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Abstract

We revisit the problem of online learning with in-
dividual fairness, where an online learner strives
to maximize predictive accuracy while ensuring
that similar individuals are treated similarly. We
first extend the frameworks of Gillen et al. (2018);
Bechavod et al. (2020), which rely on feedback
from human auditors regarding fairness violations,
to allow for auditing schemes that can aggregate
feedback from any number of auditors, using a
rich class we term monotone aggregation func-
tions, for which we also prove a useful charac-
terization. Using our generalized framework, we
present an oracle-efficient algorithm guaranteeing
a bound of O(T'%) simultaneously for regret and
number of fairness violations. We then study an
online classification setting where label feedback
is available for positively-predicted individuals
only, and present an algorithm guaranteeing a
bound of O(T'6) simultaneously for regret and
number of fairness violations. In both settings,
our algorithms improve on the best known bounds
for oracle-efficient algorithms. Furthermore, our
algorithms offer significant improvements in com-
putational efficiency, greatly reducing the number
of required calls to an (offline) optimization or-
acle, as opposed to previous algorithms which
required 7" such calls every round.

1. Introduction

As algorithms are increasingly ubiquitous in variety of do-
mains where decisions are highly consequential to human
lives — including lending, hiring, education, and healthcare
— there is by now a vast body of research aimed at formaliz-
ing, exploring, and analyzing different notions of fairness,
and suggesting new algorithms capable of obtaining them
in conjunction with high predictive accuracy. The major-
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ity of this body of work takes a statistical group fairness
approach, where a collection of groups in the population is
defined (often according to “protected attributes”), and the
aim is to then approximately equalize a chosen statistic of
the predictor (such as overall error rate, false positive rate,
etc.) across them. From the perspective of the individual,
however, group fairness notions fail to deliver meaningful
guarantees, as they are aggregate in nature, only binding
over averages over many people. This was also pointed out
by Dwork et al. (2012) original “catalog of evils”.

Furthermore, the majority of the work in algorithmic fair-
ness follows statistical data generation assumptions, where
data points are assumed to arrive in i.i.d. fashion from a
distribution, in either a batch setting, an online setting, or
a bandit setting. Many domains where fairness is a con-
cern, however, may not (and often do not) follow such as-
sumptions, due to, for instance: (1) strategic effects (e.g.
individuals attempting to modify their features to “better
fit” a specific policy in hopes of receiving more favorable
outcomes, or individuals who decide whether to even apply
based on the policy which was deployed) (see, e.g., Dranove
et al. (2003); Dee et al. (2019); Gonzalez-Lira & Mobarak
(2019); Greenstone et al. (2020)), (2) distribution shifts over
time (e.g. the ability to repay a loan may be affected by
changes to the economy or recent events), (3) adaptivity to
previous decisions (e.g. if an individual receives a loan, that
may affect the ability to repay future loans by this individual
or her vicinity), (4) one-sided label feedback (a college can
only track the academic performance of students who have
been admitted in the first place).

The seminal work of Dwork et al. (2012) advocates for a
different view, approaching fairness from the perspective of
the individual. In the core of their formulation is the asser-
tion that “similar individuals should be treated similarly”.
Formally, they require that a (randomized) predictor obey
a Lipschitz condition, where similar predictions are made
on individuals deemed similar, according to a task specific
metric. As Dwork et al. (2012) acknowledge, however, the
availability of such metrics is one of the most challenging
aspects in their framework. In many domains, it seems, it is
not clear how such metrics can be elicited or learned.

A recent line of work, starting with Gillen et al. (2018), sug-
gests an elegant framework aiming at the above two issues
precisely, as they study an adversarial online learning prob-
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lem, where the learner receives additional feedback from
an auditor. Specifically, the auditor is tasked with identify-
ing fairness violations (pairs of individuals who she deems
similar, and were given very different assessments) made by
the learner, and reporting them in real time. In their frame-
work, they assume the metric according to which the auditor
reports her perceived violations is unknown to the learner.
They assert that while in many cases, enunciating the exact
metric might be a difficult task for the auditor, she is likely to
“know unfairness when she sees it”. More generally, Gillen
et al. (2018) operate in a linear contextual bandit setting,
and the goal in their setting is to achieve low regret while
also minimizing the number of fairness violations made by
the learner. Importantly, they assume that the metric takes a
specific parametric form (Mahalanobis distance), and that
the auditor must identify all existing violations.

Their framework has since been extended by Bechavod
et al. (2020), who studied the problem absent a linear pay-
off structure, dispensed with the need to make parametric
assumptions on the metric (in fact, their formulation even
allows for a similarity function which does not take metric
form), allowed for different auditors at different timesteps,
and only required any auditor to report a single violation, in
case one or more exist. Finally, Bechavod & Roth (2023) ex-
tended the framework by exploring majority-based auditing
schemes, capable of incorporating feedback from multiple
auditors, with potentially conflicting opinions, and studying
the problem under partial information.

In this work, we make progress on both the conceptual and
technical fronts of learning with individual fairness. We
first introduce a novel framework for auditing for unfairness,
which generalizes upon the ones in previous works (Gillen
et al. (2018); Bechavod et al. (2020); Bechavod & Roth
(2023)), and is based on detecting violations by applying a
rich class of aggregation functions on feedback from multi-
ple auditors. In particular, our framework will allow for a
different number and identity of auditors at each timestep,
and different aggregation functions. Using our framework,
we present new oracle-efficient algorithms for both the full
information and partial information settings of online learn-
ing with individual fairness. Our algorithms are based on
carefully combining the objectives of accuracy and fairness
in a Lagrangian formulation, which allows us to improve
over the best known bounds in both settings (Bechavod et al.,
2020; Bechavod & Roth, 2023). Importantly, our algorithms
greatly reduce the computational complexity of previous ap-
proaches, as we present a new approach and analysis based
on distinguishing between the tasks of constraint elicitation
and objective minimization.

1.1. Overview of Results

We provide an overview of our results and a roadmap for
the paper. We identify a natural class of auditing schemes
we term monotone auditing schemes, which is capable of
leveraging feedback from any number of auditors regarding
fairness violations, and aggregate it using a broad class of
aggregation functions. We formalize and prove a useful
characterization for such auditing schemes (Section 2).

We define an online learning framework with individual
fairness feedback from monotone auditing schemes, gen-
eralizing the ones in Gillen et al. (2018); Bechavod et al.
(2020); Bechavod & Roth (2023) (Section 3). We then de-
fine a regularized Lagrangian loss function, which is able,
on every timestep, to carefully combine the objectives of
accuracy and fairness (Section 3.3).

Using our Lagrangian formulation, we present an oracle-
efficient algorithm, based on a reduction to Context-FTPL
(Syrgkanis et al., 2016), guaranteeing a bound of at most
O(T%) for each of regret and number of fairness viola-
tions. Importantly, our construction will only require mak-
ing @(672) calls to an optimization oracle on every round.
Thus improving on the best known bounds and oracle com-
plexity by Bechavod et al. (2020). (Section 4).

