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ABSTRACT

Multi-Agent Reinforcement Learning (MARL) has demonstrated significant suc-
cess by virtue of collaboration across agents. Recent work, on the other hand,
introduces surprise which quantifies the degree of change in an agent’s environ-
ment. Surprise-based learning has received significant attention in the case of
single-agent entropic settings but remains an open problem for fast-paced dynamics
in multi-agent scenarios. A potential alternative to address surprise may be realized
through the lens of free-energy minimization. We explore surprise minimization
in multi-agent learning by utilizing the free energy across all agents in a multi-
agent system. A temporal Energy-Based Model (EBM) represents an estimate of
surprise which is minimized over the joint agent distribution. Our formulation of
the EBM is theoretically akin to the minimum conjugate entropy objective and
highlights suitable convergence towards minimum surprising states. We further
validate our theoretical claims in an empirical study of multi-agent tasks demanding
collaboration in the presence of fast-paced dynamics.

sites.google.com/view/surprise-web/

1 INTRODUCTION

The rise of RL has led to an increasing interest in the study of multi-agent systems (Lowe et al., 2017;
Vinyals et al., 2019), commonly known as Multi-Agent Reinforcement Learning (MARL). In the
case of partially observable settings, MARL enables the learning of policies with centralised training
and decentralised control (Kraemer & Banerjee, 2016). This has proven to be useful for exploiting
value-based methods which motivate collaboration across large number of agents. But how do agents
behave in the presence of sudden environmental changes?

Consider the problem of autonomous driving wherein a driver (agent) autonomously operates a
vehicle in real-time. The driver learns to optimize the reward function by maintaining constant
speed and covering more distance in different traffic conditions. Whenever the vehicle approaches
an obstacle, the driver acts to avoid it by utilizing the brake and directional steering commands.
However, due to the fast-paced dynamics of the environment, say fast-moving traffic, the agent may
abruptly encounter an obstacle (a person running across the street) which may result in a collision.
Irrespective of the optimal action (pushing of brakes) executed by the agent, the vehicle may fail to
evade the collision as a result of the abrupt temporal change.

The above arises as a consequence of surprise, which is defined as a statistical measure of uncertainty.
Surprise minimization (Berseth et al., 2019) is a recent phenomenon observed in the case of single-
agent RL methods which deals with environments consisting of rapidly changing states. In the case
of model-based RL (Kaiser et al., 2019), surprise minimization is used as an effective planning tool in
the agent’s model (Berseth et al., 2019) whereas in the case of model-free RL, surprise minimization
is witnessed as an intrinsic motivation (Achiam & Sastry, 2017; Macedo et al., 2004) or generalization
problem (Chen, 2020). On the other hand, MARL does not account for surprise across agents as a
result of which agents remain unaware of drastic changes in the environment (Macedo & Cardoso,
2005). Thus, surprise minimization in the case of multi-agent settings requires attention from a
critical standpoint.

A potential pathway to treat surprising states may be realized in light of free-energy minimization.
The free-energy principle depicts convergence to local niches and provides a general recipe for
cognitive stability among agents. Through this lens, we unify surprise with free-energy in the
multi-agent setting. We construct a temporal EBM which represents an estimate of surprise agents
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may face in the environment. All agents jointly minimize this estimate utilizing temporal difference
learning upon their value functions and the EBM. Our formulation of free-energy minimization
is theoretically akin to minimizing the entropy in conjugate gradient space. This insight provides
a suitable convergence result towards minimum surprising states (or niches) of the agent state
distributions. In an empirical study of multi-agent tasks which present significant collaboration
bottlenecks and fast-paced dynamics, we validate our theoretical claims and motivate the practical
usage of EBMs in MARL.

2 RELATED WORK

Surprise Minimization: Despite the recent success of value-based methods (Mnih et al., 2016;
Hessel et al., 2017) RL agents suffer from spurious state spaces and encounter sudden changes in
trajectories. Quantitatively, surprise has been studied as a measure of deviation (Berseth et al., 2019;
Chen, 2020) among states encountered by the agent during its interaction with the environment. While
exploring (Burda et al., 2019; Thrun, 1992) the environment, agents tend to have higher deviation
among states which is gradually reduced by gaining a significant understanding of state-action
transitions. In the case of model-based RL, agents can leverage spurious experiences (Berseth et al.,
2019) and plan effectively for future steps. On the other hand, in the case of model-free RL, surprise
results in sample-inefficient learning (Achiam & Sastry, 2017). This is primarily addressed by
making use of rigorous exploration strategies (Stadie et al., 2015; Lee et al., 2019). High-dimensional
exploration further requires extrinsic feature engineering (Kulkarni et al., 2016) and meta models
(Gupta et al., 2018). A suitable way to tackle high-dimensional dynamics is by utilizing surprise
as a penalty on the reward (Chen, 2020). This leads to improved generalization for single-agent
interactions (Ren et al., 2005). Our proposed approach is orthogonal to the aforesaid methods.

Energy-based Models: EBMs have been successfully implemented in single-agent RL methods
(O’Donoghue et al., 2016; Haarnoja et al., 2017). These typically make use of Boltzmann distributions
to approximate policies (Levine & Abbeel, 2014). Such a formulation results in the minimization of
free energy within the agent. While policy approximation depicts promise in the case of unknown
dynamics, inference methods (Toussaint, 2009) play a key role in optimizing goal-oriented behavior.

A second type of usage of EBMs follows the maximization of entropy (Ziebart et al., 2008). The max-
imum entropy framework (Haarnoja et al., 2018b) highlighted in Soft Q-Learning (SQL) (Haarnoja
et al., 2017) allows the agent to obey a policy which maximizes its reward and entropy concurrently.
Maximization of agent’s entropy results in diverse and adaptive behaviors (Ziebart, 2010) which may
be difficult to accomplish using standard exploration techniques (Burda et al., 2019; Thrun, 1992).
The maximum entropy framework is akin to approximate inference in the case of policy gradient
methods (Schulman et al., 2017). Such a connection between likelihood ratio gradient techniques and
energy-based formulations leads to diverse and robust policies (Haarnoja, 2018) and their hierarchical
extensions (Haarnoja et al., 2018a) which preserve the lower levels of hierarchies. In the case of
MARL, EBMs have witnessed limited applicability as a result of the increasing number of agents and
complexity within each agent (Buşoniu et al., 2010). While the probabilistic framework is readily
transferable to opponent-aware multi-agent systems (Wen et al., 2019), cooperative settings consisting
of coordination between agents require a firm formulation of energy which is scalable in the number
of agents (Grau-Moya et al., 2018) and accounts for environments consisting of spurious states (Wei
et al., 2018). Our theoretical formulation is motivated by these methods in literature.

