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Abstract

Instance segmentation is an important computer vision problem which remains1

challenging despite impressive recent advances due to deep learning-based meth-2

ods. Given sufficient training data, fully supervised methods can yield excellent3

performance, but annotation of ground-truth data remains a major bottleneck, espe-4

cially for biomedical applications where it has to be performed by domain experts.5

The amount of labels required can be drastically reduced by using rules derived6

from prior knowledge to guide the segmentation. However, these rules are in7

general not differentiable and thus cannot be used with existing methods. Here,8

we relax this requirement by using stateless actor critic reinforcement learning,9

which enables non-differentiable rewards. We formulate the instance segmentation10

problem as graph partitioning and the actor critic predicts the edge weights driven11

by the rewards, which are based on the conformity of segmented instances to12

high-level priors on object shape, position or size. The experiments on toy and real13

datasets demonstrate that we can achieve excellent performance without any direct14

supervision based only on a rich set of priors.15

1 Introduction16

Instance segmentation is the task of segmenting all objects in an image and assigning each of them17

a different label. It forms the necessary first step to the analysis of individual objects in a scene18

and is thus of paramount importance in many practical applications of computer vision. Over the19

recent years, fully supervised instance segmentation methods have made tremendous progress both20

in natural image applications and in scientific imaging, achieving excellent segmentations for very21

difficult tasks [1, 2].22

A large corpus of training images is hard to avoid when the segmentation method needs to take23

into account the full variability of the natural world. However, in many practical segmentation24

tasks the appearance of the objects can be expected to conform to certain rules which are known a25

priori. Examples include surveillance, industrial quality control and especially medical and biological26

imaging applications where full exploitation of such prior knowledge is particularly important as the27

training data is sparse and difficult to acquire: pixelwise annotation of the necessary instance-level28

groundtruth for a microscopy experiment can take weeks or even months of expert time. The use of29

shape priors has a strong history in this domain [3, 4], but the most powerful learned shape models30

still require groundtruth [5] and generic shapes are hard to combine with the CNN losses and other,31

non-shape, priors. For many high-level priors it has already been demonstrated that integration of32

the prior directly into the CNN loss can lead to superior segmentations while significantly reducing33

the necessary amounts of training data [6]. However, the requirement of formulating the prior as34

a differentiable function poses a severe limitation on the kinds of high-level knowledge that can35

be exploited with such an approach. The aim of our contribution is to address this limitation and36
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establish a framework in which a rich set of non-differentiable rules and expectations can be used to37

steer the network training.38

To circumvent the requirement of a differentiable loss function, we turn to the reinforcement learning39

paradigm, where the rewards can be computed from a non-differentiable cost function. We base40

our framework on a stateless actor-critic setup [7], providing one of the first practical applications41

of this important theoretical construct. In more detail, we solve the instance segmentation problem42

as agglomeration of image superpixels, with the agent predicting the weights of the edges in the43

superpixel region adjacency graph. Based on the predicted weights, the segmentation is obtained44

through (non-differentiable) graph partitioning and the segmented objects are then evaluated by the45

critic, which learns to approximate the rewards based on the object- and image-level reasoning (see46

Fig. 1).47

The main contributions of this work can be summarized as follows: (i) we formulate instance segmen-48

tation as a RL problem based on a stateless actor-critic setup, encapsulating the non-differentiable step49

of instance extraction into the environment and thus achieving end-to-end learning; (ii) we exploit50

prior knowledge on instance appearance and morphology by tying the rewards to the conformity of51

the predicted objects to pre-defined rules and learning to approximate the (non-differentiable) reward52

function with the critic; (iii) we introduce a strategy for spatial decomposition of rewards based on53

fixed-sized subgraphs to enable localized supervision from combinations of object- and image-level54

rules. (iv) we demonstrate the feasibility of our approach on synthetic and real images and show55

an application to an important segmentation task in developmental biology, where our framework56

delivers an excellent segmentation with no supervision other than high-level rules.57