We then consider a more challenging setting where label
feedback is available for positively-predicted individuals
only. We present an oracle-efficient algorithm, leverag-
ing our Lagrangian formulation along with a reduction to
Context-Semi-Bandit-FTPL (Syrgkanis et al., 2016), guar-
anteeing a bound of O(T%) for each of regret and number
of fairness violations, while only requiring @(6_2 + k:QTé)
calls to an optimization oracle on every round. Thus im-
proving on the best known bounds and oracle complexity
by Bechavod & Roth (2023). (Section 35).

We conclude with a discussion and directions for future
research (Section 6).

1.2. Related Work

Our work is primarily related to two strands of research:
individual fairness, and online learning with long-term con-
straints. The seminal work of Dwork et al. (2012) intro-
duced the notion of individual fairness. They leave open the
question of the similarity metric. Rothblum & Yona (2018)
study an offline setting where the metric is assumed to be
known, and suggest algorithms for learning predictors that
give PAC-style accuracy and individual fairness guarantees.
Kim et al. (2018) study a group-relaxation of individual
fairness in a batch setting with access to a (noisy) oracle
specifying distances between groups. Ilvento (2020) sug-
gests learning the metric using a combination of comparison
and distance queries to auditors. Our framework will not re-
quire querying numerical distance queries. Jung et al. (2021)
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study a batch setting, eliciting similarity constraints from
a set of “stakeholders”, and prove generalization bounds
for both accuracy and fairness. Finally, as elaborated on in
the introduction, our work is closely related to Gillen et al.
(2018); Bechavod et al. (2020); Bechavod & Roth (2023).

For the problem of online convex optimization with a static,
known ahead of time, set of constraints, Zinkevich (2003)
first proposed (projection-based) online gradient descent. In
addition to requiring perfect knowledge of the constraints
(rather than only reported violations), online gradient de-
scent entails a projection step on each round, which may
be computationally demanding if the set of constraints is
complex. The problem of online learning with long-term
constraints, hence, offers a relaxation with respect to con-
straint violation — the learner’s goal is to minimize its
regret, while being allowed to violate the constraints at a
vanishing rate. Works in this field consider three main sce-
narios: constraints that are static and are known ahead of
time (Mahdavi et al., 2012; Jenatton et al., 2016; Yuan &
Lamperski, 2018; Yu & Neely, 2020), arrive stochastically
in real time (Yu et al., 2017; Wei et al., 2020), or arrive
adversarially (Mannor et al., 2009; Sun et al., 2017; Chen
et al., 2017; Liakopoulos et al., 2019; Chen & Giannakis,
2019; Cao & Liu, 2019; Yi et al., 2020).

In our setting, however, the learner will not know the set of
constraints at any round (as they will be held implicitly by
the auditors), but rather has weaker access, only through
reported fairness violations. Additionally, the literature on
online learning with long-term constraints primarily pertains
to online convex optimization. When instantiated over the
simplex over a set of experts (as will be our case, with a hy-
pothesis class H), the proposed algorithms in this literature
generally require maintaining and updating on each round
the set of weights on ‘H explicitly, which can be computa-
tionally prohibitive for large hypothesis classes. We hence
strive to develop oracle-efficient algorithms, which, given
access to an (offline) optimization oracle, will dispense us of
the need to explicitly maintain these weights. We refer the
reader to Appendix A for an extended related work section.

2. Individual Fairness and Monotone Auditing
Schemes

We begin by defining notation we will use throughout this
work. We denote a feature space by X, and a label space
by ), where we will focus on the case where X = R?,
and Y = {0,1}. We denote by H : X — ) a hypoth-
esis class of binary predictors, and assume that H con-
tains a constant classifier. For the purpose of achieving
more favorable trade-offs between accuracy and fairness,
we will allow a learner to deploy randomized predictors
from AH : X — [0, 1]. In the settings we will focus on, X
will generally consist of features pertaining to human indi-

viduals (e.g. income, repayment history, debt), and Y will
encode a target variable a learner wishes to predict correctly
(e.g. defaulting on payments). From here on, we will denote
k-tuples (corresponding to k individuals) of features and
labels by 7 = (z*,...,2%) € X%, 5= (g,...,9%) € Y.

Next, we define a fairness violation, following the notion of
individual fairness by Dwork et al. (2012).

Definition 2.1 (Fairness violation). Let o > 0 and let d :
X x X — [0,1].! We say that a policy 7 € AH has an a-
fairness violation (or simply “a-violation”) on (z,z') € X2
with respect to d if

m(x) —w(a') > d(z,2') + .
where 7(z) = Prpr[h(x) = 1].

Note that Definition 2.1 also encodes the direction of the
violation (which individual received the higher prediction),
as this will be important in our construction.’

We next define a fairness auditor, having access to a set
of individuals and their assigned predictions, tasked with
reporting its perceived violations.

Definition 2.2 (Auditor). We define a fairness auditor j :
AH x XF x RT — {0,1}F%F a5

)

{( - a)} 1 7@ —m(@) > d (7, 7") +a
Ty Ty = :
J Lr 0 otherwise

where d/ : X x X — [0,1] is auditor j’s (implicit)
distance function. if j(m,Z,a) = 0F*k, we define
j(m,Z,) := Null. Otherwise, we define j(7,z,a) :=

(z',z"), where (I,7) € [k]? are (arbitrarily) selected such
that [j(m, %, «)];,, = 1. We denote the space of all such
auditors by 7.

Remark 2.3. In its most general form, an auditor returns
a k-by-k matrix encoding its objections with respect to a
specific policy on a set of individuals. We will later discuss
notable cases where there is no requirement for the auditor
to actually enunciate the entire matrix, but rather only detect
the existence of a single violation, in case one or more exist.

!d represents a function specifying the auditor’s judgement of
the “similarity” between individuals in a specific context. We do
not require that d be a metric: only that it be non-negative and
symmetric.

Technically speaking, since the learner will know the predic-
tions 7 (z), w(z"), the auditor only has to report the (unordered)
pair {z, 2"} in case he perceives a violation has occurred on it —
the direction of the violation can then be inferred by the learner,
since she knows which of z, 2" was given a higher prediction un-
der 7. It will nevertheless be convenient in our construction to
explicitly incorporate the direction in the definition of a fairness
violation.
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2.1. Monotone individual fairness auditing schemes

So far, our formulation of individual fairness in auditing fol-
lows the one in Gillen et al. (2018); Bechavod et al. (2020).
In this work, we suggest a more general approach to auditing
for unfairness, that will allow us to aggregate over the pref-
erences of multiple auditors, with different (and even con-
flicting) opinions. For this purpose, we will consider aggre-
gation functions f : ({0, 1}%*¥)™ — {0,1}*** that map
the outputs of multiple auditors j = (5,...,5™) € J™
into a single output matrix. We denote the space of all such
functions by F. We proceed to define an auditing scheme,
which takes as input the judgements of a panel of auditors,
and decides on which pairs a fairness violation has occurred,
according to a predefined aggregation function.

