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Abstract

Most activation functions operate component-wise, which restricts the equiv-
ariance of neural networks to permutations. We introduce Conic Linear Units
(CoLU) and generalize the symmetry of neural networks to continuous orthogonal
groups. By interpreting ReLU as a projection onto its invariant set—the positive
orthant—we propose a conic activation function that uses a Lorentz cone instead.
Its performance can be further improved by considering multi-head structures,
soft scaling, and axis sharing. CoLU associated with low-dimensional cones out-
performs the component-wise ReLU in a wide range of models—including MLP,
ResNet, and UNet, etc., achieving better loss values and faster convergence. It
significantly improves diffusion models’ training and performance. CoLU orig-
inates from a first-principles approach to various forms of neural networks and
fundamentally changes their algebraic structure.

1 Introduction

Recurrent neural networks (RNNs), convolutional neural networks (CNNs) and Transformers
[Vaswani et al., 2017] are examples of a symmetry principle in neural network architectures: they
capture local patterns and uniformly apply them across the entire space. These architectures have
laid a solid foundation for modern machine learning systems. RNNs repeatedly apply the same
weights to the hidden states. This autoregressive form also inspires diffusion models [Sohl-Dickstein
et al., 2015]—the patterns are uniform across intermediate states. Convolution layers share the
same weights in a small local window to slide across a large domain—the patterns are uniform at
arbitrary spatial positions. In Transformers, the self-attention function applies its weights homoge-
neously to the word or pixel embedding space—the patterns are uniform in arbitrary directions since
a per-vector rotation or reflection on both the embedded query and key vectors does not change the
attention mask. Different kinds of pattern uniformity are consequences of the associated space ho-
mogeneity. These homogeneities (symmetries) have been a principle that continually inspires new
designs of model architectures. Recent works continue to push the limit of model performance in
vision or language tasks with reduced complexity and different types of symmetry, such as state
space models [Gu and Dao, 2023] and more efficient Transformers [Liu et al., 2023].

The convolution and self-attention functions’ symmetries are characterized by the equivarance un-
der spatial translation and vector rotation—a function λ is equivariant under a group G if and only
if ∀P ∈ G, Pλ = λP , where the operation between them is the composition of functions. The
same principle applies to a basic multi-layer perceptron (MLP). First, the same activation function
is used recurrently in the same space up to a linear embedding layer; second, it applies uniformly to
each vector component (neuron). The first property is the foundation of deep models using the same
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activation function. The second one results in permutation symmetry: ReLU is equivariant under
G where G contains compositions of permutations and diagonal matrices with non-negative entries
(positive scaling). The symmetry in models is induced by the symmetry of hidden states’ space: by
substituting the equality λ = P−1λP,∀P ∈ G into a two-layer neural network f(x) = wλ(w′x),
the network stays the same except that the group acts on the weights (w,w′) to obtain (wP−1, Pw′),
which means the order of rows and columns of the weight matrices are exchanged. While permu-
tation symmetry has been a fundamental assumption in neural networks, we take another path to
reflect on this axiomatic assumption and raise the question:

Can forms of equivariance more general than permutation improve neural networks?

The self-attention function in Transformers positively answers this question. We give a second an-
swer and let activation functions be another solution. To further motivate the activation function, in
Appendix G we start from symmetry principles to axiomatically infer the forms of different neural
network structures from scratch, where we essentially modify the hypothesis that activation func-
tions are component-wise. We further show in Appendix B that the proposed activation function and
the self-attention function share the same type of symmetry, associated with Noether’s Theorem.
The symmetry group is related to linear mode connectivity explained in Appendix C, meaning that
the loss landscape of neural networks is empirically convex modulo the group. Generalizing the
group to infinite order fundamentally enlarges the algebraic structure of neural networks.

Contributions We propose Conic Linear Units (CoLU), which introduces orthogonal group sym-
metry to neural networks. CoLU outperforms state-of-the-art component-wise activation functions
such as ReLU in various models including ResNet and UNet for recognition and generation, and
keeps the training and inference speed. It achieves remarkable gains in training diffusion models.

2 Background

Component-Wise Activations Among the most commonly used activation functions are Rectified
Linear Units (ReLU) and its variants, such as Leaky ReLU and Exponential Linear Units (ELU)
[Clevert et al., 2015]. There are also bounded ones, such as the sigmoid function or the hyperbolic
tangent function used in Hochreiter and Schmidhuber [1997]. In state-of-the-art vision and language
models, soft approximations of ReLU are preferred for their better performance, such as Gaussian
Error Linear Units (GELU) [Hendrycks and Gimpel, 2016], Sigmoid-Weighted Linear Units (SiLU)
[Elfwing et al., 2018], etc. All these functions are component-wise.

Non-Component-Wise Activations Previous works proposing non-component-wise activation
functions are essentially different from CoLU, such as using layer normalizations [Ni et al., 2024]
or multiplying the input by a radial function [Ganev et al., 2021]. In comparison, CoLU is a gen-
eralization of common activations, keeps the favorable conic-projective property unchanged, and
improves the performance of neural networks. In the previous version of CoLU [Fu and Cohen,
2024], it had not yet achieved universal improvement on all types of models, since its variants had
not been developed.

Equivariance in Linear Layers For symmetries in the linear part of the model, ensuring differ-
ent equivariance improves the performance of recognition [Zhang, 2019] and generation [Karras
et al., 2021] models, which repeatedly confirm the potential benefits of the symmetry principle.
Group equivariant convolutional neural networks (GCNN) [Cohen and Welling, 2016] put sym-
metry constraints in the spatial domain so that the model admits spatial group actions such as 2D
spatial rotations and reflections. Like in most convolutional neural networks, the channel dimen-
sions of GCNNs are always fully connected. CoLU’s symmetry assumption is on the channel axis
of the states, which means that CoLU considers the tangent space of GCNN’s symmetry space, and
equally applies to fully connected layers without convolution structures.

Spatial versus Channel Correlations Invariant scattering convolutional networks [Bruna and
Mallat, 2013] use wavelet bases as deterministic spatial correlations and only learn the pixel-wise
linear layer or 1× 1 convolution. It indicates that learning channel correlation plays a primary role
in representing data patterns compared to spatial connections, and it motivates further investigations
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into general symmetries in the channel dimensions—the embedding space. Low-rank adaptation [Hu
et al., 2022] and the Query-Key embeddings in the self-attention function are examples of putting
low-rank assumptions in the embedding space to represent patterns efficiently. CoLU considers
another assumption: it assumes potential subspace orthogonalities.

Orthogonality in the Embedding Space Ensuring orthogonality of the embedding space in the
linear layers is twofold. The hard constraint method uses a projection onto the Stiefel manifold dur-
ing training to ensure the orthogonality of the weights [Jia et al., 2019]. The soft constraint method
adds a regularization term to the loss function [Wang et al., 2020] and learns the orthogonality ap-
proximately. Orthogonal CNNs outperform conventional CNNs, suggesting that the orthogonality
property helps neural networks gain robustness and generalization ability. The self-attention func-
tion in Transformers is also orthogonal equivariant. CoLU is compatible with these orthogonal
layers to allow layerwise orthogonality in consecutive layers.

Other Constructions in Nonlinearities Weiler and Cesa [2019] conduct a survey on some of the
nonlinear functions for equivariant networks, which does not cover the form of CoLU. Liu et al.
[2024], Mantri et al. [2024] propose essentially component-wise nonlinearities by leveraging other
properties, where the equivariance is still restricted to permutations.

