expended by UEs to process 1 bit of data
is defined as 𝐶𝑢𝑠𝑒𝑟. The latency generated by UEs undertaking partial
computational tasks is:

𝑇 𝐶 𝑜𝑚
𝑘,𝑝𝑎𝑟 (𝑡) =

(

1 − 𝛼𝑘 (𝑡)
)

𝐿𝑘 (𝑡)𝜑𝑘 (𝑡)𝐶𝑢𝑠𝑒𝑟

𝑓𝑢𝑠𝑒𝑟
(10)

Similarly, UEs offload some computing tasks to UAV, and the delay
aused by UAV assisted computing is as follows:

𝑇 𝐶 𝑜𝑚
𝑘,𝑢𝑎𝑣 (𝑡) =

𝜑𝑘 (𝑡) 𝛼𝑘 (𝑡)𝐿𝑘 (𝑡)𝐶𝑢𝑎𝑣
𝑓

(11)

𝑢𝑎𝑣

5 
where 𝐶𝑢𝑎𝑣 denotes the CPU cycles needed by UAV to process 1 bit
of data, while 𝑓𝑢𝑎𝑣 refers to the local computational capabilities of the
UAV. As such, we can deduce the computational energy consumption
of UEs and UAV as [18]:
𝐸𝐶 𝑜𝑚
𝑘,𝑙 𝑜𝑐 (𝑡) = 𝐾𝑢𝑠𝑒𝑟

(

𝑓𝑢𝑠𝑒𝑟
)3𝑇 𝐶 𝑜𝑚

𝑘,𝑙 𝑜𝑐 (𝑡)
= 𝐾𝑢𝑠𝑒𝑟

(

1 − 𝜑𝑘 (𝑡)
)

𝐿𝑘 (𝑡)𝐶𝑢𝑠𝑒𝑟
(

𝑓𝑢𝑠𝑒𝑟
)2 (12)

𝐸𝐶 𝑜𝑚
𝑘,par (𝑡) = 𝐾𝑢𝑠𝑒𝑟

(

𝑓𝑢𝑠𝑒𝑟
)3𝑇 𝐶 𝑜𝑚

𝑘,𝑝𝑎𝑟 (𝑡)

= 𝐾𝑢𝑠𝑒𝑟
(

1 − 𝛼𝑘 (𝑡)
)

𝐿𝑘 (𝑡)𝜑𝑘 (𝑡)𝐶𝑢𝑠𝑒𝑟
(

𝑓𝑢𝑠𝑒𝑟
)2 (13)

𝐸𝐶 𝑜𝑚
𝑘,𝑢𝑎𝑣 (𝑡) = 𝐾𝑢𝑎𝑣

(

𝑓𝑢𝑎𝑣
)3𝑇 𝐶 𝑜𝑚

𝑘,𝑢𝑎𝑣 (𝑡)
= 𝐾𝑢𝑎𝑣𝜑𝑘 (𝑡) 𝛼𝑘 (𝑡)𝐿𝑘 (𝑡)𝐶𝑢𝑎𝑣

(

𝑓𝑢𝑎𝑣
)2 (14)

where 𝐾𝑢𝑠𝑒𝑟 and 𝐾𝑢𝑎𝑣 respectively represent the CPU capacitance in-
dexes of the UEs and the UAV. It is important to acknowledge that
the energy consumption of task offloading calculations increases with
igher transmission delays, as these factors are intricately intercon-
ected within the system model.

Therefore, the total energy consumption and transmission delay can
e inferred when UAV assist UEs in task offloading and computation.

𝑇𝑝𝑎𝑟 (𝑡) = max
(

𝑇 𝐶 𝑜𝑚
k,par (𝑡) , 𝑇 𝑇 𝑟𝑎

k (𝑡) + 𝑇 𝐶 𝑜𝑚
𝑘,𝑢𝑎𝑣 (𝑡)

)

(15)

𝐸𝑝𝑎𝑟 (𝑡) = 𝐸𝑇 𝑟𝑎
k (𝑡) + 𝐸𝐶 𝑜𝑚

k,par (𝑡) + 𝐸𝐶 𝑜𝑚
𝑘,𝑢𝑎𝑣 (𝑡) (16)

Finally, we can derive the total energy consumption and transmis-
sion delay after all UEs complete their computational tasks.

𝐸 (𝑡) =
𝐾
∑

𝑘=1

[

(

1 − 𝜑𝑘 (𝑡)
)

𝐸𝐶 𝑜𝑚
𝑘,𝑙 𝑜𝑐 (𝑡) + 𝜑𝑘 (𝑡)𝐸𝑝𝑎𝑟 (𝑡)

]

(17)

𝑇 (𝑡) =
𝐾
∑

𝑘=1

[

(

1 − 𝜑𝑘 (𝑡)
)

𝑇 𝐶 𝑜𝑚
𝑘,𝑙 𝑜𝑐 (𝑡) + 𝜑𝑘 (𝑡) 𝑇𝑝𝑎𝑟 (𝑡)

]

(18)

3.3. UAV flight energy consumption model

Rotorcraft UAV primarily expending energy during flight, including
overing. When employed as a mobile MEC platform for UEs communi-
ation, the UAV hovers and transitions to a flying state when navigating
owards the UEs. However, due to the limited onboard battery, the
AV flight speed is constrained, preventing it from maintaining peak
elocity. Thus, precise modeling of its flight energy consumption is
ivotal for effective trajectory planning. In [45], the author derived

the flight power of a rotorcraft UAV at a speed of 𝑉 , disregarding the
mpact of acceleration on flight energy consumption.

𝑃𝑒 (𝑉 ) = 𝑃0

(

1 + 3𝑉 2

𝑈2
𝑡𝑖𝑝

)

+ 𝑃𝑖

(√

1 + 𝑉 4

4𝑉02
− 𝑉 2

2𝑉02

)

1
2

+ 1
2𝑑0𝜌𝑠𝐴𝑉

3
(19)

where 𝑃0 represents the blade profile power of the UAV in hover,
𝑃𝑖 represents the induced power, and 𝑉0 represents the average rotor
induced velocity, 𝑈𝑡𝑖𝑝, 𝑑0, 𝜌, 𝑠, and 𝐴 represent the tip speed of the UAV
rotor blade, fuselage drag ratio, air density, rotor solidity, and propeller
isk area. Therefore, assuming that the UAV speed 𝑣𝑡 remains constant
uring each time slot, we can derive the energy consumption within
hat time slot.