3 PRELIMINARIES

3.1 MULTI-AGENT LEARNING

We review the cooperative MARL setup. The problem is modeled as a Dec-Partially Ob-
servable Markov Decision Process (POMDP) (Oliehoek & Amato, 2016) defined by the tuple
(S,A, r,N, P, Z,O, γ) where the state space S and action space A are discrete, r : S × A →
[rmin, rmax] presents the reward observed by agents a ∈ N where N is the set of all agents,
P : S × S ×A → [0,∞) presents the unknown transition model consisting of the transition proba-
bility to the next state s′ ∈ S given the current state s ∈ S and joint action u ∈ A (a combination
of each agent’s action ua ∈ Aa) at time step t and γ is the discount factor. We consider a partially
observable setting in which each agent n draws individual observations z ∈ Z according to the
observation function O(s, u) : S × A → Z. We consider a joint policy πθ(u|s) as a function of
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model parameters θ. Standard RL defines the agent’s objective to maximize the expected discounted
reward Eπθ [

∑T
t=0 γ

tr(st, ut)] as a function of the parameters θ. The joint action-value function
for agents is represented as Q(u, s; θ) = Eπθ [

∑T
t=1 γ

tr(s, u)|s = st, u = ut] which is the ex-
pected sum of payoffs obtained in state s upon performing action u by following the policy πθ. We
denote the optimal policy πθ∗( shorthand π∗) such that Q(u, s; θ∗) ≥ Q(u, s; θ)∀s ∈ S, u ∈ A.
In the case of multiple agents, the joint optimal policy can be expressed as the Nash Equi-
librium (Nash, 1950) of the Stochastic Markov Game as π∗ = (π1,∗, π2,∗, ...πN,∗) such that
Q(ua, s; θ∗) ≥ Q(ua, s; θ)∀s ∈ S, u ∈ A, a ∈ N . Q-Learning is an off-policy, model-free al-
gorithm suitable for continuous and episodic tasks. The algorithm uses semi-gradient descent to
minimize the Temporal Difference (TD) error in Equation 1.

L(θ) = E
s,u,s′∼R

[(
r + γmax

u′∈A
Q(u′, s′; θ−)−Q(u, s; θ)

)2
]

(1)

where y = r + γmax
u′∈A

Q(u′, s′; θ−) is the TD target consisting of θ− as the target parameters andR
denotes the replay buffer.

3.2 ENERGY-BASED MODELS

EBMs (LeCun et al., 2006; 2007) have been successfully applied in the field of machine learning
(Teh et al., 2003) and probabilistic inference (MacKay, 2002). A typical EBM E formulates the
equilibrium probabilities (Sallans & Hinton, 2004) P (v, h) = exp (−E(v,h))∑

v̂,ĥ[exp (−E(v̂,ĥ))]
via a Boltzmann

distribution (Levine & Abbeel, 2014) where v and h are the values of the visible and hidden variables
and v̂ and ĥ are all the possible configurations of the visible and hidden variables respectively. The
probability distribution over all the visible variables can be obtained by summing over all possible
configurations of the hidden variables. This is mathematically expressed in Equation 2.

P (v) =

∑
h exp (−E(v, h))∑
v̂,ĥ exp (−E(v̂, ĥ))

(2)

Here, E(v, h) is called the equilibrium free energy which is the minimum of the variational free
energy and

∑
v̂,ĥ exp (−E(v̂, ĥ)) is the partition function.

4 ENERGY-BASED SURPRISE MINIMIZATION

We begin by constructing surprise minimization as an energy-based problem in the temporal setting.
The motivation behind an energy-based formulation stems from rapidly changing states as an unde-
sired niche among agents in the case of partially-observed settings. To steer agents away from this
niche, we further construct a method which incorporates the theoretical aspect of the study.

4.1 THE SURPRISE MINIMIZATION OBJECTIVE

To make analysis tractable towards valid function spaces and surprising states, we take into account
two assumptions which form the central basis of surprise minimization among multiple agents.

Assumption 1. (Completeness of value function space) The space Π : S ×A of all Q value
functions Q(s, u) ∈ Π, ∀s ∈ S, ∀u ∈ A is a nonempty complete metric space.

Assumption 1 restricts the formulation of individual agent value functions Qa to the nonempty
complete metric space. A nonempty space confirms the presence of candidate functions Qa upper
bounded by the optimal function Q∗, i.e.- Qa ≤ Q∗, ∀a ∈ N (Bertsekas & Tsitsiklis, 1995). The
completeness counterpart, on the other hand, provisions a fixed interior int Π for optimization (Boyd
& Vandenberghe, 2004).
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Assumption 2. (Constant surprise at Equilibrium) In the limit of convergence lim
πa→π∗

to an

optimal policy π∗, all agents a ∈ N incur a finite surprise ζ > 0 between consecutive states
s and s′ until termination state sT .

Assumption 2 is directly based on the constant and continuous temporal aspect of surprise minimiza-
tion (Schwartenbeck et al., 2013; Friston, 2010). Corresponding to the lifetime of each agent a ∈ N ,
a desired ecological niche bakes in the optimal distribution of actions which correspond to minimum
yet finite instantaneous surprise.

We formulate the energy-based objective consisting of surprise as a function of states s, joint actions u
and standard deviation σ of observations for each agent a. In the case of high-dimensional state spaces
(such as multiple opponents), σ informs agents of the abrupt statistical change that would take place
upon executing action u. We formulate surprise as T V asurp(s, u, σ) which serves as an uncertainty
quantifier Unc(s,a) of the state-action distribution. Here V asurp(s, u, σ) denotes the surprise value
function which serves as a mapping from agent and environment dynamics to surprise. Define an
operator presented in Equation 3 which sums surprising configurations across all agents.

T V asurp(s, u, σ) = log

N∑
a=1

exp
(
V asurp(s, u, σ)

)
(3)

Remark 1. T V asurp(s, u, σ) intuitively provides a global estimate of surprise. If all agents are equally
likely to face a surprising state, then T V asurp(s, u, σ) captures their individual contributions.
The formulation makes use of the soft-maximum operator (Asadi & Littman, 2017). The operator
T V asurp(s, u, σ) is similar to prior energy formulations (Haarnoja et al., 2017) where the energy
across different actions is evaluated. In our case, inference is carried out across all agents with actions
as prior variables. However, in the special case of using an EBM as a Q-function, our approach
suitable generalizes to the above methods (details in Appendix B).

Our choice of T V asurp(s, u, σ) is based on its unique mathematical properties which result in better
convergence. Of these properties, the most useful result is that T forms a contraction on the surprise
value function V asurp(s, u, σ) indicating a guaranteed minimization of surprise within agents. This
is formally stated in Theorem 1 while utilizing the completeness criterion of Assumption 1 which
provides a tractable value function space. All proofs are deferred to Appendix A.

Theorem 1. Given a surprise value function V asurp(s, u, σ) ∀a ∈ N , the energy operator
T V asurp(s, u, σ) = log

∑N
a=1 exp (V asurp(s, u, σ)) forms a contraction on V asurp(s, u, σ).

Theorem 1 provides a suitable guarantee of T V asurp(s, u, σ) converging to a fixed point niche. The
contraction result is directly based on Banach’s fixed point property and suggests the generalization
of convergence in any nonempty complete metric space (X, d) (Bertsekas & Tsitsiklis, 1995).

