
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Diagrammatic Reasoning for ALC Visualizations with Logic
Graphs

Anonymous Author(s)

ABSTRACT
User studies show the demand for diagrammatic reasoning tech-

niques for knowledge representation formats. OWL ontologies

are highly relevant for Web 3.0, however, existing ontology vi-

sualization tools do not support diagrammatic reasoning, while

existing diagrammatic reasoning systems utilize suboptimal visual

languages. The purpose of this research is to facilitate the usage of

OWL ontologies by providing a diagrammatic reasoning system

over their visual representations. We focus on the ALC description

logic, which covers most of the expressivity of the ontologies. As

a visual language to reason about, we utilize Logic Graphs, which

provide simplest visualizations regarding graph- and information-

theoretic properties. We adapt the tableau algorithm to LGs to

reason about concept satisfiability, prove the correctness of the

proposed system and illustrate it with examples. The proposed

diagrammatic reasoning system allows reasoning over ontologies,

reducing complex concepts step by step, and identifying elements

that produce a contradiction.

CCS CONCEPTS
• Information systems→Web Ontology Language (OWL); •
Human-centered computing→ Graph drawings; • Comput-
ing methodologies → Description logics.

KEYWORDS
Ontology visualization, Diagrammatic reasoning, Existential graphs,

Description logic, Tableau algorithm.

ACM Reference Format:
Anonymous Author(s). 2023. Diagrammatic Reasoning for ALC Visual-

izations with Logic Graphs. In Proceedings of The Web Conference 2024
(WWW’24). ACM, New York, NY, USA, 9 pages. https://doi.org/XXXXXXX.

XXXXXXX

1 INTRODUCTION
Due to their explainability and trustworthiness, knowledge-based

systems are highly relevant for Web 3.0. They utilize machine-

actionable knowledge representations, such as ontologies, for data

exchange, validation and reasoning. However, to remain explainable

and trustworthy, ontologies need to be also human-interpretable.

That requirement refers to reasoning over ontologies as well.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW’24, May 13–17, 2024, Singapore
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Example 1.1. To illustrate the problem of human-readability for

OWL reasoning, consider a concept of a person who is vegan, but

not a vegetarian. Let us assume that a vegan is a person who eats

only plants:

𝑉𝑒𝑔𝑎𝑛 = 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∀𝑒𝑎𝑡𝑠.𝑃𝑙𝑎𝑛𝑡,
and a vegetarian is a person who eats only plants or dairy

𝑉𝑒𝑔𝑒𝑡𝑎𝑟𝑖𝑎𝑛 = 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∀𝑒𝑎𝑡𝑠.(𝑃𝑙𝑎𝑛𝑡 ⊔ 𝐷𝑎𝑖𝑟𝑦) .
Thus, a person who is vegan, but not a vegetarian, is defined by the

following:

𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∀𝑒𝑎𝑡𝑠.𝑃𝑙𝑎𝑛𝑡 ⊓ ¬(𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∀𝑒𝑎𝑡𝑠.(𝑃𝑙𝑎𝑛𝑡 ⊔ 𝐷𝑎𝑖𝑟𝑦)) . (1)

The result of logical inference for this concept with the Pellet [21]

reasoner in the Protégé
1
interface is represented in Fig. 1. The

interface shows that the concept is equivalent to the empty set,

meaning it is inconsistent. There is also an explanation of this

inference, see Fig. 2. But the explanation only repeats the original

axiom in a slightly modified form.

One way to increase human-interpretability of ontologies is their

visualization with diagrams. This approach may be applied to rea-

soning as well. A calculus for the diagrams can be defined that

allows deriving new diagrams. A logical inference carried out on

diagrams is called diagrammatic reasoning. The advantage of dia-

grammatic reasoning over symbolic inference is that the diagrams

visually represent the semantics of the logical structures and, there-

fore, the inference is performed through transformations of the

diagrams themselves. From a symbolic description, the information

has to be calculated, while on a diagram, it can simply be seen. One

can say that diagrammatic representations reflect logical relation-

ships, while symbolic representations only describe them. One of

the examples of a diagrammatic reasoning system is Ch. S. Pierce’s

existential graphs [22], based on first-order logic. The existing user

studies prove the demand for diagrammatic reasoning techniques

for other knowledge representation formats. The authors of [8]

investigate how humans read constraint diagrams [10]. The results

of the experiment show the need for augmentation of constraint

diagrams in order to show in which order a diagram should be

read. The experiments reported in [18] show that diagrammatic

reasoning is useful and motivating for students in their attempts to

learn the important notions of formal representation of knowledge.

The problem is that, on one hand, there are lots of tools for on-

tology visualization, such as VOWL [14], OntoGraf [7], Graphol

[5, 13] or SOVA [11], they do not support diagrammatic reason-

ing. On another hand, there are diagrammatic reasoning systems

for description logics [1], but their visual languages are in a way

suboptimal.

The purpose of this research is to facilitate the usage of OWL

ontologies by providing a diagrammatic reasoning system over

their visual representations. We focus on the ALC description logic

1
https://protege.stanford.edu/

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Axiom (1) in Protégé

Figure 2: Explanation of the inference in Protégé

because it covers most of the expressivity of the ontologies. Accord-

ing to [28], 73,7% of the surveyed ontologies have the expressivity

of ALC or lower. Particularly, we consider the concept satisfiability

problem and thus, only TBox axioms. As a visual language to reason

about, we utilize Logic Graphs (LGs) [15]. LGs is a semantic-oriented

visual language for ontologies, complete with respect to the OWL

DL language [16]. LGs adapt elements of existential graphs, graph

theory, and Venn diagrams to represent the semantics of ontological

structures. According to [3], visualizations in LGs are optimal with

respect to their graph-theoretic properties such as the number of

nodes, the number of edges and the depth of node enclosure.

