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Abstract
We study a new connection between a technical
measure called 𝜇-conductance that arises in the
study of Markov chains for sampling convex bod-
ies and the network community profile that char-
acterizes size-resolved properties of clusters and
communities in social and information networks.
The idea of 𝜇-conductance is similar to the tradi-
tional graph conductance, but disregards sets with
small volume. We derive a sequence of optimiza-
tion problems including a low-rank semi-definite
program from which we can derive a lower bound
on the optimal 𝜇-conductance value. These ideas
give the first theoretically sound bound on the
behavior of the network community profile for a
wide range of cluster sizes. The algorithm scales
up to graphs with hundreds of thousands of nodes
and we demonstrate how our framework validates
the predicted structures of real-world graphs.

1. Introduction
One of the central themes of network science is the discov-
ery of peculiar properties that are not exhibited by random
or geometric graphs. Over the past decade, network science
has built a rich repository of data sets derived from social
network, communication networks, biological data, internet
trace data, and more. Early measurements on these networks
demonstrated skewed degree distributions, high clustering
coefficients, and community structure (Barabási & Albert,
1999; Watts & Strogatz, 1998; Newman, 2003; 2006). These
measurements led to fundamentally new mechanisms that
explain the networks (Leskovec et al., 2007; Seshadhri et al.,
2012; Bonato et al., 2014). Accurately capturing and un-
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derstanding these properties is critical to understanding the
limits of what is possible with rich empirical data in graph-
based learning (Seshadhri et al., 2020).

But many important network quantities are computationally
intractable in the worst case and are only computed by
heuristics. It is of critical importance to have rigorous theory
that can guarantee the accuracy of these measurements.

We focus on one of the most significant network character-
istics: the cluster structure (Flake et al., 2000; Newman,
2006; von Luxburg et al., 2012). Finding tightly connected
sets of vertices with few connections outside is a central
task in network analysis. This is often measured by the
conductance. The conductance of a set 𝑆 of vertices is the
normalized fraction of edges that leave the set (the normal-
ization is more involved; we give a formal definition later).

An important development in the cluster structure of real-
world networks was the discovery of set size versus con-
ductance relationships (Leskovec et al., 2008; 2009; 2010;
Gleich & Seshadhri, 2012; Jeub et al., 2015). The key find-
ing in these studies is counter-intuitive: in most real-world
datasets, we cannot find large sets of small conductance. An
example of this structure is shown in Figure 1. This finding
directly contradicts the behavior of conductance in graphs
that are derived from nearest neighbors in a geometry or
graphs commonly used in partitioning computational do-
mains, where the smallest conductance values occur in large
sets. Moreover, the definition of minimum conductance is
typically biased towards large sets (see equation (1)), but
real-world networks exhibit the opposite behavior.

The key finding is the behavior of the network community
profile (NCP). The NCP plots, for each 𝑠, the minimum con-
ductance among sets of size (technically volume) 𝑠. (Refer
to Figure 1.) Observe how the plot (the blue line) slopes
upward after an initial dip. This trend is consistent across
many real-world networks. The NCP of a typical geometric
graph slopes downwards. Currently, the NCPs are generated
entirely through principled heuristic computations. Hence,
it is difficult to guarantee the characteristic real-world behav-
ior of the NCP curve without appropriate theoretical bounds.
Our proposed algorithm is the first that can actually give a
lower bound on the minimum conductance at a fixed size 𝑠.
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Figure 1. This is a heatmap over size (measured by set volume)
and conductance values from around 630k sets identified by a
seeded PageRank conductance minimizing procedure. This picture
shows the expected and standard behavior of the size-resolved set
conductance in a real-world graph (LIVEJOURNAL social network
with around 5M vertices and 40M undirected edges). Namely, we
see that the smallest conductance sets are those that are also small
(volume less than 105 although the graph volume is 108). As sets
get larger, their conductance grows. The lower envelope of these
measurements is called the network community profile (NCP).
The key insight is that for real-world networks, these network
community profiles go up and to the right. This is a consistent
trend for many real-world social and information networks. A
weakness with this empirical finding is that there are no lower
bounds for seeded PageRank that would certify the behavior of the
overall profile. Our paper provides those bounds.

Main contributions. The primary motivating question for
our paper is: can we design theoretically rigorous algo-
rithms that give practically viable bounds for NCP?

1. Our main conceptual contribution is a connection be-
tween the technical notion of 𝜇-conductance from Markov
chain theory (Lovasz & Simonovits, 1990) and the empirical
observations from social and information networks focused
of the NCP. We discover that the interesting parts of the NCP
basically correspond to a plot of 𝜇-conductance. While this
is easy to see (in hindsight), our insight provides us with an
array of technical tools to address our main question.

2. We begin with a spectral relaxation to compute the 𝜇-
conductance. Unlike the standard relaxation for conduc-
tance that leads to the second eigenvalue, the 𝜇-conductance
program is non-convex. We give a further convex relaxation
using semi-definite programs (SDPs). Unfortunately, this
program would require super-quadratic time to solve and is
practically infeasible. We give a computationally viable low
rank formulation (but non-convex) of the SDP. We prove
that locally optimal KKT points of this optimization prob-
lem yield rigorous lower bounds for the NCP points. (This is
stated in Theorem 3.1, our main theoretical result.) We note
that this is first theoretically sound and practically viable

lower bound for the NCP.

3. The low rank SDP can be solved with over 200k nodes.
Using our algorithms (and Theorem 3.1), we provide the first
validation on the shape of the NCP on real-world data, as
first discovered in Leskovec et al. (2009). Even though our
bound is loose, our lower bound validates the characteristic
NCP plot and tracks the upward increase in conductance
for larger set volume (Figure 2). We are able to distinguish
somewhat anomalous graphs such as Deezer (Figure 2e)
with a “flat” NCP, known to occur in particularly dense real-
world networks (Jeub et al., 2015). Furthermore, with our
new tool, we are able to study, with theoretical confidence,
the NCP as the graph is “peeled” by 𝑘-core analysis.

High-level outline. We give a high-level outline of the
main ideas in our paper, and explain the chain of theoretical
insights that lead to the final practical lower bounds. Our
starting point is the notion of 𝜇-conductance, discovered in
the context of mixing bound for random walks in high di-
mensional bodies (Lovasz & Simonovits, 1990). It is defined
formally in equation (2). Simply put, the 𝜇-conductance
value is the minimal conductance restricted to sets with a
𝜇-fraction of the total graph. It was originally proposed to
improve the bounds on performance of volume sampling al-
gorithms for convex bodies and study Markov chains where
small sets need not have large conductance. One can essen-
tially generate the NCP by computing 𝜇-conductance for
varying values of 𝜇 where 𝜇 fixes the volume scale for the
sets under consideration.

But, for a given 𝜇, how to study the optimal 𝜇-conductance?
A natural starting point is the classic spectral relaxation
for the conductance of the graph. The conductance is co-
NP hard to compute, but one can consider a continuous
relaxation (Spectral Cut). This relaxation is convex and the
optimal objective is the second eigenvalue, or spectral gap,
of the Laplacian. Since the 𝜇-conductance is a constrained
version of conductance, we can adapt that constraint into the
spectral relaxation. That yields the program (3). Note that
these programs optimize over vectors, rather than sets. The
spectral program for 𝜇-conductance has extra constraints
bounding each entry of the vector. These extra constraints
lead to a non-convex program, showing how computing
𝜇-conductance is significantly harder than conductance.