We now consider a weighted combination of Q(s, u) with T V asurp(s, u, σ) wherein we denote β as a
temperature parameter,

Q̂(u, s; θ) = Q(u, s; θ) + β log

N∑
a=1

exp (V asurp(s, u, σ))) (4)

Remark 2. Equation 4 is an instance of value function regularization wherein the Q values are
subject to a joint penalty while observing surprising states.

Interestingly, upon considering the Legendre transform f∗(x) (Boyd & Vandenberghe, 2004; Gao &
Pavel, 2017) (convex conjugate function corresponding to the conjugate space X of a differentiable
function f(z)) of T V asurp(s, u, σ), we obtain the following,

f∗(x) = sup
z∈dom f

(
xTz− f(z)

)
, f(z) = T V asurp(s, u, σ) (5)

f∗(x) =
∑
x

x log(x) , x = ∇zf(z) ∈ X (6)

Remark 3. The Legendre Transform of T V asurp(s, u, σ) given by f∗(x) =
∑
x x log(x) when utilized

as value function regularization Q̂ = Q− f∗(x) corresponds to the minimum entropy formulation in

conjugate space Eπθ
[∑T

t=0 γ
t(r(st, ut)− λH(x))

]
for x = ∇zf(z) ∈ X .
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Figure 1: Agent pop-
ulations (robots) tra-
verse the energy land-
scape (in grey) during
update steps ( ) to
seek energy minima
(darker shade at cen-
ter). This results in
surprise minimization
from high ( ) to low
energy ( ) niches.

Based on the above insight, minimizing entropy to express ∇zf(z) in con-
jugate space is akin to minimizing uncertainty among all agents in the value
function space Π. Intuitively, H(x) denotes the uncertainty for each agent
a ∈ N in the multi-agent population which is directly related to its ability
of efficaciously interpreting the environment. Minimizing H(x) leads to
an increase in the expressiveness of value function. This in turn, induces
an expressive state visitation distribution which steers the agent away from
sudden changes in its environment. Note that the setting does not minimize
entropy in value function space which would stand contrary to the maximum
entropy formulation Haarnoja et al. (2018b) (see Appendix B).

Figure 1 presents an intuitive illustration of the objective. The joint agent
population aims to minimize surprise corresponding to minimum energy
configurations. Agents collaborate in partially-observed worlds to attain
a joint niche. This local niche implicitly corresponds to a fixed point of
T V asurp(s, u, σ) on the energy landscape. Note that agents act locally with
actions conditioned on their own action observation histories. It is by virtue
of preconditioned values estimations that the surprise minimization scheme
informs agents of joint surprise. Upon population’s convergence to a suitable
configuration, agents continue to experience minimum (yet finite) surprise
arising from evironment dynamics.

4.2 SURPRISE MINIMIZATION WITH FUNCTION APPROXIMATION

We utilize the above insights as surprise-based regularization in the TD learning setting. Upon
replacing Q(u, s; θ) with Q̂(u, s, ; θ) in the RL construction of Equation 1 one obtains the following,

L(θ) = E
s,u,s′∼R

1

2

(
ŷ − (Q(u, s; θ) + β log

N∑
a=1

exp (V asurp(s, u, σ)))

)2


where ŷ = r + γmax
u′
Q(u′, s′; θ−) + β log

∑N
a=1 exp (V asurp(s′, u′, σ′)). Collecting the log terms

yields the following,

= E
s,u,s′∼R

1

2

(
r + γmax

u′
Q(u′, s′; θ−) + β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2


L(θ) = E
s,u,s′∼R

[
1

2

(
r + γmax

u′
Q(u′, s′; θ−) + βE −Q(u, s; θ)

)2]
(7)

Here, E is defined as the surprise ratio. The surprise value function V asurp(s′, u′, σ′) is expressed as
the negative free energy and

∑N
a=1 exp (V asurp(s, u, σ)) as the partition function of a conventional

EBM described in Equation 2. Alternatively, V asurp(s, u, σ) can be formulated as the negative free
energy with

∑N
a=1 exp (V asurp(s′, u′, σ′)) as the partition function. The TD objective incorporates

the minimization of surprise across all agents as minimizing the energy in spurious states.

Remark 4. The above formulation of βE can be realized as intrinsic motivation steering the agent
towards subgoals with reduced surprise.

The energy formulation E provides a tractable distribution over all surprising configurations in the
state space S . This guarantees convergence to minimum surprise at optimal policy π∗ and is formally
expressed in Theorem 2 (see Appendix C for a detailed convergence analysis).

Theorem 2. Upon agent’s convergence to an optimal policy π∗, total energy of π∗, expressed
by E∗ will reach a thermal equilibrium consisting of minimum surprise among consecutive
states s and s′.
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Theorem 2 demonstrates an intuitive convergence result of agent populations collaborating to reside
in a mutual ecological niche (Friston, 2010). The multi-agent population with minimum surprise
exhibits the optimal policy π∗ which results in minimum energy corresponding to each surprising
state in the state distribution S . Orthogonally, agents may continue to experience finite and constant
surprise in the long-horizon while acting optimally to visit non-surprising and rewarding states. This
presents surprise minimization as a secondary surrogate objective in MARL.

4.3 ENERGY-BASED MIXER (EMIX)

Figure 2: The EMIX architecture for learning surprise across global states.

Based on our theoretical analysis, we incorporate learning of surprise as global intrinsic motivation
across all agents in the multi-agent system. A global estimate of surprise, following the energy
operator T V asurp(s, u, σ), is befitting from a computational perspective as well. An individual
estimate of surprise for each agent may be intractable to obtain due to the non-stationarity of the
environment. Instead, we seek to minimize surprise jointly across all agents using an expressive
Energy-based MIXer (EMIX) architecture which is compatible with any multi-agent RL algorithm.
Figure 2 illustrates our learning scheme.

Learning of surprise in the high-dimensional value function space is cumbersome with the number
of actions scaling linearly in the number of agents. This imposes an inherent restriction to learn
global surprise efficaciously across all agents at a given timestep. Towards this goal, EMIX encodes
individual value functions Q1, Q2, ... Qn corresponding to each agent using local value encoders.
These encoders capture the local change in value functions arising over subsequent TD learning
iterations (Wang et al., 2021). A global state encoder maps environment states s1, s2, ... sT to
a low dimensional representation. Further, a state deviation encoder encodes deviations across all
states s1, s2, ... sT within the given batch. Akin to a model-based method (Janner et al., 2019),
the state deviation encoder accounts for uncertainty in an agent’s state visitation distribution. Note
that the encoder does not construct an explicit model of states, but only represents their variation
in the agent’s environment. This insight is essential to account for abrupt dynamics encountered
by agents. Representations obtained from state and value function encoders are concatenated and
compressed using a final surprise encoder which estimates a distribution of surprise values. The
distribution implicitly represents the density of states wherein an agent may encounter most surprise.
A value estimate V asurp(s, u, σ) sampled from the surprise distribution depicts the variational free
energy configuration upon application of T which serves as global intrinsic motivation. Practical
training of EMIX proceeds with backpropagation (Rumelhart et al., 1986) using gradient descent and
the reparameterization trick (Kingma & Welling, 2014) for sampling of V asurp(s, u, σ).
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4.4 PRACTICAL IMPLEMENTATION

Algorithm 1 Energy-based MIXer (EMIX)

1: Initialize φ, θ, θ−1 ..., θ
−
m, agent and hypernetwork parameters.