Thus, the contribution of the present work is the following: i)

developing a diagrammatic reasoning system for ontology visual-

ization with LGs, based on the tableau algorithm of ALC, and ii)

proving the correctness of this system.

2 RELATEDWORK
2.1 Diagrammatic reasoning for FOL
Historically, the first diagrammatic reasoning systems were devel-

oped for first-order logic (FOL). There are such systems as Peirce’s

existential graphs (EGs)[22], conceptual graphs [23] and constraint

diagrams [25]. Unfortunately, OWL ontologies have their logical

foundation in DLs, which are less expressive than FOL. On the other

hand, spider diagrams [27] correspond to monadic predicate logic,

which is less expressive than DLs. Therefore, these diagrammatic

reasoning systems do not perfectly fit OWL ontologies.

Nevertheless, to illustrate a diagrammatic reasoning approach,

we consider the EGs reasoning system. Namely, we focus on its

Alpha subsystem, which corresponds to propositional logic. In EGs

Alpha, propositions are considered as nodes. A proposition can be

asserted by writing it down on an area called a sheet of assertion.
Two propositions on the sheet of assertion form a conjunction. Any

proposition may be enclosed by a closed curve called a cut, which

corresponds to a negation. For convenience, cut areas are shaded so

that negations can be easily identified. A doubly cut area becomes

unshaded.

All proofs in Peirce’s system are based on formal rules by which

one EG may be transformed into another preserving truth of propo-

sitions. There are three pairs of rules for EG Alpha. The rules about

the insertion are numbered as 1i, 2i, 3i, and the inverse erasure

rules are 1e, 2e, 3e:

• 1i. In a negative (shaded) area, one or more nodes may be

inserted.

• 1e. In a positive (unshaded) area, one or more nodes may

be erased.

• 2i. One or more nodes in any area may be iterated (copied)

in the same area or into any area nested in it.

• 2e. Any node that could have been derived by rule 2i may be

erased (whether or not a node had previously been derived

by 2i is irrelevant).

• 3i. A double negation may be drawn around any collection

of zero or more nodes in any area.

• 3e. Any double negation in any area may be erased.

This set of rules is proved to be sound and complete.

Example 2.1. We provide a simple example of proof. Consider

a proposition "It rains, and if it rains, then it is cold". The corre-

sponding graph is in Fig. 3a. In the first step, we can erase the inner

instance of "it rains" using rule 2e, see Fig. 3b. The resulting graph

contains a double cut, which according to rule 3e can be removed,

see Fig 3c. Finally, we erase the proposition "it rains" with rule 1e

and get the result in Fig 3d. Thus, the graph with the meaning "it

rains, and if it rains, then it is cold" implies the graph with the

meaning "it is cold".

2.2 Diagrammatic reasoning for ALC
There are works on diagrammatic reasoning for DLs. The authors of

[6] investigate if spider and constraint diagrams as well as existen-

tial and conceptual graphs are compatible with DLs, and conclude

that EGs are better suited for this purpose. They propose a dia-

grammatic calculus for a fragment of EGs corresponding to ALC,

called Relation Graph (RG). There concepts are represented as la-

beled trees. Nodes of these trees correspond to concepts, unlabeled

edges correspond to unions, and labeled edges to roles. As an RG is

always a tree, it has more numerous and longer edges. Addition-

ally, roles have to be represented with separate nodes in order to

provide a possibility of their negation. This result in more complex

representations.

Concept diagrams (CD) [17] are designed for expressing ontolo-

gies. They are based on constraint diagrams, but extended with

variables and arrows. The authors of [4] provide a set of inference

rules for concept diagrams, including rules for copying and delet-

ing elements. They exemplify their system with case studies in [9].

In [24], the authors specify a system of concept diagrams for the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Diagrammatic Reasoning for ALC Visualizations with Logic Graphs WWW’24, May 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(a) Input

(b) Step 1: rule 2e

(c) Step 2: rule 3e

(d) Step 3: rule 1e

Figure 3: Example of a reasoning over EGs

OWL 2 language. In [19], it is demonstrated how to use concept

diagrams for reasoning about inconsistencies in ontologies. In [26],

a fragment of concept diagrams is specified for ALC. In [20], the

authors presented an interactive theorem prover for concept dia-

grams, called iCon. The problem is that concept diagrams require

separate nodes that represent a domain of discource. Also they

utilize overlapping of nodes, which significantly complicate the

visualization.

Another visual language for ontologies is Logic Graphs (LGs)

[15]. It adapts elements of existential graphs, graph theory, and

Venn diagrams to represent the semantics of ontological structures.

It is complete with respect to the OWL DL language [16]. Generat-

ing LGs for ontologies was implemented in [12].

Example 2.2. The Fig. 4, 5 and 6 represent the visualizations

of the Example 1 in LGs, CD and RG respectively. As we do not

consider graphical features such as forms of the nodes and spatial

layout of graphs, we use a similar style for each of the visualizations.

We compare the visual languages for ALC with respect to their

graph-theoretic properties. The results of the comparison are pre-

sented in Table 1. Each cell there contains a couple (𝑚,𝑛), where
𝑚 is a number of nodes and 𝑛 is a number of edges required to

represent a syntactic operation. We count a shading and an enclo-

sure of one node into another as an edge. In case of CD, we take a

lower bound, counting overlapping of two nodes also as an edge.

However, the overlapped region could be considered as a separate

node, subsequently increasing the number of edges. According to

the comparison, LGs provide the simplest representation of ALC.

More details on the evaluation of LGs can be found in [3].