We now make a further relaxation, wherein we replace
the vector by a positive semi-definite matrix. This relax-
ation leads to the semi-definite program (SDP) given in (4).
SDPs are convex programs, but the number of variables
is quadratic in the number of vertices. This program is
infeasible for graphs with even tens of thousands of nodes.

To get a practically viable optimization problem, we for-
mulate a low rank version of the SDP, stated in (5). But
this problem is non-convex and cannot be solved globally.
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(a) ASTROPH (b) HEPPH (c) EMAIL-ENRON

(d) FACEBOOK-PAGE (e) DEEZER (f) DBLP

Figure 2. Using the theory and algorithms proposed in this paper, we show the empirical network community profile along with our new
lower bound for 6 real-world networks (the green line is our lower bound). This is the first guarantee on the behavior of these profiles that
establishes a smooth transition from the sets of small conductance to sets of larger conductance. Note that this does not occur for all
networks. For example, the Deezer network displays a flat profile until 𝜇 becomes really large, and our results confirm that we should not
expect better small conductance sets. The gap between the measured conductances is expected because our analysis only gives a rough,
yet informative, lower bound.

We now arrive at the deepest technical insight in our re-
sult. Consider locally optimal KKT points of the low rank
(non-convex) SDP. We do a careful comparison of the KKT
conditions of the convex program (4) and the low rank, non-
convex (5). We discover that KKT points of (5) satisfy all
KKT conditions of (4), barring one dual feasibility con-
straint. The violation of this constraint gives a bound on
how far the low-rank KKT points are from the original SDP
optimum. So, we can subtract out this violation from the
objective of the low-rank KKT point, and get a provably
correct lower bound on the SDP objective (which is a lower
bound on the 𝜇-conductance).

Our code to solve these problems is available from
https://github.com/luotuoqingshan/

mu-conductance-low-rank-sdp.

Potential implications for random walks. Random walks
are a central tool in modern network analysis. A common
practice in graph-based learning and embedding is to use
a random process to sample a region of the graph (Perozzi
et al., 2014; Grover & Leskovec, 2016; Tang et al., 2015).
Likewise, there are many results that attempt to estimate
quantities based on a random sample of a graph (Leskovec
& Faloutsos, 2006; Ahmed et al., 2010; Ribeiro & Towsley,
2010; Maiya & Berger-Wolf, 2011; Ribeiro & Towsley,
2012; Ahmed et al., 2014). Many of these results have a

theoretical bound that depends on the mixing time of the
random walk (Dasgupta et al., 2014; Chierichetti et al., 2016;
Chierichetti & Haddadan, 2018), which is bounded by the
conductance. As the NCPs show, the minimum conductance
may be quite small, but only because of sets of small size. So
global properties of the graph might not be affected by such
small sets. Our new 𝜇-conductance theory suggests that
the standard mixing time bounds (based on conductance)
may be quite pessimistic when the sampling involves a large
set in the graph. It is likely that 𝜇-conductance gives a
better estimate of the mixing time for many applications and
studying this is an exciting direction for future work.

2. Preliminaries and Technical Setting
Throughout the paper, we work with undirected graphs. Our
methods and definitions are applicable to graphs with non-
negative edge weights. Assume, without loss of generality,
the vertices 𝑉 are labeled from 1 to 𝑛. Let 𝐸 be the set
of edges (we assume both (𝑖, 𝑗) and ( 𝑗 , 𝑖) are in 𝐸 for an
undirected graph). Let 𝑨 be the symmetric adjacency matrix
where 𝐴𝑖, 𝑗 = 𝐴 𝑗 ,𝑖 is equal to the edge weight, or is just 1 for
an unweighted graph, and 𝐴𝑖, 𝑗 is 0 for each non-edge. Let 𝑆
be a set of vertices in the graph and let 𝑆 be the complement
set 𝑆 = 𝑉 \ 𝑆. The notation 𝜕𝑆 indicates is the number
of edges (or total edge weight) needed to separate the set
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𝑆 from the rest of the graph: 𝜕𝑆 =
∑

(𝑖, 𝑗 ) ∈𝐸,𝑖∈𝑆, 𝑗∈�̄� 𝐴𝑖, 𝑗 .
The notation Vol(𝑆) is the sum of edges involving vertices
in 𝑆: Vol(𝑆) =

∑
(𝑖, 𝑗 ) ∈𝐸,𝑖∈𝑆 𝐴𝑖, 𝑗 . By convention, we set

Vol(𝐺) = Vol(𝑉). We write 1 for the vector all ones, so
Vol(𝐺) = 1T𝑨1 and Tr(·) denotes the trace.

The conductance of a set of vertices is

𝜙(𝑆) = 𝜕𝑆

min{Vol(𝑆),Vol(𝑆)}
. (1)

In principle, minimizing conductance finds sets where
Vol(𝑆) is large and 𝜕𝑆 is small. Thus, it is interesting that
empirical NCPs suggest that the best conductance sets are
not the largest. The 𝜇-conductance of a graph is

𝜙𝜇 (𝐺) = minimize
𝑆⊂𝑉

𝜙(𝑆)
subject to 𝜇Vol(𝐺) ≤Vol(𝑆) ≤Vol(𝐺)/2.

(2)

Here we adopt a slightly different definition from Lovasz
and Simonovits’s original paper. The definitions are similar
in spirit as they both neglect sets with volume smaller than
a specific volume but the original one involves a perturbed
conductance. Note that if the set of smallest conductance in
the graph 𝐺 is large with Vol(𝑆) ≈ Vol(𝐺)/2, then there is
no difference between the 𝜇-conductance and conductance
values. It is only for graphs with hypothetical real-world
NCP structure that we expect to see interesting behavior
from 𝜇-conductance.

2.1. Cheeger Inequalities and Spectral Cuts

The Cheeger inequality gives a two-sided bound to the set
of best conductance in a graph via an eigenvector com-
putation (Chung, 2007; Cheeger, 1969). Our manuscript
focuses on lower bounding the conductance of sets, rather
than upper-bounding them, so we are only concerned with
one side of the Cheeger inequality. The eigenvector com-
putation uses the Laplacian matrix 𝑳 = 𝑫 − 𝑨, where 𝑫 is
a diagonal matrix of row-sums of 𝑨, that is, 𝑫 = Diag(d)
where d = 𝑨1. Formally, let

𝜆2 = minimize
x∈R𝑉

xT𝑳x

subject to xT𝑫x = 1, xTd = 0.

(Spectral Cut)

The value 𝜆2 is the second smallest generalized eigenvector
of 𝑳x = 𝜆𝑫x. This eigenvector problem is called a spectral
cut because x𝑇𝑳x computes a cut in the graph that we have
relaxed over the space of eigenvectors. It is well-known that

𝜆2/2 ≤ min
𝑆⊂𝑉

𝜙(𝑆).

2.2. Network Community Profiles

Network community profiles are typically computed by
running either seeded PageRank (Andersen et al., 2006),

Algorithm 1 MuConductanceLowRankSDPLowerBound
Require: A graph 𝐺, a scalar 𝜇, and rank parameter 𝑘
Ensure: A lower bound on 𝜙𝜇 (𝐺)

1: Compute a KKT point of (5) (e.g. using an Augmented
Lagrangian and LBFGSB as in Section 4).