Definition 2.4 (Auditing scheme). Let m € N\ {0}. We
define an auditing scheme S : AH x XEXRE X FxJ™ —
{0,1}F%k ag

S(m, z,a, f,7) = f(jl(ﬂ,f,a), cey JM (T, T @)

If S(m,z, o, f,j) = 0%k we define S(m, 7, a, f, ) :=
Null. Otherwise, we define S(7,Z,a, f,j) = (&, 7"),
where (I,7) € [k]? are (arbitrarily) selected such that
[S(m,Z,a, f,7)],,, = 1. We denote the space of all such
auditing schemes by S.

As we are particularly interested in individual fairness au-
diting schemes, we will henceforth restrict our attention to
a subclass of F, where the value of each entry in the ag-
gregate matrix is only affected by the corresponding entries
in all of the input matrices, and aggregation of individual
auditors outputs is done in a similar manner, regardless of
individuals’ position in Z.

Definition 2.5 (Independent aggregation functions). We
define the class F/"? C F of independent aggregation
functions as functions of the form

Y(l,r) € [k]*: [f(Al,...,Am)]l’r = f(All,,.,..., )

where A', ... A™ € {0,1}F>* f:{0,1}™ — {0,1}.

We will next consider the case where A',..., A™ are the
output matrices of auditors j', ..., ™, respectively.

Restricting our attention to F Ind however, still seems insuf-
ficient. In particular, it still permits selecting f € F/"? un-
der which having additional auditors object the predictions
made on a particular pair can actually result in changing an
aggregate decision of reporting a violation to one where no
violation is reported (for example, consider f that is defined
such that f = 1 if and only if exactly one of the m auditors
objects). To remedy this, we will focus on independent
aggregation functions that are monotone — which we next
formally define. We begin by defining an ordering over the

space of all possible objection profiles by a set of m auditors
on a fixed pair of individuals (2!, z").

Definition 2.6 (Aggregation order). Let v,v" € {0,1}™.
We say that v’ constitutes a stronger objection profile than
v, and denote v x v/, if Vi € [m], v; < .

Intuitively, v < v’ if and only if every auditor who objected
to the predictions of 7 on (z!, ") with sensitivity level
resulting in v, still objects the predictions of a policy 7’ on
(«!, 2") with sensitivity level o/ resulting in v’. This will
be the case in two important scenarios: when we fix 7 and
decrease the auditors’ sensitivity « for reporting violations,
or alternatively when we fix « and consider 7’ such that
7' (2! — 7'(z") > 7(a!) — 7(2").

Next, we define the classes of monotone aggregation func-
tions (and schemes) in line with the discussion above.

Definition 2.7 (Monotone aggregation functions). We de-
fine the class FM°" C FI™ of monotone aggregation
functions, as functions f € F Ind gych that

Yo, 0" € {0,1}" v g0 = f(v) < f(V).

Definition 2.8 (Monotone auditing scheme). We say an
auditing scheme S is monotone if it uses an aggregation
function f € FMon 3.4

2.2. Characterizing monotone individual fairness
auditing schemes

In what follows, we prove a characterization of monotone
auditing schemes, when auditors are queried for individual
fairness violations. As we will see, querying specifically for
such violations, in combination with an aggregation scheme
that is monotone, will imply that for every pair of individuals
(x!,2"), the aggregate decision will always be equivalent
to the decision of the same single auditor, regardless of
the deployed policy and selected sensitivity parameter.In
what follows, we will use 5%, 7% to denote “dummy’
auditors, with respective distance functions: Vz, 2’ € X2,
&’ (z,2') = 0, & (x,2) = 1. j° hence objects to
any non-identical predictions made on any two individuals,
while j7*! never objects to any predictions.

Lemma 2.9. Let S (fixing f € FM°") be a monotone
individual fairness auditing scheme, and fix a panel of au-
ditors j = (§',...,5™). Then, for any pair (z!,z") € X2,
there existi* = i(f, 7, (z!,z")) € {0} U [m + 1] such that

s

3 Apart from being a natural and desirable quality for auditing
schemes, we will later see how monotonicity will also be important
in the analysis of our algorithms (in particular, see Lemma 2.9 and
Lemma C.1).

“Monotone aggregation schemes have also been studied in
social choice theory (see, e.g. (Woodall, 1997; Ornstein & Norman,
2013)) in the context of voting rules.
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Vr € AH,a € RT,

S(m, (2, 2"), e, f,7) = §° (m, (2}, 27), ).

2.3. On the complexity of auditing

Remark 2.10. Monotone auditing schemes are far more ex-
pressive than simply considering majority-based schemes
(Bechavod & Roth, 2023). As a simple example, con-
sider an auditing scheme over five auditors (j1,...,5%),
where an objection on a pair is reported if either j' objects
or in case a majority of 4/5 objections is reached. It is
straightforward to see that this aggregation scheme is in
fact monotone, as adding objections to any objection profile
v=(vl,...,v%) € {0,1}® by the auditors with respect to
a pair (x', 2") can only result in an unchanged decision, or
in changing the decision to reporting a violation.

Remark 2.11. Note that for schemes where certain auditors
with a veto right — these members are never required to
fully enunciate their objection matrix, but rather just report a
single pair where they deem a violation to exist or that there
are no violations. In particular, employing a single auditor is
a special case of a member with veto right, making the task
of auditing much simpler. For general auditing schemes,
however, (non-veto having) panel members are required to
report an objection matrix, as otherwise, one might run into
a case of Condorcet’s paradox (Condorcet, 2014) — for
example, when each auditor reports a different pair out of
multiple objections, and while a pair on which an objection
profile resulting in a violation is formed, it is never detected.
Remark 2.12. Varying the size of the sensitivity parameter
a € [0,1] corresponds to more stringent constraints (for
smaller values of «), or less stringent ones (for larger values),
hence offering a natural “lever” for the learner to explore
different points on the resulting accuracy-fairness frontier.

3. Online Learning with Individual Fairness

Here, we formally define our problem setting. We begin
by defining the two types of losses we wish to minimize:
misclassification loss and unfairness loss.

Definition 3.1 (Misclassification loss). We define the mis-
classification loss as, for all 1 € AH, z € X*, 5 € {0, 1}*:
Error(7, Z,9) == E [(°7'(h,Z,7)].

h~m
Where for all h € H, O 1(hz7)

k - =i i ; - =i i
>in 07 (h, (3, 97)), and Vi € [K] « 971 (h, (2, 91)) =
L[a(z") # ']

In particular, the misclassification loss is linear in 7. We
>For simplicity, we define our misclassification loss as the

expectation (over h ~ m) of the 0-1 loss. However, one can
consider different base loss functions as well.

define the unfairness loss, to reflect the existence of one or
more fairness violations according to an auditing scheme.