3 BACKGROUND
3.1 ALC description logic
A short description of ALCDL [1] as a target syntax for visualization

is provided. The vocabulary of ALC consists of countably infinite

mutually disjoint sets of individuals 𝑁𝐼 , roles 𝑁𝑅 , and atomic con-

cepts 𝑁𝐶 . Concepts are recursively built using constructors ¬, ⊓,
⊔, ∀ and ∃.

A knowledge base 𝐾 = (𝑇,𝐴) consists of a TBox 𝑇 and an ABox

𝐴. A TBox is a finite set of general concept axioms of the form

𝐶 ⊑ 𝐷 or 𝐶 ≡ 𝐷 , where 𝐶, 𝐷 ∈ 𝑁𝐶 . An ABox is a finite set of

concept assertions of the form𝐶 (𝑎), and role assertions of the form
𝑅(𝑎, 𝑏), where 𝑎, 𝑏 ∈ 𝑁𝐼 , and 𝑅 ∈ 𝑁𝑅 .

The syntax and semantics of ALC are summed up in Table 2.

Here 𝐼 is an interpretation function and Δ is a domain.

Table 2: Syntax and Semantics of ALC

Syntax Semantic

Concept 𝐶 𝐶𝐼 ⊆ Δ𝐼

Role 𝑅 𝑅𝐼 ⊆ Δ𝐼 × Δ𝐼

Complement ¬𝐶 Δ𝐼 \𝐶𝐼

Intersection 𝐶 ⊓ 𝐷 𝐶𝐼 ∩ 𝐷𝐼

Union 𝐶 ⊔ 𝐷 𝐶𝐼 ∪ 𝐷𝐼

Existential

restriction ∃𝑅.𝐶 {𝑎 ∈ Δ𝐼
: ∃𝑏 (𝑎, 𝑏) ∈ 𝑅𝐼 ∧ 𝑏 ∈ 𝐶𝐼 }

Universal

restriction ∀𝑅.⊤ {𝑎 ∈ Δ𝐼
: ∀𝑏 (𝑎, 𝑏) ∈ 𝑅𝐼 → 𝑏 ∈ 𝐶𝐼 }

Concept

inclusion 𝐶 ⊑ 𝐷 𝐶𝐼 ⊆ 𝐷𝐼

Concept

equivalence 𝐶 ≡ 𝐷 𝐶𝐼 ≡ 𝐷𝐼

Concept

assertion 𝐶 (𝑎) 𝑎𝐼 ∈ 𝐶𝐼

Role assertion 𝑅(𝑎, 𝑏) (𝑎, 𝑏)𝐼 ∈ 𝑅𝐼

3.2 Tableau algorithm for ALC
One of the most commonly used reasoning techniques in DLs that

allows checking the satisfiability of concepts is the tableau algo-

rithm [1]. The algorithm works by constructing a completion tree

(CTree).

Definition 3.1 (Completion tree). A completion tree is a labeled

tree 𝑇 = (𝑉 , 𝐸, 𝐿), where (𝑉 , 𝐸) is a tree with a set of nodes 𝑉 and

a set of edges 𝐸, and 𝐿 is a labeling function that assigns a label to

all nodes and edges of 𝑇 as follows:

• 𝐿(𝑥) assigns a set of concept labels for a node 𝑥 ∈ 𝑉 ,
• 𝐿(𝑥,𝑦) assigns a role label for an edge (𝑥,𝑦) ∈ 𝐸.

A node 𝑦 ∈ 𝑉 is called a successor of a node 𝑥 ∈ 𝑉 in the tree

𝑇 if (𝑥,𝑦) ∈ 𝐸, and a node 𝑦 is called an 𝑅-successor of 𝑥 if 𝑦 is a

successor of 𝑥 and 𝑅 ∈ 𝐿(𝑥,𝑦).
A CTree is initialized with a root node containing an initial

concept C in negation normal form, i.e. 𝑁𝑁𝐹 (C). The following
rules are iteratively applied in order to expand the CTree:

• ⊓-rule: if 𝐶1 ⊓𝐶2 ∈ 𝐿(𝑥) then 𝐿(𝑥) = 𝐿(𝑥) ∪ {𝐶1,𝐶2},
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’24, May 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 4: Logic Graph for Example 1

Figure 5: Concept Diagram for Example 1

Table 1: Comparison of visual languages for ALC

Negation Conjunction Disjunction Existential Restriction Universal Restriction

LG (1, 1) (3, 2) (3, 5) (2, 1) (2, 3)
CD (2, 2) (3*, 3) (3*, 4) (4, 4) (5, 6)

RG (3, 1) (3, 2) (5, 4) (3, 2) (5, 5)

Figure 6: Relation Graph for Example 1

• ⊔-rule: if𝐶1⊔𝐶2 ∈ 𝐿(𝑥) then 𝐿(𝑥1) = 𝐿(𝑥) ∪ {𝐶1}, 𝐿(𝑥2) =
𝐿(𝑥) ∪ {𝐶2},

• ∃-rule: if ∃𝑅.𝐶 ∈ 𝐿(𝑥) then create a new node 𝑦 with

𝐿(𝑥,𝑦) = 𝑅 and 𝐿(𝑦) = {𝐶},
• ∀-rule: if ∀𝑅.𝐶 ∈ 𝐿(𝑥) and there is an 𝑅-successor 𝑦 of 𝑥

then 𝐿(𝑦) = 𝐿(𝑦) ∪ {𝐶}.

The rules are applied until it is possible. If no rules can be applied,

the tree is completed.

A concept C is satisfiable if the CTree is free of any local incon-

sistency called a clash.

Definition 3.2 (Clash). Given some concept 𝐶 and a node 𝑥 ∈ 𝑉 ,
a clash is a set {𝐶,¬𝐶} ∈ 𝐿(𝑥).