3 Conic Activation Functions
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Figure 1: Illustration of a CoLU function λ and an affine transform w of a cone V .
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Figure 2: Connections between neurons in a two-layer neural network y = wλ(w′x) with
component-wise / conic / group-conic / shared-axis group-conic activation functions. In this il-
lustrative example, the network width is C = 6 except that in the last shared-axis case C = 5. The
number of cones is G = 1 when there is one cone and G = 2 in the grouped case. The yellow
arrows denote the maximum norm threshold on the output vector in each group, and the dashed
frames denote the cones’ axis dimensions.
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A basic conic activation function is defined as λ : RC → RC

λ(x)i =

{
x1, i = 1

min{max{x1/(|x⊥|+ ε), 0}, 1}xi, i = 2, . . . , C
(1)

where x = (x1, x2, . . . , xC) is the input vector, | · | is the Euclidean norm, ε is a small constant
taken as 10−7 for numerical stability, and x⊥ denotes the normal vector x⊥ = (0, x2, x3, . . . , xC),
so that x = x1e1 + x⊥ holds. Here e1 = (1, 0, . . . , 0) ∈ RC is a unit vector. Figure 1a visualizes
a CoLU function with a red arrow and Figure 1b visualizes a transformed cone with a linear layer
after CoLU. Figure 2 visualizes the connections between neurons of the basic CoLU and its variants
to be defined in the sequel. The complexity of CoLU is O(C), which is the order of component-wise
functions and is negligible compared to matrix multiplications. The design of CoLU is irrelevant to
the choice of the first axis or another one since its adjacent linear layers are permutation equivariant.
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Figure 3: Weighting of hard-
projected ReLU and sigmoid-
weighted SiLU.
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Figure 4: Weighting of the hard-,
firm- and soft-projected conic ac-
tivation functions.

Figure 5: The correlations
between weights cov(w′)
and between states cov(x′).
The bright areas on the top-
left corners are the corre-
lated axes.

3.1 Soft Scaling

The sigmoid-weighted conic activation function is defined as

λ(x)i =

{
x1, i = 1

sigmoid(x1/(|x⊥|+ ε)− 1/2)xi, i = 2, . . . , C
(2)

where sigmoid(x) = 1/(1 + exp(−x)). Compared with Equation (1), the weighting function
min{max{r, 0}, 1} is replaced by sigmoid(r − 1/2), where r = x1/(|x⊥| + ε) is the cotangent
value of the cone’s opening angle α, r → 1/ tan(α) as ε→ 0.

The soft projection is inspired by the better performance of smooth functions such as SiLU
λ(x) = sigmoid(x)x, compared to the piecewise-linear ReLU λ(x) = 1R≥0

(x)x. Figure 3 com-
pares ReLU weighting with its sigmoid-weighted variant SiLU. Figure 4 compares the hard pro-
jection in Equation (1), firm projection weighted by sigmoid(4r − 2) and sigmoid-weighted soft
projection in Equation (2).

3.2 Multi-Head Structure

Inspired by group normalization [Wu and He, 2018], group convolution [Krizhevsky et al., 2012],
etc., the channel dimension can be divided into G heads of dimension S = C/G. The group-
conic activation function is defined as a group-wise application of the conic activation function.
Suppose λ : RS → RS is defined in Equation (1) or (2), and πG

i : RC → RS , i = 1, 2, . . . , G
are the G-partition subspace projections, then λ in higher dimension C is uniquely characterized by
πG
i λ = λπG

i , or explicitly,

λ(x) = (λ(πG
1 (x)), λ(π

G
2 (x)), . . . , λ(π

G
G(x))) (3)

In the trivial case G = 0, there is no axis to project towards, and we specify that the activation
function coincides with the identity function. In the special case S = 2 or when the cones are in a
2D space, the 1D cone section degenerates to a line segment with no rotationality, so we specify that
the CoLU coincides with the component-wise activation function.
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3.3 Axis Sharing

The shared-axis group CoLU is also uniquely defined by πG
i λ = λπG

i , i = 1, 2, . . . , G but with the
G-partition subspace projections defined differently:

πG
i = (π1, π(S−1)(i−1)+2, π(S−1)(i−1)+3, . . . , π(S−1)i+1), i = 1, 2, . . . , G (4)

where πj , j = 1, 2, . . . , C are projections to each axis. πG
i is a projection onto the first dimension

(the cone axis) and S − 1 other consecutive dimensions (the cone section). Therefore the relation
among the dimension formula among (C,G, S) is C − 1 = G(S − 1) in the shared-axis case.

Figure 5 illustrates the motivation of axis sharing: the colinear effect in the hidden states. In this
example, w′ is the first linear layer of a VAE’s encoder x ∈ R784 7→ wλ(w′x) ∈ R20 pretrained
on the MNIST dataset, and x′ is the first hidden state x′ = w′x ∈ R500 where the 100 cone axes
are permuted together for visualization. Therefore, the hidden dimension is C = 500, the number
of groups is G = 100, the number of test examples is 10000, w′ ∈ R784×500, x′ ∈ R10000×500 and
cov(w′), cov(x′) ∈ R500×500. The upper-left parts of the matrices are very bright, meaning that the
axis dimensions are highly colinear.

3.4 Homogeneous Axes

An alternative form of CoLU ensures component homogeneity, by rotating the standard Lorentz
Cone towards the all-one vector, and we call it a rotated conic activation function (RCoLU)

λ(x) = xe +max{min{|xe|/(|x⊥|+ ε), 0}, 1}x⊥ (5)

where xe = x · e, x⊥ = x − xe and e = (1/
√
S, . . . , 1/

√
S). The axis-homogeneous cone avoids

splitting operations in the calculation. It can also be combined with grouping using Equation (4),
and with axis sharing by setting e = (1/

√
C, . . . , 1/

√
C) in Equation (5) instead of using Equation

(4). RCoLU’s performance boost over ReLU is similar to standard CoLU, so we omit it in the
experiment section.

4 Why Conic Activation Functions

CoLU is motivated by the conic projection, which generalizes the equivariance in a neural network.
The proofs are provided in Appendix E.

4.1 Conic Projection

To naturally characterize this projection, it is necessary to recall hyperbolic geometry detailed in
Appendix A, where we define the Lorentz cone (the future Light Cone) V = {x ∈ RC : x2

1 − x2
2 −

. . . − x2
C ≥ 0, x1 ≥ 0} and the hyperplane of simultaneity H(x) = {y ∈ RC : y1 = x1}. We

denote Ṽ = R≤0e1 ∪ V , where R≤0e1 = {(t, 0, . . . , 0) ∈ RC : t ≤ 0}.
Definition 4.1 (Conic Projection). The conic projection is defined as x ∈ RC 7→ πṼ ∩H(x)(x) where
π is the nearest point projection, πA(x) = argminy∈A |y − x|.

The restriction of the projection on its image Ṽ is the identity function, so it satisfies the idempotent
property λ2 = λ. Constraining the projection in H(x) simplifies the computation while maintaining
essential equivariance properties—it guarantees that the projection is always towards the cone axis.
Since V ∩H(x) = ∅ when x1 < 0, the projection is not feasible in the negative half-space, so V

is extended to Ṽ for the well-definedness—on the negative half-space, the projection is degenerate,
πṼ ∩H(x)(x) = (x1, 0, . . . , 0). In other words, the past Light Cone has zero light speed and thus
zero opening angle.
Lemma 4.2 (CoLU is Conic Projection). Suppose λ is defined in Equation (1), then it coincides
with a conic projection.

lim
ε→0

λ(x) = πṼ ∩H(x)(x) = πmax{x1,0}D+min{x1,0}e1(x) (6)

where D = {x ∈ RC : x1 = 1,
∑C

i=2 xi ≤ 1} is the (C − 1)-dimensional disk.
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We note that V is the conic hull of D, and D is isometric to a hyperball in dimension C − 1, and
therefore it has the symmetry group O(C − 1). In comparison, the invariant set of ReLU is the
convex hull of the C − 1 simplex ∆C−1, defined as the convex hull of the unit vectors {ei ∈ RC :
i = 1, 2, . . . , C}. Next, we discuss the general link between algebraic and geometric symmetry.

