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ABSTRACT

Contemporary post-training neural network compression methods make a model
lighter and faster without a significant drop in performance. However, these meth-
ods heavily depend on the model’s training data which might be unavailable in
practical scenarios. In this work, we present FRanDI, a novel framework to enable
post-training neural networks compression without data. Our method leverages
the DeepInversion-based approach to generate synthetic data from the pre-trained
model. We propose a compressed network degradation teacher-student based re-
covery scheme called Feature Regression. In addition, we present a new proxy
metric that correlates with the original model’s target metric to evaluate model
compression policies called Output Discrepancy. Our algorithm does not depend
on the neural network’s target task compared to other data-free methods. We eval-
uate our framework on three different neural network compression approaches:
low-rank weight approximation, unstructured pruning, and quantization.

1 INTRODUCTION

Neural Network (NN) compression is a widely used technique aimed at reducing resource consump-
tion and accelerating heavy pre-trained models, all while maintaining a negligible loss in model qual-
ity. Common methods for NN compression include: structured pruning Molchanov et al. (2019),
unstructured pruning Han et al. (2015a); Figurnov et al. (2016); Molchanov et al. (2017), quanti-
zation Nagel et al. (2019) and weight low-rank approximation Lebedev et al. (2015); Phan et al.
(2020).

A typical NN compression pipeline is heavily reliant on the original model’s training data, which is
crucial for selecting the compression ratio for different layers and for recovering from performance
degradation through fine-tuning and statistical calibration. However, in practical situations, this
reliance can pose challenges, especially when the dataset is unavailable due to privacy, security, or
transmission constraints.

To this end, recent studies have aimed to enable the acceleration and compression of neural net-
works without relying on data. One of the pioneering works Lopes et al. (2017) proposed using
aggregated activations from the training dataset for knowledge distillation. In another study Yoo
et al. (2019), the authors introduced two auxiliary architectures, KEGNET, to extract knowledge
from a pre-trained model. Chen et al. (2019) utilized a generator to train a student network in an
adversarial manner. Additionally, two contemporary works Haroush et al. (2020); Yin et al. (2020)
synthesized input images to produce internal statistics or high output responses for selected classes.
While the aforementioned methods effectively compress neural networks without requiring data,
they remain linked to a particular neural network target task, often necessitating custom loss func-
tions to extract knowledge from the pre-trained network. As demonstrated by Chawla et al. (2021),
extending these methods to other tasks can require significant effort.

In this work, we propose FRanDI method for data-free neural network compression (Figure 1) that
is not tied to a specific neural network architecture. Our data generation method is based on Deep
Inversion Yin et al. (2020) and uses the original model’s statistics to generate input data (Figure 1a).
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(a) Synthetic data generation overview: We calculate
the distance in feature distribution between original and
synthetic data across multiple feature maps. This loss
is used to optimize the input image, aligning its feature
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(b) Feature Regression overview: We propagate
generated data through the original and com-
pressed models to compute Feature Discrepancy
between their feature maps, and this loss is used
to optimize the compressed model’s parameters.

Figure 1: Visualization of proposed Data-Free Neural Network Compression method.

We propose the Feature Regression method, which exploits the teacher-student training approach
on synthetized data (Figure 1b). Feature Regression minimizes the distance between corresponding
layers in the original and compressed model to reduce the degradation of the compressed model. We
further show that feature distance between networks’ outputs can be used as a proxy to the model’s
target metric in the compression ratio selection task. To demonstrate the performance of our method,
we apply it to neural networks for image classification and semantic segmentation combined with
different model compression methods like low-rank weight approximation, unstructured pruning
and quantization.