Definition 3.2 (Unfairness loss). We define the unfairness
loss as, forallm € AH,z € X+, S €S, a e RT,

' B 1 §W7£f7a = "El"’fT
Unfalr(W,LS,O‘) = {O ggﬂ- T a; = I(\Illll )

There is, however, an issue with working directly with the
unfairness loss: as we will see in Section 4, we will only
have access to realizations h ~ m, rather than the actual
probabilities. Taking the expectation in this case will not
be helpful either, as it is easy to construct cases where
Unfair(m, Z, S, ) = 0, yet Epr[Unfair(m,Z,S,a)] = 1
(we refer the reader to Lemma 4.11 in (Bechavod & Roth,
2023)). We will hence rely on resampling i ~ 7 multiple
times to form 7, an empirical approximation of 7, and use
it to elicit fairness violations from the auditing scheme. We
hence next introduce an unfairness proxy loss:

Definition 3.3 (Unfairness proxy loss). We define the un-
fairness proxy loss as, forall 7,7 € AH,z € X%, S € S,
a € RT, B eR,

Unfair(m, 7, %, S, a, 8) =

r@) - r @) -
[7(2) —7(2")] + 8 %(7?,9?, a) = (2, z")
0 S(7,Z, ) = Null

Importantly, the role of 7, 7 will be very different; As we
will see in Section 4, we will only have sampling access to
«. Hence, we will have 7 be an empirical approximation of
m, and use it to elicit fairness violations from the auditing
scheme. Note, additionally, that when fixing 7, the unfair-
ness proxy loss is linear with respect to 7. Finally, the 3
parameter will be used to offset the result to a desired range.

In the following lemma, we argue that if 7 is in fact a
good enough approximation of 7, the unfairness proxy loss
provides a meaningful upper bound to the unfairness loss.

Lemma34. Letm,7 € AH, 2 € XF, S €S, ac(0,1],
¢ € (0,0 IfVi € [k] : |n(z)) —7(7)| < 9, then
Unfair(m,z,S, o) < %Unfair(ﬂ,fr,f,S, a—¢€€).

3.1. Online learning setting

Our setting is formally described in Algorithm 1, where we
denote a Learner by L, and an Adversary by A.°

®In the setting described in Algorithm 1, we assume that the
number of incoming individuals on every round is constant — k.
It is however possible to consider a more general scenario, where
this number changes between rounds. In this more general case,
our bounds will simply scale with maz e[kt instead of k.
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Algorithm 1 Online Learning with Individual Fairness
Input: Number of rounds 7', hypothesis class H, viola-
tion size « € (0, 1]
fort=1,...,Tdo

L deploys 7t € AH;
A selects (zt, 7') € XF x Yk,
A selects auditing scheme S? (fixing j*, f?);

L suffers misclassification loss Error(r?, z¢, *);

L suffers unfairness loss Unfair(7?, 7, S, a);

L observes (!, 7'), p' = S*(x, z", a0, f1, j1);
end for

To build intuition, consider the following motivating ex-
ample of loan approvals: a government-based financial in-
stitution wishes to predict incoming loan applications in a
manner that is simultaneously accurate (highly predictive
of future repayment), and fair (similar applicants receive
similar assessments). To obtain fairness feedback, the insti-
tution periodically hires panels of auditors (financial experts,
ethicists, etc.) who report assessments they deem unfair.

In the notation of Algorithm 1, 7* is a lending policy de-
ployed at time ¢. For each applicant ¢ of the k arriving loan
applicants at round ¢, % € X’ are relevant features (income,
repayment history, debt, etc.), and §** € {0, 1} indicates
if the applicant will repay the loan if approved. The audit-
ing scheme S* aggregates the reports of a panel of auditors
gt = (5%, ..., ™) with respect to the predictions made
by 7t on applicants 7¢ = (z%!,..., "*) according to ag-
gregation function f*, and reports back in case a violation
was found. Finally, the deployed lending policy is measured
by whether it predicted repayment accurately, and whether it

treated similar applicants (in the eyes of the panel) similarly.
In what follows, we adopt the following notation, V¢ € [T]:
Error’ (7) := Error(m, Z*, '),
Unfair? (7) := Unfair(r, ', S*, a),

Unfair;tv%g(w) := Unfair(m, 7, 2", S*, o, B).

3.2. Learning objectives

Next, we formally define our learning objectives. Ideally, a
learner could wish to refrain completely from having any
fairness violations, by restricting, on every round, the set
of active policies to only ones that obey the active fairness
constraints. There are k? such constraints every round —
corresponding to all pairs of individuals in z'. However,
these constraints are implicit — they are decided by the
(internal) preferences of the auditors in 5%, along with the
aggregation function f*. Making these constraints explicit
would require strictly stronger access to the auditors than

assumed in our framework, querying for exact distances
between all pairs in Z¢. In our framework, however, auditors
are only required to report fairness violations, and are not
even required to specify the size of those violations.’

We will hence adopt a slightly more relaxed objective, where
we allow the learner to violate the constraints, but only for
a sub-linear number of times. This is the approach also
taken, in the context of learning with individual fairness, by
Gillen et al. (2018); Bechavod et al. (2020); Bechavod &
Roth (2023), and more generally in the literature on online
learning with long-term constraints (e.g. Mahdavi et al.
(2012); Jenatton et al. (2016); Sun et al. (2017); Castiglioni
et al. (2022)). We next define the class of policies we wish
to compete with — policies that refrain from violations of
slightly smaller sensitivity of o — ¢, for € € (0, ).}

Definition 3.5. [Fair-In-Hindsight Policies] Denote the re-
alized sequence of individuals, labels, auditors, and aggre-
gation functions by the adversary until round ¢ € [T'] by

vt = ((flaglajlvfl)v'"7(itagtajt7ft)) :

We define the comparator class of (o — €)-fair policies as” !

AHLT (W) = {7 € AH 2Vt € [T], Unfair,_ () = 0}.
Finally, let 7 € argmin,__ x4 fair i) Zthl Error’ (7).

Finally, we formally define our learning objective. First, we
formally define the regret of an online algorithm.

Definition 3.6 (Regret). In the setting of Algorithm 1, we
define the (external) regret of an online algorithm A against
a comparator class U C AH as:

T
Regret (U) := Z Error(n', 2, ')
t=1

T

. —t ~—t
— min Error(m, x .
el =1 ( ’ Y )

For a randomized algorithm, we will consider the expected
regret.

7 Additionally, as also stated in Remark 2.11, in many notable
cases, auditors will not even be required the enunciate all of their
objections, but rather a single one.

8We adopt a slightly relaxed baseline in terms of violation sen-
sitivity, as the adversary can always report violations of magnitude
arbitrarily close to a.