𝐸𝑢𝑎𝑣 (𝑡) =
⎛

⎜

⎜

⎝

𝑃0

(

1 + 3𝑉𝑡2

𝑈2
𝑡𝑖𝑝

)

+ 𝑃𝑖

(

√

1 + 𝑉𝑡4

4𝑉02
− 𝑉𝑡2

2𝑉02

)
1
2

+ 1
2𝑑0𝜌𝑠𝐴𝑉𝑡

3
)

× 𝜒

(20)

The cumulative flight energy consumption of UAV in the whole time
𝑇 is expressed as follows:

𝐸𝑡𝑜𝑡𝑎𝑙 =
𝑇
∑

𝑡=1
𝐸𝑢𝑎𝑣 (𝑡) (21)
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3.4. Problem formulation

The total energy consumption of the MEC system includes commu-
ication energy consumption, task computation energy consumption,
nd UAV flight energy consumption. Our goal is to minimize the total
nergy consumption of the MEC system while planning the optimal
ath for the UAV.

𝑃 ∶ min
𝑆𝑢𝑎𝑣(𝑡)

𝜔

[ 𝑇
∑

𝑡=1
𝐸 (𝑡)

]

+ (1 − 𝜔)

[ 𝑇
∑

𝑡=1
𝑇 (𝑡)

]

+ 𝜗𝐸𝑡𝑜𝑡𝑎𝑙

𝑠.𝑡 𝐶1 ∶ 𝑆𝑢𝑎𝑣 (𝑡) , 𝑆𝑘 (𝑡) ∈
{

𝑋𝑠𝑖𝑧𝑒, 𝑌𝑠𝑖𝑧𝑒, 𝐻
}

, 𝑘 = 1, 2......, 𝐾
𝐶2 ∶ 𝜑𝑘 (𝑡) ∈ {0, 1}
𝐶3 ∶ min

[

𝑇𝑝𝑎𝑟 (𝑡)
]

𝐶4 ∶ 𝑆𝑠𝑡𝑎𝑟𝑡
𝑢𝑎𝑣 → 𝑆𝑒𝑛𝑑

𝑢𝑎𝑣
𝐶5 ∶ 𝐼𝑘 (𝑡) = 1
𝐶6 ∶ 𝑉𝑡 ⩽ 𝑉max

(22)

𝜔 represents the weight of energy consumption for communication
nd task calculation, while 𝜗 represents the weight of energy consump-
ion for UAV flight. C1 is the location constraint for UAV and UEs,

which must be within the specified range. C2 is the task offloading
strategy, C3 is the constraint for formulating the task offloading ratio,
C4 represents the motion trajectory constraint of the UAV, C5 repre-
sents the communication constraint between the UAV and UEs, and C6
represents the flight speed constraint of the UAV.

Obviously, in C3, the total number of tasks that can be delegated by
a user within a fixed time frame remains constant. Therefore, the larger
the amount of tasks offloaded to the local computation, the smaller the
amount of tasks that the corresponding UAV needs to compute. We can
derive that 𝑇 𝐶 𝑜𝑚

𝑘,𝑝𝑎𝑟 (𝑡) is inversely proportional to 𝑇 𝑇 𝑟𝑎
𝑘 (𝑡)+𝑇 𝐶 𝑜𝑚

𝑘,𝑢𝑎𝑣 (𝑡). If and

nly if 𝑇 𝐶 𝑜𝑚
𝑘,𝑝𝑎𝑟 (𝑡) = 𝑇 𝑇 𝑟𝑎

𝑘 (𝑡) + 𝑇 𝐶 𝑜𝑚
𝑘,𝑢𝑎𝑣 (𝑡), 𝑇𝑝𝑎𝑟 (𝑡) as a whole is minimized.

Based on this, we can determine the optimal task offloading ratio 𝛼𝑘 (𝑡):
min

[

𝑇𝑝𝑎𝑟 (𝑡)
]

= min
[

max
(

𝑇 𝐶 𝑜𝑚
k,par (𝑡) , 𝑇 𝑇 𝑟𝑎

k (𝑡) + 𝑇 𝐶 𝑜𝑚
𝑘,𝑢𝑎𝑣 (𝑡)

)] (23)

⇒ 𝑇 𝐶 𝑜𝑚
k,par (𝑡) = 𝑇 𝑇 𝑟𝑎

k (𝑡) + 𝑇 𝐶 𝑜𝑚
𝑘,𝑢𝑎𝑣 (𝑡) (24)

⇒

(

1 − 𝛼𝑘 (𝑡)
)

𝐿𝑘 (𝑡)𝐶𝑢𝑠𝑒𝑟

𝑓𝑢𝑠𝑒𝑟
=

𝛼𝑘 (𝑡)𝐿𝑘 (𝑡)
𝑟𝑘 (𝑡)

+
𝛼𝑘 (𝑡)𝐿𝑘 (𝑡)𝐶𝑢𝑎𝑣

𝑓𝑢𝑎𝑣
(25)

⇒ 𝛼𝑘 (𝑡) =
𝐶𝑢𝑠𝑒𝑟𝑓𝑢𝑎𝑣𝑟𝑘 (𝑡)

(

𝐶𝑢𝑎𝑣𝑓𝑢𝑠𝑒𝑟 + 𝐶𝑢𝑠𝑒𝑟𝑓𝑢𝑎𝑣
)

𝑟𝑘 (𝑡) + 𝑓𝑢𝑠𝑒𝑟𝑓𝑢𝑎𝑣
(26)

The above optimization objective is a non-convex optimization
problem. When DRL algorithm solves such problems, it can solve the
optimal policy through the environment interaction. Therefore, we
propose the PDPSO-TD3 algorithm.

4. The proposed algorithm

In this section, we first introduce the PDPSO algorithm separately
rom the TD3 algorithm. The PDPSO algorithm is responsible for de-

termining the optimal unloading strategy, while the TD3 algorithm
s responsible for implementing the optimal path planning of UAV.
inally, we propose the PDPSO-TD3 algorithm.

4.1. PDPSO algorithm

We know that traditional Particle Swarm Optimization (PSO) algo-
rithms are prone to falling into local optima and have low convergence
accuracy. To address these issues, we use the PDPSO algorithm, which
can effectively utilize the population diversity of particles to contin-
ously adjust the inertia weight 𝜛, effectively balancing the global

exploration ability and local development ability of particle flight
process, and avoiding falling into local optima.
6 
The particle velocity 𝑣𝑖 is iteratively updated after weighting 𝜛,
nd the update process is based on the difference between the current

particle’s optimal solution 𝑝𝑏𝑒𝑠𝑡, the swarm’s optimal solution 𝑔 𝑏𝑒𝑠𝑡,
nd the particle’s position 𝑥𝑖. This update incorporates learning factors
𝑐1, 𝑐2) and random numbers (𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2) to enhance its effectiveness.