2 Related work58

Reinforcement learning has so far not found significant adoption in the segmentation domain. The59

closest to our work are two methods in which RL has been introduced to learn a sequence of60

segmentation decision steps as a Markov Decision Process. In the actor critic framework of [8], the61

actor recurrently predicts one instance mask at a time based on the gradient provided by the critic.62

The training needs fully segmented images as supervision and the overall system, including an LSTM63

sub-network between the encoder and the decoder, is fairly complex. In [9], the individual decision64

steps correspond to merges of clusters while their sequence defines a hierarchical agglomeration65

process on a superpixel graph. The reward function is based on Rand index and thus not differentiable,66

but the overall framework requires full (super)pixelwise supervision for training.67

Reward decomposition was introduced for multi agent RL by [10] where a global reward is decom-68

posed into a per agent reward. [11] proves that a stateless RL setup with decomposed rewards requires69

far less training samples than a RL setup with a global reward. In [12] reward decomposition is70

applied both temporally and spatially for zero-shot inference on unseen environments by training on71

locally selected samples to learn the underlying physics of the environment.72

The restriction to differentiable losses is present in all application domains of deep learning. Common73

ways to address it are usually based on a soft relaxation of the loss that can be differentiated. The74

relaxation can be designed specifically for the loss, such as, for example, Area-under-Curve [13] for75

classification or Jaccard Index [14] for semantic segmentation. These approaches are not directly76

applicable to our use case as we aim to enable the use of a variety of object- and image-level priors77

which can easily be combined without handcrafting an approximate loss for each case. More generally,78

but still for a concrete task loss, Direct Loss Minimization has been proposed for CNN training in79

[15]. For semi-supervised learning of a classification or ranking task, Discriminative Adversarial80

Networks have been proposed as a means to learn an approximation to the loss [16]. Most generally,81

Grabocka et al. in [17] propose to train a surrogate neural network which will serve as a smooth82

approximation of the true loss. In our setup, the critic can informally be viewed as a surrogate network83

as it learns to approximate the priors through the rewards by Q-learning.84

Incorporation of rules and priors is particularly important in biomedical imaging applications, where85

such knowledge can be exploited to augment or even substitute scarce groundtruth annotations.86

For example, the shape prior is explicitly encoded in the popular nuclear [18] and cellular [19]87

segmentation algorithms based on spatial embedding learning. Learned non-linear representations88

of the shape are used in [5], while in [20] the loss for object boundary prediction is made topology-89

aware. Domain-specific priors can also be exploited in post-processing by graph partitioning [21].90

Interestingly, the energy minimization procedure underlying the graph partitioning can also be91

incorporated into the learning step [22, 23].92

2



Figure 1: Interaction of the agent with the environment: (a) shows the state which is composed of
the raw image and the superpixel over-segmentation; (b) depicts the agent and the superpixel graph,
which accumulates the features for nodes of the GNN from pixels which belong to the corresponding
superpixels; (c) given the state, the agent performs the actions by predicting edge weights on the
superpixel graph; (d) the environment, which includes the graph partitioning built from the weights
predicted through agent actions; (e) rewards are obtained by evaluating the segmentation arising from
the graph partitioning, based on pre-defined and data dependent rules. The rewards are given back to
the agent where they are used for training.

3 Methods93

The task of instance segmentation can be formalized as transforming an image x into a labeling y,94

where y maps each pixel to a label value. An instance corresponds to the maximal set of pixels with95

the same label value. Typically, the instance segmentation problem is solved via supervised learning,96

i.e. using a training set with ground-truth labels ŷ. Note that y is invariant under the permutation97

of label values. In general, it is difficult to formulate instance segmentation in a fully differentiable98

manner. Most approaches first predict a "soft" representation with a CNN, e.g. affinities [1, 24, 25],99

boundaries [26, 27] or embeddings [28, 29] and apply non-differentiable post-processing, such as100

agglomeration [27, 30], clustering [31, 32] or partitioning [33], to obtain the instance segmentation.101