4.2 Generalized Symmetry Group

Inspired by the Erlangen program [Klein, 1893] bridging algebraic groups with geometric forms, the
equivariant group is more intuitively motivated by the symmetry of the projections’ invariant sets.
Definition 4.3 (Invariant Set). The invariant set of a function λ : RC → RC is defined as

Iλ = {x ∈ RC : λ(x) = x}
Moreover, the symmetry group G and the isometric symmetry group G∗ of a set A is the group of
affine and rigid functions that preserves the set:

GA = {P ∈ GA(C) : P (A) = A}, G∗A = GA ∩ E(n)
where GA(C) is the general affine group, and E(n) = {P ∈ Map(RC) : |P (x) − P (y)| =
|x− y|,∀x, y ∈ RC} denotes the Euclidean group.

Definition 4.4 (Symmetry Group). The equivariance group and the isometric equivariance group
of a function λ : RC → RC is defined as

Gλ = {P ∈ GA(C) : Pλ = λP}, G∗λ = Gλ ∩ E(n)
Lemma 4.5 (Projective-Type Operators). If λ is either ReLU or CoLU, then Gλ = GIλ

, and G∗λ =
G∗Iλ

.

This algebra-geometry duality applies to more general neural network architectures, such as the
self-attention function. The relation with Noether’s theorem is discussed in Appendix B.
Corollary 4.6 (Permutation Symmetry). Suppose λ is the component-wise ReLU, then Iλ = RC

+,
Gλ = GIλ

= S(C) and G∗λ = G∗Iλ
= Perm(C), where RC

+ = {x ∈ RC : xi ≥ 0, i = 1, 2, . . . , C}
is the positive orthant, and S(C) = {PΛ ∈ GL(C) : P ∈ Perm(C),Λ ∈ Diag(C)} is the scaled
permutation group in dimension C, where Perm is the permutation group and Diag is the group of
diagonal matrices with non-negative entries.

Theorem 4.7 (Conic Symmetry). The symmetry groups of CoLU defined by Equation (3) or (4) are

Gλ = GIλ
= S(G)×OG(S − 1), G∗λ = G∗Iλ

= Perm(G)×OG(S − 1) (7)

where Iλ = Ṽ G. In the shared-axis case, Iλ = Ṽ G/ ∼ where the relation ∼ is defined as x ∼ y if
and only if ∃i, j ∈ {1, 2, . . . , G} such that πG

i (x)1 = πG
j (y)1 and ∀k ∈ {2, 3, . . . , S}, πG

i (x)k =

πG
j (y)k = 0.

In Equation (7), S(G) represents the permutations among different cones and O(S − 1) represents
rotations or reflections within each cone. The motivation is that matrix conjugation modulo permu-
tations reduce to block diagonal form, and we assume there are low-dimensional block sub-spaces
that can hold orthogonal equivariance. The symmetry group is continuous and thus of order infinity,
unprecedented in component-wise activations. We use the following construction to illustrate that
it improves neural networks’ generalization ability since component-wise activations fail to hold
orthogonal equivariance whereas conic activations do.
Lemma 4.8 (Layerwise Orthogornal Equivariance). Assume a two-layer neural network y =
fθ(x) = wλ(w′x) with fixed width C and the training data D satisfies subspace orthogonal
symmetry: ∀(x, y) ∈ D,∀P ∈ G, (Px, Py) ∈ G, where G = {P ∈ GL(C) : P [1, 2; 1, 2] ∈
O(2), P [3, . . . , C; 3, . . . , C] = IC−2, P [1, 2; 3, . . . , C] = P [3, . . . , C; 1, 2]⊤ = 0} ≃ O(2). Then,

(1) (ReLU excludes orthogonal equivariance) If λ is component-wise activation function, then ∀θ ∈
(RC2\{0})2, ∃x ∈ RC and P ∈ G such that Pfθ(x) ̸= fθ(Px).

(2) (CoLU holds orthogonal equivariance) If λ is that of Equation (1), then ∃θ† = (w†, w′†) such
that ∀x ∈ RC ,∀P ∈ G, Pfθ†(x) = fθ†(Px).
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As a remark, we explain the sufficiency of rigid alignments with a compact group G∗ without scaling
by adding a least-action regularization term, to justify the common practice in the literature, which
answers the open issue of permutation-only alignments in Bökman and Kahl [2024].

Remark 4.9 (Soundness of Isometric Alignment). Suppose L is the alignment objective defined
in the algorithms in Appendix F, then ∃η > 0 such that the regularized alignment coincides
with isometric alignment: argminP∈Gλ

(L(P ) − η∥P∥) = argminP∈G∗
λ
L(P ), where ∥θ∥ =

−∑
w(

∑
i w

p
i )

1/p is some norm of order p ≥ 1.

5 Experiments

The experiments are conducted on an 8-core Google v4 TPU. For computational costs, CoLU intro-
duces negligible computational overhead compared to ReLU in all experiments and all variants.

5.1 Synthetic Data
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Figure 6: Input, activations, output, and ground truth of a learned hemisphere rotation.

To demonstrate the advantage of the generalized symmetry of CoLU in the embedding space,
we use a two-layer MLP to learn the rotation of a 2D hemisphere. The MLP is defined as
x ∈ R3 7→ wλ(w′x), where w,w′ ∈ R3×3. The dataset D consists of polar grid points and
their rotated counterparts (x, y = Rx), where R represents a rotation of 45◦ around each of the
three coordinate axes. As shown in Figure 6 in the third column, ReLU does not capture orthogonal
equivariance (rotation around the hemisphere axis) near the equator, instead projecting the boundary
onto a triangle. In contrast, RCoLU successfully preserves the rotational symmetry at every latitude,
including at the boundary. This is due to the geometry of the projection boundary: ReLU cuts the
hemisphere with the positive orthant and produces a boundary of the 2-simplex ∆2, whereas CoLU
projects onto a cone that naturally preserves the circular pattern.
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5.2 Toy VAE

The toy generative model is a VAE with a two-layer encoder and a two-layer decoder, trained on
the binarized MNIST dataset. The test loss is compared since CoLU is hypothesized to increase the
model’s generalization ability.

Experimental Settings We use the Adam optimizer with a weight decay of 10−2 and train 10
epochs for each run. The global batch size is set to 128 and the learning rate is set to 10−3. Each
configuration is trained for 10 times with different random seeds. More detailed settings are provided
in Appendix D.

Table 1: Comparisons of CoLU model with soft and hard projections with axis sharing. Unstable
means some of the initializations do not converge.