2: Initialize learning rate α, temperature β and replay bufferR.
3: for environment step do
4: u←− (u1, u2..., uN )
5: R ←− R∪ {(s, u, r, s′)}
6: if |R| > batch-size then
7: for random batch do
8: Qθtot ←− Mixer-Network(Q1, Q2..., QN , s)
9: Qθ

−

i ←− Target-Mixeri(Q1, Q2..., QN , s
′), ∀i = 1, 2..,m

10: Calculate σ and σ′ using s and s′
11: V asurp(s, u, σ)←− Surprise-Mixer(s, u, σ)
12: V asurp(s′, u′, σ′)←− Target-Surprise-Mixer(s′, u′, σ′)

13: E ←− log

(∑N
a=1 exp (V asurp(s

′,u′,σ′))∑N
a=1 exp (V asurp(s,u,σ))

)
14: Calculate L(θ) using E in Equation 7
15: θ ←− θ − α∇θL(θ)
16: end for
17: end if
18: if update-interval steps have passed then
19: θ−i ←− θ,∀i = 1, 2..,m
20: end if
21: end for

Algorithm 1 presents the EMIX framework (in green) combined with QMIX Rashid et al. (2018),
an off-the-shelf MARL algorithm. The total Q-value Qθtot is computed by the mixer network with
its inputs as the Q-values of all the agents conditioned on s via the hypernetworks. Similarly, the
target mixers approximate Qθ

−

i conditioned on s′. In order to evaluate surprise within agents, we
compute the standard deviations σ and σ′ across all observations z and z′ for each agent using s and s′
respectively. The surprise value function, called the Surprise-Mixer, estimates surprise V asurp(s, u, σ)
conditioned on s, u and σ. The same computation is repeated using the Target-Surprise-Mixer for
estimating surprise V asurp(s′, u′, σ′) within next-states in the batch. Application of the energy operator
along the non-singleton agent dimension for V asurp(s, u, σ) and V asurp(s′, u′, σ′) yields the energy
ratio E which is used in Equation 7 to evaluate L(θ). We then use batch gradient descent to update
parameters of the mixer θ. Target parameters θ−i are updated every update− interval steps.

5 EXPERIMENTS

Our experiments aim to evaluate the theoretical claims presented by EMIX along with its performance
to prior MARL methods. Specifically, we aim to answer the following questions- (1) How does the
provision of an EBM for surprise minimization compare to current MARL methods?, and (2) Does
the algorithm validate the theoretical claims corresponding to its components?

5.1 ENERGY-BASED SURPRISE MINIMIZATION

We assess the validity of EMIX, when combined with QMIX, on multi-agent StarCraft II microman-
agement scenarios (Samvelyan et al., 2019) as these consist of a larger number of agents with different
action spaces. This in turn motivates a greater deal of coordination. Additionally, micromanagement
scenarios in StarCraft II consist of multiple opponents which introduce a greater degree of surprise
within consecutive states.

We compare our method to prior methods namely; (1) QMIX (Rashid et al., 2018), constituting
of nonlinear value function factorization with monotonicity constraints; (2) Value Decomposition
Networks (VDN) (Sunehag et al., 2018), consisting of linear additive factorization of Q function;
(3) Counterfactual Multi-Agent Policy Gradients (COMA) (Foerster et al., 2017), which consist of
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Scenarios EMIX SMiRL-QMIX QMIX VDN COMA IQL
2s vs 1sc 90.33 ± 0.72 88.41 ± 1.31 89.19 ± 3.23 91.42 ± 1.23 96.90 ± 0.54 86.07 ± 0.98

2s3z 95.40±0.45 94.93±0.32 95.30±1.28 92.03±2.08 43.33±2.70 55.74±6.84
3m 94.90±0.39 93.94±0.22 93.43±0.20 94.58±0.58 84.75±7.93 94.79±0.50

3s vs 3z 99.58±0.07 97.63±1.08 99.43±0.20 97.90±0.58 0.21±0.54 92.32±2.83
3s vs 4z 97.22±0.73 0.24±0.11 96.01±3.93 94.29±2.13 0.00±0.00 59.75±12.22
3s vs 5z 52.91±11.80 0.00±0.00 43.44±7.09 68.51±5.60 0.00±0.00 18.14±2.34

3s5z 88.88±1.07 88.53±1.03 88.49±2.32 63.58±3.99 0.25±0.11 7.05±3.52
8m 94.47±1.38 89.96±1.42 94.30±2.90 90.26±1.12 92.82±0.53 83.53±1.62

8m vs 9m 71.03±2.69 69.90±1.94 68.28±2.30 58.81±4.68 4.17±0.58 28.48±22.38
10m vs 11m 75.35±2.30 77.85±2.02 70.36±2.87 71.81±6.50 4.55±0.73 32.27±25.68

so many baneling 95.87±0.16 93.61±0.94 93.35±0.78 92.26±1.06 91.65±2.26 74.97±6.52
5m vs 6m 37.07±2.42 33.27±2.79 34.42±2.63 35.63±3.32 0.52±0.13 14.78±2.72

Table 1: Comparison of success rate percentages between EMIX and prior MARL methods on
StarCraft II micromanagement scenarios. EMIX is comparable to or improves over QMIX agent. In
comparison to SMiRL-QMIX, EMIX demonstrates improved minimization of surprise. Results are
averaged over 5 random seeds.

counterfactual actor-critic updates in a centralized critic; and (4) Independent Q Learning (IQL)
(Tan, 1993), wherein each agent acts independent of other agents. (5) In order to compare our
surprise minimization scheme against pre-existing mechanisms, we compare EMIX additionally to a
model-free implementation of SMiRL (Berseth et al., 2019) in QMIX. We use the generalized version
of SMiRL as it demonstrates reduced variance across batches (Chen, 2020). This implementation
is denoted as SMiRL-QMIX for comparisons. Details related to the implementation of EMIX are
presented in Appendix D.

Table 1 presents the comparison of success rate percentages between EMIX and prior MARL algo-
rithms on 12 StarCraft II micromanagement scenarios. Corresponding to each scenario, algorithms
demonstrating higher success rate values in comparison to other methods have their entries high-
lighted in bold (see Appendix E.2 for a statistical analysis). Out of the 12 scenarios considered,
EMIX presents higher success rates on 9 of these scenarios depicting the suitability of the proposed
approach. In cases of so many baneling and 5m vs 6m having large number of opponents and a
greater level of surprise, EMIX aptly improves over prior methods.

When compared to QMIX, EMIX depicts improved success rates on all of the 12 scenarios. On
comparing EMIX with SMiRL-QMIX, we note that EMIX demonstrates a higher average success
rate. This highlights the suitability of the energy-based scheme in the case of a larger number of
agents and complex environment dynamics for surprise minimization.