Alternatively, proposal-based methods predict a bounding-box per instance and then predict the102

instance mask for each bounding-box [34]. Furthermore, the common evaluation metrics for instance103

segmentation [35, 36] are also not differentiable.104

Our main motivation to explore RL for the instance segmentation task is to circumvent the restriction105

to differentiable losses and - regardless of the loss - to make the whole pipeline differentiable end-to-106

end even in presence of non-differentiable steps which transform pixelwise CNN predictions into107

individual instances.108

We formulate the instance segmentation problem using a region adjacency graph G = (V,E),109

where the nodes V correspond to superpixels (homogeneous clusters of pixels) and the edges E110

connect nodes which belong to spatially adjacent superpixels. Given edge weights W , an instance111

segmentation can be obtained by partitioning the graph, here using an approximate multicut solver112

[37]. Together, the image data, superpixels, graph and the graph partitioning make up the environment113

E of our RL setup. Based on the state s of E , the agent A predicts actions a, which are used to114

compute the partitioning. The reward r is then computed based on this partitioning. Our agent A is a115

stateless actor-critic [38], represented by two graph neural networks (GNN) [39]. The actor predicts116

the actions a based on the graph and its node features F . The node(superpixel) features are computed117

by pooling together the corrresponding pixel features based on the raw image data.118
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Here, we make use of two different setups: Method 1, where the per-pixel features are computed119

based on the image data with the feature extractor being part of the agent A and Method 2 where the120

feature extractor is part of the environment E . The feature extractor is trained end-to-end in Method121

1, whereas it is fixed and thus needs to be pre-trained in Method 2. We use a U-Net [40] as feature122

extractor and can use hand-crafted features in addition to the learned features. More details about123

the pre- training can be found in the Appendix. The agent - environment interaction for Method 1 is124

depicted in Figure 1. For Method 2 we refer to the Appendix.125

Importantly, this setup enables us to use both a non-differentiable instance segmentation step and126

reward function, by encapsulation of the “pixels to instances” step in the environment and learning a127

policy based on the rewards with a stateless actor critic.128

3.1 Stateless Reinforcement Learning Setup129

Unlike most RL settings [41], our approach does not require an explicitly time dependent state: the130

actions returned by the agent correspond to the real-valued edge weights in [0, 1], which are used to131

compute the graph partitioning. Any state can be reached by a single step from the initial state and132

there exists no time dependency in the state transition. Unlike [9], we predict all edge values at once133

which allows us to avoid the iterative strategy of [8] and deliver and evaluate a complete segmentation134

in every step. We implement a stateless actor critic formulation with episodes of length 1.135

To the best of our knowledge, stateless RL was introduced in [7] to study the connection between136

generative adversarial networks and actor critics and our method is one of the first practical applica-137

tions of this concept. Here, the agent consists of an actor, which predicts the actions a and a critic,138

which predicts the action value Q (expected future discounted reward) given the actions. The stateless139

approach simplifies the action value function: the action value has to estimate the reward for a single140

step instead of estimating the expected sum of discounted future rewards for many steps. We have141

explored a multi-step setup as well, but found that it yields inferior results for our application; details142

can be found in the Appendix. As described in detail in 3.2, we compute localized sub-graph rewards143

instead of relying on a single global reward.144

The actor corresponds to a single GNN, which predicts the mean and variance of a normal distribution145

for each edge. The actions a are determined by sampling from this distribution and applying a146

sigmoid to the result to obtain continuous edge weights in the value range [0, 1]. The GNN takes the147

state s = (G,F ) as input arguments and its graph convolution for the ith node is defined as in [39]:148

fi = γπ

fi, 1

|N(i)|
∑

j∈N(i)

φπ (fi, fj)

 (1)

where γπ as well as φπ are MLPs, (·, ·) is the concatenation of vectors andN(i) is the set of neighbors149

of node i. The gradient of the loss for the actor is given by:150

∇θLactor = ∇θ
1

|SG|
∑
sg∈G

α∑
â∈sg

log(πθ(â|s))−Qsg(s, a)

 (2)