Width C Group G Dim C Soft? Train Loss (×102) Test Loss (×102)
Identity 1.1086± 0.0060 1.1982± 0.0011

2401 0 ∞ Identity 1.1072± 0.0031 1.1981± 0.0010
✓ 1.0804± 0.0108 1.1740± 0.0009

2401 1 2401
✗ 1.0835± 0.0048 1.1656± 0.0013
✓ 1.0302± 0.0065 1.1216± 0.0016

2401 2 1201
✗ 1.0226± 0.0057 1.1137± 0.0026
✓ 0.9181± 0.0060 1.0106± 0.0017

2401 10 241
✗ 0.9166± 0.0041 1.0073± 0.0015
✓ 0.8698± 0.0055 0.9688± 0.0016

2401 50 49
✗ 0.8736± 0.0040 0.9742± 0.0024
✓ 0.8424± 0.0084 0.9643± 0.0015

2401 200 13
✗ 0.8430± 0.0052 0.9742± 0.0019
✓ 0.8388± 0.0268 0.9764± 0.013

2401 800 4
✗ Unstable Unstable
✓ 0.8334± 0.0232 0.9765± 0.0071

2401 1200 3
✗ Unstable Unstable

SiLU 0.8429± 0.0034 0.9814± 0.0007
2401 - - ReLU 0.8195± 0.0039 0.9892± 0.0011

Table 2: Comparisons of soft-projected CoLU with or without axis sharing.
Width C Group G Dim C Share Axis? Train Loss (×102) Test Loss (×102)

2401 Identity 1.1086± 0.0060 1.1982± 0.0011
2400

0 ∞ Identity 1.1098± 0.0129 1.1985± 0.0015
2401 ✓ 1.0804± 0.0108 1.1740± 0.0009
2401

1 2401
✗ 1.0828± 0.0080 1.1733± 0.0008

2401 ✓ 1.0302± 0.0065 1.1216± 0.0016
2402

2 1201
✗ 1.0207± 0.0088 1.1179± 0.0029

2401 ✓ 0.9181± 0.0060 1.0106± 0.0017
2410

10 241
✗ 0.9111± 0.0041 1.0096± 0.0013

2401 ✓ 0.8698± 0.0055 0.9688 ± 0.0016
2450

50 49
✗ 0.8783± 0.0045 0.9864± 0.0015

2401 ✓ 0.8424± 0.0084 0.9643 ± 0.0015
2600

200 13
✗ 0.8718± 0.0062 0.9833± 0.0021

2401 ✓ 0.8388± 0.0268 0.9764 ± 0.0139
3200

800 4
✗ 0.8801± 0.0073 0.9893± 0.0021

2401 ✓ 0.8334± 0.0232 0.9765 ± 0.0071
3600

1200 3
✗ 0.8808± 0.0099 0.9930± 0.0018

2401 SiLU 0.8429± 0.0034 0.9814± 0.0007
4800

- - SiLU 0.8402± 0.0041 0.9856± 0.0008

Results Table 1 compares hard-projected or soft-projected CoLU with ReLU or CoLU when the
axes are shared. Table 2 compares the improvement from adding axis sharing in the soft projection
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case. The test losses at the best early-stopping steps are reported. The highlighted cases correspond
to the hyperparameters where CoLU outperforms component-wise activation functions. Further-
more, Appendix D complements the learning curves of these hyperparameters. Combining axis
sharing and soft projection effectively stabilizes the training when cone dimensions are low in the
VAE experiments.

5.3 Toy MLP

According to the hyperparameter search above, we set the cone dimensions to S = 4, which com-
plies with the number of chips in hardware platforms. We compare test accuracies in the MNIST
recognition tasks to test the hypothesis of CoLU’s generalization ability.

Experimental Settings We set the global batch size to 1024 and the learning rate to 10−3. Each
configuration is trained 7 times with different random seeds. More detailed settings are provided in
Appendix D.

Table 3: Comparisons between ReLU and CoLU in two-layer MLP.
Activation Width C Dim S Axis Sharing Soft Projection Train Loss Test Accuracy

ReLU 512 - - ✗ 0.0000 ± 0.0000 0.9576 ± 0.0017
CoLU 512 4 ✗ ✗ 0.0000 ± 0.0000 0.9644 ± 0.0010
CoLU 511 4 ✓ ✓ 0.0000 ± 0.0000 0.9652 ± 0.0013

Results Table 3 compares ReLU with CoLU of low-dimensional orthogonal subspaces and shows
the improvement from using axis sharing combined with soft projection.

5.4 ResNet

To test the performance of CoLU in deeper models, we scale up the network to ResNet-56 and train
them on the CIFAR10 dataset. Axis sharing and soft projection are omitted for clean comparisons
with ReLU in the sequel.

Experimental Settings The ResNet architecture and the training recipe follow He et al. [2016].
The runs are repeated for 10 times with different random seeds each lasting 180 epochs, and use the
Adam optimizer with a batch size of 128, a learning rate of 10−3, and a weight decay coefficient of
10−2. Finer training settings will achieve better baselines, and CoLU remains superior to ReLU.

Table 4: Comparisons between ReLU and CoLU in ResNet-56.
Activation Cone Dimension S Train Loss Test Accuracy

ReLU - 0.005132 ± 0.001461 0.9065 ± 0.0100
CoLU 4 0.003244 ± 0.000185 0.9101 ± 0.0039

Results Table 4 shows that CoLU outperforms ReLU and the training is stable across different
initialization seeds.

5.5 Diffusion Models

We compare CoLU and ReLU in unconditional generation with diffusion models [Sohl-Dickstein
et al., 2015] trained on the CIFAR10 and Flowers datasets. Then we show the possibility of borrow-
ing a pretrained text-to-image model [Rombach et al., 2022] and fine-tuning it to a CoLU model.
Detailed settings are in Appendix D.

Training Results Figure 7 shows that CoLU-based UNets converge faster and achieve lower
losses than the ReLU-based baselines. On the small dataset CIFAR10, the convergence is observed
to be much faster. On the larger Flowers dataset, the loss of the CoLU model is significantly lower
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Figure 7: Learning curves of ReLU and CoLU diffusion models.

Table 5: Comparisons between ReLU and CoLU in diffusion UNet.
Activation Cone Dimension S Train Loss (CIFAR10) Train Loss (Flowers)

ReLU - 0.1606 0.01653
CoLU 4 0.1593 0.01458

than the ReLU model throughout the training. Table 5 shows quantitative improvement of CoLU in
diffusion UNets. Appendix D shows generated samples on the Flowers dataset.

Fine-Tuning Results We replace all activation functions in the UNet with soft-projected conic
activation functions of G = 32 without axis sharing. Appendix D shows generated samples from
the fine-tuned model and visually compares the original activation and CoLU models.

5.6 MLP in GPT2

CoLU is better than ReLU in the MLP part of a Generative Pretrained Transformer (GPT2) trained
on Shakespeare’s play corpus. Appendix D reports a comparison in the test loss. We also observe
that CoLU achieves slower overfitting and lower test loss with the same training loss.

5.7 Linear Mode Connectivity

CoLU enlarges the group of neural networks’ linear mode connectivity, explained in Appendix C.

Convolution Filter Symmetry Diffusion models with ReLU and CoLU have different symmetry
patterns in the convolution filters. We show in Appendix D that between the last layer of two
diffusion UNets trained with different initialization on CIFAR10, a ReLU model’s convolution filters
can be permuted to match each other, whereas a CoLU model cannot since the orthogonal symmetry
relaxes to additional color rotations.

Generative Model Alignment For completeness, we show alignment results on the ReLU and
CoLU-based models in Appendix D. In the literature on linear mode connectivity, few works study
generative models, and we show that the generative VAEs also reveal linear mode connectivity under
the equivariance groups of activation functions.