5.2 ABLATION STUDY

We now present the ablation study for the various components of EMIX. Our experiments aim to
determine the effectiveness of the energy-based surprise minimization method. Additionally, we
also aim to evaluate the utility of dual approximators for surprise estimation in accordance with the
precept from RL literature (Hasselt et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018b).

5.2.1 EMIX OBJECTIVE

Figure 3: Ablations for each of EMIX’s component. When
compared to QMIX, EMIX and TwinQMIX depict im-
provements in performance and sample efficiency.

To weigh the effectiveness of energy-
based scheme, we ablate the energy op-
erator T and only utilize V asurp. Since
this implementation employs dual ap-
proximators V asurp,(i) i ∈ {1, 2} for sta-
bility, we call this implementation as
TwinQMIX. Thus, we compare between
QMIX, TwinQMIX and EMIX to assess
the contributions of each of the proposed
methods.

Figure 3 presents the comparison of aver-
age success rates for QMIX, TwinQMIX and EMIX on 3 different scenarios. Agents were evaluated
for a total of 2 million timesteps with the lines in the plot indicating average success rates and the
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shaded area as the deviation across 5 random seeds. In comparison to QMIX, TwinQMIX adds
stability to the original objective by incorporating surprising estimates in the initial QMIX objective.
On comparing TwinQMIX to EMIX we note that dual approximators play little role in improving
convergence. Thus, the energy-based surprise minimization scheme is the main facet for significant
performance improvement in the modified EMIX objective. This is demonstrated in the 5m vs 6m
scenario wherein the EMIX implementation improves the performance of TwinQMIX in comparison
to QMIX by utilizing a surprise-robust policy. In the case of so many baneling scenario which
consists of a large number of opponents (27 banelings), EMIX tackles surprise effectively by pre-
venting a significant drop in performance which is observed in cases of QMIX and TwinQMIX. We
conjecture that this is a direct consequence of underestimations arising from V asurp,(i) estimates.

5.2.2 SURPRISE MINIMIZATION WITH TEMPERATURE

The importance of β can be validated by assessing its usage in surprise minimization. However, it is
difficult to evaluate surprise minimization directly as surprise value function estimates V asurp(s, u, σ)
vary from state-to-state across different agents and thus, they present high variance during agent’s
learning. We instead observe the variation of E as it is a collection of surprise-based sample estimates
across the batch. Additionally, E consists of prior samples V asurp(s, u, σ) for V asurp(s′, u′, σ′) which
makes inference across different agents tractable.

Figure 4: Variation of surprise minimization with temperature β. Learning of surprise is achieved by
making use of a suitable value of temperature parameter (β = 0.01) which controls the stability in
surprise minimization by utilizing E as intrinsic motivation.

Figure 4 presents the variation of Energy ratio E with the temperature parameter β during learning.
We compare two stable variations of E at β = 0.001 and β = 0.01. The objective minimizes
E over the course of learning and attains thermal equilibrium with minimum energy. Intuitively,
equilibrium corresponds to convergence to optimal policy π∗ which validates the claim in Theorem 2.
With β = 0.01, EMIX presents improved convergence and surprise minimization for 5 out of the 6
considered scenarios, hence validating the suitable choice of β. On the other hand, a lower value of
β = 0.001 does little to minimize surprise across agents.

6 DISCUSSION

In this paper, we presented an energy-based perspective towards surprise minimization in multi-
agent RL. Towards this goal we introduce EMIX, an energy-based intrinsic motivation framework
for surprise minimization in MARL algorithms. EMIX utilizes a temporal EBM to estimate and
minimize surprise jointly across all agents. Our theoretical claims on the formulation of minimization
of temporal energy with surprise are corroborated upon utilizing EMIX on a suite of challenging
MARL tasks requiring significant collaboration under fast-paced dynamics.

While EMIX serves as a practical example of EBMs in cooperative MARL, it presents several new
avenues for future work. We shed light on 3 such aspects,

(1) Provision of an energy-based model naturally raises the question of how can we efficiently sample
from the surprise distribution? Advances in sampling methods depict promise towards this aspect.

(2) Although suitable for lower dimensions, the scalability of EBMs towards high dimensional
action spaces remains an open question. We conjecture that the utility of density-based methods and
generative models can address the scalability gap.

(3) Lastly, the extension of an EBM framework to opponent-aware and competitive MARL settings
presents a suitable tangent for learning multi-agent roles. Provision of an EBM for learning minimum
energy role configurations would do away with the need for multi-stage training and complex
exploration strategies. We leave the aforesaid as potential directions for future work.
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A PROOFS

Theorem 1. Given a surprise value function V asurp(s, u, σ)∀a ∈ N , the energy operator
T V asurp(s, u, σ) = log

∑N
a=1 exp (V asurp(s, u, σ)) forms a contraction on V asurp(s, u, σ).

Proof. We follow the process of (Asadi & Littman, 2017). Let us first define a norm on surprise
values ||V1 − V2|| ≡ max

s,u,σ
|V1(s, u, σ)− V2(s, u, σ)|. Suppose ε = ||V1 − V2||,

log

N∑
a=1

exp (V1(s, u, σ)) ≤ log

N∑
a=1

exp (V2(s, u, σ) + ε)

= log

N∑
a=1

exp (V1(s, u, σ)) ≤ log exp (ε)

N∑
a=1

exp (V2(s, u, σ))

= log

N∑
a=1

exp (V1(s, u, σ)) ≤ ε+ log

N∑
a=1

exp (V2(s, u, σ))

= log

N∑
a=1

exp (V1(s, u, σ))− log

N∑
a=1

exp (V2(s, u, σ)) ≤ ||V1 − V2|| (8)

Similarly, using ε with log
∑N
a=1 exp (V1(s, u, σ)),

log

N∑
a=1

exp (V1(s, u, σ) + ε) ≥ log

N∑
a=1

exp (V2(s, u, σ))

= log exp (ε)

N∑
a=1

exp (V1(s, u, σ)) ≥ log

N∑
a=1

exp (V2(s, u, σ))

= ε+ log

N∑
a=1

exp (V1(s, u, σ)) ≥ log

N∑
a=1

exp (V2(s, u, σ))

= ||V1 − V2|| ≥ log

N∑
a=1

exp (V2(s, u, σ))− log

N∑
a=1

exp (V1(s, u, σ)) (9)

Results in Equation 8 and Equation 9 prove that the energy operation is a contraction.

Theorem 2. Upon agent’s convergence to an optimal policy π∗, total energy of π∗, expressed by E∗
will reach a thermal equilibrium consisting of minimum surprise among consecutive states s and s′.