Similarly, the particle position 𝑥𝑖 is updated according to its velocity 𝑣𝑖.
𝑣𝑖 (𝑡 + 1) = 𝜛 (𝑡) 𝑣𝑖 (𝑡) + 𝑐1𝑟𝑎𝑛𝑑1

[

𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖 (𝑡)
]

+𝑐2𝑟𝑎𝑛𝑑2
[

𝑔 𝑏𝑒𝑠𝑡 − 𝑥𝑖 (𝑡)
] (27)

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝑣𝑖 (𝑡 + 1) (28)

After the algorithm converges, the particles will be concentrated
near the optimal solution and are basically in a static state. Therefore,

e can determine the offloading strategy as follows:

𝑆 𝑖𝑔 (𝑣𝑖 (𝑡)
)

= 1
1 + 𝑒−𝑣𝑖(𝑡)

(29)

𝜑𝑖 (𝑡) =
{

1, 𝑟𝑎𝑛𝑑3 < 𝑆 𝑖𝑔 (𝑣𝑖 (𝑡)
)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(30)

𝑟𝑎𝑛𝑑3 is a random number within the [0, 1] range, 𝜑𝑖 (𝑡) = 1 repre-
ents the partial task offloading strategy selected at time slot 𝑡, which
equires UAV assistance for calculation. Similarly, 𝜑𝑖 (𝑡) = 0 represents
he local calculation of all tasks selected at time slot 𝑡.

The update iteration of particle velocity 𝑣𝑖 and position 𝑥𝑖 is in-
ricately linked to the inertia weight 𝜛. In order to determine the
ppropriate inertia weight 𝜛, it is necessary to first optimize the
iversity within the population 𝐷.

𝐷 (𝑡 + 1) =
√

√

√

√
1

𝐾 − 1
𝐾
∑

𝑖=1

(

𝑑𝐴𝑣𝑒𝑖 (𝑡) − 𝑑𝑀 𝑖𝑛
𝑖 (𝑡)

)2 (31)

We represent the number of UEs by the quantity of particles, de-
oted as 𝐾. The inter-particle distance reflects the distance between
Es. As the distance between UEs is stochastic and variable, we com-
ute both the average distances 𝑑𝐴𝑣𝑒𝑖 (𝑡) and minimum inter-particle
istances 𝑑𝑀 𝑖𝑛

𝑖 (𝑡) for ease of computation.
The improved inertia weight 𝜛 (𝑡) formula is presented as follows

n conclusion:

𝜛𝑖 (𝑡 + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜛𝑖 (𝑡)
(

𝑒
1

𝐷(𝑡+1)+1−1 + 1
)

, 𝐷 (𝑡 + 1) ≥ 𝐷 (𝑡)

𝜛𝑖 (𝑡)
(

𝑒
1

𝐷(𝑡+1)+1−1
)

, 𝐷 (𝑡 + 1) < 𝐷 (𝑡)
(32)

4.2. TD3 algorithm

We know that the DDPG algorithm can solve the continuous action
pace problem well, and many studies apply it to UAV trajectory

control. But it has a problem of overestimation, which leads to slow
convergence speed, low reward value and other problems. Therefore,
we use the TD3 algorithm here. TD3 mainly has the following improved
parts:

(1) To address the overestimation issue in DDPG, the TD3 algorithm
utilizes two sets of critic networks, 𝜃1𝑛 and 𝜃2𝑛 , which represent different
𝑄 values, and compare and select the minimum 𝑄 value as the update
target.
y𝑖
(

𝑟𝑖, 𝑠𝑖+1, 𝛾
)

= 𝑟𝑖 + 𝛾 min
𝑖=1,2

𝑄𝜃𝑖′
𝑛

(

𝑠𝑖+1, 𝜇′
(

𝑠𝑖+1|𝜃
𝜇′
))

, 𝑖 = 1, 2 (33)

where 𝑟𝑖 represents 𝑅
(

𝑠𝑖, 𝑎𝑖
)

, which is used to evaluate the value of 𝑠𝑖
and 𝑎𝑖. 𝑠𝑖+1 represents the state at time 𝑖 + 1, 𝛾 represents the discount
actor of reward.

(2) Fixing the policy network 𝜇 function and only training the
𝑄 function can make the network converge and get the best results.
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Fig. 2. The internal structure of the PDPSO-TD3 algorithm.
Therefore, TD3 algorithm only starts to train the action network when
the round number reaches the policy cycle.

(3) The accuracy of policy value evaluation is enhanced in TD3
by introducing random noise to each action generated by the policy
output.
𝑎′
(

𝑠𝑖+1
)

= 𝑐 𝑙 𝑖𝑝
(

𝜇′
(

𝑠𝑖+1|𝜃𝜇
′
)

+ 𝑐 𝑙 𝑖𝑝 (𝜀,−𝑐 , 𝑐) , 𝑎𝑙 𝑜𝑤, 𝑎ℎ𝑖𝑔 ℎ
)

, 𝜀 ∼ 𝑁 (0, 𝜀)
(34)

Next, we will present it in four components: agent, state, action and
reward value.

Agent: The UAV acts as an agent that learns its trajectory position
and the optimal ratio of local task offloading continuously. It mini-
mizes energy consumption and transmission delay to attain the lowest
possible total system cost.

State: We make the assumption that the UAV travels from a prede-
termined starting point to a designated endpoint, moving in a left-to-
right direction. The UEs location interacting with the UAV is randomly
generated along the path, and the data transmission amount varies
with different offloading ratios. Therefore, the state records both the
UAV and UEs locations, and the data amount transmitted during the
interaction.

𝑆 𝑡𝑎𝑡𝑒 = {

𝑆𝑘 (𝑡) , 𝑆𝑢𝑎𝑣 (𝑡) , 𝐿𝑘 (𝑡) ,∀𝑆 ∈
{

𝑋𝑠𝑖𝑧𝑒, 𝑌𝑠𝑖𝑧𝑒, 𝐻
}}

(35)

Action: The action of the UAV in time slot 𝑡 is:

𝐴𝑐 𝑡𝑖𝑜𝑛 =
{

𝑜𝑡, 𝑣𝑡
}

(36)

𝑜𝑡 chooses the direction for the UAV action, which ranges from
0 ∼ 360◦.