“Interestingly, since in our setting the learner does not receive
full information regarding the constraints, but rather very limited,
“bandit”-like information on violations made by policies that were
actually deployed, it is possible that the learner will not know
(even in hindsight) which policies are included in the set of fair-in-
hindsight policies. Nevertheless, as we will see, it will be possible
to provide strong guarantees when competing against it.

10As we rely on the sensitivity of human auditors in reporting
violations, it is reasonable to think about «;, € as small constants.



Monotone Individual Fairness

Equipped with Definition 3.6, we define our learning objec-
tive:

Learning objective: In the setting of Algorithm 1, obtain:

1. Simultaneous no-regret:
(a) Accuracy: Regret, (AH "7 (W) = o(T).
(b) Fairness: 3., _, Unfair!,__(n") = o(T).

a—e

2. Oracle-efficiency: Polynomial runtime, given access
to an (offline) optimization oracle.!!

3.3. Achieving simultaneous no-regret guarantees

Obtaining each of the accuracy, fairness objectives in isola-
tion is a relatively easy task — for accuracy, one can run an
oracle-efficient no regret algorithm such as Context-FTPL
(Syrgkanis et al., 2016) only using the misclassification
loss. For fairness, one can simply predict using any con-
stant predictor, which would ensure fairness violations never
occur, regardless of the auditing scheme. However, when
attempting to obtain both objectives simultaneously, the task
becomes much more complicated. In particular, one cannot
simply combine, in online fashion, the per-round outputs
of said algorithms when run in isolation. The reason is that
the feedback of the auditing process only pertains to the
policies that have actually been deployed.'?

Another (naive) approach is to define a joint loss function of
misclassification and (linearized, proxy) unfairness L! () =
Error’ (1) + UnfairProx’ (), and run a no-regret algorithm
with respect to the sequence of losses L', ..., LT, in hopes
of bounding each of the objectives individually. Unfortu-
nately, this may fail. The reason is that regret may actually
be negative'>: 3°|_ Error'(n?) — 21 Error!(r*) < 0.
Hence, even if ., L'(x') — 2, L'(7*) = o(T), the

"The concept of oracle-efficiency aims to show that the online
problem is not computationally harder than an offline version of
the problem. Hence, when the learner has access to an optimization
oracle for the offline problem (in our case, a batch ERM oracle for
‘H), we will be interested in algorithms that run in polynomial time,
where each call to this oracle is counted as O(1). Algorithms such
as Multiplicative Weights (Littlestone & Warmuth, 1994; Vovk,
1990; Cesa-Bianchi et al., 1997; Freund & Schapire, 1997), on
the other hand, have exponential runtime and space complexity
dependence on log |/, as they explicitly maintain and update on
every round a vector of probabilities over H.

2For example, suppose a policy 7* was reported by S* to in-
duce a violation on individuals (Z!, Z""), when predicting, say,
7t = 0.8, 7% (z"") = 0.4. The learner would not know if S*
would have still reported a violation on (Z*!, ") had he deployed
a different policy, 7, for which 0 < #f(z%") — #*(z"") < 0.4.

3This is the case, since the algorithm has the liberty of deploy-
ing a different policy 7' € H on every round, while competing
with a fixed policy 7* € AH.

algorithm may have still violated fairness on every round.'*

Bechavod et al. (2020) suggested a reductions approach to
the problem, dynamically encoding fairness violations as
“fake” datapoints in the incoming stream, ultimately reduc-
ing the problem to a standard (unconstrained) classification
problem. They then suggested “inflating” the number of
these fake datapoints, so as to, on one hand, penalize unfair-
ness more severely, and on the other hand, not to increase
the artificial dimension of the problem too sharply (since the
resulting bounds deteriorate as k grows artificially larger).
They then give an oracle-efficient algorithm that guarantee-
ing a bound of O(T%) for each of regret and number of
fairness violations. In order to circumvent the fact that in
their algorithm, the learner only has sampling access to the
deployed policy 7, they suggest approximating this pol-
icy using 7' calls to an offline optimization oracle on every
round. We next show how both the convergence rates and
and oracle complexity can be improved.

3.4. Faster rates with direct Lagrangian loss

In order to obtain faster rates, we will work directly with the
following Lagrangian formulation, combining the misclassi-
fication loss and our introduced unfairness proxy loss.

Definition 3.7 (Lagrangian loss). Let « € (0,1], 8 € R,
and fix any 7 € AH. We define the («a, §, 7)-Lagrangian
loss at round ¢ € [T] as, forall 1 € AH, X € RT,

1
Li(m, N) = % Error’ (7) + A - Unfair;’aﬁ(w).

By doing so, we take the perspective of a saddle-point prob-
lem for our learning objective (see, e.g. Agarwal et al.
(2018); Freund & Schapire (1997)) — where the primal
player (who sets ) attempts to minimize loss, and the dual
player (who sets \) attempts to maximize constraint viola-
tions. Importantly, the Lagrangian loss is linear in m € AH.
This will be critical in competing against the best fair policy
in AH, rather than against the more restricted class 4. In
line with the approach of Bechavod et al. (2020), we will
have to carefully select the value of ), as setting A too low
would risk potentially ignoring the fairness constraints (as
illustrated in the example in the second paragraph of Section
3.3), while setting A too high would lead to worse bounds.

4. Algorithm

Equipped with the Lagrangian loss function, we remem-
ber that another central part of our learning objective is to

"“In general, having negative regret is highly desirable — it
means that the algorithm performed even better than the baseline.
However, in our particular case, it may actually do us a disservice
— it can be used to “compensate” for fairness violations, potentially
resulting in ignoring the fairness objective altogether.
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provide an algorithm that is oracle-efficient. Our approach
will be to carefully reduce our multi-objective problem to
a single objective problem, using our Lagrangian formula-
tion (Definition 3.7)). To update 7%, we will then want use
Context-FTPL (Syrgkanis et al., 2016) on our generated a
sequence of Lagrangian loss functions L, ..., LT.

One particular difficulty is due to the fact that Contex-FTPL
does not maintain 7¢ explicitly, but rather relies on access
to an (offline) optimization oracle to sample, on each round,
a single classifier ht ~ 7t from its implicit policy 7t.!> In
our setting, however, access to the exact 7! is critical, as
it is used to query the auditors for fairness violations, and
forming the sequence of losses L', ..., L. To circumvent
this, our approach will be to distinguish between two tasks:
eliciting the fairness constraints, and evaluating the error
and unfairness losses. Ideally, one would like to perform
both tasks using the same policy — the deployed policy .
Since, however, in our algorithm the learner will only have
access to classifiers sampled from 7%, we will perform each
task using a different policy. Namely, we will first form an
accurate enough approximation 7* of 7%, and use it to elicit
the objections of the auditors. We will then use this feedback
to form our Lagrangian loss L* (as in Definition 3.7). We
will then feed the Lagrangian loss to Context-FTPL, and
prove accuracy, fairness guarantees for the true (implicit)
policy 7 deployed by Context-FTPL.