If a CTree is complete and clash-free, the concept C is satisfiable,

otherwise, C is inconsistent.

Example 3.3. Consider the axiom (1) about a vegan who is not

a vegetarian. With the tableau algorithm, we can prove that this

concept is inconsistent.

First, convert (1) in negation normal form:

𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∀𝑒𝑎𝑡𝑠.𝑃𝑙𝑎𝑛𝑡 ⊓ (¬𝑃𝑒𝑟𝑠𝑜𝑛 ⊔ ∃𝑒𝑎𝑡𝑠.(¬𝑃𝑙𝑎𝑛𝑡 ⊓ ¬𝐷𝑎𝑖𝑟𝑦)) .
The CTree for this concept is the following:

(1) Input: 𝐿(𝑥) = {𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∀𝑒𝑎𝑡𝑠.𝑃𝑙𝑎𝑛𝑡 ⊓ (¬𝑃𝑒𝑟𝑠𝑜𝑛 ⊔
∃𝑒𝑎𝑡𝑠.(¬𝑃𝑙𝑎𝑛𝑡 ⊓ ¬𝐷𝑎𝑖𝑟𝑦))}.

(2) Apply⊓-rule:𝐿(𝑥) = 𝐿(𝑥) ∪ {𝑃𝑒𝑟𝑠𝑜𝑛, ∀𝑒𝑎𝑡𝑠.𝑃𝑙𝑎𝑛𝑡, ¬𝑃𝑒𝑟𝑠𝑜𝑛 ⊔
∃𝑒𝑎𝑡𝑠.(¬𝑃𝑙𝑎𝑛𝑡 ⊓ ¬𝐷𝑎𝑖𝑟𝑦)}.

(3) Apply ⊔-rule:
(a) 𝐿(𝑥1) = 𝐿(𝑥) ∪ {¬𝑃𝑒𝑟𝑠𝑜𝑛} – there is a clash between

𝑃𝑒𝑟𝑠𝑜𝑛 and ¬𝑃𝑒𝑟𝑠𝑜𝑛;
(b) 𝐿(𝑥2) = 𝐿(𝑥) ∪ {∃𝑒𝑎𝑡𝑠.(¬𝑃𝑙𝑎𝑛𝑡 ⊓ ¬𝐷𝑎𝑖𝑟𝑦)}.

(4) Apply ∃-rule to 𝑥2: 𝑒𝑎𝑡𝑠 (𝑥2, 𝑦) and 𝐿(𝑦) = {¬𝑃𝑙𝑎𝑛𝑡 ⊓
¬𝐷𝑎𝑖𝑟𝑦}.

(5) Apply ∀-rule to 𝑥 : 𝐿(𝑦) = 𝐿(𝑦) ∪ {𝑃𝑙𝑎𝑛𝑡}.
(6) Apply ⊓-rule: 𝐿(𝑦) = 𝐿(𝑦) ∪ {¬𝑃𝑙𝑎𝑛𝑡, ¬𝐷𝑎𝑖𝑟𝑦} – there is

a clash between 𝑃𝑙𝑎𝑛𝑡 and ¬𝑃𝑙𝑎𝑛𝑡 .
Thus, no possible CTree for C is clash-free and, therefore, C is

inconsistent.

3.3 Logic Graphs
The fragment of the LGs syntax corresponding to ALC is provided in

Table 3. The space where a graph is located denotes the universe of

objects. A rectangle denotes a concept, i.e. a set of objects. Shading

denotes complement – objects that do not belong to the specified

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Diagrammatic Reasoning for ALC Visualizations with Logic Graphs WWW’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

set. Concepts can be nested within each other, meaning that objects

of an outer rectangle belong to each inner rectangle. Note, that the

space is closed under conjunction, thus, if there are 𝐴 and 𝐵 in a

subspace, the whole subspace satisfies 𝐴 ⊓ 𝐵. Arrows denote roles
existentially restricted by default.

Table 3: Logic graphs for ALC

ALC Logic Graph

𝐶

¬𝐶

𝐶1 ⊓𝐶2

𝐶1 ⊔𝐶2

∃𝑅.𝐶

∀𝑅.𝐶

Complement, intersection, and existential restriction are suffi-

cient for deriving other concept constructors. A representation of

union is derived from representations of intersection and comple-

ment according to the tautology:

𝐶1 ⊔𝐶2 ≡ ¬(¬𝐶1 ⊓ ¬𝐶2),
and universal restriction is derived from existential one according

to the tautology:

∀𝑅.𝐶 ≡ ¬∃𝑅.¬𝐶.
Thus, rectangles, shadings, and arrows in LGs are sufficient for rep-

resenting ALC. For the LGs syntax for more expressive fragments

of the OWL language see [16].

4 METHOD
In this section, a diagrammatic reasoning algorithm for LGs is

presented. It allows checking satisfiability of ALC concepts in a

visual and interactive way. The algorithm is based on the tableau

algorithms for ALC. Analogously, the algorithm for LGs consists of

constructing an LGTree, i.e. a tree where nodes are logic graphs.

Definition 4.1 (LGTree). A tree of logic graphs (LGTree) is a

labeled tree 𝑇 = (𝑉 , 𝐸, 𝐿), where (𝑉 , 𝐸) is a tree with a set of nodes

𝑉 and a set of edges 𝐸, and 𝐿 is a labeling function that assigns a

label to nodes and edges of 𝑇 as follows:

• 𝐿(𝑥) assigns a set of logic graphs for a node 𝑥 ∈ 𝑉 ,
• 𝐿(𝑥,𝑦) assigns a role label for an edge (𝑥,𝑦) ∈ 𝐸.