6 Conclusion

In this work, we introduced Conic Linear Units (CoLU) to let neural networks hold layerwise or-
thogonal equivariance. CoLU outperforms common component-wise activation functions and scales
to a broad range of large models. The code will be publicly available at https://github.com/
EvergreenTree/di-f-fu-sion.
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Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Krishna Sri Ipsit Mantri, Xinzhi Wang, Carola-Bibiane Schönlieb, Bruno Ribeiro, Beatrice Bevilac-
qua, and Moshe Eliasof. Digraf: Diffeomorphic graph-adaptive activation function. CoRR, 2024.

Yunhao Ni, Yuxin Guo, Junlong Jia, and Lei Huang. On the nonlinearity of layer normalization. In
International Conference on Machine Learning, volume 235, pages 37957–37998. PMLR, 21–27
Jul 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 10684–10695, June 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural Infor-
mation Processing Systems, 33:22045–22055, 2020.

Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,
Mishig Davaadorj, Dhruv Nair, Sayak Paul, Steven Liu, William Berman, Yiyi Xu, and Thomas
Wolf. Diffusers: State-of-the-art diffusion models. URL https://github.com/huggingface/
diffusers.

Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X Yu. Orthogonal convolutional neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 11505–11515, 2020.

Maurice Weiler and Gabriele Cesa. General e (2)-equivariant steerable cnns. Advances in Neural
Information Processing Systems, 32, 2019.

12

https://openreview.net/forum?id=gU5sJ6ZggcX
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers


Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pages 3–19, 2018.

Richard Zhang. Making convolutional networks shift-invariant again. In International conference
on machine learning, pages 7324–7334. PMLR, 2019.

13



Supplementary Materials

Contents

1 Introduction 1

2 Background 2

3 Conic Activation Functions 3

3.1 Soft Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Multi-Head Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Axis Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.4 Homogeneous Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Why Conic Activation Functions 5

4.1 Conic Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Generalized Symmetry Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Experiments 7

5.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 Toy VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.3 Toy MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.4 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.5 Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.6 MLP in GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.7 Linear Mode Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Conclusion 10

Appendices 14

A Hyperbolic Geometry 15

B Relation with Noether’s Theorem 15

C Relation with Linear Mode Connectivity 16

D More Experiments 16

D.1 Toy VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

D.2 Toy MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D.3 Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

14



D.4 MLP in GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

D.5 Linear Mode Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E Proofs 21

F Algorithms 21

G Unification of Neural Networks 21

A Hyperbolic Geometry

Definition A.1 (Minkowski). A point (called an event) x is defined in the C-dimensional Euclidean
space (called space-time). A scalar product on RC is defined as

⟨x, y⟩M = x1y1 − x2y2 − . . .− xCyC (8)

The hyperbolic geometry can be understood by the fact that along a rotation in the space, the quantity
x2
1 − x2

2 − . . . x2
C is unchanged. This scalar product induces a norm |x|M =

√
⟨x, x⟩M , and the

Lorentz cone is defined as V = {x ∈ RC : |x|M ≥ 0, x1 ≥ 0}. It is usually called a light cone
since if we regard x1 := t as the time axis where the constant c is the speed of light and t is the
time of the event x, then the cone is characterized by

√
|x⊥| = ct, and c is the tangent value of the

opening angle of the cone, and we set c = 1 without loss of generality. More precisely it is a future
light cone since t ≥ 0, and the past light cone associates to the case when t ≤ 0. CoLU sets the
past light cone with c = 0. The plane of simultaneity (under the rest frame of reference) is defined
as H(x) = π−1

1 (x1e1) = {y ∈ RC : y1 = x1}. In Figure 1a, CoLU is intuitively understood as
the closest point to the input within the light cone and the plane of simultaneity. The meaning of the
weight w after the activation function is visualized in Figure 1b, where the previous space-time is
tilted by a linear transform (called Lorentz transform). In the grouped CoLU case, gluing the axes
together is motivated by equalizing the time axes of each light cone (called an observer).

B Relation with Noether’s Theorem

In this section, we associate the CoLU equivariance with the conserved quantity in the tangent space
of the spatial domain and show that CoLU and self-attention have the same type of symmetry.
Definition B.1 (Lagrangian). A Lagrangian functional is defined as an integral L : TM −→ R
such that

L(x, ẋ,L) =
∫ L

0

L(x, ẋ, ℓ) dℓ (9)

Theorem B.2 (Noether). Suppose ∀s ∈ R the Lagrangian L(x, ẋ, L) is invariant over a transfor-
mation hs parameterized by s, then the following quantity is constant over time.

I =
dL

dẋ

dhs

ds
(10)

Corollary B.3 (Translation Momentum). Assume ω ∈ Ω = [−1, 1]2, e1 = (1, 0) is a unit vector,
and L(ω, ω̇, t) = ω̇2/2. If hs(ω) = ω + se1 then I = ω̇1 is conserved.

The convolution function commutes with hs and associates with the translation momentum on Ω.
Corollary B.4 (Angular Momentum). Assume x ∈ RΣ with Σ = {1, 2, 3},|Σ| = C = 3, e2, e3 ∈
RC are unit vectors of starting and ending directions of a rotation R around e1. If hs : x(σ) ∈
RΣ 7→ R2s/πx(σ), then I = ẋ× e1.
Proposition B.5 (Attention Invariance). The self-attention function commutes with hs, so the La-
grangian of attention dynamics admits the orthogonal group. Therefore the attention dynamics in
Equation (39) conserves the angular momentum for rotations in RC .
Proposition B.6 (Conic-Activation Invariance). For the same reason as above, if the activation func-
tion is conic, The ResNet dynamics in Equation (40) conserves the angular momentum for rotations
around the cone axis.
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C Relation with Linear Mode Connectivity

The equivariance of activation functions is linked to the linear mode connectivity phenomenon:
two neural networks trained with different initializations and (usually) on the same dataset can
be aligned to be very close to each other [Izmailov et al., 2018, Singh and Jaggi, 2020, Entezari
et al., 2022, Ainsworth et al., 2023]. This phenomenon implies that neural network optimization
is approximately convex modulo a group. The group characterizes the permutation symmetry of
component-wise activation functions, and the proposed conic activation functions generalize the
type of symmetry. This aligned representation phenomenon across different models at a larger scale
is discussed in [Huh et al., 2024]. Note that there are other types of mode connectivity [Garipov
et al., 2018], which does not leverage permutation symmetry and requires more complicated paths
such as piece-wise linear or Bézier spline, and we do not discuss here.

Given the loss function L(θ) on two sets of model parameters θ0, θ1, the closeness of the two models
is measured by the loss barrier. There are different definitions of loss barriers, and we define it as

sup
s∈[0,1]

Bθ0,θ1(s) = L((1− s)θ0 + sθ1)/((1− s)L(θ0) + sL(θ1)))− 1 (11)

The loss barrier signifies the relative loss increase of the linearly interpolated weights. With one
model θ0 fixed, an alignment on the other one θ1 refers to finding the optimal permutation on each
layer by matching either intermediate states or weights [Jordan et al., 2023, Ainsworth et al., 2023].
The proposed activation function generalizes permutations to orthogonal matrices (where permuta-
tions are special cases). The orthogonal symmetry is continuous, meaning that there are infinitely
many ways of alignment. This results in a loss landscape with infinite local minima forming con-
nected components. The alignment matrices are associated with different manifold constraints.