Importantly, one must be careful when eliciting the con-
straints using the approximate policy 7', as it could generate
violations that would not exist if the auditing scheme was
queried using 7¢, or overlook other violations that should be
generated. To address this, we suggest querying the auditors
using 7 for slightly more sensitive fairness violations, of
size a — 5. We then argue that since it is sufficient for
the learner to generate an approximation of 7’ that is only
accurate on Z! (rather than on the entire space X), using
(7)(6%) calls to Context-FTPL’s optimization oracle would
suffice to generate this approximation. This approach will
allow us to upper bound a counterfactual quantity — the
number of fairness violations that would have been reported
had we used the implicit policy 7 to query the auditors.
In order to run Context-FTPL (Syrgkanis et al., 2016), we
assume access to a small separating set for H, and access
to an (offline) optimization oracle. The optimization oracle
assumption is equivalent to access to a batch ERM oracle
for H. We next describe the small separating set assumption.

5Follow-The-Perturbed-Leader (FTPL)-style algorithms rely
on access to an offline optimization (in our case, a batch ERM)
oracle, which is invoked every round on the set of samples observed
until that point, augmented by a collection of generated “fake”
noisy samples. The noise distribution in this process implicitly
defines, in turn, a distribution over the experts returned by the
oracle. Hence calling the optimization oracle can equivalently be
viewed as sampling an expert from this distribution.

Our construction is then formally described in Algorithm 2.

Definition 4.1 (Separating set). We say () C X is a separat-
ing set for a class H : X — {0, 1}, if for any two distinct
hypotheses h, h' € H, there exists x € @ s.t. h(z) # h'(x).

Remark 4.2. Classes for which small separating sets are
known include conjunctions, disjunctions, parities, decision
lists, discretized linear classifiers. Please see more elaborate
discussions in Syrgkanis et al. (2016) and Neel et al. (2019).

Algorithm 2 Reduction to Context-FTPL for Online Learn-
ing with Individual Fairness
Input: Number of rounds 7', hypothesis class H, viola-
tion size a € (0, 1], sensitivity € € (0, «], separating set
Q@ C X, parameters R, w
L initializes Context-FTPL using Q, w, history ¢! = ;
fort=1,...,7T do
L deploys 7t € AH (implicitly by Context-FTPL(£?));
A selects (z¢,7') € XF x Yk,
A selects panel j € J™¢, aggr. function f! € F;
forr=1,...,Rdo
L draws h** using Context-FTPL(¢?);

end for

L sets 7t = U(h',... htr);
L queries p! = St(7, zt, o — SRV L

L updates £ = {(LZ. . (- A7), 27,97)} oy

end for

£ £
272

Finally, we proceed to our main theorem. For the following
statements, one can fix any a € (0,1], ¢ € (0,a]. We
assume the algorithms are given access to a separating set
Q C X for H, of size s.

Theorem 4.3. Algorithm 2 obtains, for any (possibly adver-
sarial) sequence of individuals (z*)L_,, labels (g*)L_;, au-
ditors (74)L_,, and monotone aggregation functions (f*)L_,,
with probability 1 — 6, simultaneously:

(1) Accuracy :
Regretp(AMHI"T (W) < O (s%k%T% log? |'H|) .

(2) Fairness :
T 1w s )
Z Unfair’ (7%) < O (sikiT?1 log2 |7-[|> .
€
t=1

While only requiring O (6’2) calls to a batch ERM opti-
mization oracle every round.

Corollary 4.4. In particular, our bounds uniformly improve
on the formerly known upper bound of O(T%) in Bechavod
et al. (2020), while also reducing the per-round oracle com-
plexity from T to @) (6_2).
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Remark 4.5. Having all functions (f!)7_; be monotone
will be critical in our analysis. In particular, Lemma C.1
in Appendix C is closely dependent on it, showing that

AHIUT(W) C {2 V¢ € [T], Unfairg: oo o (1) < 0}.

5. Partial Information

In this section, we focus on the setting where the learner
only observes one-sided label feedback, for individuals who
have received a positive prediction. Note that such feedback
structure is extremely prevalent in domains where fairness is
a concern — a lender only observes repayment by applicants
that have actually been approved for a loan to begin with,
a university can only track the academic performance for
candidates who have been admitted, etc. The key challenge
in this setting is that the learner may not even observe its
own loss. Note that this is different from a bandit setting,
since feedback is available for the entire class 7 when a
positive prediction is made, while no feedback (even for
the deployed policy) is available for a negative prediction.
In Appendix D, we formally define the setting (Algorithm
4), and present an oracle-efficient algorithm based on a
reduction to Context-Semi-Bandit-FTPL (Syrgkanis et al.,
2016) (Algorithm 4). We next present its guarantees.

Theorem 5.1. Algorithm 4 obtains, in the one-sided label
feedback setting, for any (possibly adversarial) sequence of
individuals (z*)L_,, labels (3*)L_,, auditors (j*)L_,, and
monotone aggregation functions (f*)L_,, with probability
1 — 6, simultaneously:

(1) Accuracy :
Regret (A7 (1)) < © (s%kTT% log? |H|> .
(2) Fairness :

T
1

E Unfair',(7') < O <sik:sz2 log% |7-l|) .
€

t=1

While only requiring @(6_2 + k2T%) calls to a batch ERM
optimization oracle every round.

Corollary 5.2. In particular, our bounds uniformly improve
on the formerly known upper bound of O(T%) in Bechavod
& Roth (2023), while also reducing the per-round oracle
complexity from T to O(e~2 + k2T'5).

6. Conclusion and Future Directions

One limitation of our approach is that it is guaranteed to run
efficiently only on classes for which one can pre-compute a
small separating set. However, this limitation is not unique
to our setting, and is prevalent more generally in the context
of adversarial online learning. Another limitation is that
we can only compete with a slightly relaxed baseline (in
terms of violation size). It would be is interesting to think

about ways to extend our approach to obtain regret to the
class where no such relaxation is required (and one can even
potentially select @ = 0). Finally, proving non-trivial lower
bounds in our setting is also a very interesting problem. To
gain some intuition — a “trivial” policy (constant predictor)
can (naively) never violate fairness, but induces linear regret.
A non-constant policy, however, must risk violating fairness,
as both the fairness metric and labels aren’t initially known.
One might then be inclined to ask, for algorithms that ob-
tain a non-trivial regret bound o(T'), what level of fairness
constraint violation is unavoidable?
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Impact Statement

The central objectives of this work are to propose and ex-
plore a new framework and algorithms that: (1) offer mean-
ingful fairness guarantees to individuals, and (2) are tailored
for the specific structure and characteristics that are often
prevalent in problem domains where fairness is a concern.
The first part is done by adopting and extending the notion
of individual fairness by Dwork et al. (2012). We elaborate
on the second part next:

Fairness as a dynamically-evolving concept Naturally,
fairness is a dynamic concept. Society’s perceptions re-
garding “what is fair?” are constantly evolving, with the
introduction of new norms, developments, and technolog-
ical advancements. In our framework, we model fairness
as such — a dynamically changing concept — as we allow
auditors (and aggregation functions) to change over time,
potentially reflecting different and evolving perceptions.