This loss gradient is derived following [38]. We adapt it to the sub-graph reward structure by151

calculating the joint action probability of the policy πθ over each sub-graph sg in the set of all152

sub-graphs SG. Using this loss to optimize the policy parameters θ minimizes the Kullback-Leibler153

divergence between the Gibbs distribution of action values for each sub-graph Qsg(s, a) and the154

policy with respect to the parameters θ of the policy. α is a trainable temperature parameter which is155

optimized following the method introduced by [38].156

157

The critic predicts the action value Qsg for each sub-graph sg ∈ SG. It consists of a GNN Qsg(s, a)158

that takes the state s = (G,F ) as well as the actions a predicted by the actor as input and predicts a159

feature vector for each edge. The graph convolution from Equation 2 is slightly modified:160

fi = γQ

fi, 1

|N(i)|
∑

j∈N(i)

φQ
(
fi, fj , a(i,j)

) (3)

again γQ and φQ are MLPs. Based on these edge features Qsg is predicted for each sub-graph via an161

MLP. Here, we use a set of subgraph sizes (typically, 6, 12, 32, 128) to generate a supervison signal162
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Figure 2: The graph is subdivided into sub-
graphs, each sub-graph is highlighted by a
different color. All sub-graphs have the same
number of edges (here 3). Overall, we use a
variety of sizes covering different notions of
locality.

Figure 3: An example reward landscape Cir-
cle Hough Transform (CHT) rewards. High
rewards are given if the overall number of
predicted objects is not too high and if the
respective object has a large CHT value. We
found an exponential gradient of the reward
landscape to work best.

for different neighborhood scales. A given MLP is only valid for a fixed graph size, so we employ a163

different MLP for each size. The loss for the critic is given by:164

Lcritic =
1

|SG|
∑
sg∈G

1

2
(Qδsg(s, a)− r)2 (4)

Minimizing this loss with respect to the action value function’s parameters δ minimizes the difference165

between the expected reward and action values Qδsg(s, a).166

3.2 Localized Supervision Signals167

The RL paradigm is to provide a global reward for a given state transition [41]. However, we find168

that for our application it is possible and desirable to instead provide several more localized rewards169

per state transition: Given a large action space with a policy represented by a complex multivariate170

probability distribution, it is beneficial to learn from rewards for the specific actions rather than from171

a scalar global reward for the union of all actions. Of course then requirement arises that the union of172

local rewards must resemble to the global reward. E.g. the optimal policy is the same for local as for173

the global reward.174

Our actor critic setup (Section 3.1) expects rewards per sub-graph. A good set of sub-graphs should175

fulfill the following requirements: each sub-graph should be connected so that the information176

presented to the MLP computing the action value for this sub-graph is correlated. The size of177

the sub-graphs, given by the number of edges, should be a parameter and all sub-graphs should178

be extracted with exactly that size to serve as valid input for one of the MLPs. The union of all179

sub-graphs should cover the complete graph so that each edge contributes to at least one action180

value Qsg. The sub-graphs should overlap to provide a smooth sum of action values. We introduce181

Algorithm 1 to extract such a set of sub-graphs (see Appendix). Figure 2 shows the sub-graphs for a182

small example graph.183

While some of the rewards used in our experiments can be directly defined for the sub-graphs, most184

are instead defined per object (see Appendix for details on reward design). We use the following185

general procedure to map object-level rewards to sub-graphs: first assign to each superpixel the186

reward of its corresponding object, then determine the reward per edge as the maximum value of its187

two incident superpixels’ rewards and average the edge rewards to obtain the reward per sub-graph.188

Here, we use the maximum because high object scores indicate that all actions contributing to the189

respective object should get a high reward. However, for low object scores it is not possible to localize190

the specific action responsible for the low score. Hence, by taking the maximum we assign the191

higher score to edges whose incident superpixels belong to different objects, because they probably192

correspond to a correct split. Note that the uncertainty in the assignment of low rewards can lead to193

a noisy reward signal, but the averaging of the edge rewards over the sub-graphs and the overlaps194
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between the sub-graphs smooth and partially denoise the rewards. We have also explored a different195

actor critic setup that can use object level rewards directly, eliminating the need for the sub-graph196

extraction and mapping. However, this approach yields inferior results, see the Appendix for details.197