Reward: Our objective is to minimize the total energy consumption
and transmission delay of the MEC system, and optimize the UAV
trajectory accordingly. To achieve this, we define the reward of each
step 𝑅𝑠𝑡𝑒𝑝 as the product of the UAV movement steps and the weighted
sum of energy consumption and transmission delay produced by the
system under the optimal offloading policy. Thus, the total reward
value is the sum of rewards for each step, and we can derive the final
average reward value 𝑅 as a metric for evaluating the algorithm.
𝑎𝑣𝑒𝑟𝑎𝑔 𝑒

7 
Moreover, in order to ensure reliable communication quality, we im-
pose an area constraint

{

𝑋𝑠𝑖𝑧𝑒, 𝑌𝑠𝑖𝑧𝑒, 𝐻
}

. We will penalize UAV or UEs
that go out of range severely.

𝑅𝑠𝑡𝑒𝑝 = min
𝑆𝑢𝑎𝑣(𝑡)

𝜔

[ 𝑇
∑

𝑡=1
𝐸 (𝑡)

]

+ (1 − 𝜔)

[ 𝑇
∑

𝑡=1
𝑇 (𝑡)

]

+ 𝜗𝐸𝑡𝑜𝑡𝑎𝑙 (37)

𝑅𝑎𝑣𝑒𝑟𝑎𝑔 𝑒 = −𝑅𝑠𝑡𝑒𝑝𝜒
𝑇

(38)

4.3. The proposed PDPSO-TD3 algorithm

From the above part, PDPSO algorithm is highly exploratory and
can effectively formulate task offloading strategy. The TD3 algorithm
exhibits high utilization and is capable of planning UAV paths in a
high-dimensional continuous action space. The development of the
joint algorithm represents a promising endeavor. Consequently, we
have innovatively proposed the PDPSO-TD3 algorithm, which combines
the high exploration capability of the PDPSO algorithm with the high
utilization efficiency of the TD3 algorithm (maximizing regression of
current policy using known experience), as shown in Algorithm 1.
This ensures that the policy parameters optimized by the PDPSO al-
gorithm can be effectively integrated into the training process of TD3
algorithm. Additionally, effective information exchange is conducted
to address overestimation problems. To the best of our knowledge, this
is a pioneering approach that successfully combines two exceptional
algorithms and demonstrates remarkable performance.

The overall algorithm framework is illustrated in Fig. 2, which
consists of three parts: PDPSO environment interaction module, UAV
intelligent agent module and TD3 action module. First, the PDPSO
algorithm interacts with the environment to acquire the optimal re-
ward r𝑡 and the task offloading strategy 𝜑𝑡. Next, the UAV infers the
state of the next time slot 𝑠𝑡+1 by leveraging its current state 𝑠𝑡, the
offloading strategy 𝜑𝑡 and the reward value r𝑡 from the environment.
Then, the UAV stores these information into the experience pool and
performs sampling training. This helps the UAV to explore better in
the subsequent formal training. Finally, The training process is mainly
carried out by the TD3 network, which comprises a network of actor
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and a network of critic. The actor network has a policy network with
weight 𝜇𝑛 and a target network with weight 𝜇′

𝑛. The critic network
has two policy networks with weights 𝜃1𝑛 and 𝜃2𝑛 , which can address the
overestimation of Q value, the reason for choosing the TD3 algorithm
as the foundation. Moreover, the critic network also has two target
networks with weights 𝜃1′𝑛 and 𝜃2′𝑛 , which can enhance the learning and
training stability.

The policy critic network 𝜃1𝑛 and 𝜃2𝑛 evaluates the state 𝑠𝑡 and the
action 𝑎𝑡 to produce the current Q-function 𝑄𝜃𝑖

n
(

𝑠𝑗 , 𝑎𝑗
)

. Meanwhile,
the target critic network 𝜃1′𝑛 and 𝜃2′𝑛 generates a contrast Q-function
𝑄𝜃′ 𝑖

n
(

𝑠𝑗 ′, 𝑎̃𝑗
)

to avoid overestimating the Q-value. It is important to note
that before generating the contrast Q-function 𝑄𝜃′ 𝑖

n
(

𝑠𝑗 ′, 𝑎̃𝑗
)

, the target
actor network 𝜇′

𝑛 from the actor network part adds noise 𝑎̃𝑗 to the
target critic network 𝜃1′𝑛 and 𝜃2′𝑛 that produces the contrast Q-function,
which enables the TD3 policy to explore better.

The weights of the six neural networks are initialized first, followed
y the opening of replay buffer B (Lines 1 to 3). In each training round,
e limit the action exploration range of the UAV to [0, 1] to ensure

andom exploration but not out of bounds. Initialize the UAV state
𝑡(Lines 4 to 6). Next, for each step of exploration, the UAV chooses the
light Angle and transmission energy consumption based on the action
𝑡 with the added random noise 𝜉(Lines 7 to 9).

a𝑡 = 𝜇
(

𝑠𝑡; 𝜃𝜇
)

+ 𝜉 (39)

We use the PDPSO algorithm to determine the task offloading ratio.
e initialize the velocity 𝑣1, initial position 𝑥1, inertia weight 𝜛 and

he local and global optimal solutions 𝑝𝑏𝑒𝑠𝑡 and 𝑔 𝑏𝑒𝑠𝑡 of each particle.
he velocity 𝑣𝑖+1 and position 𝑥𝑖+1 of the particle in the subsequent
ime slot should be timely updated. It is advantageous to compute the

offloading decision 𝜑i and determine the optimal task offloading ratio
uring the current iteration cycle.