An LGTree is initialized with a root node containing a logic graph

𝐿𝐺 (C) for an initial concept C. We assume that the input concept

includes all related background axioms, such as superclasses and

their properties. This inclusion is possible due to the tautology:

𝐶 ⊑ 𝐷 ≡ ¬(𝐶 ⊓ ¬𝐷) .

As LGs have the graphic primitives only for complement, inter-

section, and existential restriction, the concept C can not be used in

𝑁𝑁𝐹 , but in the form that utilizes only complements, intersections,

and existential restrictions, i.e. {¬,⊓, ∃}-form, or 𝐿𝐺-form.

There are rules for expanding the LGTree and thereby reducing

the initial logic graph. Similarly to ALC, there is a rule for each

constructor excluding complement, namely for intersection and

existential restriction. However, as the 𝐿𝐺-form is not a 𝑁𝑁𝐹 , there

are rules for their complements as well. Thus, there are two pairs

of rules for reducing a logic graph. The rules for constructors them-

selves are denoted with ’
+
’, and the rules for their complements are

denoted with ’
−
’. For each rule, there are symbolic and visual rep-

resentations. In the visual representations, outer rectangles denote

separate logic graphs, and arrows of the form ’⇒’ between them

represent the transformations of the graphs. For ease of perception,

the elements to be removed are highlighted in green:

• ⊓+
-rule – fig. 7. If there is an intersection node, remove it

and place all its elements as separate nodes:

{𝐶 ⊓ 𝐷} ⇒ {𝐶, 𝐷};

Figure 7: ⊓+-rule

• ⊓−
-rule – fig. 8. If there is a node for a complement of

intersection, remove it, and add a separate logic graph for

each of its elements, placed as their complements:

{¬(𝐶 ⊓ 𝐷)} ⇒ {¬𝐶}, {¬𝐷};

Figure 8: ⊓−-rule

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

• ∃+- rule – fig. 9. If there is an edge for a role, add a new

logic graph and place there the range-concept of the role:

{∃𝑅.𝐶} ⇒ {𝐶}𝑅 ;

Figure 9: ∃+- rule

• ∃−-rule – fig. 10. If there is a complement for a domain of

a role and there is an existing logic graph connected with

this role, place a complement of the range-concept of the

role in this existing logic graph:

{¬∃𝑅.𝐶}{...}𝑅 ⇒ {...,¬𝐶, ...}𝑅 .

Figure 10: ∃−-rule

The LGTree is complete, when it is not possible to apply any rule,

i.e. when each logic graph is an atomic node or its complement. If the

LGTree contains an LGClash, the initial concept C is inconsistent,

otherwise, LGTree is clash-free, and C is satisfiable.

Definition 4.2 (LGClash). – Fig.11. There is an LGClash if a node

𝑥 of the LGTree contains a logic graph for a concept 𝐶 and a logic

graph for its complement ¬𝐶 . For ease of perception, contradictory
concepts are highlighted in red.

Figure 11: LGClash

5 VALIDATION
5.1 Correctness
For any deductive system, one of the fundamental questions is its

correctness, i.e. its soundness and completeness. In this subsection,

we prove the correctness of the proposed diagrammatic reasoning

system regarding ALC by proving its equivalence to the tableau

algorithm (TA), which is already proved to be correct:

Theorem 5.1. ⊢𝑇𝐴 𝐺 ⇔ |=𝐴𝐿𝐶 𝐺 ,

where𝐺 is an expression, ⊢𝑇𝐴 𝐺 means that𝐺 is deducible with

TA, and |=𝐴𝐿𝐶 𝐺 means that𝐺 is satisfiable in ALC. For proof, see

[2].

Lemma 5.2. ⊢𝐿𝐺 𝐺 ⇒ ⊢𝑇𝐴 𝐺 ,

i.e. for each LG-inference there is an equivalent TA-inference.

Proof. To prove that, we show that for each LG-rule there is a

TA-inference with identical input and output:

• ⊓+
-rule: {𝐶 ⊓ 𝐷} ⇒𝐿𝐺 {𝐶, 𝐷}.

There is an equivalent ⊓-rule in the ALC tableau algorithm:

{𝐶 ⊓ 𝐷} ⇒𝐴𝐿𝐶 {𝐶, 𝐷}.
• ⊓−

-rule: {¬(𝐶 ⊓ 𝐷)} ⇒𝐿𝐺 {¬𝐶}, {¬𝐷}.
First, the formula ¬(𝐶 ⊓ 𝐷) is put into negation normal

form:

𝑁𝑁𝐹 (¬(𝐶 ⊓ 𝐷)) = ¬𝐶 ⊔ ¬𝐷.
Then the ⊔-rule is applied to ¬𝐶 ⊔ ¬𝐷 :

𝐿(𝑥) = {¬𝐶⊔¬𝐷} ⇒𝐴𝐿𝐶 𝐿(𝑥1) = 𝐿(𝑥)∪{¬𝐶}, 𝐿(𝑥2) = 𝐿(𝑥)∪{¬𝐷}.
Therefore,

{¬(𝐶 ⊓ 𝐷)} ⇒𝐴𝐿𝐶 {¬𝐶}, {¬𝐷}.
• ∃+-rule: {∃𝑅.𝐶} ⇒𝐿𝐺 {𝐶}𝑅 .

There is an equivalent ∃-rule for ALC:
{∃𝑅.𝐶} ⇒𝐴𝐿𝐶 {𝐶}𝑅 .