Proof. We begin by initializing a set of M policies {π1, π2..., πM} having energy ratios
{E1, E2..., EM}. Consider a policy π1 with surprise value function V1. E1 can then be expressed as

E1 = log

[∑N
a=1 exp (V a1 (s′, u′, σ′))∑N
a=1 exp (V a1 (s, u, σ))

]
Invoking Assumption 2 for s and s′, we can express V a1 (s′, u′, σ′) = V a1 (s, u, σ) + ζ1 where ζ1 is a
constant. Using this expression in E1 we get,

E1 = log

[∑N
a=1 exp (V a1 (s, u, σ) + ζ1)∑N
a=1 exp (V a1 (s, u, σ))

]

E1 = log

[
exp (ζ1)

∑N
a=1 exp (V a1 (s, u, σ))∑N

a=1 exp (V a1 (s, u, σ))

]
E1 = ζ1
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Similarly, E2 = ζ2,E3 = ζ3...,EM = ζM . Thus, the energy residing in policy π is proportional to the
surprise between consecutive states s and s′. Clearly, an optimal policy π∗ is the one with minimum
surprise. Mathematically,

π∗ ≥ π1, π2..., πM =⇒ ζ∗ ≤ ζ1, ζ2..., ζM
= π∗ ≥ π1, π2..., πM =⇒ E∗ ≤ E1, E2..., EM

Thus, proving that the optimal policy consists of minimum surprise at thermal equilibrium.

B RELATION TO MAXIMUM ENTROPY FRAMEWORK

B.1 SIMILARITIES & DIFFERENCES

We conceptually compare EMIX to the maximum entropy framework.

Similarities: Both methods utilize an auxilary objective as intrinsic motivation to tackle uncertainty.
While the maximum entropy formulation assigns low energy to uncertain actions, our method assigns
low energy to uncertain encoded representations od states (as presented in Fig. 2).

Differences: Our method differs from maximum entropy in its optimization process and learning
scheme. The maximum entropy formulation aims to maximize entropy in the value function space so
as to motivate exploration. Our proposed scheme, on the other hand, aims to minimize surprise in the
low-dimensional representation space to obtain dynamics-aware robust policies.

B.2 CONNECTION TO SOFT Q-LEARNING

The Soft Q-Learning objective with V θ
−

soft(s
′) and Qsoft(u, s; θ) as state and action value functions

respectively is given by-

JQ(θ) = Es,u∼R
[

1

2

(
r + γEs′∼R[V θ

−

soft(s
′)]−Qsoft(u, s; θ)

)2]

= JQ(θ) = Es,u∼R

1

2

(
r + γEs′∼R

[
log
∑
u∈A

expQsoft(u
′, s′; θ−)

]
−Qsoft(u, s; θ)

)2


The gradient of this objective can be expressed as-

∇θJQ(θ) = Es,u∼R

[(
r + γEs′∼R

[
log
∑
u∈A

expQ(u′, s′; θ−)

]
−Qsoft(u, s; θ)

)]
∇θQsoft(u, s; θ)

(10)

And the gradient of the EMIX objective is obtained as-

L(θ) = Es,u,s′∼R

1

2

(
r + γmax

u′
Q(u′, s′; θ−) + β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2


∇θL(θ) = Es,u,s′∼R

[(
r + γmax

u′
Q(u′, s′; θ−)

+ β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)]
∇θQ(u, s; θ) (11)

Comparing Equation 10 to Equation 11 we notice that Soft Q-Learning and EMIX are related to
each other as they utilize EBMs. Soft Q-Learning makes use of a discounted energy function
which downweights the energy values over longer horizons. Actions consisting of lower energy
configurations are given preference by making use of Qsoft(u, s; θ) as the negative energy. On
the other hand, EMIX makes use of a constant energy function weighed by β which minimizes

15



Under review as a conference paper at ICLR 2022

surprise-based energy between consecutive states. Both the objectives can be thought of as energy
minimizing models which search for an optimal energy configuration. Soft Q-Learning searches for
an optimal configuration in the action space whereas EMIX favours optimal behavior on spurious
states. In fact, EMIX can be realized as a special case of Soft Q-Learning if the mixer agent utilizes
an energy-based policy and attains thermal equilibrium. This leads us to express Theorem 3.
Theorem 3. Given an energy-based policy π with its target function V (s′) =
log
∑
u∈A expQ(u′, s′; θ−), the surprise minimization objective L(θ) reduces to the Soft Q-

Learning objective L(θsoft) in the special case surprise absent between consecutive states,∑N
a=1 exp (V asurp(s′, u′, σ′)) =

∑N
a=1 exp (V asurp(s, u, σ)).

Proof. We know that the EMIX objective is given by-

L(θ) = Es,u,s′∼R

1

2

(
r + γmax

u′
Q(u′; s′, θ−) + β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2


(12)
Replacing the greedy policy term max

u′
Q(u′, s′; θ−) with the energy-based value function V (s′) =

log
∑
u′∈A expQ(u′, s′; θ−), we get,

L(θ) = Es,u,s′∼R

1

2

(
r + γEs′∼R[V (s′)] + β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2


(13)

= L(θ) = Es,u,s′∼R

[
1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]

+ β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2]

At thermal equilibrium,
∑N
a=1 exp (V asurp(s, u, σ)) =

∑N
a=1 exp (V asurp(s′, u′, σ′)),

= L(θ) = Es,u,s′∼R

[
1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]

+ β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s′, u′, σ′))

)
−Q(u, s; θ)

)2]

= L(θ) = Es,u,s′∼R

1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]
+ β log(1)−Q(u, s; θ)

)2


(14)

= L(θ) = Es,u,s′∼R

1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]
−Q(u, s; θ)

)2
 (15)

Equation 15 represents the Soft Q-Learning objective, hence proving the result.

C CONVERGENCE ANALYSIS

We now analyze convergence of the surprise minimization scheme during policy optimization. For
brevity, our notation denotes the modified Bellman operator as B obeying the standard assumptions
of monotonicity and contraction (Bertsekas, 2018). Additionally, we consider the cumulative value
V̂k = rk +Gk + β log

∑N
a=1 exp(V asurp,(k)(s, u, σ)) as the sum of state values Vk = rk +Gk and

surprise energy values β log
∑N
a=1 exp(V asurp,(k)(s, u, σ)) at kth Bellman update.
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Consider
∥∥∥∥Vk − V ∗∥∥∥∥

2

with V ∗ being the optimal value at convergence,

∥∥∥∥V̂k − V ∗∥∥∥∥
2

≤
∥∥∥∥BV̂k−1 + β log

N∑
a=1

exp(V asurp,(k))− V
∗
∥∥∥∥
2

(16)

≤
∥∥∥∥B2V̂k−2 + β log

N∑
a=1

exp(V asurp,(k−1)) + β log

N∑
a=1

exp(V asurp,(k))− V
∗
∥∥∥∥
2

(17)

≤
∥∥∥∥B2V̂k−2 + β

(
log

N∑
a=1

exp(V asurp,(k−1)) + log

N∑
a=1

exp(V asurp,(k))

)
− V ∗

∥∥∥∥
2

(18)

≤
∥∥∥∥B2V̂k−2 + β

(
log

[
N∑
a=1

exp(V asurp,(k−1))

][
N∑
a=1

exp(V asurp,(k))

])
− V ∗

∥∥∥∥
2

(19)

Thus, for k iterations, we have,

≤
∥∥∥∥BkV0 + β

(
log

k∏
i=1

[
N∑
a=1

exp(V asurp,(i))

])
− V ∗

∥∥∥∥
2

(20)

=

∥∥∥∥BkV0 + β

(
log

N∑
a=1

[
k∏
i=1

exp(V asurp,(i))