2 RELATED WORKS

Neural Network Compression and Acceleration. Extensive research has focused on accelerat-
ing neural networks through compression methods that reduce redundancy within their structures.
Weight sparsification or unstructured pruning compresses neural networks by eliminating individual
weights deemed to be of low importance Han et al. (2015a), enabling a size reduction of up to 20×
without significant loss in performance. Structural pruning Molchanov et al. (2019) extends this
approach by targeting entire structural elements of the network, such as filters or channels. This
technique facilitates simultaneous speedup and compression of neural networks without the need
for specialized software. Methods based on low-rank approximation take advantage of the fact that
the weights of neural networks often reside in a low-rank linear space Denil et al. (2013). These
methods approximate layer weights through low-rank matrix or tensor decomposition, replacing the
original layers with lightweight factorized layers Lebedev et al. (2015); Kim et al. (2016); Sobolev
et al. (2022); Phan et al. (2024), thereby enhancing both speed and efficiency. Quantization decrease
the model’s latency and memory footprint by reducing redundancy in the representations of weights
and activations by approximating them with lower-precision numbers Nagel et al. (2019).

Knowledge Distillation. An alternative to model compression is the approach of using the outputs
of a large neural teacher network to facilitate the training of a smaller student network initially pro-
posed in Hinton et al. (2015). In this work, the authors employed KL-divergence between the outputs
of the teacher and student networks, with an increased temperature applied to the SoftMax function.
To enhance the utilization of the information embedded in the teacher network, several methods have
been introduced that focus on feature distillation rather than output distillation. FitNets Romero et al.
(2015) proposed using L2 loss between the features of the teacher and student networks to guide the
training of the student. Zagoruyko & Komodakis (2017) suggested transferring activation attention,
which has been shown to improve the distillation process. Furthermore, Heo et al. (2019) explored
various aspects of the feature distillation process, including teacher and student transformations, the
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position of distillation features, and distance functions, ultimately proposing a novel feature distil-
lation loss that significantly enhances performance.

Data-Free Neural Network Compression Methods. use synthetic data to perform fine-tuning and
compression ratio selection for the original neural network. A series of works apply model-based,
which uses the auxiliary network for data generation. Chen et al. (2019) proposed to train student
using the adversarial approach, where a generator is trained to produce samples that maximize the
distance between the outputs of the teacher and student networks, while the student is trained to
minimize this distance. Similarly, Micaelli & Storkey (2019) adopted this setup, adding an L2 loss
between the intermediate spatial attention maps of the teacher and student networks, as suggested
in Zagoruyko & Komodakis (2017). Additionally, Zhang et al. (2021) combined an adversarial
approach with progressive growing and reconstruction loss to compress a super-resolution model
without relying on data. Meanwhile, Yoo et al. (2019) introduced an alternative framework called
KEGNET, consisting of two networks—a generator and a decoder—that learn to sample data based
on dataset labels. Another approach involves network inversion techniques. Two concurrent stud-
ies Haroush et al. (2020) and Yin et al. (2020) proposed a method that updates a noise image to
maximize predefined class probabilities while minimizing the distance between intermediate activa-
tion statistics and those of the training set, preserved in Batch Normalization (BN) layers. Further-
more, Yin et al. (2020) incorporated adversarial loss between the teacher and student networks. Both
methods successfully generated realistic datasets for image recognition without using actual data,
which can then be leveraged to distill knowledge into a smaller or compressed model. To extend
DeepInversion Yin et al. (2020) to object detection tasks, Chawla et al. (2021) applied a comprehen-
sive set of differentiable augmentations along with a novel automated scheme for bounding box and
category sampling.

3 METHOD

In this paper, we focus on post-training model compression. A typical pipeline for this process con-
sists of the following steps: (i) selecting a compression scheme (i.e., per-layer compression ratio);
(ii) compressing the model (through pruning, quantization, or low-rank weight approximation); and
(iii) recovering the model’s performance degradation by fine-tuning the compressed model on the
training dataset. This process can be conducted iteratively.

Most neural network compression methods extensively depend on the original training dataset
throughout various stages of the pipeline: for evaluating the compression scheme, during the com-
pression process, and, most importantly, during the fine-tuning phase. Our proposed method,
FRanDI, addresses this limitation. In Section 3.1, we detail our synthetic data generation approach.
Section 3.2 introduces a degradation recovery scheme utilizing the generated synthetic data as a sub-
stitute for fine-tuning. Lastly, in Section 3.3, we present a pipeline for evaluating the compression
scheme with synthetic data.