Accounting for limitations in auditing As feedback from
human auditors can be noisy or imperfect, we also consider
and model the case where auditors report their preferences
in a manner that does not obey metric form, as it is impor-
tant to minimize such made assumptions. Additionally, our
framework aims to make the task of auditing easier for hu-
mans in the loop, as it does not require auditors to enunciate
a fairness metric, or even report exact distances between
individuals. Finally, by potentially incorporating multiple
auditors in each auditing scheme, we refrain from placing
too much power in the hands of single auditors. In particular,
our framework is fully capable of handling diverse panels of
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potentially disagreeing auditors with conflicting opinions.

Moving beyond statistical data generation assumptions
When considering domains where decisions are made with
respect to human individuals, one must take into account
the specific interplay between algorithms and individuals in
different contexts. One aspect we highlight in that regard,
is the documented tendency of individuals to act adaptively
and strategically in order to obtain more favorable outcomes,
e.g. by modifying their features or deciding whether to post-
pone their application based on their perceived chances of
being accepted. Such effects go beyond classical statistical
assumptions, and in our framework we make an effort to
account for them.

Avoiding feedback loops and visibility biases Many
problem domains among the ones motivating our framework
manifest a one-sided feedback structure, where data is avail-
able only for accepted (or admitted, hired, etc.) individuals.
Such structure demands that we, as algorithm designers,
specifically account for it, to avoid visibility biases and per-
nicious feedback loops. Note that such biases can also find
their way to the manner in which data is collected — for ex-
ample, when we study a batch setting and rely on previously
collected datasets, in many cases such datasets reflect a fil-
tered view of reality, as they contain individuals classified
positively by the previously deployed policies (e.g. a dataset
of past loan applicants), which may be inaccurate or even
discriminatory. In line with this discussion, our framework
focuses on online settings while refraining from making
statistical data generation assumptions, while specifically
accounting for partial information.
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A. Extended Related Work

In the context of individual fairness, Joseph et al. (2016; 2018), Gupta & Kamble (2019) study a time-dependent variant
of individual fairness they term fairness in hindsight. Lahoti et al. (2019) study methods of generating individually fair
representations. Yurochkin et al. (2020) suggest learning predictors that are invariant to certain perturbations of sensitive
attributes. Mukherjee et al. (2020) suggest ways to learn fairness metrics from data. Yurochkin & Sun (2021) Vargo et al.
(2021); Zhang et al. (2023)

B. Proofs from Section 2

Proof of Lemma 2.9. Fix f € FM°" apanel j = (5',...,7™) € J™, and a pair (!, 2") € X%, Consider an ordering of
the panel by defining a set of indices {71, . .., %, } = [m] such that

d“(ml,xr) << dim(xl,xr).

Denote the set of objection profiles with respect to predictions made on (z!, ") which result in an aggregated decision of a
violation (coordinates are according to the auditor’s ordering defined above) by

Z =706 = (e {01} f(z) = 1}

Remark B.1. Note that as the ordering of auditors (and hence coordinates) depends on the selection of (z!, 2"), even a fixed
aggregation function f and a fixed panel j would generate different sets Z = 732" for different selections of (2!, 27).

Next, consider the following index * € {0} U [m + 1]

m+1 Z=10
i*(f,4, (=", 2") =0 0,...,00 € Z

min max ¢ otherwise

2€Z q:zta=1

Since f is monotone, and given the ordering of auditors we defined, we know that the following is the set of all possible
objection profiles by 5%, ..., on (2!, ") which result in an aggregate decision of reporting a violation:

c times
Z:{(m,O,...,O):i* <e¢<m}.
We hence know, V7 € AH,a € RT:
S(r, («',2"), 0, £,§) = §" (m, (2!, 27), ).
As desired.

C. Proofs from Section 4

We begin by stating and proving two lemmas, which, along with Lemma 3.4, will be useful for proving Theorem 4.3.

Lemma C.1. For a € (0,1], € € (0,0, and € = §, it holds that AHIUT (W) C {2Vt € [T, Unfair;t@_g,,e, (m) <0}
Proof. Fix any t € [T], and let 7 € A?—[fy'ii:(\l/t)._lf St(7t, 7t a — ¢') = (zh!,z87), since S* is a monotone auditing
scheme, using Lemma 2.9, there exists i* = i*(f*, j¢, (z,2%")) € {0} U [m + 1] such that

vr' e AH, o' € (0,1] : S, (2, z87), o) = TV (o, (M, 28T, o).

Hence, using Definition 3.3,
Unfair;tya,e/’e/(w) = [w(:ft7l) — w(:f“)} — [frt(:f“) — ﬁt(f“)] + %

[dt,i* (jt,l’ jt”') +a— 6:| _ |:dt,i* (i‘t’l,i‘t’r) +oa— §:| + E
0

IN

2
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Where the inequality stems by combining Definition 3.5 and Lemma 2.9.

Otherwise, St (7, z!, a — ¢) = Null, and Unfalrﬂf a—er (M) = 0.

This concludes the proof. O
Lemma C.2. With probability 1 — § (over the draw of {h*"}i— {: =)

. log (2£1)
vt € [T),i € [k b — 7] < | —=22L.
[T, |7r ) — 7T )| < T
. . 64 log(m‘T'T) . . . . €
In particular, setting R = ————= results in the right hand side being .
Proof. Fixt € [T],4 € [k]. Using an additive Chernoff bound,
log (&) )
=t t=t o)
e sl [EEE) <
The statement then follows by taking a union bound over all t € [T],i € [k]. O

Proof of Lemma 3.4. Assume the condition in the statement of the lemma holds. Using the condition in conjunction with
the triangle inequality, we know that:

—

S(7,z,a —€) =Null = S(m,z, ) = Null.