2: Let 𝒀∗ be the solution of (5) at KKT
3: Let 𝜃 be the value from Lemma 3.5, found via an eigen-

value computation.
4: Return 1

2 (Tr(𝒀∗𝑳𝒀∗) − 𝜃 · min{1, (1−𝜇)𝑛
𝜇Vol(𝐺) }).

a flow improvement algorithm (Lang & Rao, 2004; An-
dersen & Lang, 2008), or a customized procedure (Gleich
& Seshadhri, 2012) over a large number of random seeds
with parameters designed to explore a variety of set sizes as
in (Leskovec et al., 2009; Jeub et al., 2015). Formally, the
NCP is the lower envelop of the size-vs-conductance over all
sets in the graph (see the lower bound in Figure 1). We find
it useful to display a heatmap over all sets sampled in addi-
tion to the lower envelop. Further related concepts are the
spectral profile and balanced cuts, see Appendix B.1,B.2.

3. Main Theorem
The main theorem of our paper is a computable and infor-
mative lower bound on the 𝜇-conductance of a graph.

Theorem 3.1. Let 𝐺 be a connected, undirected graph. Fix
0 ≤ 𝜇 ≤ 1/2. Let 𝒀∗ and 𝜃 be from Algorithm 1. Then

1
2 (Tr(𝒀∗𝑳𝒀∗) − 𝜃 · min{1, (1 − 𝜇)𝑛

𝜇Vol(𝐺) }) ≤ 𝜙𝜇 (𝐺).

This theorem yields an a posteriori bound as we have no a
priori guarantee on the value of 𝜃. In practice, 𝜃 is small,
around 10−3 or 10−4 in most cases.

To prove the main theorem, we work through successive
transformations of optimization problems that produce
lower bounds on 𝜇-conductance. The first is a spectral
program akin to (Spectral Cut). This is relaxed into a com-
putable SDP. That does not scale to larger problems, and
so we translate it into a (non-convex) low-rank SDP. The
low-rank SDP can only be locally optimized. Consequently,
we derive an a posteriori bound by showing that any lo-
cal minimizer of the low-rank SDP problem is related to a
perturbed SDP.

3.1. A Spectral Program for 𝜇-conductance

The problem (Spectral Cut) is equivalently stated
min xT𝑳x

xT𝑫x s.t. x𝑇d = 0. This form makes a more direct
relationship with conductance since if x𝑆 is an indicator
vector for a set 𝑆, xT

𝑆
𝑳x𝑆 = 𝜕𝑆, and xT

𝑆
𝑫x𝑆 is Vol(𝑆). To

satisfy xT
𝑆
d = 0 and xT

𝑆
𝑫x𝑆 = 1, as in (Spectral Cut) we
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(a) 𝜇 = 0.03 (b) 𝜇 = 0.3

Figure 3. We show a vector from the rank-1 approximation of
optimal SDP solution 𝑿 on a synthetic graph with 537 nodes and
1327 edges. The vector is shown as colored markers and as sorted
values. The graph is constructed to have a small, good conductance
set at the center. This shows that as 𝜇 increases, the solution vector
delocalizes over the entire network to respond to other sets of
reasonably small conductance.

shift and re-scale x𝑆 to

𝝍𝑆 =

√︂
Vol(𝐺)

Vol(𝑆)Vol(�̄�)
(
x𝑆 − Vol(𝑆)

Vol(𝐺) 1
)
.

The problem with spectral cut is that if the set of minimal
conductance is small, the solution x is often highly local-
ized. In order to model 𝜇-conductance, consider a set 𝑆 with
volume about 𝜇Vol(𝐺) and further consider the scaled and
shifted indicator vector 𝝍𝑆 on this set. Then we find that

|𝑥𝑖 | ≥
√︃

𝜇

(1−𝜇)Vol(𝐺) and |𝑥𝑖 | ≤
√︃

1−𝜇
𝜇Vol(𝐺) . This suggests

that if we expect x to indicate a large set, something where
min(Vol(𝑆),Vol(𝑆)) large, then the elements of x should be
small, but not too small, and delocalized. Thus we add con-
straints to spectral cut (Spectral Cut) to bound the entries,
either the infinity norm or maximum of x and to separate
small entries around zero. This should help spread the mass
of x over the graph as in Figure 3 (where we look at the
solution based on the forthcoming SDP). Consequently, we
pose the following modified spectral cut

𝜆𝜇 = minimize
x∈R𝑉

xT𝑳x

subject to xT𝑫x = 1, xTd = 0 (a, b)

∥x∥∞ ≤
√︃

1−𝜇
𝜇Vol(𝐺) (c)

|x𝑖 | ≥
√︃

𝜇

(1−𝜇)Vol(𝐺) (d)

(3)

In particular, the parameter 𝜇 in this program corresponds
to the one in 𝜇-conductance. Notice that for any set 𝑆 with
volume less than 𝜇Vol(𝐺), 𝝍𝑆 is not in the feasible region
of (3). Although the optimal solution of (3) does not have
to follow the form of 𝝍𝑆 , we believe constraints (𝑐) and (𝑑)
will rule out small and localized sets.

In addition, we have lim𝜇→0+ 𝜆𝜇 = 𝜆2. Even stronger, for
all 𝜇 ≤ some 𝜇∗, we have 𝜆𝜇 = 𝜆2. Thus as 𝜇 gets close to
0, program (3) simplifies to program (Spectral Cut).

Lemma 3.2. For 0 ≤ 𝜇 ≤ 1/2, 𝜆𝜇

2 ≤ 𝜙𝜇 (𝐺).

This is analogous to “easy side” of the Cheeger inequality
that creates a vector from the optimal set. The full proof of
this is in Appendix A.1.

3.2. A Semi-definite Program for 𝜇-conductance

We are not aware of any existing techniques to directly solve
the problem in the form (3). However, it can be relaxed into
a semi-definite program (SDP).

𝜆
sdp
𝜇 = minimize

𝑿⪰0
Tr(𝑳𝑿)

subject to Tr(𝑫𝑿) = 1,Tr(ddT𝑿) = 0
Diag(𝑿) ≤ 1−𝜇

𝜇
1

Vol(𝐺)
Diag(𝑿) ≥ 𝜇

1−𝜇
1

Vol(𝐺) .

(4)

The derivation of this relaxation is standard (we walk
through it in Appendix A.2 for completeness). It follows
from replacing x with the symmetric positive semi-definite
matrix 𝑿 = xx𝑇 and writing the constraints in an equivalent
fashion, then relaxing over all symmetric positive semi-
definite matrices. This gives the expected result

Lemma 3.3. For 0 ≤ 𝜇 ≤ 1/2, we have 𝜆sdp
𝜇 ≤ 𝜆𝜇.

Interestingly, when 𝜇 = 1
2 , our (4) is equivalent to the minim-

ium bisection SDP lower bound (Burer & Monteiro, 2003)
used in Leskovec et al. (2009, section 5.2) up to scale, which
is a previously known lower bound for network community
profiles at exactly half the volume. Formally, we have the
following relationship.