𝑟𝑡 = 𝜔

[ 𝑇
∑

𝑡=1
𝐸 (𝑡)

]

+ (1 − 𝜔)

[ 𝑇
∑

𝑡=1
𝑇 (𝑡)

]

+ 𝜗𝐸𝑡𝑜𝑡𝑎𝑙 (40)

After every particle iteration, we update the local and global optimal
olutions 𝑝𝑏𝑒𝑠𝑡 and 𝑔 𝑏𝑒𝑠𝑡, the population diversity 𝐷 and the inertia
eight 𝜛 (Lines 10 to 19). Following the action selection by the UAV, it
btains an evaluation in the form of a reward value 𝑟𝑡. Furthermore, the
AV receives feedback on the next state value 𝑠𝑡+1. We store the current
xperience

(

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝜑𝑡, 𝑑 𝑜𝑛𝑒
)

in B in replay buffer B to improve
the stability of the training process. We randomly select a small batch
of values

(

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝜑𝑡, 𝑑 𝑜𝑛𝑒
)

in B from the replay buffer for each
training and generate the corresponding policy using the policy actor
network 𝜇𝑛. It is updated utilizing a gradient-based policy:
∇𝜇𝑛𝐽

(

𝜇𝑛
)

1
𝑁

∑

𝑖

[

∇𝜇𝑛𝜇
(

𝑠𝑖; 𝜃𝜇
)

∇𝑎𝑄
𝜃1 (𝑠, 𝑎) |𝑠 = 𝑠𝑖, 𝑎 = 𝜇

(

𝑠𝑖; 𝜃𝜇
)

] (41)

We use the current policy 𝜇
(

𝑠𝑖; 𝜃𝜇
)

to get two Q values 𝑄𝜃1

𝑠𝑖, 𝜇
(

𝑠𝑖; 𝜃𝜇
))

and 𝑄𝜃2 (𝑠𝑖, 𝜇
(

𝑠𝑖; 𝜃𝜇
))

from two policy critic networks
𝜃1𝑛 and 𝜃2𝑛 , and update the Q values by minimizing the loss function
𝐿
(

𝜃𝑗𝑛
)

:

𝐿
(

𝜃𝑗𝑛
)

= 1
𝑁

𝑁
∑

𝑖=1

[

𝑦𝑖 −𝑄
𝜃𝑗
𝑛
(

𝑠𝑖, 𝑎𝑖
)

]2
, 𝑗 = 1, 2 (42)

To stabilize the training process, the update of the three target
etworks is based on the time step 𝑑. Where 𝑙 𝑟 represents the learning
ate, 𝜏 represents the update rate.
𝜇𝑛 ← 𝜇𝑛 − 𝑙 𝑟∇𝜇𝑛𝐽

(

𝜇𝑛
)

𝑖
𝑛 ← 𝜃𝑖𝑛 − 𝑙 𝑟∇𝜃𝑖𝑛

𝐿
(

𝜃𝑖𝑛
)

, 𝑖 = 1, 2 (43)

𝜇𝑛′ = 𝜏 𝜇𝑛 + (1 − 𝜏)𝜇𝑛′

𝜃𝑖′𝑛 = 𝜏 𝜃𝑖n + (1 − 𝜏) 𝜃𝑖′𝑛 , 𝑖 = 1, 2 (44)
8 
In addition, the overall reward value is evaluated after each training
session (Lines 20 to 29).

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑅𝑎𝑣𝑒𝑟𝑎𝑔 𝑒 (45)

Algorithm 1 PDPSO-TD3 Algorithm.
1: Initialize policy actor network 𝜇𝑛 and target actor network 𝜇′

𝑛;
2: Initialize policy critic network 𝜃1𝑛 , 𝜃2𝑛 and target critic network 𝜃1′𝑛 , 𝜃2′𝑛 ;
3: Initialize replay memory B;
4: for 𝑒𝑝𝑖𝑠𝑜𝑑 𝑒 𝑒𝑝 = 1, ..., 𝑀 do
5: Define a finite action exploration space 𝜂, which is fixed to [0, 1];
6: Obtain the current initial state value 𝑠𝑡;
7: for 𝑠𝑡𝑒𝑝 𝑡 = 1, ..., 𝑇 do
8: Each action 𝑎𝑡 = 𝜇

(

𝑠𝑡; 𝜃𝜇
)

+ 𝜉 at every step needs to be modified with
random noise 𝜉;

9: The UAV sets its own mobile and transmission power according to
the action 𝑎𝑡;

0: Initialize the particle’s optimal solution 𝑝𝑏𝑒𝑠𝑡, the swarm’s optimal
solution 𝑔 𝑏𝑒𝑠𝑡;

1: particle position 𝑥1, velocity 𝑣1, weight 𝜛;
2: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 = 1, ..., 𝐼 do
3: for 𝑒𝑎𝑐 ℎ𝑝𝑎𝑟𝑡𝑖𝑐 𝑙 𝑒 𝑛 = 1, ..., 𝐾 do
4: Update velocity 𝑣𝑖+1 and position 𝑥𝑖+1;
5: The selection of partial or complete offloading is based on the

offloading strategy:

𝜑𝑖 (𝑡) =
{

1, 𝑟𝑎𝑛𝑑3 < 𝑆 𝑖𝑔 (𝑣𝑖 (𝑡)
)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
6: end for
7: Get in (40);
8: Update the particle’s optimal solution 𝑝𝑏𝑒𝑠𝑡, the swarm’s optimal

solution 𝑔 𝑏𝑒𝑠𝑡, diversity 𝐷 and weight 𝜛;
9: end for
0: obtains the reward value 𝑟𝑡, and the next state 𝑠𝑡+1;
1: Store

(

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝜑𝑡, 𝑑 𝑜𝑛𝑒
)

in B;
22: Sample a random mini-batch of

(

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝜑𝑡, 𝑑 𝑜𝑛𝑒
)

from B;
23: Set 𝑦𝑖 = 𝑟𝑖 + 𝛾 min

𝑖=1,2
𝑄𝜃𝑖

′

𝑛
(

𝑠𝑖+1, 𝜇′ (𝑠𝑖+1|𝜃𝜇
′)) , 𝑖 = 1, 2;

24: Update policy critic network 𝜃1𝑛 , 𝜃2𝑛 by minimizing loss function in
(42);

25: Update policy actor network 𝜇𝑛 with (41);
26: Update the target networks with (44);
27: end for
28: The final reward: 𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑅𝑎𝑣𝑒𝑟𝑎𝑔 𝑒;
29: end for

4.4. Complexity analysis

We consider the complexity of individual algorithms and studied
ow they interact when combined into a unified framework. Specifi-
ally, the PDPSO algorithm needs to solve the problem of formulating a

specific offloading scheme for intensive tasks, that is, deciding whether
to perform the task locally or with UAV assistance. The time complex-
ity of this problem is affected by the number of particles 𝐾 in the
warm and the number of iterations 𝐼 , which is 𝑂(𝐼 ∗ 𝐾). The TD3

algorithm plans the UAV’s path based on the task offloading strategy,
and the problem is divided into 𝑇 time slots, with a time complexity
of 𝑂(𝑇 ∗ 𝐼 ∗ 𝐾). The number of training rounds required to stabilize
t the optimal solution is 𝑀 . Therefore, ignoring constant factors, the
pproximate total time complexity of PDPSO-TD3 algorithm is 𝑂(𝑀 ∗
∗ 𝐼 ∗ 𝐾).
It is worth noting that the population particle number represents

the number of UEs 𝐾. In other words, the number of UEs 𝐾, the
lgorithm’s learning rate 𝑙 𝑟, the added action noise 𝜉, the reward

discount factor 𝛾, and the sample number of training batches 𝑀b, all
affect the convergence speed of the algorithm, and then affect the
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Fig. 3. Analysis of real-world applications.
overall time complexity. Therefore, it is necessary to conduct param-
eter experiments continuously to achieve a balance, and minimize the
system’s total energy consumption to achieve efficient utilization of
UAV computing resources. In the Section 6.4, we compare various
parameters and select a set of optimal ones to reduce time complexity.