D More Experiments

D.1 Toy VAE

Experimental Settings The VAE’s encoder and generator’s parameters are θE = (wE, w
′
E) and

θG = (wG, w
′
G). The inputs, latents and outputs are x, z, x̂, where z = wEλ(w

′
Ex) and x̂ =

wGλ(w
′
Gz). The dimension of input and output is 28 × 28 = 784 and the dimension of the hidden

state z is fixed to d = 20. The loss function is defined as

L(θ) = H(x, x̂) + αDKL(pz|p0) (12)

where H(x, x̂) = −∑
n xn(log(x̂n) + (1 − xn) log(1 − x̂n)) is the binary cross-entropy, and

DKL(pz|p0) is the Kullback-Leibler Divergence from a standard Gaussian distribution p0 ∼ N (0, 1)
to the latent distribution pz ∼ N (µz, σz)

DKL(pz|p0) = −
∫
x

p0(x) log(pz(x)/p0(x)) dx =
1

2

d∑
j=1

(
1 + log(σz

2
j )− µz

2
j − σz

2
j

)
(13)

The last equality is obtained by setting µz = (
∑N

n=1 zn)/N and σz = ((
∑N

n=1(zn − µz)
2)/(N −

1))1/2 with sample size N . The hyperparameter α is set to 1 so that the impact of the KL term is
relatively small, given that the magnitude of the cross-entropy term is around 100 times larger.

More Results Figure 8 visualizes the test loss curves when the granularity of grouping varies. In
summary, as the cone dimension S reduces, the performance of grouped conic activation func-
tions improves until it outperforms component-wise activation functions. In the figures, only
one case for high and low dimensional cones is shown for clarity.The cone dimension is among
S ∈ {∞, 2400, 600, 4, 2}, or equivalently, the number of groups is among G ∈ {0, 1, 4, 800, 2400}.
In the shared-axis case, the network width is fixed to C = 2401 so that the number of parameters is
the same. In the no-sharing case, the network width is C = 2400 +G. Specifically, G = 0 reduces
to the identity function, while S = 2 (or G = 2400) is specified as the component-wise activation of
ReLU for hard projection and SiLU for soft projection since there is no orthogonality. The dashed
line in the hard-projected shared-axis case means that the training is unstable over different random
seeds: about 80% of the initializations do not converge, so only one converged training instance is
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(d) Soft Shared

Figure 8: Test loss curves of a VAE with two-layer encoder and decoder with standard deviation
regions. The left and right figures correspond to hard and soft projections, and the top and bottom
correspond to hard projection and soft projection.

visualized. Sharing the axes increases the performance of the activation function on toy examples
when the projection is soft and the cones are low dimensional (S being small). In practice, this com-
bination is the most meaningful one since it has the best performance and saves the most number of
parameters. Intuitively, soft projection effectively stabilizes the training of CoLU models, which is
the most obvious in the early training stage of the highest-dimensional conic functions (the single
cone case). Especially, it makes the VAE with shared-axis activation functions easier to train.

D.2 Toy MLP

Experimental Settings The model is parameterized by θ = (w,w′) and defined as x ∈ R28×28 7→
ŷ = softmax(wλ(w′x)) ∈ ∆9, which is a two-layer MLP whose output is mapped to the probability
simplex by a softmax function. The MNIST dataset is denoted as a collection of data pairs (x, y),
where x is flattened as vectors and y is a unit vector among 10 classes. The network width is fixed
to C = 512. The loss function is the cross entropy of the predicted probability relative to the label

H(ŷ, y) =
∑
i

yi log ŷi (14)

D.3 Diffusion Models

Training Experimental Settings The UNet structure follows the Stable Diffusion model
(LDM) [Rombach et al., 2022] without the VAE part. The network block widths are set to
(128, 256, 256, 256) and the numbers of ResNet blocks are set to 1 for CIFAR10 (2 for Flowers).
For unconditional generation, the cross-attention function is replaced with the self-attention func-
tion. All runs last 100K steps and use the Adam optimizer with a batch size of 128 for CIFAR10
(16 for Flowers), a learning rate of 10−4, and a weight decay coefficient of 10−2. Figure 9 shows
comparisons on the Flowers dataset.
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(a) ReLU (b) CoLU

Figure 9: Samples of diffusion models trained on the Flower Dataset.

Figure 10: More CoLU text-to-image samples.

Fine-Tuning Experimental Settings The pretrained model has 835 million parameters and is
trained on the LAION dataset. The architecture is identical to the Stable Diffusion model with
block width (320, 640, 1280, 1280). The training details are the same as above. The pre-trained
SiLU model and the text-to-image Pokémon dataset are from the diffusers library [von Platen et al.].
Figure 11 visualizes the comparisons between a fine-tuned SiLU model and a fine-tuned soft CoLU
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model with the same text prompt and initial noise in the diffusion model. Figure 10 shows more
samples of the fine-tuned model with text prompts generated by a large language model.

Figure 11: LDM samples of a fine-tuned Soft CoLU model and a fine-tuned SiLU model.

D.4 MLP in GPT2

Experimental Settings The Transformer follows Vaswani et al. [2017] with the block size of 64,
an embedding size of 256, a number of heads 8, head size 32 and number of layers 6. Each run
lasts 20K steps and uses the Adam optimizer with a batch size of 512, a learning rate of 10−4, and
a weight decay coefficient of 10−2.

Table 6: Comparisons between ReLU and CoLU on GPT2’s MLP.
Activation Cone Dimension S Train Loss Eval Loss

ReLU - 1.256 1.482
CoLU 4 1.263 1.481

Results Table 6 shows that CoLU is on par with ReLU in GPT2’s MLP. We also observe a faster
drop in the test loss and slower overfitting.

D.5 Linear Mode Connectivity

The latent state’s permutation symmetry is studied qualitatively on diffusion UNets and quantita-
tively on toy models.

Convolution Filter Symmetry We train individual diffusion UNets on the CIFAR10 dataset with
different random seeds and qualitatively show that the palette filters (the last convolution layer of the
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(a) SiLU, 1st initialization. (b) SiLU, 2nd initialization.

(c) soft CoLU, 1st initialization. (d) soft CoLU, 2nd initialization.

Figure 15: Palettes of diffusion models with SiLU and soft CoLU. The first row can be permuted to
match each other whereas the second row cannot.

generative model) in a ReLU-model can be permuted to match each other, whereas a CoLU-model
cannot, showing that the symmetric pattern is essentially different from permutation. The diffusion
model implementation is based on [Salimans and Ho, 2022] and we only change the activation
function to be conic with G = 32 without axis sharing. We take a global batch size of 128 and a
learning rate of 10−4. After around 5K steps the generated images are perceptually visible. Figure
15 visualizes the last convolution layer w (which we call a palette) of dimension 256 × 3 × 3 × 3
in SiLU model and soft CoLU model, each with two different initializations. The colors are linearly
scaled for better visualization. The left two sets of filters can be permuted to match each other,
whereas the right two sets cannot since they are orthogonal symmetric except for the axes. We
observe that the last layer has more visually plausible patterns than the first layer in the denoising
UNet, different from most works in the literature do for recognition models.

Generative Model Alignment We show linear mode connectivity results for the same toy model
in Section 5.2, and we find out that linear mode connectivity also holds in generative models, which
is rarely discussed in the literature.
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Weight matching and state matching algorithms in Appendix F are applied to align the VAE model,
and the results are shown in Figure 12. They have different advantages: weight matching produces
a flatter barrier in our toy experiment, and state matching requires no data as the model input. Their
convergence is analyzed in [Ainsworth et al., 2023, Jordan et al., 2023]. The difference in the conic
case is that the symmetry group is relaxed, so the Stiefel manifold optimization problem replaces
the sum of bilinear assignment problem (SOBLAP). Figure 13 and 14 visualize the loss barrier and
the KL Divergence barrier.