4 Experiments198

The agent of our setup acts on the superpixel graph and thus depends on the features assigned to the199

nodes of the graph. We introduced two variants of our algorithm: in the base variant (Method 1)200

we start from random features and make them part of the agent, allowing them to change through201

back-propagation (Fig. 1). In contrast, Method 2 acts on predefined features which are provided202

as part of the environment and are computed before training, e.g. through unsupervised clustering.203

A very accurate clustering in the features produces an easy problem for the agent to solve where204

even a global reward for all actions might be sufficient. However, in a real-world setting with no205

supervision, the noisier the features become the more local the reward has to be. We evaluate Method206

2 on synthetic data where self-supervised pretraining can deliver noisy, but meaningful node features.207

Our full setup with Method 1 is evaluated on a dataset from a light microscopy experiment, where208

highly regular object shapes are to be expected, but no good feature pre-training is possible.209

To transform the edge weight predictions of the agent into an instance segmentation we use the210

Multicut [42] algorithm. Here, other options are also possible such as hierarchical clustering used in211

[9], but we choose the Multicut for its global optimality property. Hyperparameters of the pipeline212

were found by cross-validation (see Appendix).213

4.1 Synthetic dataset: circles on structured ground214

To evaluate the feasibility of our approach, we create a synthetic dataset with prominent structured215

background. Our aim is to segment irregular disks on such background using only rule-based216

supervision. We generate the superpixels by the mutex watershed algorithm [25] which we run on217

the Gaussian gradient image. The node features of the superpixel graph were computed through218

self-supervised pretraining with contrastive loss as described in Appendix and fixed as part of the219

environment.220

As we aim to segment disks, we compute the circularity of the segmented objects for the rewards221

using the Circle Hough Transform [43]. This object-level reward is combined with the global rough222

estimate of the number of objects in the image to create the reward surface depicted in Fig. 3. The223

reward for the number of objects provides useful gradient during early training stages: for example,224

when too few potential objects are found in the prediction, a low reward can be given to what is225

thought to be the background object. On the other hand, if too many potential objects are found, a226

low reward can be given to all the foreground objects with a low CHT value.227

In more detail, the object rewards rfg are composed as follows. We define a threshold γ on the CHT228

value (γ = 0.8 in the reward surface shown in Fig. 3). Let c ∈ [0, 1] be the CHT value corresponding229

to the object and let k be the total number of objects that we expect and n be the number of predicted230

objects. Then231

rlocal =

{
σ
(
( c−γ1−γ − 0.5)6

)
0.4, if c ≥ γ

0, otw
(5)

rglobal =

{
rexp

(
k
n

)
, if n ≥ k

0.6, otw
(6)

rfg = rlocal + rglobal (7)

Here σ(·) is the sigmoid function. The input to the sigmoid function is normalized to the interval232

[−3, 3] which was empirically found to be a good range. The rewards are always in [0, 1] here this is233

split up into [0, 0.5] for the local reward as well as for the global reward.234

For the largest predicted object we strongly suspect the background object. For this object background235

rewards rbg are calculated by236

rbg =

{
rexp

(
n
k

)
, if n ≤ k

1, otw
(8)

Note that this rewards have a large globally calculated part which makes this setup not fit for Method237

1. It needs some feature representation that already gives a good idea for the clustering. The only238
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(a) Reinforcement learning output. (b) Mutex watershed baseline.

Figure 4: The “Circles” dataset. Top left to right: ground truth segmentation, raw data, superpixel over-
segmentation and a visualizataion for the actions on every edge, where a merge action is displayed in
green and a split action in red. Bottom left to right: the pre-trained pixel embeddings projected to
their first 3 PCA components shown as RGB, an edge image of the superpixels, the segmentation
resulting from the graph agglomeration on the predicted edge weights and a visualization of the
rewards based on the CHT, where light green shows high rewards and dark red low rewards.

useful local information in the reward is the CHT value. Therefore, if the features have a fairly239

distinct structure for circles, the agent should be able to find and to correctly cluster them.240