5. Analysis of real-world applications

In this section, we apply the proposed PDPSO-TD3 algorithm to
practical scenarios and outline our scheme. As illustrated in Fig. 3, our
research targets urban road areas but can also be extended to disaster
emergency response and agricultural monitoring. We segment a traffic
area into multiple square regions, labeled as 𝐷1, 𝐷2, and 𝐷3. Two
scenarios are considered. In the first scenario, communication BSs have
failed, and UEs require urgent communication services provided by
UAV in the 𝐷1 and 𝐷2. In the second scenario, the communication BSs
is operational, but the signal degradation will lead to traffic congestion
in the 𝐷3, then we need UAV support for UEs. These scenarios are
common in practice, and we will detail the proposed solutions next.

UAV face operational constraints due to limited power, necessitating
regional division for effective coverage. Furthermore, the training of
the PDPSO-TD3 algorithm in realistic environments presents a sig-
nificant challenge. This is due to the necessity for extensive UAV
exploration to collect unknown environmental data, which hinders the
swift convergence of the algorithm and makes it less able to handle
unforeseen circumstances. Drawing inspiration from [46], digital twin
systems offer a promising solution, with studies affirming their fea-
sibility and benefits. By integrating a digital twin system to create a
duplicate of the UAV’s operational environment, we can conduct tests
and refine the PDPSO-TD3 algorithm within this context, while si-
multaneously optimizing the UAV’s path planning, resource allocation,
and energy management. This approach is designed to enhance the
coverage efficiency and performance of the MEC system. Consequently,
our detailed recommendation is as follows:

5.0.1. Data collection and modeling
The digital twin system is utilized to generate a virtual represen-

tation of roadways that are prone to accidents. This representation
integrates parameters such as meteorological conditions and vehicular
traffic patterns. This can be accomplished using existing GIS, sensors,
and surveillance cameras. Additionally, UAV is deployed in specific
areas to update the digital twin system in real time, ensuring the
accuracy and relevance of environmental information.
9 
5.0.2. Simulation and optimization
The PDPSO-TD3 algorithm, integrated within a digital twin sys-

tem, leverages real-time environmental data for continuous pre-training
and optimization, enabling swift convergence and provision of es-
sential communication services in the event of unforeseen accidents.
Concurrently, algorithmic parameters are dynamically adjusted based
on training outcomes, thereby minimizing actual training costs and
enhancing algorithmic efficiency.

5.0.3. Real-time monitoring and analysis
The digital twin system, equipped with an embedded algorithm

and real-time environmental data, enables real-time analysis of traffic
conditions, including vehicle congestion and adverse weather. This
facilitates timely dissemination of early warning messages, allowing
the command center to strategically allocate rescue resources, including
UAV.

It is important to note that in our model, the altitude of the
UAV is fixed. This is due to the fact that the communication services
require a higher altitude for the UAV, which correlates positively
with coverage for UEs and negatively with energy consumption and
transmission delay. Balancing UAV altitude with energy loss poses
challenges. Consequently, we have set the optimal altitude for the UAV
to 250 m, as this altitude ensures high-quality communication services
while minimizing excessive energy consumption in road environments
without obstruction.

6. Experimental results and analysis

In this section, we detail the experimental setup, baselines, perfor-
mance of different algorithms, sensitivity for parameters, and evalua-
tion results.

6.1. Experimental setup

We conduct numerical experiments based on Intel i5-12500H,
NVIDIA GTX 3050Ti, Python 3.7.12, and Pytorch 1.9.1. Next, we
assume that there is a road area where communication is cut off, with
an area of 1000 × 1000 m2. The UAV assumes the role of a temporary
mobile BSs, providing communication services. As shown in Fig. 4,
there are a total of 10 UEs randomly distributed in this area, with each
UEs data size ranging from [1, 10] Mbit s. Similarly, the positions of UAV
and UEs are also restricted within a range of [1000 m, 1000 m, 250 m].
The CPU-cycle requirements for local and UAV-assisted task execution
are 800 cy cles∕bit and 1000 cy cles∕bit, respectively. Additionally, our



F. Shen et al. Computer Networks 255 (2024) 110882 
Fig. 4. Initial random positions of UEs.

Table 3
Parameter setting.

Parameters Values

The count of UEs 𝐾 10
Task data size generated by the UEs 𝐿𝑘 (𝑡) [1, 10] Mbits
The predetermined altitude of the UAV 𝐻 250 m
The range of randomly generated UEs 𝑋 𝑠𝑖𝑧𝑒, 𝑌 𝑠𝑖𝑧𝑒 [1000 m, 1000 m]
The channel gain at a distance of 1 m 𝛽0 −50 dB
The aggregate uplink bandwidth demanded by the UEs 𝐵𝑢 100 MHz
The communication transmission power of UEs 𝑃𝑢𝑠𝑒𝑟 0.5 W
The receiving power of UAV 𝑃𝑢𝑎𝑣 0.5 W
The noise power generated by UAV communication 𝛿20 −70 dB m/Hz
The CPU capacitance index of UEs 𝐾𝑢𝑠𝑒𝑟 10−27

The CPU capacitance index of UAV 𝐾𝑢𝑎𝑣 10−28

The CPU computation cycles for UEs when performing local
𝐶𝑢𝑠𝑒𝑟

800 cycles/bit

The CPU computation cycles required for the UAV 𝐶𝑢𝑎𝑣 1000 cycles/bit
The local computing resources of UEs 𝑓𝑢𝑠𝑒𝑟 1 GHz
The computing resources of UAV 𝑓𝑢𝑎𝑣 3 GHz
Calculate the weights used 𝜔 0.75
UAV flight energy consumption weight 𝜗 0.65
UAV flight maximum speed constraint 𝑉max 15 m/s
The blade profile power of the UAV in hover 𝑃0 25 W
The induced power 𝑃𝑖 25 W
Mean rotor induced velocity in hover 𝑉0 4.8 m/s
The tip speed of the UAV rotor blade 𝑈𝑡𝑖𝑝 180 m/s
Fuselage drag ratio 𝑑0 0.3
Air density 𝜌 1.225 kg∕m3

Rotor solidity 𝑠 0.05
Propeller disk area 𝐴 0.75 m2

Table 4
The parameter configuration of the PDPSO-TD3 algorithm.