Lemma 3.4.
1
2
𝜆

sdp
1/2 =

2
Vol(𝐺) C𝐺 .

where C𝐺 is the optimum of the minimum bisection SDP.
The proof is included in Appendix A.3.

3.3. A Low-rank Program for 𝜇-conductance

The problem with (4) is that it has 𝑛2 variables, which means
the running time will be worse than 𝑂 (𝑛3) in most cases,
and may be 𝑂 (𝑛6) in the worst case. Thus it’s difficult to get
a high-precision solution on graphs with more than a few
thousand nodes, which makes it impractical for graphs with
tens or hundreds of thousand nodes. However, notice that
this program only contains 𝑂 (𝑛) constraints, thus this pro-
gram admits an optimal solution with rank at most 𝑂 (

√
𝑛)

(Lemon et al., 2016). This motivates us to change this pro-
gram to a low-rank SDP formulation via Burer-Monterio
method (Burer & Monteiro, 2003). Under some mild as-
sumptions, the Burer-Monterio method has good optimality
and convergence guarantee (Boumal et al., 2016; Cifuentes,
2021; Cifuentes & Moitra, 2022). We factorize the posi-
tive semi-definite matrix 𝑿 into 𝒀𝒀T and introduce slack
variables s to simplify the inequality constraints to simple
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bounding box constraints. After these transformations, we
arrive at the low-rank program

𝜆
lrsdp
𝜇 =minimize

𝒀 ∈R𝑛×𝑘
Tr(𝒀T𝑳𝒀)

subject to Tr(𝒀T𝑫𝒀) = 1, ∥𝒀Td∥2
𝐹
= 0 (𝑒, 𝑓 )

Diag(𝒀𝒀T) + s = 1−𝜇
𝜇Vol(𝐺) 1 (𝑔)

s ≥ 0 (ℎ)
s ≤ 1−2𝜇

𝜇 (1−𝜇)
1

Vol(𝐺) . (𝑖)

(5)

Here 𝑘 is the rank parameter we can tune and we know if
𝑘 = Ω(

√
𝑛), then 𝜆

lrsdp
𝜇 = 𝜆

sdp
𝜇 .

3.4. Establishing an Overall Bound

However, the drawback of (5) is non-convexity, which
makes it hard to be solved globally. Instead we consider
the KKT points of (5). Since (5) is not convex, satisfy-
ing KKT conditions of it is no longer sufficient for global
optimality. But if we compare the KKT conditions of (4)
and (5) closely, we observe that the KKT points of (5) di-
rectly satisfy all KKT conditions of (4) except one dual
feasibility condition. And the violation of this condition
characterizes how far the KKT points of the low-rank pro-
gram is away from the optimum of the SDP. Formally, let
𝜆 ∈ R, 𝛽 ∈ R, 𝜸 ∈ R𝑛, g ∈ R𝑛, ℓ ∈ R𝑛 be Lagrangian mul-
tipliers corresponding to constraints (𝑒), ( 𝑓 ), (𝑔), (ℎ), (𝑖),
then we have the following important observation.
Lemma 3.5. For a primal-dual pair 𝒀∗, s∗, 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗
satisfying the KKT conditions of (5), denote

𝜃 = −min{0, 𝜆min (𝑳 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗))},

then we have

Tr(𝒀∗T𝑳𝒀∗) − 𝜃 · min{1, (1 − 𝜇)𝑛
𝜇Vol(𝐺) } ≤ 𝜆

sdp
𝜇 .

Basically this Lemma states that if the dual variable 𝒁 =

𝑳 − 𝜆𝑫 − 𝛽ddT − Diag(𝜸) is not positive semi-definite,
then we can still lower bound the optimum of the SDP (4)
by subtracting a quantity related to this violation from the
objective of (5). The full proof of this is in Appendix A.4.

Summing up all the Lemmas we get, we now have

1
2
(Tr(𝒀∗T𝑳𝒀∗) − 𝜃 · min{1, (1 − 𝜇)𝑛

𝜇Vol(𝐺) })

≤ 1
2
𝜆

sdp
𝜇 ≤ 1

2
𝜆𝜇 ≤ 𝜙𝜇 (𝐺).

This concludes the proof of Theorem 3.1.

4. Methods
In order to solve the non-convex low-rank SDP (5), we use
an augmented Lagrangian approach. The augmented La-
grangian method is an iterative algorithm where in each

iteration we minimize a function including the original
objective, the estimated Lagrangian multipliers, and the
penalty term which drives the solution into feasible region.
It has been shown in practice that the augmented Lagrangian
method achieves good performance in solving low-rank SDP
problems (Burer & Monteiro, 2003).

Let 𝜎 be the coefficient for the penalty term and 𝜆, 𝛽, 𝜸
be the Lagrangian multipliers defined in Section 3.4. The
augmented Lagrangian for (5) without the bounding box
constraint (ℎ) and (𝑖) is

L𝐴(𝒀 , s;𝜆, 𝛽, 𝜸, 𝜎)
= Tr(𝒀T𝑳𝒀) − 𝜆(Tr(𝒀T𝑫𝒀) − 1) − 𝛽(dT𝒀𝒀Td)

− 𝜸T (Diag(𝒀𝒀T) + s − (1−𝜇)
𝜇

1
Vol(𝐺) )

+ 𝜎

2

(
(Tr(𝒀T𝑫𝒀) − 1)2 + (dT𝒀𝒀Td)2

+ ∥ Diag(𝒀𝒀𝑇 ) + s − (1−𝜇)
𝜇

1
Vol(𝐺) ∥

2
2

)
.

In each iteration, we solve the following subproblem

minimize
𝒀 ,s

L𝐴(𝒀 , s;𝜆, 𝛽, 𝜸, 𝜎)

subject to 0 ≤ s ≤ 1−2𝜇
𝜇 (1−𝜇)

1
Vol(𝐺)

(6)

using a Limited-Memory BFGS method with bound con-
straints on variables (Byrd et al., 1995). Since L-BFGS-B is
a quasi-Newton Method, it requires the gradient of L𝐴 with
regard to variables 𝒀 and s. Let

u = Diag(𝒀𝒀T) + s − 𝜇

(1 − 𝜇)Vol(𝐺) 1,

we have

∇𝒀L𝐴 = 2𝑳𝒀 − 2(𝜆 − 𝜎(Tr(𝒀T𝑫𝒀) − 1))𝑫𝒀
− 2(𝛽 − 𝜎dT𝒀𝒀Td)ddT𝒀

− 2
(
(𝜸 − 𝜎u)1T

)
◦ 𝒀 ,

∇sL𝐴 = −𝜸 + 𝜎u

where ◦ is the element-wise or Hadamard product.

After each solve, we update the multipliers and penalty
parameters following Alg 17.4 of Nocedal & Wright (1999).

Initialization and the rank parameter 𝑘 . As L-BFGS-B
is a quasi-Newton method, convergence is faster when the
starting point is close to the optimal solution. We initialize
𝒀 by the 𝑘 eigenvectors corresponding to the 𝑘 smallest non-
zero eigenvalues of normalized Laplacian 𝑫−1/2𝑳𝑫−1/2.
This is based on the observation that when 𝑘 = 1, program
(5) degenerates to program (3) and the Fiedler vector re-
mains the optimal solution for small 𝜇.