E Proofs

Proof of Proposition 4.2. If |x⊥| ̸= 0, Equation (6) holds component-wise, and the set {x ∈ RC :
|x⊥| = 0} is negligible.

Proof of Lemma 4.5. We assume P ∈ GA(C) To prove Gλ ⊂ GIλ
, it suffices to show ∀P ∈

Gλ, Iλ = PP−1Iλ = PIλ ⊂ Iλ. The last inclusion comes from ∀P ∈ G, there holds ∀x ∈
Iλ, λ(Px) = Pλ(x) = Px, so Px ∈ Iλ. The first equality is from P ∈ Gλ and the second
one is from x ∈ Iλ. Conversely, to prove GIλ

⊂ Gλ, we need to strengthen the condition on λ
to ∃A a convex set such that ∀x, λ(x) = PA(x). ∀z ∈ Iλ, ⟨z − Pλ(x), Px − Pλ(x)⟩ ≥ 0, so
λ(Px) = Pλx

Proof of Proposition 4.8. (1) is proven by taking x and P such that

w′x = (1, 0, 0, . . . , 0), P [1, 2; 1, 2] =

[√
2
2 −

√
2
2√

2
2

√
2
2

]

(2) is proven by taking

w† =

[
0 I2

IC−2 0

]
, w′† =

[
0 IC−2

I2 0

]

Proof of Remark 4.9. It suffices to take η large enough so that D ∈ Diag(C) is determined by
argminPD∈Gλ

∥PDθ∥, since P ∈ Perm(C) does not change ∥Pθ∥.

F Algorithms

Algorithm 1 and 2 from Jordan et al. [2023], Ainsworth et al. [2023] are applied to achieve linear
mode connectivity of the toy VAE model.

G Unification of Neural Networks

This section aims to establish a bottom-up framework from first principles to infer the form of neural
network architectures, including the proposed activation function. For simplicity, we assume that
each state is defined in a vector space with a fixed dimension M = RC . We separate the construc-
tion into several parts, including a general Neural Network, a Residual Network, a Convolutional
Network, and an Attention Network.

Proposition G.1 (Derivation of a Neural Network). The assumptions on the left of the following
equations characterize the neural network in Equation (20).
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Algorithm 1 Weight Matching

Require: θ0, θ1 ▷ Pre-Trained Weights from different random initializations
Require: x ∈ X ▷ Intermediate states ordered by forward pass
Require: θprev(x), θnext(x) ▷ Linear weights prior to and after the state
Require: G ▷ Symmetry group of the activation function
Ensure: P = {Px : x ∈ X} ▷ Optimal alignment

1: Initialize Px = Idim(x) ▷ Identity matrices with the same dimension of x
2: repeat
3: for x in RandPerm(X) do ▷ Shuffle the order of the states
4: L(P ) = 0
5: for w′ in θprev(x) do
6: for w in θnext(x) do
7: L(P )← L(P ) + tr(w′

0
⊤
Pw′

1)/|θprev(x)|+ tr(w0P
⊤w⊤

1 )/|θnext(x)|
8: end for
9: end for

10: Solve Px ← argminP∈G L(P )
11: end for
12: until P Converges

Algorithm 2 State Matching

Require: θ0, θ1, θprev(x), θnext(x),G ▷ Same as above
Require: x(0) ▷ Data as model input
Require: x ∈ X(θ, x(0)) ▷ Following the order of the forward pass
Ensure: P = {Px : x ∈ X(θ, x(0))} ▷ Optimal alignment

1: Initialize Px = Idim(x)

2: for (x0, x1) in (X(θ0, x(0)), X(θ1, x(0))) do
3: Solve Pℓ ← argminP∈G L(P ) = x0

⊤Px1

4: for w′ in θprev(x) do
5: w1 ← Pℓw1

6: end for
7: for w in θnext(x) do
8: w1 ← Pℓw1

9: end for
10: end for

x(1) = Λ(x(0)) (15)
Process Decomposition

=⇒ x(L) = ΛLΛL−1 . . .Λ1(x(0)) (16)
Linear Kernel Space

=⇒ x(L) = w(L)ΛL(w
′(L) . . . w(1)Λ1(w

′(1)(x(0)) . . .)) (17)
Time Homogeneity

=⇒ x(L) = w(L)Λ(w′(L) . . . w(1)Λ(w′(1)(x(0)) . . .)) (18)
Component-Wise

=⇒ x(L) = w(L)λ(w′(L) . . . w(1)λ(w′(1)(x(0)) . . .)) (19)
Iterative Form⇐⇒ x(ℓ) = w(ℓ)λ(w′(ℓ)x(ℓ− 1)), ℓ = 1, 2, . . . L (20)

In the derivation above, equation (15) denotes an arbitrary function Λ with input x(0) and output
x(1). Equation (16) holds by assuming the function decomposes into several ones, resulting in a
process or a sequence of states x(0), x(1), . . . , x(L) ∈M , where the terminal states x(0) and x(L)
are the input and output. Equation (17) follows from assuming the sequence of functions to perform
in a linear kernel space. Suppose the linear kernel function at layer ℓ parameterized by w′

Φ : M −→Mλ

x 7−→ w′(ℓ)x
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on the kernel space, there is a function Λ : Mλ → Wλ where Wλ is the range of the activation
function. Then the inverse kernel function is parameterized by w

Φ̂ : Wλ −→M

x 7−→ w(ℓ)x

Again we assume for simplicity that the dimensionality of each kernel space is fixed: Mλ = M =
RC . Equation (17) is obtained by replacing x ∈ M with x′ ∈ Mλ in equation (16) and plugging in
the change of variable x′ = wxw′. Equation (18) is obtained by assuming time homogeneity modulo
a linear group of the nonlinear functions: the function Λ is on the lifted space Mλ in Equation (17)
instead of M , where the lifting is determined by assuming that there exist proper w,w′ in each space
such that the functions are uniform over time, meaning Λ1 = Λ2 = . . . = ΛL = Λ. Equation (19)
assumes that there exists a function λ : R → R so that the nonlinear function is represented as
Λ(x1e1 + . . .+ xnen) = λ(x1)e1 + . . .+ λ(xn)en. In this paper, we replace this assumption with
orthogonal symmetry instead. Note that the component-wise λ : Mλ → Mλ is equivariant under
any permutation P . Equation (20) rewrites the process into steps between adjacent states.

Proposition G.2 (Derivation of a Residual Network). Adding more assumptions, we continue to
derive the form of a Residual Network in Equation (27).

Linear Splitting⇐⇒ x(ℓ) = λ(w′(ℓ)x(ℓ− 1)) + (w(ℓ)− 1)λ(w′(ℓ)x(ℓ− 1)) (21)
Re-Parameterization

=⇒ x(ℓ) = λ(w′(ℓ)x(ℓ− 1)) + w(ℓ)λ(w′(ℓ)x(ℓ− 1)) (22)
Linear Branching

=⇒ x(ℓ) = λ(w′′(ℓ)x(ℓ− 1)) + w(ℓ)λ(w′(ℓ)x(ℓ− 1)) (23)
Nonlinear Branching

=⇒ x(ℓ) = λ′(w′′(ℓ)x(ℓ− 1)) + w(ℓ)λ(w′(ℓ)x(ℓ− 1)) (24)
w′′=1
=⇒ x(ℓ) = λ′(x(ℓ− 1)) + w(ℓ)λ(w′(ℓ)x(ℓ− 1)) (25)
w′=1
=⇒ x(ℓ) = λ′(x(ℓ− 1)) + w(ℓ)λ(x(ℓ− 1)) (26)

Residualization
=⇒ x(ℓ) = x(ℓ− 1) + w(ℓ)λ(x(ℓ− 1)) (27)

In the derivation above, Equation (21) splits the inverse kernel function’s weight w into the identity
(zeroth-order) part and the first-order part w − 1. Equation (22) re-parameterize the weights by de-
noting 1−w as w without loss of generality. Equation (23) modifies the assumption in Equation (17)
so that two copies of kernel functions are parameterized by w′′, w′, and the inverse kernel function
remains the same. Equation (24) modifies the assumption in equation (18) different functions λ′, λ
applies on each one. Equation (25) assumes that the first kernel function w′′ is identity. Equation
(26) further assumes w′ is identity to simplify equations in the sequel. Equation (27) assumes that
the function associating to the zeroth-order kernel space is identity.