Fig. 4 shows the output of all algorithm components on a sample image. For comparison, we also241

computed mutex watershed [25] predictions. Texture within objects and structured background are242

inherently difficult for region-growing algorithms, but our approach can exploit higher-level reasoning243

along with low-level information and achieve a good segmentation.244

4.2 Real dataset: light microscopy imaging245

Biomedical applications often require segmentation of objects of known morphology which are246

positioned in regular patterns, while extensive prior knowledge is available on variability of both247

under normal experimental conditions [44]. Such data presents the best use case for our algorithm as248

the reward function can leverage the known characteristics of individual object shape and texture and249

the overall similarity of the objects.250

The dataset used for this experiment contains 317 2D images extracted from a video of a developing251

fruitfly embryo acquired with a light-sheet microscope [45] (Fig. 5). The image shows boundaries252

(plasma membranes) of the embryo cells. Across the dataset, 10 images were fully segmented by an253

expert, we use those for validation.254

Fruitfly embryo is a well-studied system for which we can exploit the prior knowledge on the expected255

cell shape and the radial pattern of cells. Furthermore, as the analysis of cell shape dynamics is256

a paramount part of many biological experiments, multiple pre-trained networks are available for257

the cell segmentation task [18, 19, 46, 47]. Due to the differences in sample preparation and image258

acquisition settings, none of these would work out-of-the-box for our data. However, the CNNs in259

[47] which are trained to predict boundaries in confocal microscope images of plant tissue, can serve260

as a strong edge detector to create superpixels in our images. The superpixels are obtained using the261

seeded watershed algorithm on seeds at the local minima of the predicted edge map.262

The rewards for this experiment are designed as follows: we set a high reward for merging the263

superpixels which are certain to lie in the background (close to the image boundary or the image264

center). For the background edges near the foreground area we modulate the reward by the circularity265

of the overall foreground contour. Finally, for the edges which are likely to be in the foreground266

we compute object-level rewards by fitting a rotated bounding box to each object and comparing its267

side lengths as well as its orientation to predefined template values. We do not perform semantic268

segmentation to define precise foreground/background boundaries, but instead use a soft weighting269

scheme with Gaussian weights to combine object and background rewards based on on the prior270
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Figure 5: Microscopy dataset experiment. Top left to right: ground truth segmentation; raw data;
edge map; superpixel over-segmentation; visualization for the actions on every edge, where a merge
action is displayed in green and a split action in red. Bottom left to right: a) handcrafted features;
b) learned features accumulated on superpixels; c) learned features projected to their first 3 PCA
components shown as RGB; the segmentation resulting from the Multicut on the predicted edge
weights; visualization of the rewards, where light green shows high rewards and dark red low rewards.

knowledge of the embryo width. An image of the weights for different locations in the image can be271

found in the appendix.272

More formally the edge rewards redge are calculated as follows. For each edge, we define the distance273

h between the edge and the center of the image as the average distance of the incident objects’ center274

of mass and the center c of the image. j is the approximate radius of the circle that lies within the275

foreground and m is the maximal distance between c and the image boarder. Let further K(·) be the276

Gaussian kernel function. Then redge yields277

rbg =

K
(
||h−c||
γ

)
(1− a), if h ≤ j

K
(
||m−h||

η

)
(1− a), otw

(9)

rfg = K
(
||h− j||

δ

)
max(ro1, ro2) (10)

redge = rfg + rbg (11)

Here γ, η, δ are normalization constants. Equation 9 first determines the background probability for278

an edge by the kernel values. 1− a constitutes a reward that directly favors merges which is scaled279

by the background probability. For each edge, ro1 and ro2 are the rewards corresponding to the two280

objects connected to that edge. The object rewards are given by fitting a rotated bounding box to the281

object and then compare rotation and dimensions to template values.282

Note that in this experiment no self-supervised pretraining is used for the node features in the283

agent’s GNNs. Unlike the “Circles” dataset, all objects in these images have very similar intensity284

distributions and can only be separated through the detection of boundaries between them. Instead285

of the pretraining, we experiment with using a few hand-crafted features like the polar coordinate286

of the node’s respective superpixel’s center of mass with respect to the coordinate system sitting287