Parameter Value

The overall count of training iterations 𝑀 6000
The number of iterations 𝐼 200
Learning rate 𝑙 𝑟 0.0003
Action noise variance 𝜉 0.1
Reward discount factor 𝛾 0.99
Mini-batch size 𝑀b 128

simulation environment is designed to validate the algorithm’s effec-
tiveness, which can be theoretically extended to broader operational
ranges based on the specific performance metrics and real-world sce-
narios of various UAV models. Table 3 summarizes the main simulation
parameters, while Table 4 lists the parameter settings of our algorithm.

6.2. Baselines

DQN, DDPG, and Proximal Policy Optimization (PPO) are pivotal
algorithms in DRL, with numerous studies building upon them for
innovation and improvement. Consequently, this paper primarily fo-
cuses on comparing these algorithms with the PDPSO-TD3 algorithm.
10 
Fig. 5. Performance of different algorithms.

Fig. 6. The impact of learning rate and reward discount factor on the value of rewards.

Additionally, we developed the DQN+PDPSO algorithm to facilitate
more accurate comparisons in a consistent environment.

∙ DQN+PDPSO: The DQN algorithm optimized the UAV flight
trajectory, while the PDPSO algorithm addressed the offloading
strategy. Notably, DQN is favored for high-dimensional, con-
tinuous action spaces owing to its convergence and scalability.
However, its slow convergence and tendency for overestimation
can adversely affect the learning process.

∙ DDPG+PDPSO [21]: The DDPG algorithm optimized the UAV
flight trajectory, and the PDPSO algorithm refined its offloading
strategy. As with DQN, DDPG confronts challenges, including
prolonged training episodes and potential overestimation issues.

∙ PPO: PPO is a policy optimization algorithm that constrains
policy updates within a specified range by controlling the step
size, ensuring stability and broad applicability in continuous ac-
tion space reinforcement learning tasks. However, it has high
computational demands and is prone to local optima in complex
environments, potentially impacting policy performance.

6.3. Performance of different algorithms

In Fig. 5, the ‘‘normalized performance index’’ is employed to as-
sess algorithmic efficiency. It is notable that PDPSO-TD3 demonstrates
superior performance with minimal energy expenditure, effectively
minimizing UAV flight power and transmission latency. Furthermore,
PDPSO-TD3’s UEs access rate approaching 1 signifies extensive cover-
age of the MEC system, ensuring reliable and robust communication
quality. We analyze the average transmission delay, energy consump-
tion, UAV flight energy, and UEs access rate for various algorithms, as
detailed in Table 5.
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Table 5
Performance comparison of PDPSO-TD3 algorithm(UEs = 80).

Performance comparison DQN+PDPSO DDPG+PDPSO PPO PDPSO-TD3 (Ours)

AVG transmission delay 1.23 (s) 0.91 (s) 1.31 (s) 0.78 (s)
Decrease: 36.6%, 14.3%, 40.5%

AVG energy consumption 5061 (W) 4342 (W) 5954 (W) 3906 (W)
Decrease: 22.9%, 10.1%, 34.4%

AVG UAV flight energy 5261 (W) 4210 (W) 5754 (W) 3955 (W)
Decrease: 24.7%, 6.1%, 31.2%

UEs access rate 0.74 0.92 0.69 0.95
Increase: 28.4%, 3.3%, 37.7%
Fig. 7. The impact of varying batch sizes on reward values.

6.4. Sensitivity for parameters

6.4.1. Sensitivity of learning rate
The UAV’s ability to explore and the rate at which the value function

updates are closely tied to the size of the learning rate. An elevated
learning rate prompts the UAV to focus on immediate environmental
feedback, which can lead to oscillations in policy and value functions,
impeding effective convergence. On the other hand, a reduced learning
rate causes the UAV to rely more on historical experiences, resulting in
a decreased learning pace and potential stagnation. Furthermore, the
discount factor of rewards, a critical hyperparameter, strictly regulates
the valuation of future rewards. An increased discount factor allows
the UAV to adopt a long-term perspective and thus accumulate higher
rewards. In contrast, a lower discount factor biases the UAV towards
immediate rewards. Essentially, the discount factor dictates the tempo-
ral scope of the training task and the importance of cumulative rewards.
Considering these factors, our primary objective is to determine an
appropriate learning rate and then identify a corresponding discount
factor, ensuring that this combination enhances both the velocity and
stability of the model’s learning process. Consequently, this enhances
the effectiveness of decision-making.

In Fig. 6, we experimented with different parameter combinations,
evaluating their impact on the training reward. Consequently, it can be
observed that, in the case of a learning rate of 3𝑒 − 4, 𝛾 variations pri-
marily affect the speed of reward convergence, while having a minimal
impact on the reward value. When the learning rate is relatively high
(𝑙 𝑟 = 1𝑒 − 2), the model tends to become trapped in a local optimum
with reduced fluctuations in the convergence value.

6.4.2. Sensitivity of batch size
The batch size denotes the number of samples fed into the model

per iteration. To achieve greater refinement and precision, we have
examined the algorithm’s performance across a range of batch sizes,
as illustrated in Fig. 7. When the batch size is set to 64, the algorithm
tends to converge to a suboptimal solution with a relatively low con-
vergence value. However, as the batch size is increased to 128 and 256,
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Fig. 8. Reward curves.

there is a significant enhancement in both the convergence speed and
the quality of the algorithm’s results. Notably, at a batch size of 128,
the convergence value is significantly higher compared to that at 256,
although the convergence speeds are nearly identical. Thus, a batch size
of 128 represents a reasonable compromise, as it does not significantly
prolong the training time nor does it substantially compromise the
algorithm’s performance.

6.5. Evaluation results

This subsection provides a thorough assessment and discussion of
the experimental outcomes, concentrating on the algorithm’s conver-
gence, transmission delay, energy consumption, UAV flight energy, UEs
access rate, UAV path optimization, and system throughput.