Proposition G.3 (Derivation of a Convolutional Network). Given a basic neural network, the form
of a convolutional neural network in Equation (33) is determined by the following additional as-
sumptions on the left.

Space Indexation⇐⇒ x(ℓ) = x(ℓ− 1) + w(ℓ, ω, ω′, σ, σ′)λ(x(ℓ− 1, ω′, σ′)) (28)
Summation Form⇐⇒ x(ℓ) = x(ℓ− 1) +

∑
ω′∈Ω

w(ℓ, ω, ω′, σ, σ′)λ(x(ℓ− 1, ω′, σ′)) (29)

Equivariance
=⇒ x(ℓ) = x(ℓ− 1) +

∑
ω′∈Z2

w(ℓ, ω′ − ω, σ, σ′)λ(x(ℓ− 1, ω′, σ′)) (30)

Change of Variable⇐⇒ x(ℓ) = x(ℓ− 1) +
∑

ω′∈Z2

w(ℓ, ω′, σ, σ′)λ(x(ℓ− 1, ω′ + ω, σ′)) (31)

3×3 Window
=⇒ x(ℓ) = x(ℓ− 1) +

∑
ω∈{−1,0,1}2

w(ℓ, ω + ω′, σ, σ′)λ(x(ℓ− 1, ω′, σ′)) (32)

Convolution Notation⇐⇒ x(ℓ) = x(ℓ− 1) + w(ℓ) ⋆ λ(x(ℓ− 1)) (33)
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In the derivation above, Equation (28) stacks the states of dimension n = CHW into a tensor
whose space dimensions is indexed by ω ∈ Ω = [H] × [W ] ⊂ Z2 (with the bracket notation
[n] = {1, 2, . . . , n}) and the channel dimension indexed by σ ∈ [C]. Equation (29) write the matrix-
vector product in the form of a summation. In Equation (30) we imposes core assumption of the
Convolutional Neural Network, namely the spatial translation equivariance, so that (wx)(ω−ω′′) =
(wx(ω−ω′′)),∀ω′′. This results in w(ω, ω′+ω′′) = w(ω−ω′′, ω′),∀ω′′, so w(ω, ω′) must take the
form of w(±ω ∓ ω′), and we set w(ω′ − ω) without loss of generality. Equation (31) is a change of
variable, replacing ω′ − ω with ω′. Equation (32) imposes the condition that the spatial dependency
on Ω is within a 3× 3 neighbourhood. Note that the family of neighbourhoods defines the Topology
of the space Ω. Finally, Equation (33) denotes the linear function with the ⋆ notation.
Proposition G.4 (Derivation of an Attention Network). The construction of the cross-attention func-
tion is proceeded by imposing further assumptions.

1×1 Window
=⇒ x(ℓ) = x(ℓ− 1) + λ(x(ℓ− 1, ω, σ′))w(ℓ, σ′, σ) (34)

Condition kT k
=⇒ x(ℓ) = x(ℓ− 1) + λ(x(ℓ− 1, ω, σ′))k(ℓ, σ′′, σ′)T k(ℓ, σ′′, σ′)w(ℓ, σ′, σ) (35)
λ=1
=⇒ x(ℓ) = x(ℓ− 1) + x(ℓ− 1, ω, σ′)k(ℓ, σ′′, σ′)T k(ℓ, σ′′, σ′)w(ℓ, σ′, σ) (36)

Scaling
=⇒ x(ℓ) = x(ℓ− 1) + softmax(x(ℓ− 1, ω, σ′)k(ℓ, σ′′, σ′)T )k(ℓ, σ′′, σ′)w(ℓ, σ′, σ)

(37)
Q,K,V Notations⇐⇒ x(ℓ) = x(ℓ− 1) + w(ℓ) softmax(QKT )V (38)

In the above derivation, Equation (34) assumes the Topology to be discrete, or the neighbourhood
of a spatial point is itself, which restricts the convolution to be on a 1 × 1 window. For the matrix
w(ℓ, σ, σ′) with σ, σ′ ∈ [C], Equation (35) applies the linear transform kT k, where k(ℓ, σ′′, σ) can
be regarded as a set of C ′′ condition “pixels” of dimension C, or ω ∈ [C], ω′′ = [C ′′]. Equation (36)
assumes λ to be identity function denoted as 1. Equation (37) scales xwT with a softmax function
softmax(x(σ, σ′′)) = exp(x(σ, σ′′))/

∑
σ′′∈[C′′] exp(x(σ, σ

′′)). Finally, Equation (37) is obtained
from setting the Query-Key-Value notations Q = x(ℓ − 1, ω, σ′),K = V = k(ℓ, σ′, σ′′). Note
that by cancelling the assumption in Equation (26), we may also take in Q = wQ(ℓ, σ, σ

′)Q′,K =
wK(ℓ, σ, σ′)K ′, V = wV (ℓ, σ, σ

′)V ′.

Proposition G.5 (Attention Network Dynamics).
Attention Dynamics

=⇒ ẋ = softmax(QKT )V (39)

Equation (39) is obtained by setting w(ℓ) as identity and consider ℓ ∈ [0, L].
Proposition G.6 (ResNet Dynamics). By assuming the continuation ℓ ∈ [0, L], we obtain the con-
tinuous dynamics of ResNet

ResNet Dynamics
(39) =⇒ ẋ = λ(x) (40)
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims are discussed.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, it is explicitly stated.
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• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
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Justification: Yes, assumptions and proofs are provided.
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• All assumptions should be clearly stated or referenced in the statement of any theo-
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• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, open-source code and data are presented.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
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how to reproduce that algorithm.
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the architecture clearly and fully.
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produce the model (e.g., with an open-source dataset or instructions for how to
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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results?
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• The answer NA means that the paper does not include experiments.
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detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
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they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Code, data, models used in the paper are credited. License and terms of use
are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: Released code is licensed, templated and anonymized.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

30


	Introduction
	Background
	Conic Activation Functions
	Soft Scaling
	Multi-Head Structure
	Axis Sharing
	Homogeneous Axes

	Why Conic Activation Functions
	Conic Projection
	Generalized Symmetry Group

	Experiments
	Synthetic Data
	Toy VAE
	Toy MLP
	ResNet
	Diffusion Models
	MLP in GPT2
	Linear Mode Connectivity

	Conclusion
	Appendices
	Hyperbolic Geometry
	Relation with Noether's Theorem
	Relation with Linear Mode Connectivity
	More Experiments
	Toy VAE
	Toy MLP
	Diffusion Models
	MLP in GPT2
	Linear Mode Connectivity

	Proofs
	Algorithms
	Unification of Neural Networks