3.1 SYNTHETIC DATA GENERATION

To resolve the problem of missing data, we apply a DeepInversion-based scheme for synthetic data
generation Yin et al. (2020); Haroush et al. (2020). Given the original neural network FW with
weights W , we aim to generate a synthetic dataset. Overall, the image generation scheme can be
described as an optimization problem: min

x̂
L(x̂),, where x̂ ∈ RH×W×C is a randomly initialized

input of the neural network, H,W,C are height, width and number of channels respectively (Fig-
ure 1a). L(·) encompasses a composite loss that includes input data regularizers and a discrepancy
loss that measures the difference between the outputs of the compressed and original models. In Sec-
tion 4.1, we evaluate various combinations of these loss components, demonstrating that utilizing
Batch-Norm statistics for feature loss yields the best results.

BN-Statistics Loss. Following the approaches in Haroush et al. (2020) and Yin et al. (2020), our
method utilizes feature regularization RBN to ensure that the deep feature statistics of the synthetic
image x̂ ∈ X̂ closely resemble those of the original dataset. These statistics are captured in the
Batch Normalization (BN) layers of the original model, enabling the generation of synthetic samples
x̂ ∈ X̂ that are as similar as possible to the actual data.
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Formally, we calculate the statistics µ̂ = µ(x̂) and σ̂ = σ(x̂) for input features of x̂ within the
BN layer. Concurrently, we maintain running estimates of the original dataset’s input feature statis-
tics, denoted as µ∗ and σ∗. Assuming that the intermediate features in the neural network follow a
Normal distribution, we can assess the distance between the feature distributions of the original and
synthetic data using Kullback-Leibler Divergence (KLD). Our experiments demonstrate that regu-
larizing the distribution of intermediate features is sufficient for effective synthetic data generation
in our pipeline. Consequently, the image generation loss can be expressed as:

L(x̂) = RBN (x̂) =

L∑
l=1

KL
(
N
(
µ̂l, σ̂

2
l

)
∥N

(
µ∗
l , σ

∗
l
2
))

=

L∑
l=1

Nl∑
i=1

(
log

σ̂l,i

σ∗
l,i

− 1

2

(
1−

σ∗
l,i

2 + (µ∗
l,i − µ̂l,i)

2

σ̂2
l,i

))
,

(1)

where L is number of BN layers in the neural network, Nl is l-th channel in l-th layer.

3.2 DEGRADATION RECOVERY SCHEME

We consider individual layer compression as a representation of layer weights in a compact format:

woriginal = wcompact + wredundant, (2)

where wcompact is sparse, quantized, or factorized representation of weights tensor, wredundant is an
unimportant weight component that is removed during compression procedure (e.g., pruned weights,
high-bit part of weights, or approximation error).

Since wredundant is non-zero, replacement of woriginal by wcompact results in compressed net-
work’s feature-map distortion:

fwcompact(x) = fworiginal(x)− fwredundant(x) = fworiginal(x) + E, (3)

where x and fw are input data and operation performed by layer with weight w, respectively.

Assume, compressed model F̃W̃ is obtained by compressing N layers of original model FW . In
multi-layer compression, feature map distortions tend to increase with depth due to error accumu-
lation from earlier layers to deeper ones. These distortions can lead to significant degradation in
model performance. To mitigate this performance loss, conventional neural network compression
processes typically involve a fine-tuning step. This step involves retraining the compressed model on
the original dataset using a low learning rate. However, in a data-free scenario, fine-tuning becomes
challenging due to the unavailability of data and labels.

Feature Regression. We propose to address the model degradation by minimizing the feature dis-
tortion between the original and compressed models. To achieve this, we formulate the recovery
process as a feature-based teacher-student training framework (Figure 1b). In this framework, the
student (compressed) model aims to approximate the intermediate features of the teacher (original)
model:

min
W̃

LFR(FW (x̂), F ∗(W̃ )(x̂)) = min
W̃

N∑
i=1

LFD(fwi
i (x̂), f̃ w̃i

i (x̂)), (4)