Comparison against SDP solvers. For small enough prob-
lems, we can solve both the SDP (4) as well as the low-rank
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SDP (5). Therefore we compare our LRSDP with them on
two small synthetic graphs with 85 and 537 vertices. We
intentionally construct the two synthetic graphs with a dense
core that has minimal conductance and localizes the Fiedler
vector. (See Figure 3 and discussion of the construction in
Appendix C.1.) We compare the solvers for different 𝜇s on
each graph and the results are summarized in Table 1. These
show that our LRSDP has objective values extremely close
to solving the SDPs directly and is much faster.

Non-monotonic results. The results from 𝜇-conductance
must be monotonic. That is, for 𝜇1 ≥ 𝜇2, we must have
𝜙𝜇1 ≥ 𝜙𝜇2 by set inclusion properties of the 𝜇-conductance
function. Because we have a lower bound, we found scenar-
ios where the lower bounds were not monotonically increase
in 𝜇. Since our investigations typically involve multiple val-
ues of 𝜇, we simply adjust the bounds to reflect the tightest
lower bound from any value of 𝜇 that we computed. Practi-
cally, this corresponds to taking a stepwise maximum over
the experimental results.

5. Experiments
In this section, we revisit the lower bounds from the intro-
duction (Figure 2). We then explore how the running time
of our programs is affected by graph size, 𝜇, and rank pa-
rameter 𝑘 . Further, although directly tracking the true NCP
is co-NP hard, we are still able to study the gap between the
true NCP and our lower bound by a squeeze bound or gap
shrinking analysis. In the end we do one interesting 𝑘-core
analysis on one graph using our algorithm, which reveals
the potential for use in other network analysis tasks.

5.1. Computational Details

When solving the subproblem (6) in our augmented La-
grangian procedure, we use L-BFGS-B with 𝑚 = 3. We set
the default tolerance of stationarity condition and primal fea-
sibility condition of our augmented Lagrangian as 10−5. For
each dataset, we pick a set of 𝜇s varying from 10−6 to 0.4
which is dense enough to form an informative lower bound
curve. We exhaustively try 𝑘 from {1, 3, 5, 10}. To generate
the NCP plots, we empirically sample a large number of
sets from a seeded PageRank based method (Andersen et al.,
2006). Specifically, we randomly sample a large collection
of seeds and then try different 𝜀 ranging from 10−2 to 10−8.
For each seeded PageRank we get, we perform a sweepcut
to get several sets with good 𝜇-conductance.

5.2. Summary of Key Findings from Introduction

The main figure for our experiments is Figure 2. This shows
the lower bounds on the NCPs produced by our procedure.
We test our procedure on AstroPh , HepPh (Leskovec et al.,
2007), Email-Enron (Leskovec et al., 2009), Facebook-

Figure 4. Gap shrinking effect illustrated on HepPh. The upper
three line plots are the NCPs determined by different number of
sets. This shows the more sets we search using seeded PageRank,
the smaller the gap between the NCP and our lower bound.

Page (Rozemberczki et al., 2019), Deezer (Rozemberczki &
Sarkar, 2020) and DBLP (Boldi & Vigna, 2004; Boldi et al.,
2011). Their sizes are in Table 2. We can see although there
is a gap between our lower bound and the NCP generated
by seeded PageRank, our algorithm provides an informative
lower bound which mirrors the trend of the NCP plot.

5.3. Running Time

We illustrate the effects of graph size, 𝜇, and rank parameter
𝑘 on the running time of our program. The results are
summarized in Table 3. We can clearly observe that with
graph size or rank parameter increasing, the running time
increases but roughly linearly. This is expected because
each iteration of L-BFGS-B takes linear time with regard
to number of variables. Also, we can see with 𝜇 increasing,
the running time tends to increase as well. The intuition is
that with 𝜇 increasing, the feasible region of the low-rank
program shrinks, which makes optimization harder. Also,
our initialization favors smaller 𝜇.

5.4. Gap Shrinking

Our theory gives a lower bound on the 𝜇-conductance scores.
To study how close our lower bound can be to the true 𝜇-
conductance score which is co-NP hard to compute, we
study how close an upper bound of the 𝜇-conductance score
can be to our lower bound. This kind of squeeze bound gives
an indirect way to estimate the real gap. In order to explore
how tight our lower bound is, in other words how small the
gap can be, for the HepPh graph, we dramatically increase
the number of samples of sets from seeded PageRank. The
results are summarized in Figure 4. We see that our lower
bound is not that loose: about 1/3 off.
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Table 1. To validate that the LRSDP (5) and SDP (4) are similar on problems where we can compute both, we examine their objective
values on two small synthetic graphs (e.g. Figure 3). We choose two established SDP solvers, SCS (O’Donoghue et al., 2016) and Mosek
(ApS, 2022). This shows that LRSDP gives nearly identical results and is much faster. Here LB stands for the lower bound provided by
our low-rank program, which theoretically should be a lower bound for objective value of all SDP solutions. Empirically some objective
values are lower than this bound because numerically they do not strictly satisfy all primal feasibility conditions.

NODES EDGES 𝜇 OBJECTIVE VALUE BOUND TIME

LRSDP SCS MOSEK LB LRSDP SCS MOSEK

85 193
0.01 0.004407 0.004407 0.004406 0.004398 0.7 S 16.7 S 5.3 S
0.05 0.004510 0.004511 0.004508 0.004499 2.1 S 18.4 S 4.9 S
0.25 0.007318 0.007223 0.007314 0.007292 1.8 S 18.2 S 6.0 S

537 1327

0.01 0.001092 0.001089 0.001081 0.001083 17.8 S 1.6 HRS 16.9 HRS
0.03 0.001115 0.001113 0.001092 0.001056 17.3 S 12.2 HRS 15.6 HRS
0.1 0.001444 0.001440 0.001428 0.001390 21.0 S 56.7 MIN 13.4 HRS
0.3 0.002733 0.002732 0.002731 0.002720 11.8 S 1.8 HRS 18.8 HRS

Table 2. Network Datasets. We report the number of vertices and
edges of the largest connected component with self-loops removed.

DATASET |𝑉 | |𝐸 |
HEPPH 11,204 117,619
ASTROPH 17,903 196,972
FACEBOOK-PAGE 22,470 170,823
DEEZER-EUR 28,281 92,752
EMAIL-ENRON 33,696 180,811
DBLP 226,413 716,460

5.5. Investigation with 𝑘-cores

In order to show the potential of applying our method to
broader network analysis tasks, we apply our low-rank pro-
gram to analyze the NCP of 𝑘-cores of a graph (Seidman,
1983). The inspiration for this study is a discussion over
whether the NCP represents a signal or noise mode of a
graph (Zhang & Rohe, 2018). The core number of a vertex
in a graph is the largest integer 𝑘 such that the process of
repeatedly removing vertices with degree less than 𝑘 will
not delete this vertex from the graph. So the 1-core is the
entire graph. The 2-core is there result of sequentially delet-
ing all degree 1 nodes. By analyzing the NCP of 𝑘-cores
with various 𝑘 , we can have a deeper understanding of the
structure of a network. The results are summarized in Fig-
ure 5. These show that the NCP structure is preserved for
Email-Enron up through the 5-core and is largely preserved
at the 7-core. While this single experiment does not to re-
solve the question of signal vs. noise for the NCP, it does
show how our tools could be used to study it.