In such case,
Unfair(r, z, S, o) = Unfair(r, 7, Z,S,a — €', ¢') = 0,
And hence 9
Unfair(, z, S, a) < = Unfair(w, 7, 2, S, a — €, €).
€

Otherwise, S(7, 7, a — € ) = (z¢,Z"), and we know

Unfair(7,Z,S,a) < 1
2
¢

IN

2
€

27. ~
= = Unfair(m, 7, %,S,a — €', €).
6/

Where the first inequality stems from Definition 3.2, and the second inequality follows from the condition in the statement
of this lemma, along with the triangle inequality. The claim follows. O

64 log( kT

Proof of Theorem 4.3. Set R = ) Jw=s"Tk 31T log”2 H, A\ = T, and denote ¢ =

5
Using Theorem 2 from Syrgkanis et al. (2016), along with the fact that the Lagrangian loss (Definition 3.7) is linear in the
first argument, we know that, for any m € AH,

T
10 11
ZLM oo (T AT = ZLM ere (T X) < dwks D B [IL] + 57 k% log 4], 1)

t=1

where || L[|, = maxpey | Lt (R, \Y)|.
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Equivalently, using Definition 3.7,
T
t=1

10
< 4wksZ]E PAHES ;s%k% log [H|.
t=1

w\»—

T T
1 -
- Error’ E 7 - Error! (1) + g AL Unfalr taer e (M) — E A ~Unfair;t7a_€,’€/(ﬂ')
=1 t=1 t=1

To upper bound the regret, we set 7 = 7*. Using Lemma C.1, we know, for all ¢ € [T, that Unfair;aa_e,,e,(ﬂ*) <0.
Using Lemma C.2 along with the triangle inequality, we know that with probability 1 — ¢, simultaneously for all ¢ € [T7,

Unfair;t’a,el,e/ (') > <. Hence, 3,_, \' -Unfair;,sy,l,e/’6 (m) = ST At Unfairs. e (m) >0, and we get

ZError ZError <4kaSZ]E [ILY17] + —Os%kglog\’ﬂ\. 2)

t=1

To upper bound the number of fairness violations, note that

T
1 1 T
E: 7 - Error’ (') — ;:1 z - Error* () > %
And hence,
S— G — a 10 T
M Unfairz: , . . (7%) — M. Unfairz. . (1) < 4wks Y R[] + —srke log |H| + —.
2 e (M) =3 ame () < ks 3B (1] + I+ -

We set 7 = 7*. Using Lemma C.1, we know, for all ¢ € [T, that Unfalrﬂt a—er () Z0.

Hence we can bound,

A T 10 T
A Unfairz. ., . (7t) < 4wk LY2] + —s2k2 1 . 3
DA Unfairge oo (') < dwks Y B [|ILY)2] + —s7k= log [H] + - 3)

t=1

Next, since w = s~ 1k~ 3T~ 1 1og7% H, \t = T, and noting that || L ||, < 4T'%, we can bound the regret using Equation
(2):

oo
—
Q
S}
Nl
N

ZError ZError )< O ( RIS

And the number of fairness violations, using Equation (3):

Bl
N
N
—
[}
o
Nl
~—

T
ZUnfair;t,a_6,7€, <O (s%k
We conclude, using Lemma 3.4,

T
Z Unfair, (7') <
t=1

Which concludes the proof. O

m‘w

T
1 3 3 __:
Z Unfairs: ,_o (7)) <O (SZkZTZ log? 7—[) )
a—e, p
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D. Partial Information

In this section, we focus on the setting where the learner only observes one-sided label feedback, for individuals who
have received a positive prediction.'® Note that many domains where fairness is a concern naturally exhibit such feedback
structure — a lender only observes repayment by applicants that have actually been approved for a loan to begin with, a
university can only track the academic performance for candidates who have been admitted, etc. (also see, e.g. Lakkaraju
et al. (2017); Lakkaraju & Rudin (2017); Zeng et al. (2017); De-Arteaga et al. (2018); Ensign et al. (2018a;b); Coston et al.
(2021)). The key challenge in this setting is that the learner may not even observe its own loss. Note that this is different
from a bandit setting, since feedback is available for the entire class { when a positive prediction is made, while no feedback
(even for the deployed policy) is available for a negative prediction. The setting is formally described in Algorithm 3.

Algorithm 3 Online Learning with Individual Fairness and Partial Information

Input: Number of rounds T, hypothesis class H, violation size « € (0, 1]
fort=1,...,Tdo

L deploys 7t € AH;

A selects (z¢,7%) € X* x V¥, L only observes z¢;

A selects auditing scheme S* (fixing j¢, f?);

L draws h! ~ 7, predicts ' = ht (1), Vi € [k];

L suffers misclassification loss Error(h, T, %) (not necessarily observed by L);
L suffers unfairness loss Unfair(7?, 7, S, a);

L observes z*, - iff gti = 1, pt = St(xt, 7%, a, f*, j1);

end for

Next, we present and analyze an oracle-efficient algorithm using a reduction to Context-Semi-Bandit-FTPL (Syrgkanis et al.,
2016) for the setting of individual fairness and one-sided label feedback (Algorithm 4).

Algorithm 4 Reduction to Context-Semi-Bandit-FTPL for Online Learning with Individual Fairness and Partial Information

Input: Number of rounds 7', hypothesis class H, violation size « € (0, 1], sensitivity € € (0, ], separating set @@ C X,
parameters R, w, M

L initializes Context-FTPL using @, w, M, history ¢! = ();
fort=1,...,T do
L deploys 7t € AH (implicitly using Context-Semi-Bandit-FTPL(£?));
A selects (z¢,7') € X* x Y*, L only observes z';
A selects panel j' € J™¢, aggr. function f! € F;
forr=1,...,Rdo
L draws h!r using Context-Semi-Bandit-FTPL(£?); {/Iwithout performing loss estimation}
end for
L sets 7* = U(h', ... h'%);
L queries p! = St(7, zt, o — SRV BE
L draws h' using Context-Semi-Bandit-FTPL(¢?); {/fwith loss estimation}
L predicts §*¢ = ht(zh?), Vi € [k], observes §* = {yP : gt = 1};
L updates history &1 = {LZ. | (AT, 27, 47y

end for

£ £
272

Finally, we prove the guarantees obtained by Algorithm 4, as stated in Theorem 5.1.

'5The one-sided label feedback setting was first introduced as the “Apple tasting” problem by Helmbold et al. (2000).
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64 1og(2

*) LW =58 kAT 610g 27—[ M = T3 A= Té,anddenoteelzi.

Proof of Theorem 5.1. Set R = 5

Using Theorem 3 from Syrgkanis et al. (2016) for the semi-bandit setting, along with the fact that the Lagrangian loss
(Definition 3.7) is linear in the first argument, we know that (assuming ||L?||. < B), for any m € AH,

BET 10
ZLW* a—e e/ ZLwt a—e € 7T )‘t) < 4B%wsk? eM 752]{"2 log [H|.

Using the same derivation as the proof of Theorem 4.3, we obtain, with probability 1 — J, the following bounds:

For regret,
BEK*T 10
ZError ZError ) < 4B%wsk*MT + Y —s?k? log |H]|.
For fairness violations,
CN—— BKT 10 T
> - Unfairz , o (') < AB?wsk® MT + —— Y 752/% log [H] + .

t=1

Next, since w = s~ 1k~ iT~ ¢ log™2 H, M = T3, \! = T'%, and noting that || L!||, < 4T's, for regret,

ZError ZError ) <O (s4k T T8 log2 |7—l|>

For the number of fairness violations,

ZUnfalr ) <O <s4 kiT8 log? |7—l|)

In closing, note that our selection of M implies, according to Theorem 3 from Syrgkanis et al. (2016) and our reduction, that
. . . . 1 .
the per-round number of calls to the optimization oracle is 64¢ =2 log (251) + 16e~'k*T'5. This concludes the proof. [
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