6.5.1. Convergence performance
In this section, we conduct a comparison of DQN+PDPSO,

DDPG+PDPSO, and PPO over 6000 training episodes using consistent
parameters to facilitate a thorough evaluation of the PDPSO-TD3 algo-
rithm. Each reward component in this study incorporates a weighted
value that balances energy consumption and transmission delay. As
illustrated in Fig. 8, all four algorithms demonstrate the ability to
converge. However, PDPSO-TD3 shows faster convergence, enhanced
stability, and achieves higher convergence values compared to other
algorithms. This advantage can be attributed to TD3’s use of twin
critic networks and delayed target network updates, which effectively
mitigate the Q-value overestimation issues encountered by DQN and
DDPG. While PPO primarily relies on policy optimization methods,
it may still be prone to value function overestimation under certain
conditions.

6.5.2. Comparison of transmission delay and energy consumption
Due to the limited operational range of the UAV and UEs, we

consider incrementally increasing the number of UEs within this range
to observe the impact on system energy consumption and transmission
latency, as shown in Fig. 9. For comparative analysis, we used the
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Fig. 9. The transmission delay and energy consumption under different numbers of UEs.
Fig. 10. The flight energy consumption and UEs access rate under different numbers of UEs.
DQN+PDPSO, DDPG+PDPSO and PPO algorithms. To ensure fairness,
the UAV start point was kept consistent across all experiments. In
particular, we observed a positive correlation between the number of
UEs and both system energy consumption and transmission delay. This
correlation was attributed to the limited computational capacity, which
was unable to cope with an increasing number of computation and
offloading tasks. Considering the constraints of current communication
scenarios and channel congestion, the maximum number of UEs was
limited to 80.

Our results showed that the PDPSO-TD3 algorithm performed best
in all scenarios, effectively reducing energy consumption and average
transmission delay, especially when the number of UEs was large. This
superior performance is due to the algorithm’s ability to rationally allo-
cate computational resources and provide an efficient task offload ratio,
thus benefiting a larger number of UEs. In addition, the performance
of the DQN, DDPG, and PPO algorithms is found to be inferior to that
of the PDPSO-TD3 algorithm, suggesting their suitability primarily for
scenarios with a limited number of UEs.

6.5.3. Comparison of UAV flight energy consumption and UEs access rate
Fig. 10 presents an investigation into the impact of varying UEs

counts on UAV flight energy consumption and UEs access rate for
diverse algorithms. Fig. 10(a) demonstrates that PDPSO-TD3 results
in higher energy consumption at lower UEs counts (5 to 20). This is
attributed to the introduction of action noise for initial exploration,
which requires the UAV to continuously navigate in order to gather
environmental data. Once the UEs count exceeds 30, PDPSO-TD3 effi-
ciency becomes apparent, with substantially lower energy consumption
than alternative algorithms. This indicates its superior capability to
reduce UAV energy expenditure.

The UEs access rate is a critical performance indicator for UAV-
assisted MEC systems, signifying the extent to which UEs can success-
fully establish a connection with the UAV. Furthermore, it serves as an
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indicator of the effectiveness of the UAV flight trajectory in covering
UEs, which is essential for evaluating the coverage of the MEC system.

As shown in Fig. 10(b), PDPSO-TD3 exhibits the highest UEs ac-
cess rate, stabilizing at approximately 95%, which suggests extensive
communication coverage and a high coverage rate for the MEC system.
Notably, the access rate for UEs decreases as the number of UEs
increases, and the performance divergence among algorithms becomes
more pronounced. At 80 UEs, the access rate of PDPSO-TD3 is nearly
25% higher than that of PPO, highlighting a significant performance
advantage.

6.5.4. UAV trajectory optimization verification
In this study, we have validated the effectiveness of PDPSO-TD3

in UAV trajectory planning through simulation experiments, in par-
ticular its ability to maximize the communication coverage of UEs.
The experimental setup involves the random distribution of 10 UEs
within the simulation environment, emulating the uncertainty and
randomness of the real world. The UAV takes off from a coordi-
nate position of (0 m, 0 m, 250 m) and plans to fly to a destination
at (1000 m, 1000 m, 250 m), maintaining a constant altitude throughout
the journey. Red dots represent UEs using a partial offload strategy,
uploading part of their computational tasks to the UAV for processing.
Blue dots represent UEs using a local offloading strategy, where all
computational tasks are performed locally. The real-time trajectory
of the UAV is represented by a green curve. Fig. 11 demonstrates
that, regardless of the offloading strategy employed, the UAV flight
trajectory is designed to align with a diagonal path, simultaneously
striving to maintain proximity to the UEs to facilitate communication
and computational services.

6.5.5. Average throughput analysis
Fig. 12 examines the average throughput changes of algorithms

across training rounds. At 1000 episodes, PDPSO-TD3’s throughput
is lower than DDPG+PDPSO due to its strategy of action noise to
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Fig. 11. Optimal trajectory of UAV. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Comparison of the average throughput.

diversify early exploration, which results in initial lower performance.
By approximately 2000 episodes, PDPSO-TD3 has converged, surpass-
ing other algorithms in average throughput and showing a stable in-
crease, indicating effective strategy formulation and improved resource
utilization.

7. Conclusion

The paper investigates the utilization of UAV as mobile BSs for
providing communication services in scenarios where the underlying
communication infrastructure is damaged. Additionally, the UAV is
also responsible for assisting in offloading task calculations from UEs.
Specifically, we propose an innovative algorithm called PDPSO-TD3.
Through theoretical analysis and mathematical derivation, we calcu-
late the optimal task offloading strategy, which encompasses local
offloading of computing tasks and UAV-assisted offloading of cer-
tain computing tasks. Furthermore, we incorporate the TD3 algorithm
to optimize the UAV trajectory, taking into account factors such as
random distribution of UEs, data transmission size, and UAV alti-
tude selection. The experimental results show that the PDPSO-TD3
algorithm is superior to the traditional methods in terms of conver-
gence speed and convergence results. Moreover, the UAV is capable
of autonomously devising real-time paths to maximize communication
coverage, ensure reliable communication quality, and minimize overall
energy consumption and transmission delay within the system.

In future work, we aim to explore more complex application scenar-
ios. This includes studying the joint communication of multiple units
and UAV in dynamic environments, as well as designing optimization
strategies for multiple trajectory intersections. Additionally, building
an extended and simplified model of the wireless network poses great
challenges, taking into account reduction of transmission errors and
increased anti-interference between UEs.
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