where fwi
i (x̂) and f̃ w̃i

i (x̂) are outputs of i-th uncompressed and compressed layers given generated
image x̂, FW (x̂) and F̃W̃ (x̂) are outputs of uncompressed and compressed models, LFD is a loss
function that defines distance between feature maps. In our work, we use Frobenius norm of distance
between normalized feature-maps, we call it Feature Discrepancy (FD):
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Figure 2: Compressed model accuracy vs OD proxy metric: (a) without calibration, (b) accuracy
measured after calibration on real data, proxy metric measured after calibration on synthetic data.
The plot is based on the 50 different compressed using Spatial-SVD (with different rank sets and
fixed 4x FLOPs compression ratio) Resnet-18 networks, Cifar-100 dataset. Compressed model ac-
curacy correlates with OD in both cases.

LFD(fwi
i (x̂), f̃ w̃i

i (x̂)) =

∥∥∥∥∥∥ fwi
i (x̂)

∥fwi
i (x̂)∥2

− f̃ w̃i
i (x̂)∥∥∥f̃ w̃i
i (x̂)

∥∥∥
2

∥∥∥∥∥∥
2

(5)

Using feature regression instead of regular fine-tuning allows us to avoid generating labeled data
and make our method independent from the task of the original model.

3.3 MODEL SELECTION APPROACH

Neural network compression methods typically rely on target metrics (e.g., accuracy) to select hy-
perparameters that balance model size and performance, such as sparsity, pruning ratio, and decom-
position rank. However, since our method does not generate labels for the synthetic dataset, we are
unable to reproduce model metrics on this data. To address this limitation, we use Output Discrep-
ancy (OD) between the compressed and uncompressed networks as an alternative proxy metric for
evaluating model performance:

OD(FW (x̂), F̃W̃ (x̂)) =

∥∥∥∥∥ FW (x̂)

∥FW (x̂)∥2
−

F̃W̃ (x̂)

∥F̃W̃ (x̂)∥2

∥∥∥∥∥
2

, (6)

where x̂, FW (x̂) and F ∗(Ŵ ∗)(x̂) represent the outputs of the uncompressed and compressed mod-
els for a batch of synthesized images x̂. Our experimental results demonstrate that this function
correlates with the performance metrics of the original model and can serve as a proxy metric for
selecting hyperparameters in model compression (see Figure 2a). A recent work Li et al. (2020) has
shown that evaluating a compressed model after calibrating BatchNorm statistics (adaptive batch
normalization) significantly enhances its correlation with final accuracy post-fine-tuning. In our ex-
periments, we find that the proposed OD metric, after calibrating the statistics, displays a strong
correlation with model accuracy following BatchNorm calibration (see Figure 2b).

We aim to find an optimal vector R̃ = (r̃1, ..., r̃L), in which ri denotes compression ratio of i-th
layer in L-layer neural network given a global reduction of operations (FLOPs) or parameters equal
to α. With OD proxy metric, we formulate compression ratio search procedure as the following
problem:
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Problem 1 (Optimal Compression Ratio Search)

minimize
R=(r1,...,rL)

OD(FW (x̂), F ∗(F̃W̃R
(x̂))

subject to (α−∆α)Corig ≤ C(R) ≤ (α+∆α)Corig

(7)

where C(R) is a complexity of the model compressed with parameters R = (r1, ..., rL), Corig is
complexity of the original model, ∆α is allowed deviation from compression complexity constraint
α. In our model selection pipeline, we use a simple random sampling approach to generate candi-
dates for model compression. Concretely, it randomly samples L real numbers from a given range
[rmin; rmax] to form a compression strategy that satisfies model complexity constraint used in the
Problem 1. After sampling N candidates, we evaluate them and select one with the lowest OD
score. Noticeably, other more sophisticated search procedures can be applied to find the best set of
compression ratios, such as reinforcement learning, bayesian search, evolutionary algorithm, etc.