• ∃−-rule: {¬∃𝑅.𝐶}, {...}𝑅 ⇒𝐿𝐺 {...,¬𝐶, ...}𝑅 .
Put ¬∃𝑅.𝐶 into negation normal form:

𝑁𝑁𝐹 (¬∃𝑅.𝐶) = ∀𝑅.¬𝐶.
Apply the ∀-rule of ALC to ∀𝑅.¬𝐶:

∀𝑅.¬𝐶 ∈ 𝐿(𝑥) ∧ 𝑅 ∈ 𝐿(𝑥,𝑦) ⇒𝐴𝐿𝐶 𝐿(𝑦) = 𝐿(𝑦) ∪ {¬𝐶}
Therefore,

{¬∃𝑅.𝐶}, {...}𝑅 ⇒𝐴𝐿𝐶 {...,¬𝐶, ...}𝑅 .
Thus, for each LG-rule, an equivalent inference is constructed

using the tableau algorithm, therefore, for each LG-inference there

is an equivalent TA-inference. □

Lemma 5.3. ⊢𝑇𝐴 𝐺 ⇒⊢𝐿𝐺 𝐺 ,

i.e. for each TA-inference, there is an equivalent LG-inference.

Proof. Similarly, we show that for each TA-rule there is an

𝐿𝐺-inference with identical input and output:

• ⊓-rule: {𝐶 ⊓ 𝐷} ⇒𝐴𝐿𝐶 {𝐶, 𝐷}.
There is the equivalent ⊓+

-rule for LGs:

{𝐶 ⊓ 𝐷} ⇒𝐿𝐺 {𝐶, 𝐷}.
• ⊔-rule: {𝐶 ⊔ 𝐷} ⇒𝐴𝐿𝐶 {𝐶}, {𝐷}.

First, 𝐶 ⊔ 𝐷 in LG-form is ¬(¬𝐶 ⊓ ¬𝐷), then applying ⊓−
-

rule:

¬(¬𝐶 ⊓ ¬𝐷) ⇒𝐿𝐺 {𝐶}, {𝐷}.
• ∃-rule: {∃𝑅.𝐶} ⇒𝐴𝐿𝐶 {𝐶}𝑅 .

There is the equivalent ∃+-rule for LGs:
{∃𝑅.𝐶} ⇒𝐿𝐺 {𝐶}𝑅 .

• ∀-rule: {∀𝑅.𝐶}, ...𝑅 ⇒𝐴𝐿𝐶 {...,𝐶, ...}𝑅 .
In LG-form ∀𝑅.𝐶 is ¬∃𝑅.¬𝐶 . Applying ∃−-rule to ¬∃𝑅.¬𝐶 :

¬∃𝑅.¬𝐶 ⇒𝐿𝐺 {𝐶}𝑅 .
Thus, for each LG-inference there is an equivalent TA-inference.

□

Lemma 5.4. ⊢𝐿𝐺 𝐺 ⇔⊢𝑇𝐴 𝐺 ,
6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Diagrammatic Reasoning for ALC Visualizations with Logic Graphs WWW’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

i.e. the diagrammatic reasoning algorithm for LGs is equivalent

to TA (with respect to ALC).

Proof. It comes from Lemma 5.2 and Lemma 5.3. □

Theorem 5.5. ⊢𝐿𝐺 𝐺 ⇔|=𝐴𝐿𝐶 𝐺 ,

where |=𝐴𝐿𝐶 𝐺 means that 𝐺 is satisfiable in ALC.

Proof. It comes from Lemma 5.4 and Theorem 5.1. □

5.2 Examples
Example 5.6. To illustrate the diagrammatic reasoning for LGs,

we refer to the same axiom (1). Though the interactive reasoning

procedure can not be represented in the paper format, the corre-

sponding LGTree is presented in Fig. 12. For convenience, coordi-

nates in the form ’level.branch’ and a rule currently applied are

provided above each node. The tree has two branches, and each

of them contains an LGClash, therefore, the initial logic graph is

inconsistent.

Example 5.7. Consider another example to illustrate that the

proposed algorithm does not mistakenly yield a contradiction if an

initial logic graph is consistent. Thus, consider a person who is a

vegan and a vegetarian:

𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∀𝑒𝑎𝑡𝑠.𝑃𝑙𝑎𝑛𝑡 ⊓ ∀𝑒𝑎𝑡𝑠.(𝑃𝑙𝑎𝑛𝑡 ⊔ 𝐷𝑎𝑖𝑟𝑦) . (2)

The corresponding LGTree is in Fig. 13. It also contains two branches,

but both are clash-free, therefore, the concept (2) is satisfiable.

Thus, in contrast to the existing ontology visualization tools,

the proposed diagrammatic reasoning system for LGs allows, first,

reasoning over ontologies interactively, reducing complex concepts

step by step, and second, identifying elements that produce a con-

tradiction. Compared to other existing diagrammatic reasoning

systems for ALC, the proposed one is based on the LGs visual

language and the tableau algorithm.

6 DISCUSSION
User experience. LGs are an abstract syntax that can be imple-

mented in various forms and layouts. Here, we aim at the functional

feature of providing an interactive visual procedure for analyzing

complex OWL axioms. For us, only the complexity of representa-

tions in graph- and information-theoretic terms is important. And

in [3] it was demonstrated that LGs provide the simplest visual-

izations of OWL axioms. The readability of the visualizations is

out of the scope of this research. Thus, a user study for evaluat-

ing the experience of using the proposed diagrammatic reasoning

system would not be relevant. Particular representations, such as

shapes and colors, could be altered in future to improve the user

experience.

Implementation. Though the envisioned diagrammatic rea-

soning algorithm is not yet implemented, we suggest how it can

be done. The paper [12] describes the generation of LGs for OWL

ontologies. This approach produces intermediate DOT files that are

further laid out. The diagrammatic reasoning algorithm proposed in

the present research can be further implemented as operations over

those intermediate DOT representations. Additionally, an LGTree

can be priorly generated, laying out each possible transformation

of an LG on a separate web page. Then an interactive nature of the

diagrammatic reasoning can be imitated with navigation through

those pages. We provide an interactive demo
2
based on the Ex-

amples 5.6 and 5.7, which utilizes preliminary constructed LGs

connected into an LGTree with hyperlinks.