at the center of the image as well as the superpixel’s mass, and with learning other features by288

back-propagation from the agent. The handcrafted features are normalized, concatenated to the289

learned features and used as input to the GNN. The projection of the first 3 PCA components of these290

features into RGB space is shown in Fig. 5 respectively for learned feature maps, their projection291

to node features through the accumulation procedure and finally the concatenation of those and the292
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Table 1: Quantitative evaluation on the microscopy dataset. Note that the projection of superpixels to
the ground truth (sp gt) sets an upper (lower for VI) bound for our method. We use Symmetric Best
Dice as well as the Variation of Information metric to compare all results on the validation set.

Method SBD VI merge VI split

sp gt 0.656± 0.019 0.672± 0.061 0.594± 0.028

ours + augmentation noise 0.508± 0.031 1.233± 0.156 1.060± 0.258
ours 0.482± 0.020 0.839± 0.118 1.374± 0.357
ours without edges 0.446± 0.041 0.953± 0.212 0.994± 0.200
ours only handcrafted 0.408± 0.087 0.987± 0.101 1.536± 0.410
edge + mc [47] 0.283± 0.023 3.019± 0.040 0.342± 0.045
contrastive [28] 0.215± 0.009 1.155± 0.037 3.285± 0.084
contrastive + edge [28] 0.248± 0.014 1.229± 0.048 3.336± 0.073

handcrafted features. Note that the learned features converge to a representation which resembles a293

semantic segmentation of boundaries in the image.294

We train the complete setup for Method 1 end-to-end on a Nvidia GeForce RTX 3090 GPU for 4295

days. For comparison we keep the model which achieved the highest reward on the test set. This296

makes training as well as the validation independent from ground truth annotations. The evolution297

of the rewards on the validation set for different random seeds is shown in the Appendix. All of the298

conducted trainings show a stride for high rewards regardless of different random seeding.299

For the validation scores we use the variation of information (VI) for both input combinations (merge300

and split) and the Symmetric Best Dice score. To show the influence of the imperfect superpixels on301

the final clustering, we project the superpixels to their respective ground truth clustering ("sp gt" in302

Table 1) which sets an upper (lower in case of VI) bound for our method. In this study we use several303

versions of our approach. In Table 1 (ours) refers to method 1 as described in section 4.2, (ours +304

augmentation noise) is the same method but add some noise to the input data during training, (ours305

without edges) is our method but without the additional edge prediction as an input and (ours only306

handcrafted) is our method where we only use the handcrafted features as described in section 4.2.307

We find that learned features significantly contribute to the performance of our method.308

We compare to the following baseline approaches: edge + mc, which solves the Multicut graph309

partitioning based on edge weights derived from boundary predictions used for superpixel creation,310

contrastive, which predicts a pixel-wise embedding space that is clustered into instances using311

k-means and for which the embeddings are trained using the discriminative loss function of [28] on312

the ovules dataset from [47] and contrastive + edge, which is similar to contrastive, but receives the313

[47] boundary predictions as additional input channel.314

5 Discussion315

We introduced an end-to-end instance segmentation algorithm which can exploit non-differentiable316

loss functions and high-level prior information. Our RL approach is based on stateless actor-critic317

and predicts the full segmentation at every step, allowing us to assign rewards to all objects and318

reach stable convergence. The segmentation problem is formulated as graph partitioning; we design319

a reward decomposition algorithm which maps object- and image-level rewards to sub-graphs for320

localized supervision.321

We performed proof-of-concept experiments to demonstrate the feasibility of our approach on322

synthetic and real data and showed in particular that our setup can segment microscopy images323

with no direct supervision other than high-level reasoning. In the future, we plan to explore other324

problems and reward functions as well as a semi-supervised setup (briefly introduced in Appendix)325

where we think our approach can be very beneficial. Furthermore, even in case of full supervision326

with ample groundtruth, our RL-based formulation enables end-to-end instance segmentation with327

direct object-level reasoning, which will allow for post-processing-aware training of the CNN which328

predicts object boundaries or embeddings.329
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