])
− V ∗

∥∥∥∥
2

(21)

=

∥∥∥∥BkV0 + β

(
log

N∑
a=1

[
exp(

k∑
i=1

V asurp,(i))

])
− V ∗

∥∥∥∥
2

(22)

We now absorb the sum of surprise values from time index i = 1, .., k in a single variable V atot. Thus,
using V atot =

∑k
i=1 V

a
surp,(i) and utilizing the Triangle Inequality, we get,

=

∥∥∥∥BkV0 − V ∗∥∥∥∥
2

+

∥∥∥∥β
(

log

N∑
a=1

[exp(V atot)]

)∥∥∥∥
2

(23)

We now bound the two terms separately. Considering the first term and following the results of value
iteration convergence (Bertsekas & Tsitsiklis, 1995),∥∥∥∥BkV − V ∗∥∥∥∥

2

≤ γk
∥∥∥∥V − V ∗∥∥∥∥

2

(24)

= γk
∥∥∥∥V + Vµ − Vµ − V ∗

∥∥∥∥
2

(25)

wherein Vµ denotes an approximation to V . Utilizing the triangle inequality yields,

≤ γk
∥∥∥∥V − Vµ∥∥∥∥

2

+ γk
∥∥∥∥Vµ − V ∗∥∥∥∥

2

(26)

The two terms are bounded using the convergence result of (Bertsekas, 2018).

= γk
√
rmax + γk

√
rmax|S|
1− γ

(27)

Now, considering the second term in Equation 23,

≤ β
∥∥∥∥ log

N∑
a=1

exp(V atot)

∥∥∥∥
2

(28)

= β

∥∥∥∥ log

N∑
a=1

exp(V atot)− log

N∑
a=1

exp(V ∗tot) + log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

(29)
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using the triangle inequality,

≤ β
∥∥∥∥ log

N∑
a=1

exp(V atot)− log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

+ β

∥∥∥∥ log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

(30)

Since T = log
∑N
a=1 exp(V atot) is a contraction following Theorem 1, for the first term we have,

≤ βγ
∥∥∥∥V atot − V ∗tot∥∥∥∥

2

+ β

∥∥∥∥ log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

(31)

The second term in the above relation is bounded due to the completeness assumption,∥∥∥∥ log
∑N
a=1 exp(V ∗tot)

∥∥∥∥
2

.

≤ βγ
∥∥∥∥V atot − V ∗tot∥∥∥∥

2

+ βζ , ζ > 0 (32)

Finally, combining Equation 27 and Equation 32 in Equation 23, we obtain the desired convergence
bound. ∥∥∥∥Vk − V ∗∥∥∥∥

2

≤ γk
(
√
rmax +

√
rmax|S|
1− γ

)
+ β

(
γ

∥∥∥∥V atot − V ∗tot∥∥∥∥
2

+ ζ

)
(33)

While the first term in Equation 33 denotes the convergence of policy optimization, the second
term indicates the bounded convergence of surprise to ecological niches with finite (yet nonzero)
surprising elements. The policy optimization process converges at a geometric rateO(γk) towards its
stable fixed points. The surprise minimization process, on the other hand, demonstrates an annealing
behavior which depends on the temperature parameter β. Furthermore, convergence to stable fixed
point V atot is bounded in respect to each agents individual surprise values V atot. This insight indicates
that different agents converge towards different locally optimal values of surprise. Finally, the
presence of constant ζ corroborates prior claims (Schwartenbeck et al., 2013; Friston, 2010) that
agents continue to experience surprise irrespective of their convergence to minimum energy niches.

To further develop intuition for this claim, consider the special case wherein
∥∥∥∥V atot − V ∗tot∥∥∥∥

2

→ 0.

Irrespective of global convergence among all agents, a finite yet small ζ continues to contribute to the

upper bound of
∥∥∥∥Vk − V ∗∥∥∥∥

2

.

Role of β: We further discuss the role of β which is of balancing the terms at successive iterations.
While the first term geometrically decays with O(γk) rate, the second term approaches a finite
constant βζ as V atot → V ∗tot. Irrespective of our choice of β, the LHS ‖Vk − V ∗‖2 is upper bounded
by a constant which validates the claims of minimum yet finite surprise values. We do note that a
small β is still desirable to remove any approximation errors in order to push Vk → V ∗. However,
this comes at the cost of increased surprise if β is not selected appropriately.

D IMPLEMENTATION DETAILS

D.1 MODEL SPECIFICATIONS

Architecture: This section highlights model architecture for the surprise value function. At the lower
level, the architecture consists of 3 independent networks called state net, q net and surp net. Each of
these networks consist of a single layer of 256 units with ReLU non-linearity as activations. Similar
to the mixer-network, we use the ReLU non-linearity in order to provide monotonicity constraints
across agents. Using a modular architecture in combination with independent networks leads to a
richer extraction of joint latent transition space. Outputs from each of the networks are concatenated
and are provided as input to the main net consisting of 256 units with ReLU activations. The main net
yields a single output as the surprise value V asurp(s, u, σ) which is reduced along the agent dimension
by the energy operator. Alternatively, deeper versions of networks can be used in order to make the
extracted embeddings increasingly expressive. However, increasing the number of layers does little
in comparison to additional computational expense.
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Computation of σ: The deviation σ corresponds to the standard deviation across each dimension of
the state s. Considering the state as a tensor of size B ×A×M with B as the batch size, A as the
number of agents and M as the observation dimension, we compute σ by calculating the standard
deviation across the M dimension. This yields σ as a B ×A× 1 dimensional array.

Computation of surprise estimates: Vsurp denotes the surprise value function which quantifies the
amount of surprise experienced by agents. Analogous to a Q value function which provides estimates
of returns, Vsurp provides estimate of surprise. Our framework learns Vsurp much like any other
value function (using a neural network), but by additionally undergoing a log

∑
exp transformation

to obey the fixed point property. This is achieved by realizing log-sum-exp as an energy operator
T = log

∑
exp which can be computed using standard computation libraries. Since our code is im-

plemented in PyTorch, we implement this as T_V = torch.logsumexp(V_surp, dim=1).

D.2 HYPERPARAMETERS

Table 2 presents hyperparameter values for EMIX. A total of 2 target Q-functions were used as the
model is found to be robust to any greater values.

Hyperparameters Values
batch size b = 32

learning rate α = 0.0005
discount factor γ = 0.99

target update interval 200 episodes
gradient clipping 10

exploration schedule 1.0 to 0.01 over 50000 steps
mixer embedding size 32

agent hidden size 64
temperature β = 0.01

target Q-functions 2

Table 2: Hyperparameter values for EMIX agents

D.3 SELECTION & TUNING OF β

One can manually tune β using a fine-grained hyperparameter search. We tune β between 0.001 and
1 in intervals of 0.01 with best performance observed at β = 0.01. However, we find two additional
methods helpful for obtaining more accurate values. These are described as follows-

Armijo’s Line Search: One can borrow from optimization theory and utilize Armijo’s line search
Nocedal & Wright (2006) by setting a termination condition. The method starts with a constant
value of β which is iteratively incremented/decremented until a termination criterion (example-
‖∇L(θ)‖ < ε with ε a constant) is reached. While line search is proven to converge towards globally
optimal values, its O(n2) convergence may be computationally expensive that too in the MARL
setting. Thus, we turn to the more efficient automatic tuning.