Complexity. The tableau algorithm for ALC was proved to be

PSPACE-complete [2]. Though TA differs from the diagrammatic

reasoning algorithm for LGs regarding the input forms (TA requires

NNF, while LG-inference requires LG-form, which includes com-

plex negations), a similar analysis can be applied to the latter. Since

each branch of an LGTree can be treated separately, the algorithm

needs to store only one branch together with the direct succes-

sors of the nodes on this branch and the information on which

of these successors must be investigated next. Since the number

of branches and the depth of the LGTree are linear regarding the

length of the input LG, the necessary information can be stored

within polynomial space.

Application scope. By visualizing ALC, we cover the biggest

part of the OWL usage. According to [28], 73,7% of the surveyed

ontologies have the expressivity of ALC or lower. However, LGs

syntax cover the whole OWL DL syntax [16] and in future work

we plan to extend the proposed diagrammatic reasoning system for

more expressive fragments of LGs. Additionally, we discuss only the

concept satisfiability problem, thus ABox axioms are not considered

here. However, the reasoning task related to ABox axioms such as

classification or link prediction can be addressed in future work.

7 CONCLUSION
User studies show the demand for diagrammatic reasoning tech-

niques for knowledge representation formats. OWL ontologies

are highly relevant for Web 3.0, however, existing ontology vi-

sualization tools do not support diagrammatic reasoning, while

existing diagrammatic reasoning systems utilize suboptimal visual

languages.

The purpose of this research was to facilitate the usage of OWL

ontologies by providing a diagrammatic reasoning system over

their visual representations. We focused on the ALC description

logic, which covers most of the expressivity of the ontologies. As a

visual language to reason about, we utilized Logic Graphs, which

provide simplest visualizations regarding graph- and information-

theoretic properties. Further, we adapted the tableau algorithm to

LGs to reason about concept satisfiability, proved the correctness

of the proposed system and illustrated it with examples. In contrast

to the existing ontology visualization tools, the proposed diagram-

matic reasoning system allows reasoning over ontologies, reducing

complex concepts step by step, and identifying elements that pro-

duce a contradiction. Compared to other existing diagrammatic

reasoning systems for ALC, the proposed one is based on the LGs

visual language and the tableau algorithm.

The future research will include i) designing a concrete syntax

for LGs to improve user experience while using them and evaluat-

ing this syntax with user studies, ii) implementing the proposed

reasoning system as an interactive visual reasoner for ontologies,

iii) extending the diagrammatic reasoning system to the more ex-

pressive fragments of LGs and to ABox axioms.

2
https://logic-graphs.github.io/diagrammatic-reasoning/

7

https://logic-graphs.github.io/diagrammatic-reasoning/

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’24, May 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 12: LGTree for (1)

Figure 13: LGTree for (2)

REFERENCES
[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory,

Implementation, and Applications. Cambridge University Press, USA.

[2] Franz Baader and Ulrike Sattler. 2001. An Overview of Tableau Algorithms for

Description Logics. Studia Logica: An International Journal for Symbolic Logic 69,

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Diagrammatic Reasoning for ALC Visualizations with Logic Graphs WWW’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1 (2001), 5–40.

[3] I Baimuratov, Th Nguyen, R Golchin, and D Mouromtsev. 2020. Developing non-

empirical metrics and tools for ontology visualizations evaluation and comparing.

Scientific Visualization 12, 4 (2020).

[4] Peter Chapman, Gem Stapleton, John Howse, and Ian Oliver. 2011. Deriving

sound inference rules for concept diagrams. In 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 87–94. https://doi.org/10.

1109/VLHCC.2011.6070384

[5] Marco Console, Domenico Lembo, Valerio Santarelli, and Domenico Fabio Savo.

2014. Graphol: Ontology Representation Through Diagrams. In Proceedings of
the 27th International Workshop on Description Logics. 483–495. https://doi.org/

10.13140/2.1.3838.3363

[6] Frithjof Dau and Peter Eklund. 2008. A diagrammatic reasoning system for the

description logic ALC. Journal of Visual Languages & Computing 19 (10 2008),

539–573. https://doi.org/10.1016/j.jvlc.2007.12.003

[7] Sean Falconer. [n. d.]. OntoGraf. https://protegewiki.stanford.edu/wiki/OntoGraf.

Accessed: 2022-04-22.

[8] Andrew Fish and Judith Masthoff. 2005. Do monkeys like elephants or do ele-

phants watch monkeys? an empirical study into the default reading of constraint

diagrams. Technical Report (2005).
[9] John Howse, Gem Stapleton, Kerry Taylor, and Peter Chapman. 2011. Visualizing

Ontologies: A Case Study. In International Semantic Web Conference. Springer,
257–272.

[10] Stuart Kent. 1997. Constraint diagrams: visualizing invariants in object-oriented

models. ACM SIGPLAN Notices 32, 10 (1997), 327–341.
[11] Piotr Kunowski and Tomasz Boiński. [n. d.]. SOVA. https://protegewiki.stanford.

edu/wiki/SOVA. Accessed: 2022-04-22.

[12] Vasiliy Kuryshev, Ildar Baimuratov, Vladislav Shmatkov, andDmitryMouromtsev.