5.6. Comparison with Other Lower Bounds

Besides our 𝜇-conductance lower bound, there are two previ-
ously known lower bounds for network community profiles
mentioned in (Leskovec et al., 2009), one spectral bound
induced by Cheeger inequality and the Fiedler vector that is
independent of volume and the other is given by the mini-

Table 3. This table summarizes the running time on two graphs
with a few different 𝜇 and 𝑘 choices. We report the running time
of the augmented Lagrangian method (ALM) for solving low-rank
SDP and eigenvalue computation (EIGVAL) for calculating the
dual feasibility violation separately.

GRAPH 𝜇 𝑘 TIME

ALM EIGVAL

HEPPH
|𝑉 | = 11204
|𝐸 | = 117619

0.001
3 1.7 MIN 30.8 S
5 3.4 MIN 48.1 S
10 6.2 MIN 36.6 S

0.1
3 1.8 HRS 21.4 MIN
5 3.1 HRS 12.9 MIN
10 6.9 HRS 23.0 MIN

DBLP
|𝑉 | = 226413
|𝐸 | = 716460

0.001
3 21.8 HRS 3.1 HRS
5 1.8 DAYS 3.5 HRS
10 2.6 DAYS 8.7 HRS

0.1
3 1.6 DAYS 1.9 HRS
5 3.4 DAYS 33.6 MIN
10 3.1 DAYS 5.6 HRS

mum bisection SDP. To get a comprehensive understanding
of how our lower bound behaves compared with existing
lower bounds we compare on two graphs. As is shown in
Lemma 3.4, the minimum bisection SDP lower bound is
actually equivalent to ours at 𝜇 = 1

2 , here we directly solve
our low-rank SDP at 𝜇 = 1

2 instead of solving the minimum
bisection SDP. The results on AstroPh and HepPh graphs are
shown in Figure 6. These show that we smoothly interpolate
between the bounds as expected.

5.7. Impact of Rank on the Lower Bound

The rank parameter 𝑘 plays a key role in our solution. As is
shown in Section 5.3, a higher 𝑘 will slow down the compu-
tation. It also impacts the a posterori bound we achieve. We
study this tradeoff here. The results on AstroPh and HepPh
graphs are shown in Figure 7. We do not observe a strong
pattern. Consequently, we recommend setting 𝑘 = 5 as a
pragmatic middle ground.
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Figure 5. 𝑘-core analysis on Email-Enron.

Figure 6. Comparison with spectral lower bounds (bottom green
line) and minimum bisection SDP lower bounds (purple point
at right) on two graphs Astro (Left) and HepPh (Right) graphs.
We can observe that our 𝜇-conductance is capable of offering a
lower bound at more positions and provides the expected smooth
interpolation between these bounds that had been missing from
existing approaches.

6. Discussion and Future work
The theorem and algorithm here allows a complete charac-
terization of the network community profile for graphs with
over 200,000 vertices. This, in turn, has implications on
random sampling on real-world graphs as discussed in the
introduction. There were some theoretical datapoints known
regarding bounds on the NCP. For instance, the position of
the spectral partitioning set and the associated Cheeger in-
equality gives one point in the size-vs-conductance space.
Another point arises from SDP-based methods (Leskovec
et al., 2009) (Section 5.2) for bisection splits. Our tools are
the first to interpolate between the two with robust bounds.

Our methods involve choosing a rank parameter, a value
of 𝜇, as well as tolerances associated with the L-BFGS-B
based procedure. These can have non-trivial interactions.
Typically, we find that the values of 𝜃 involved in the lower
bound are small (think 10−4). In a counter-intuitive obser-
vation, we found instances where using a weaker or higher
tolerance values results in better or larger lower bounds on
the 𝜇-conductance value because the value of 𝜃 was changed.

Figure 7. The effect of rank parameter 𝑘 on the lower bound il-
lustrated on Astro (Left) and HepPh (Right). We observe that
different 𝑘 exhibit comparable curves but extremely small 𝑘 will
get worse lower bounds.

In other scenarios, we found values of 𝜇 where we could not
find a way to adjust rank and tolerance to make the value of
𝜃 small enough. This made the lower bound was extremely
loose (or even negative in some scenarios). Our choice of
overall parameters tends to minimize this.

Although we have focused on lower bounds in this
manuscript (in the interest of space). In a related line of
work line of work, we have developed a two-sided bound on
(3), the 𝜇-conductance spectral program (Huang & Gleich,
2023). This gives a full Cheeger-like characterization of this
program. There are also numerous variants of Cheeger in-
equality (Louis et al., 2012; Kwok et al., 2013; Koutis et al.,
2014; Zhu & Gleich, 2016), including those versions using
multiple eigenvalues as well as more general weightings.
Finding a multivector and multiset generalization of these
results would be useful in a variety of scenarios.

At the moment, we are able to handle a variety of real-world
graphs, but the runtime is still slow. Computations take days
instead of hours. Scaling these algorithms up to the Live-
Journal example from Figure 1 is another challenge, with
many potential avenues including parallelization. Delocal-
ized eigenvectors for spectral clustering also arise from the
statistics perspective in terms of regularization (Amini et al.,
2013; Zhang & Rohe, 2018). Many of these techniques
involve directly regularizing the graph Laplacian by adding
a small multiple of the all ones matrix, akin to the PageRank
perturbation. We hope to study relationships between these
regularization techniques and 𝜇-conductance in the future,
especially as they would help promise much faster runtimes
via eigenvector techniques instead of low-rank SDPs.
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A. Proofs
A.1. Proof of Lemma 3.2

The first lemma gives a lower bound of 𝜙𝜇 with respect to 𝜆𝜇, the optimum of program (3).
Lemma A.1. Given 𝐺 = (𝑉, 𝐸) and 𝜇 ∈ [0, 1

2 ], we have

1
2
𝜆𝜇 ≤ 𝜙𝜇 (𝐺).

Proof. The basic idea is to find a test vector y in the feasible region of program (3) satisfying yT𝑳y ≤ 2𝜙𝜇 (𝐺). Notice that
if 𝜙𝜇 is achieved by the set 𝑇 , then vector

𝝍𝑇 =

√︃
Vol(𝐺)

Vol(𝑇 )Vol(�̄� )
(
1𝑇 − Vol(𝑇 )

Vol(𝐺) 1
)

is naturally in the feasible region of (3), where 1𝑇 is the indicator vector for set 𝑇 . As

𝝍T
𝑇𝑳𝝍𝑇 =

|𝜕𝑇 |Vol(𝐺)
Vol(𝑇)Vol(𝑇)

≤ 2|𝜕𝑇 |
min(Vol(𝑇),Vol(𝑇))

= 2Φ𝜇,

we have 𝜆𝜇 ≤ 𝝍T
𝑇
𝑳𝝍𝑇 ≤ 2Φ𝜇. □

Lemma A.1 implies that the optimal value of program (3) can function as a lower bound for the 𝜇-conductance. Furthermore,
if we solve program (3) for different 𝜇s, then the curve of 𝜆𝜇s with respect to corresponding 𝜇 can be a lower bound for the
network community profile.

A.2. Proof of Lemma 3.3

We verify all steps of the relaxation from (3) to (4) as the proof of Lemma.