4 ABLATION STUDIES

In this section, we evaluate how different components of our method affect the overall results. For
this purpose, we compress ResNet-18 trained on CIFAR-100 dataset (classification, 100 classes,
32× 32 image resolution) with Spatial-SVD weight low-rank approximation scheme Kuzmin et al.
(2019). Original model has 77.1% top-1 accuracy and its FLOPs compression ratio is fixed to 5 (de-
composition ranks are provided in supplementary materials). In all experiments Feature Regression
was performed by Stochastic Gradient Descent with 10−4 learning rate, 0.9 momentum, and 10−4

weight decay. Synthetic data generation is performed by 500 iterations of Adam optimizer with 0.1
learning rate and (β1, β2) = (0.5, 0.9).

4.1 SYNTHETIC IMAGE GENERATION

Table 1: Evaluation of image regu-
larizations ResNet-18 on CIFAR-100
dataset. We run each experiment 5
times with different random seeds to
estimate the measurement error.

TV L 2 Top1 Accuracy
✗ ✗ 73.74 ± 0.14
✗ ✓ 73.61± 0.15
✓ ✗ 73.53± 0.18
✓ ✓ 73.48± 0.16

Image Regularization. Our data generation approach is
a simplification of DeepIversion-based methods proposed
in Haroush et al. (2020) and Yin et al. (2020). We con-
sciously decided to abandon using image classes for data
generation to make the method task-independent in our
version. In addition, Haroush et al. (2020) uses image
regularization loss term (total variance, l2 norm of im-
age) to improve image optimization process. We evaluate
these regularizations in combination with BN-Statistics
loss. Results in Table 1 show that the image regulariza-
tions do not provide any statistically significant improve-
ment in the target metric.

Generated Dataset Size. We evaluate how the size of generated dataset impacts the convergence
process of the model. Our experiments show that one batch of 256 images is sufficient for the
optimal Feature Regression procedure (See Figure 3). In addition, it is worth noting that convergence
happens in approximately 1000 of gradient steps, which is comparable to 4 epochs of fine-tuning on
CIFAR-100 dataset.

4.2 FEATURE REGRESSION

Feature Loss Function. We evaluate different feature-based knowledge distillation losses (See Ta-
ble 2). FitNets Romero et al. (2015) and OFD Heo et al. (2019) computes L2 distance and Partial
L2 distance between teacher and student networks. In the case of Feature Regression, first gradient
updates might be unstable due to the high distance between intermediate features of original and
compressed models. This leads to a failure of Feature Regression process, as can be seen in Table 2.
AT Zagoruyko & Komodakis (2017) loss shows more stable performance during degradation recov-
ery since it computes the distance between normalized spatial attention maps. In FD loss we also
use normalization to stabilize training; we combine its Frobenius norm of the difference between
feature maps which provides natural normalization of gradients.
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Figure 3: Visualization of Feature Regression process with different generated dataset size. One
training iteration is equal to 10 gradient steps. Batch size is during feature regression is equal to
dataset size. We run each experiment 5 times with different random seeds to estimate the measure-
ment error.

Table 2: Comparison of different Feature Regression losses.

Loss type Feature Transform Distance Position Accuracy, %
FitNets None L2 Conv 1 (failed)
FitNets None L2 BN 1 (failed)
AT Attention L2 Conv 72.04
AT Attention L2 BN 72.23
OFD Margin ReLU Partial L2 BN 1 (failed)
FD (proposed) Normalization Frobenius Conv 73.66

Model Convergence. We compare fine-tuning of compressed model on real data with our data-free
Feature Regression approach. Figure 4 evidences that for CIFAR-100 dataset Feature Regression
has comparable efficiency as ordinary fine-tuning with real training data. Training curve of Feature
Regression converges faster and has more stable character.
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Figure 4: Feature Regression vs fine-tuning on real data, CIFAR-100 dataset. One training iteration
is equal to 10 gradient steps. We run each experiment 5 times with different random seeds to estimate
the measurement error.

5 EXPERIMENTS

We demonstrate our data-free model compression approach on various datasets and models with
different sizes and complexity. Firtsly, we evaluate combination of different model compression
approaches (low-rank weight approximation, unstructured pruning, structured pruning and quanti-
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zation) combined with our data-free regime on the complex ImageNet dataset (classification, 1000
classes, 224 × 224 image resolution) and compare our results with other compression methods.
Secondly, we test our approach on non-classification task - semantic segmentation. We used a pre-
trained ImageNet model shipped with Torchvision: ResNet-18 with 69.8 and 89.1 top-1 and top-5
accuracies, VGG-16 with BN – 73.4 and 91.5 top-1 and top-5 accuracies and textitResNet-50 – 76.1
and 92.9 top-1 and top-5 accuracies. For Cifar-100 experiments, we use a pre-trained ResNet-18
model with 77.1% top-1 accuracy.