Algorithm 2 Armijo’s Line Search

1: Initialize β, δ ∈ (0, 1], EMIX & T V asurp;
2: while EMIX(Q+β∗T V asurp)> EMIX(Q)

+ α ∗ β ∗ ∇EMIX(Q)TT V asurp do
3: β = δ ∗ β
4: end while
5: return β

Algorithm 3 Automatic Tuning

1: Initialize β, δ ∈ (0, 1], EMIX & T V asurp;
2: EMIX(Q+ β ∗ T V asurp)
3: beta loss = β ∗ 0.5 ∗ (T V asurp − 0)2

4: beta loss.backward()
5: return β

Automatic Tuning: We choose to automatically tune β following single-agent RL literature Haarnoja
et al. (2018b); Kumar et al. (2020). This is achieved by treating β as a parameter and adaptively
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optimizing over it using Adam. We treat a surprise value of 0 as our target value. The method works
well in practice and provides β values closer to 0.01 (our manual selection).

E ADDITIONAL RESULTS

E.1 QUALITATIVE ANALYSIS

Figure 5: Task- so many baneling, (left) Behaviors learned by EMIX agents, (right) Behaviors
learned by QMIX agents

Figure 6: Task- 2s vs 1sc, (left) Behaviors learned by EMIX agents, (right) Behaviors learned by
QMIX agents

We visualize and compare behaviors learned by surprise minimizing agents to the prior method of
QMIX. Fig. 5 presents the comparison of EMIX and QMIX agent trajectories (in yellow arrows) on
the challenging so many baneling task. The task consists of 27 baneling opponents which rapidly
attack the agent team on a bridge. QMIX agents naively move to the central alley of the bridge and
start attacking enemies early on. While QMIX agents naively maximize returns, EMIX agents learn a
different strategy. EMIX agents rearrange themselves first at the corners of the bridge. Note that these
corners provide cover from enemy’s fire. Thus, EMIX agents learn to take cover before approaching
the enemy head-on. This indicates that the surprise-robust policy is aware of the incoming fast-paced
assault.

As another example, Fig. 6 presents behaviors on the 2s vs 1sc task wherein two agents must
collaborate together to defeat a SpineCrawler enemy. The enemy, having a long tentacle pointing to
the front, chooses to attack any one of the agents randomly in front of it. Additionally, the tentacle
has a fixed length and cannot extend beyond this range. Random intermittent attacks indicate that
the agents face a greater degree of surprise with no prior knowledge of the enemy’s movement. We
observe that QMIX agents take turns to attack the enemy by moving back and forth to minimize
damage. EMIX agents, on the other hand, learn a different strategy. One of the EMIX agents stands at
a distance to attack th enemy while the other agent goes around to attack from behind. This indicates
that the policy is aware of enemy’s limited movement.

E.2 STATISTICAL SIGNIFICANCE

We follow the recommendation of Lones (2021) and evaluate the statistical significance of our results
by carrying out the Mann-Whitney U test Mann & Whitney (1947). All 5 seeds of an algorithm
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Scenarios EMIX SMiRL-QMIX QMIX VDN COMA IQL
2s vs 1sc 14 7 - 21 25 4

2s3z 15 9 - 6 0 0
3m 17 0 - 0 2 12

3s vs 3z 11 3 - 0 0 1
3s vs 4z 21 0 - 2 0 0
3s vs 5z 5 0 - 25 0 0

3s5z 7 13 - 0 0 0
8m 15 1 - 1 3 0

8m vs 9m 7 11 - 0 0 0
10m vs 11m 14 25 - 6 0 0

so many baneling 24 14 - 9 4 0
5m vs 6m 21 15 - 18 0 0

Table 3: Comparison of the U statistic on StarCraft II benchmark. U here denotes the statistical
significance of an algorithm against QMIX (higher is better).

(on each task) are compared to that of QMIX to yield the U statistic. U here denotes the statistical
significance of performance with higher values being desirable.

Table 3 presents the comparison of U statistic on the StartCraft II benchmark. EMIX demonstrates
consistently high values of U across a diverse set of tasks when compared to SMiRL and prior MARL
agents. This highlights the consistent surprise-minimizing performance of EMIX across random
seeds.

E.3 ADDITIONAL TASKS

This section compares EMIX and TwinQMIX to prior MARL methods on the Predator-Prey tasks. In
addition to the difficulty of task, we vary the number of opponents. This helps quantify the variation
in performance against increasing level of surprise under fixed dynamics. Table 4 presents average
returns. While all agents present comparable performance on the easier tasks, EMIX improves over
QMIX and TwinQMIX on the more challenging punish and hard tasks. In the case of punish, EMIX
is the only method to achieve greater than 20 returns outperforming baselines by a significant margin.

Scenarios EMIX TwinQMIX SMiRL-QMIX QMIX VDN COMA IQL
predator prey easy 40.00 ± 0.13 40.00 ± 0.34 40.00 ± 0.98 40.00 ± 0.22 38.74 ± 0.64 27.49 ± 4.26 34.73 ± 2.92

predator prey 40.00 ± 0.72 40.00 ± 1.92 40.00 ± 0.27 40.00 ± 0.16 36.23 ± 3.19 25.13 ± 0.92 31.59 ± 0.74
predator prey punish 24.17 ± 3.29 20.32 ± 4.15 19.31 ± 1.12 14.33 ± 3.81 17.21 ± 2.31 10.92 ± 4.35 7.86 ± 3.21
predator prey hard 12.34 ± 3.11 10.19 ± 1.15 10.47 ± 0.83 8.76 ± 4.33 5.19 ± 3.97 -4.37 ± 1.53 -9.26 ± 4.84

Table 4: Comparison of average returns between EMIX, its ablations and prior MARL methods on
Predator-Prey tasks. EMIX improves over QMIX agent. In comparison to SMiRL-QMIX, EMIX
demonstrates improved minimization of surprise. Results are averaged over 5 random seeds.

Figure 7: Variation
in performance with
increasing number of
agents.

We consider a simple toy task from the Predator-Prey benchmark to
demonstrate the importance of surprise minimization. We select preda-
tor prey easy due to its simplicity and convenient dynamics. The task
consists of 3 agents and 3 opponents. We increase the number of opponents
while keeping the task fixed. This way the dynamics of the MDP remain
unchanged and the only changing factor is opponent behaviors.

Fig. 7 presents the variation of average returns for EMIX and QMIX
over 5 random seeds. While QMIX agents undergo a steady decrease in
performance, EMIX agents are found robust to this fast degradation. Even
after the addition of 20 opponents (against only 3 agents), EMIX is able
to retain positive returns. The algorithm acquires a surprise robust-policy
early on during training to tackle fast-paced changes introduced by the large
number of agents.
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E.4 ADDITIONAL ABLATIONS

Figure 8: Variation in success rates with temperature β. A value of β = 0.01 is found to work best.
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