2022. Generating Visualizations of Ontologies in the Logic Graphs Language. In

2022 31st Conference of Open Innovations Association (FRUCT). 131–137.
[13] Domenico Lembo, Valerio Santarelli, Domenico Fabio Savo, and Giuseppe De Gi-

acomo. 2022. Graphol: A Graphical Language for Ontology Modeling Equivalent

to OWL 2. Future Internet 14 (02 2022), 78. https://doi.org/10.3390/fi14030078

[14] Steffen Lohmann, Stefan Negru, Florian Haag, and Thomas Ertl. 2016. Visualizing

ontologies with VOWL. Semantic Web 7 (05 2016), 399–419. https://doi.org/10.

3233/SW-150200

[15] Dmitry I. Mouromtsev and Ildar R. Baimuratov. 2018. Logic Graphs: A complete

visualization method for logical languages based on Ch. S. Peirce’s existential

graphs. In MICSECS.
[16] T. Nguyen and I. Baimuratov. 2020. Logic graphs: Complete, semantic-oriented

and easy to learn visualization method for OWL DL language. CEUR Workshop
Proceedings 2893 (2020).

[17] Ian Oliver, John Howse, Gem Stapleton, Esko Nuutila, and Seppo Törmä. 2009.

Visualizing and Specifying Ontologies Using Diagrammatic Logics. In Proceedings
of the Fifth Australasian Ontology Workshop - Volume 112 (Melbourne, Australia)

(AOW ’09). Australian Computer Society, Inc., 37–46.

[18] Henrik Schärfe, Ulrik Petersen, and Peter Øhrstrøm. 2002. On teaching concep-

tual graphs. In Conceptual Structures: Integration and Interfaces: 10th International
Conference on Conceptual Structures, ICCS 2002 Borovets, Bulgaria, July 15–19,
2002 Proceedings 10. Springer, 285–298.

[19] Zohreh Shams, Mateja Jamnik, Gem Stapleton, and Yuri Sato. 2017. Reasoning

with Concept DiagramsAbout Antipatterns in Ontologies. In Intelligent Computer
Mathematics, Herman Geuvers, Matthew England, Osman Hasan, Florian Rabe,

and Olaf Teschke (Eds.). Springer International Publishing, Cham, 255–271.

[20] Zohreh Shams, Yuri Sato, Mateja Jamnik, and Gem Stapleton. 2018. Accessible

Reasoning with Diagrams: From Cognition to Automation. In Diagrammatic
Representation and Inference, Peter Chapman, Gem Stapleton, AmiroucheMoktefi,

Sarah Perez-Kriz, and Francesco Bellucci (Eds.). Springer International Publishing,

Cham, 247–263.

[21] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. 2007. Pellet: A Practical OWL-DL Reasoner. Journal of Web Semantics 5, 2
(2007), 51–53. https://doi.org/10.1016/j.websem.2007.03.004

[22] John Sowa. 2011. Peirce’s Tutorial on Existential Graphs. Semiotica 186 (08 2011),
345–394. https://doi.org/10.1515/semi.2011.060

[23] John F. Sowa. 1976. Conceptual Graphs for a Data Base Interface. IBM Journal of
Research and Development 20, 4 (1976), 336–357. https://doi.org/10.1147/rd.204.

0336

[24] Gem Stapleton, Michael Compton, and John Howse. 2017. Visualizing OWL 2

using diagrams. 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (2017), 245–253.

[25] Gem Stapleton and Aidan Delaney. 2008. Evaluating and Generalizing Constraint

Diagrams. J. Vis. Lang. Comput. 19, 4 (2008), 499–521. https://doi.org/10.1016/j.

jvlc.2008.04.003

[26] Gem Stapleton, Aidan Delaney, Michael Compton, and Peter Chapman. 2018.

Visualizing ALC Using Concept Diagrams. In Graph Structures for Knowledge
Representation and Reasoning (1 ed.) (Lecture Notes in Computer Science), Madalina

Croitoru, Peter Marquis, Peter Marquis, and Gem Stapleton (Eds.). Springer, 99–

117. https://doi.org/10.1007/978-3-319-78102-0_6

[27] Matej Urbas, Mateja Jamnik, and Gem Stapleton. 2015. Speedith: A Reasoner

for Spider Diagrams. Journal of Logic, Language, and Information 24, 4 (2015),

487–540. http://www.jstor.org/stable/43919290

[28] Taowei Wang, Bijan Parsia, and James Hendler. 2006. A Survey of the Web

Ontology Landscape. 682–694. https://doi.org/10.1007/11926078_49

Received 12 October 2023

9

https://doi.org/10.1109/VLHCC.2011.6070384
https://doi.org/10.1109/VLHCC.2011.6070384
https://doi.org/10.13140/2.1.3838.3363
https://doi.org/10.13140/2.1.3838.3363
https://doi.org/10.1016/j.jvlc.2007.12.003
https://protegewiki.stanford.edu/wiki/OntoGraf
https://protegewiki.stanford.edu/wiki/SOVA
https://protegewiki.stanford.edu/wiki/SOVA
https://doi.org/10.3390/fi14030078
https://doi.org/10.3233/SW-150200
https://doi.org/10.3233/SW-150200
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1515/semi.2011.060
https://doi.org/10.1147/rd.204.0336
https://doi.org/10.1147/rd.204.0336
https://doi.org/10.1016/j.jvlc.2008.04.003
https://doi.org/10.1016/j.jvlc.2008.04.003
https://doi.org/10.1007/978-3-319-78102-0_6
http://www.jstor.org/stable/43919290
https://doi.org/10.1007/11926078_49

	Abstract
	1 Introduction
	2 Related Work
	2.1 Diagrammatic reasoning for FOL
	2.2 Diagrammatic reasoning for ALC

	3 Background
	3.1 ALC description logic
	3.2 Tableau algorithm for ALC
	3.3 Logic Graphs

	4 Method
	5 Validation
	5.1 Correctness
	5.2 Examples

	6 Discussion
	7 Conclusion
	References