5.1 CLASSIFICATION RESULTS

Table 3: Comparison with state of the art data-
free quantization methods. ResNet-18 model,
Cifar100 dataset.

Method Settings Top-1 acc.
ZeroQ

w4a4

70.25
GDFQ 71.53
DFQ 40.35
ACIQ 54.73
ZAQ 72.67
FRanDI (Ours) 75.90

Quantization Experiments. We compare
our method against various data-free quantiza-
tion techniques for 4-bit quantization of model
weights and activations (w4a4) in ResNet-18 on
the CIFAR-100 dataset. This includes ZeroQ Cai
et al. (2020), GDFQ Shoukai et al. (2020), DFQ
Nagel et al. (2019), ACIQ Banner et al. (2019),
and ZAQ Liu et al. (2021). Table 3 demonstrates
that our method achieves a higher top-1 accuracy
within this benchmark compared to prior meth-
ods. Section A.3 in appendix shows results for
other quantization setups.

Unstructured Pruning. For experiments with unstructured pruning, we use a magnitude-based
approach Han et al. (2015b) in a one-shot fashion. Prune rates for each layer are obtained using
random sampling with a constraint on a number of non-zero model parameters. To select the best
prune model, Output Discrepancy between candidates and the original model is evaluated. To re-
cover prune model performance, Feature Regression was applied for 400 iterations while fine-tuning
on an original dataset for 200 iterations. Results are presented in Table 4.

Table 4: Results for unstructured pruning with magnitude-based approach. CR - compression ratio,
ratio of non-zero parameters in the model. Original denotes accuracy of original model, Fine-tuned
- accuracy after pruning and fine-tuning on original dataset, Recovered - accuracy after pruning and
Feature Regression.

Model Dataset CR BatchSize Top-1 Accuracy, %
Original Fine-tuned Recovered

ResNet-18 Cifar-100 0.5 256 77.10 76.12 76.62
ResNet-18 ImageNet 0.8 256 69.76 69.16 69.20
ResNet-50 ImageNet 0.5 128 76.13 72.23 72.81

Low-Rank Weight Approximation. We evaluate our data-free pipeline alongside low-rank neu-
ral network compression using Spatial-SVD convolutional layer weight factorization Kuzmin et al.
(2019). For each model, we generate synthetic data individually. Our experiments show that a sin-
gle batch is sufficient for model convergence during Feature Regression. Specifically, we generate
128 images for VGG-16 and ResNet-50, while ResNet-18 utilizes 256 images. To determine the
optimal rank set for each model, we sample 500 candidates at a specified compression ratio and
select the one with the minimal OD metric, as outlined in Subsection 3.3. In our experiments, the

Table 5: Results for low-rank neural network compression using Spatial-SVD on ImageNet dataset.
Compressed denotes accuracy after model compression, Calibrated - accuracy after BatchNorm
calibration on synthetic data, Recovered - accuracy after Feature Regression.

Model ↓FLOPs
Compressed Calibrated Recovered

Top 1 acc. Top 5 acc. Top 1 acc. Top 5 acc. Top 1 acc. Top 5 acc.
VGG-16 4 27.2 51.0 50.2 75.5 65.1 86.7
ResNet-18 2.1 39.1 64.1 57.1 80.6 65.4 86.6
ResNet-50 2 32.9 56.9 61.0 83.8 70.2 89.8
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recovery of performance degradation in compressed models converged within just 500 iterations of
Feature Regression using the SGD optimizer, with an initial learning rate of 10−3 and weight decay
set to 10−4. Table 5 presents the results of our ImageNet model compression, demonstrating that
our method successfully recovers between 25% to 37% of the top-1 accuracy drop following model
compression.