From (3), let x be the variable and let 𝑿 be the rank-1 symmetric positive definite matrix 𝑿 = xxT. Then xT𝑫x = 1 is
equivalent to Tr(xT𝑫x) = Tr(𝑫xxT) = Tr(𝑫𝑿) = 1. Likewise, xTd = 0 is equivalent to (xTd)2 = Tr(xxTddT) = 0. Finally,
for the inequality constraints, ∥x∥∞ ≤ 𝛼 is equivalent to 𝑥2

𝑖
≤ 𝛼2 for all 𝑖, and a similar statement holds for the lower bound

on |𝑥𝑖 | too. Thus we arrive at
𝜆𝜇 = minimize

𝑿=xxT
Tr(𝑳𝑿)

subject to Tr(𝑫𝑿) = 1
Tr(ddT𝑿) = 0
Diag(𝑿) ≤ 1−𝜇

𝜇
1

Vol(𝐺)
Diag(𝑿) ≥ 𝜇

1−𝜇
1

Vol(𝐺) .

(7)

Note that this problem is directly equivalent to (3) because of the rank-1 condition 𝑿 = xxT. Thus we get (4) and Lemma 3.3
by relaxing the variable 𝑿 = xxT to be a symmetric positive definite matrix.

A.3. Proof of Lemma 3.4

The minimum bisection SDP is
C𝐺 = minimize

𝒀 ⪰0
1
4 Tr(𝑳𝒀)

subject to Tr(ddT𝒀) = 0
Diag(𝒀) = 1.

Proof of Lemma 3.4. When 𝜇 = 1
2 , we notice that the two inequality constraints

𝜇

1 − 𝜇

1
Vol(𝐺) ≤ Diag(𝑿) ≤ 1 − 𝜇

𝜇

1
Vol(𝐺)

13



𝜇-Conductance and Lower Bounds on the NCP

become the equality constraint Diag(𝑿) = 1
Vol(𝐺) . Further, we can verify that Tr(𝑫𝑿) = 1 is naturally satisfied when

Diag(𝑿) = 1
Vol(𝐺) . Therefore the only difference is scaling. If we let 𝑿 = Vol(𝐺)𝒀 and scale C𝐺 by 4

Vol(𝐺) , we can see the

two programs are exactly the same. Then we get 𝜆sdp
1/2 = 4

Vol(𝐺) C𝐺 . □

A.4. Proof of Lemma 3.5

To prove Lemma 3.5, we need to first make a few important observations. Here, for convenience, we relabel some programs
with informative tags.

Remember we have the following SDP relaxation for program (3)

𝜆
sdp
𝜇 = minimize Tr(𝑳𝑿)

subject to Tr(𝑫𝑿) = 1
Tr(ddT𝑿) = 0
Diag(𝑿) + s = 1−𝜇

𝜇
1

Vol(𝐺)
0 ≤ s ≤ 1−2𝜇

𝜇 (1−𝜇)
1

Vol(𝐺)
𝑿 ⪰ 0.

(𝜇-conductance SDP)

The Lagrangian dual is

𝜆sdd
𝜇 = maximize

𝜆,𝛽,𝜸,g,ℓ,𝒁
𝜆 + 1−𝜇

𝜇Vol(𝐺) 𝜸
T1 − 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) ℓ
T1

subject to 𝑳 − 𝜆𝑫 − 𝛽ddT − Diag(𝜸) − 𝒁 = 0
ℓ − g − 𝜸 = 0
ℓ ≥ 0
g ≥ 0
𝒁 ⪰ 0.

(𝜇-conductance SDD)

They have the following relation.

Lemma A.2. Strong duality holds between (𝜇-conductance SDP) and (𝜇-conductance SDD), in other words, 𝜆sdp
𝜇 = 𝜆sdd

𝜇 ,
and the optimum of (𝜇-conductance SDP) is achieved.

Proof. This is a standard SDP duality claim (for example see Vandenberghe & Boyd (1996)) implied by the fact that
(𝜇-conductance SDD) has a strictly feasible solution 𝜆 = −1, 𝛽 = −1, 𝜸 = 1, ℓ = 21, g = 1. □

Observe that the objective and all constraints of (𝜇-conductance SDP) are affine with regard to variables 𝑿 and s, so the
KKT conditions are sufficient for optimality (see Section 5.5.3 of Boyd et al. (2004) for example).

Lemma A.3. The following KKT conditions are sufficient for a primal-dual pair 𝑿∗, s∗ and 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗, 𝒁∗ to be an
optimal solution. The primal feasibility conditions are

Tr(𝑫𝑿∗) = 1
Tr(ddT𝑿∗) = 0
Diag(𝑿∗) + s∗ = 1−𝜇

𝜇Vol(𝐺) 1
0 ≤ s∗ ≤ 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) 1
𝑿∗ ⪰ 0,

(8)

and dual feasibility conditions are
𝑳 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗) − 𝒁∗ = 0
ℓ∗ − g∗ − 𝜸∗ = 0
ℓ∗ ≥ 0
g∗ ≥ 0
𝒁∗ ⪰ 0,

(9)
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and the complementary slackness conditions are

g∗Ts∗ = 0
ℓ∗T ( 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) 1 − s∗) = 0
Tr(𝑿∗𝒁∗) = 0.

(10)

Note that the stationarity conditions of program (𝜇-conductance SDP) is a subset of the dual feasibility conditions, so we do
not list them out.

Recall the low-rank SDP we propose is as follows

𝜆
lrsdp
𝜇 = minimize

𝒀 ∈R𝑛×𝑘 ,s
Tr(𝒀T𝑳𝒀)

subject to Tr(𝒀T𝑫𝒀) = 1
Tr(ddT𝒀𝒀T) = 0
Diag(𝒀𝒀T) + s = 1−𝜇

𝜇Vol(𝐺) 1
0 ≤ s ≤ 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) 1.

(𝜇-conductance LRSDP)

Basically we just factorize 𝑿 into 𝒀𝒀T. So it is intuitive it has a strong connection with (𝜇-conductance SDP). In fact, it
turns out, for a primal-dual pair 𝒀∗, s∗ and 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗ satisfying the KKT conditions of (𝜇-conductance LRSDP), let

𝑿∗ = 𝒀∗𝒀∗T

𝒁∗ = 𝑳 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗)

then 𝑿∗, s∗ and 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗, 𝒁∗ are a primal-dual pair which almost satisfies all KKT conditions of
(𝜇-conductance SDD), except

𝒁∗ ⪰ 0.

It’s easy to verify the claim above because we have the following fact.

Lemma A.4. For a primal-dual pair 𝒀∗, s∗ and 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗ to satisfy all KKT conditions of (𝜇-conductance LRSDP),
they need to satisfy the stationarity conditions

(𝑳 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗))𝒀∗ = 0
ℓ∗ − 𝜸∗ − g∗ = 0,

(11)

and primal feasibility conditions
Tr(𝒀∗T𝑫𝒀∗) = 1
Tr(ddT𝒀∗𝒀∗T) = 0
Diag(𝒀∗𝒀∗T) + s∗ = 1−𝜇

𝜇Vol(𝐺) 1
0 ≤ s∗ ≤ 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) 1,

(12)

and dual feasibility conditions
ℓ∗ ≥ 0
g∗ ≥ 0,

(13)

and the complementary slackness conditions

g∗Ts∗ = 0
ℓ∗T ( 1−2𝜇

𝜇 (1−𝜇)Vol(𝐺) 1 − s∗) = 0.
(14)

Therefore if 𝒁∗ ⪰ 0 is violated, the objective of (𝜇-conductance LRSDP) at KKT points may deviate from 𝜆
sdp
𝜇 .