Table 6: Accuracy of the fine-tuned
model on a subset of the original
dataset after Feature Regression.

Dataset, % Top 1 accuracy, %
1 73.55± 0.03
2 73.64± 0.03
5 73.94± 0.07

10 74.00± 0.08
20 74.17± 0.06
33 74.32± 0.07
50 74.30± 0.12
100 74.41± 0.09

Mixed Mode Experiments. In certain cases of neural net-
work compression, a portion of the training data may be
accessible. In this context, we can integrate our synthetic
pipeline with the original data. Table 6 illustrates how fine-
tuning on a subset of the data can impact the performance
of a model previously reconstructed using Feature Regression
(each experiment repeated 5 times to estimate measurement
error.). Starting with just 5% of the original dataset, post-
Feature Regression fine-tuning enhances the accuracy of the
compressed model. Prior to fine-tuning, the model recovered
via Feature Regression achieved a Top-1 Accuracy of 73.81%
on the Cifar-100 dataset. This model was compressed us-
ing Spatial-SVD, resulting in a fivefold reduction in FLOPs,
while the original model had a Top-1 Accuracy of 77.1%.

5.2 SEMANTIC SEGMENTATION RESULTS

For semantic segmentation, we use model DeepLabV3+, which is trained on PASCAL VOC 2012
(21 class, 513× 513 image resolution). For this model, we generate a batch with only 16 synthetic
images. The original model has 75.88 mIoU. As we can see from Table 7, after compression,
model’s performance drops severely. Our method allows recovery of up to 55 mIoU.

Table 7: Results for low-rank neural network compression using Spatial-SVD on PASCAL VOC 2012
dataset. Compressed denotes accuracy after model compression, Calibrated - accuracy after Batch-
Norm calibration on synthetic data, Recovered - accuracy after Feature Regression.

Model FLOPs Compressed Calibrated Recovered
mIoU mIoU mIoU

DeepLabV3+ 2.5 15.25 54.83 65.10
3 5.79 37.98 58.25

6 CONCLUSION

In this paper, we propose a novel framework for Data-Free model compression. It enables all com-
ponents of an ordinary post-training neural network compression pipeline without training data:
selection of compression parameters, model calibration, and degradation recovery. To this end, we
propose a novel Output Discrepancy metric for compressed models ranking and teacher-student
based training Feature Regression approach for compressed model degradation recovery. For syn-
thetic data generation, we use a simplified DeepInversion method. Our approach allows performing
model compression using only one batch of synthetic data with convergence in just 500 iterations of
SGD. Since our method does not use data labels, it can be applied to an arbitrary architecture and
task.

ACKNOWLEDGMENTS

This work was partially supported by the joint project Artificial Intelligence for Life (AIfoL) be-
tween the University of Sharjah and the Skolkovo Institute of Science and Technology.

9



Published as a conference paper at ICOMP 2024

REFERENCES

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. ACIQ: Analytical clipping for inte-
ger quantization of neural networks, 2019. URL https://openreview.net/forum?id=
B1x33sC9KQ.

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
Zeroq: A novel zero shot quantization framework. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13169–13178, 2020.

Akshay Chawla, Hongxu Yin, Pavlo Molchanov, and Jose Alvarez. Data-free knowledge distillation
for object detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 3289–3298, January 2021.

Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu,
Chao Xu, and Qi Tian. Dafl: Data-free learning of student networks. In ICCV, 2019.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc' Aurelio Ranzato, and Nando de Freitas. Predict-
ing parameters in deep learning. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 26. Cur-
ran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/
file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf.

Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov, and Pushmeet Kohli. PerforatedCNNs:
Acceleration through elimination of redundant convolutions. In Advances in Neural Information
Processing Systems, pp. 947–955, 2016.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 28, pp. 1135–1143. 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems (NIPS), pp.
1135–1143, 2015b.

Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel Soudry. The knowledge within: Methods for
data-free model compression. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, and Jin Young Choi. A
comprehensive overhaul of feature distillation. In International Conference on Computer Vision
(ICCV), 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015. URL http://arxiv.
org/abs/1503.02531.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. In
Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.
URL http://arxiv.org/abs/1511.06530.

Andrey Kuzmin, Markus Nagel, Saurabh Pitre, Sandeep Pendyam, Tijmen Blankevoort, and Max
Welling. Taxonomy and evaluation of structured compression of convolutional neural networks.
CoRR, abs/1912.09802, 2019. URL http://arxiv.org/abs/1912.09802.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned CP-decomposition. International
Conference on Learning Representations, 2015.

Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Eagleeye: Fast sub-net evaluation for efficient
neural network pruning. In European conference on computer vision, pp. 639–654. Springer,
2020.

10

https://openreview.net/forum?id=B1x33sC9KQ
https://openreview.net/forum?id=B1x33sC9KQ
https://proceedings.neurips.cc/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1912.09802


Published as a conference paper at ICOMP 2024

Yuang Liu, Wei Zhang, and Jun Wang. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2021.

Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for deep
neural networks. CoRR, abs/1710.07535, 2017. URL http://arxiv.org/abs/1710.
07535.

Paul Micaelli and Amos J Storkey. Zero-shot knowledge transfer via adversarial belief match-
ing. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
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A APPEDNIX

A.1 SYNTHETIZED DATA VISUALIZATION

In Figure 5 one can see the visualization of several images from a synthetic dataset generated by
Resnet50 for the ImageNet classification task. Despite the images looking difficult to perceive, they
produce the statistically close feature maps in Resnet50 for Imagenet thus applicable for the quality
restoration procedure.

Figure 5: Visualization of synthetic dataset generated by Resnet50 for ImageNet classification task.

A.2 SPATIAL-SVD DETAILS

A.2.1 DECOMPOSITION DESCRIPTION

Spatial-SVD is a single-rank decomposition method that replaces initial layer by 2 layers (Fig-
ure 6): D × 1 convolution that performs convolution in vertical direction projects Ich input
channels to R channels and 1 × D convolution that performs convolution in horizontal direc-
tion projects R input channels to Och channels. The parameter and computation reduction rate
is (IchD +OchD)R/IchOchD

2.

D

1

Ich

Ich Och

D
1

R

R

Figure 6: Visualization of Spatial-SVD layer. Ich and Och denote number of input and output num-
ber of channels respectively, D denotes size of the convolutional layer, R denotes the decomposition
ranks.

A.2.2 SPATIAL-SVD RANKS FOR ABLATION STUDIES MODEL

We provide details for compression of ResNet-18 model used in ablation studies in Table 8.
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Table 8: Decomposition rank for ResNet-18 model trained on CIFAR-100 dataset which was used
in ablation studies. Original model has 77.1% top-1 accuracy. Compression ratio of decomposed
model is equal to 5.

Layer Spatial-SVD Rank
layer1.0.conv1 18
layer1.0.conv2 18
layer1.1.conv1 12
layer1.1.conv2 11
layer2.0.conv1 26
layer2.0.conv2 46
layer2.1.conv1 28
layer2.1.conv2 23
layer3.0.conv1 56
layer3.0.conv2 114
layer3.1.conv1 56
layer3.1.conv2 101
layer4.0.conv1 172
layer4.0.conv2 100
layer4.1.conv1 107
layer4.1.conv2 94

A.3 QUANTIZATION RESULTS

We also provide neural network quantization experiment results with other quantization setups and
recover degradation using feature regression with synthetic and real data. Results are presented in
Table 9.

Table 9: Accuracy for quantized model recovery using Feature Regression: ResNet18 for CIFAR-10
and CIFAR-100 datasets. FP32 CIFAR-10 model has 95.1 % accuracy, FP32 CIFAR-100 model has
77.1 % accuracy.

Dataset Settings Top-1 Accuracy, %
Before fine-tuning Real Data Synth. Data

Cifar-10

w3a3 88.4 93.1 92.4
w4a4 94.3 94.8 94.7
w4a8 94.7 94.9 94.9
w8a4 94.5 94.9 94.8

Cifar-100

w3a3 63.8 72.1 70.6
w4a4 74.4 76.2 75.9
w4a8 75.8 76.6 76.4
w8a4 75.8 76.4 76.3
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