However, we observe that we can bound this deviation by the violation extent of 𝒁∗ ⪰ 0.

Denote
𝜃 = −min{0, 𝜆min (𝑳 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗))}.
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If 𝜃 = 0, then all KKT conditions of (𝜇-conductance SDP) are satisfied, which means 𝒀∗, s∗ achieves global optimality.

If 𝜃 > 0, we consider the following perturbed variant for (𝜇-conductance SDP).

𝜆
sdp
𝜇 = minimize Tr((𝑳 + 𝜃 𝑰)𝑿)

subject to Tr(𝑫𝑿) = 1
Tr(ddT𝑿) = 0
Diag(𝑿) + s = 1−𝜇

𝜇
1

Vol(𝐺)
0 ≤ s ≤ 1−2𝜇

𝜇 (1−𝜇)
1

Vol(𝐺)
𝑿 ⪰ 0.

(Perturbed 𝜇-conductance SDP)

Basically we add 𝜃 into objective and keep feasible region unchanged.

Denote its dual optimum by 𝜆sdd
𝜇 , we can similarly show that strong duality holds, in other words 𝜆sdp

𝜇 = 𝜆sdd
𝜇 and 𝜆

sdp
𝜇 is

achieved.

Now for a primal-dual pair 𝒀∗, s∗ and 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗ satisfying all KKT conditions of (𝜇-conductance LRSDP), let

𝑿∗ = 𝒀∗𝒀∗T

𝒁∗ = 𝑳 + 𝜃 𝑰 − 𝜆∗𝑫 − 𝛽∗ddT − Diag(𝜸∗),

then the variables 𝑿∗, s∗ and multipliers 𝜆∗, 𝛽∗, 𝜸∗, g∗, ℓ∗, 𝒁∗ satisfy all the KKT conditions of
(Perturbed 𝜇-conductance SDP) but the following complementary slackness condition is violated

Tr(𝒁∗𝑿∗) = 0,

instead we have
Tr(𝒁∗𝑿∗) = 𝜃 Tr(𝑿∗).

Since all other conditions are satisfied, we know the dual value at this point is

Tr
(
(𝑳 + 𝜃 𝑰)𝑿∗) − Tr(𝒁∗𝑿∗) = Tr(𝑳∗𝑿∗).

Thus we know
Tr(𝑳∗𝑿∗) ≤ 𝜆sdd

𝜇 = 𝜆
sdp
𝜇 ,

which means the objective value at a KKT point of (𝜇-conductance LRSDP) is actually upper bounded by the optimum of
the perturbed SDP (Perturbed 𝜇-conductance SDP).

Indeed, we are able to bound the gap between 𝜆sdp
𝜇 and 𝜆sdp

𝜇 . Assume 𝑿opt, sopt achieves the optimum of (𝜇-conductance SDP).
Because the feasible region of (Perturbed 𝜇-conductance SDP) is same with that of (𝜇-conductance SDP), we know that

𝜆
sdp
𝜇 ≤ Tr((𝑳 + 𝜃 𝑰)𝑿opt) = 𝜆

sdp
𝜇 + 𝜃 · Tr(𝑿opt) ≤ 𝜆

sdp
𝜇 + 𝜃 · min{1, (1 − 𝜇)𝑛

𝜇Vol(𝐺) },

where the last inequality is due to the fact that Tr(𝑫𝑿opt) = 1 and Diag(𝑿opt) ≤ 1−𝜇
𝜇Vol(𝐺) 1.

Therefore piecing all things together, we get

Tr(𝑳∗𝑿∗) ≤ 𝜆
sdp
𝜇 ≤ 𝜆

sdp
𝜇 + 𝜃 · min{1, (1 − 𝜇)𝑛

𝜇Vol(𝐺) }.

We remark that the gap 𝜃 · min{1, (1−𝜇)𝑛
𝜇Vol(𝐺) } has the potential to be further tightened, which brings us a better posterior bound.

The intuition is that assuming 𝑿opt = 𝑿∗, then we can turn it into 𝜃 · Tr(𝑿∗) where 𝑿∗ is what we know because it is 𝒀∗𝒀∗T

and 𝒀∗ is the solution returned by our augmented Lagrangian method. In general, whenever there is some non-trivial relation
between trace of 𝑿∗ and 𝑿opt, we can get a non-trivial tighter bound. We also note that in a further literature review, we
found that Lemma 3.5 can be derived from Boumal et al. (2016, Theorem 4).
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Figure 8. Three different notions of a network profile. The left figure shows a sketch of the Leskovec et al. (2009) network community
profile, which measures the smallest conductance of sets with a given volume. The spectral profile (Goel et al., 2006; Raghavendra et al.,
2010) is the dark line in the middle figure that measures relaxations of sets with volume up to 𝑟 fraction of the maximum volume. The
𝜇-conductance profile (Lovasz & Simonovits, 1990), the dark line in the right figure, measures the conductance of sets with at least a 𝜇

fraction of the total volume.

B. Other Related Work
B.1. Spectral Profile

The spectral profile or conductance profile (Goel et al., 2006; Raghavendra et al., 2010) is another related graph profile, with
a key difference and distinction. These conductance profiles study the behavior of sets with size up to a given fraction of the
volume. In our notation,

𝜙𝑟max (𝐺) = minimize
𝑆⊂𝑉

𝜙(𝑆)
subject to Vol(𝑆) ≤ 𝑟Vol(𝐺).

(15)

Formally, they study spectral profiles, which are related to eigenvalues, but these are within a factor of 2 of the conductance
values. We illustrate the differences between the profile we are interested in, these spectral profiles, and the network
community profile (Leskovec et al., 2009; Jeub et al., 2015) in Figure 8. A network community profile just measures the
minimum conductance of sets with a given size (technically we use the volume measure throughout this manuscript), which
is swept over all possible sizes. (Typically, the given size is taken to be an approximation to make the curve look more
smooth.) Here, we have shown a characteristic network community profile as described in Leskovec et al. (2009) (and
illustrated in Figure 1) and annotated it with the features that give rise to the characteristic shape.

B.2. Balanced Cut

Balanced cut is another common problem that seeks to find a set, or group of sets, that are balanced with respect to the size
of the graph. It has traditionally been important in parallel computing where balance implies equally distributed workloads.
This is similar to 𝜇-conductance with the size of the vertex set instead of volume. Although this is related to the NCP,
the techniques for balanced cut tend to focus on good approximation algorithms. Since many of these techniques give
approximation algorithms with unknown or hidden constants, they cannot directly translate into lower bounds. It is likely
that a suitable adaptation of our techniques might also give lower bounds for balanced cuts as well.

C. Additional Information
C.1. Synthetic graph construction

The synthetic graphs we use are designed to have a dense core with a geometric like periphery. To do this, we first randomly
picking coordinates of 𝑛 points according to normal distribution in each dimension. Then we scale the coordinates of 90%
of them by 1.5 and scale the coordinates of the left 10% by 0.1. This forms a small dense piece at the center. In the end we
link each point to its five geometrically closest neighbors.
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