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Abstract

Large, pretrained models are commonly finetuned with
imagery that is heavily augmented to mimic different condi-
tions and scales, with the resulting models used for various
tasks with imagery from a range of spatial scales. Such
models overlook scale-specific information in the data for
scale-dependent domains, such as remote sensing. In this
paper, we present Scale-MAE, a pretraining method that ex-
plicitly learns relationships between data at different, known
scales throughout the pretraining process. Scale-MAE pre-
trains a network by masking an input image at a known input
scale, where the area of the Earth covered by the image deter-
mines the scale of the ViT positional encoding, not the image
resolution. Scale-MAE encodes the masked image with a
standard ViT backbone, and then decodes the masked image
through a bandpass filter to reconstruct low/high frequency
images at lower/higher scales. We find that tasking the net-
work with reconstructing both low/high frequency images
leads to robust multiscale representations for remote sensing
imagery. Scale-MAE achieves an average of a 2.4 — 5.6%
non-parametric kNN classification improvement across eight
remote sensing datasets compared to current state-of-the-art
and obtains a 0.9 mloU to 1.7 mloU improvement on the
SpaceNet building segmentation transfer task for a range of
evaluation scales.

1. Introduction

Remote sensing data is captured from satellites and planes
through a mixture of sensors, processing pipelines, and view-
ing geometries. Depending on the composition and relative
geometry of the sensor to the Earth, each image’s Ground
Sample Distance (GSD - the physical distance between two
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Figure 1. Scale-MAE learns better representations for multiscale
tasks compared to vanilla MAE. (Column 1) The top image spans
an area at 0.3m GSD and the bottom image shows the same region
at a coarser GSD. (Columns 2-4) The following columns show
a ground truth building segmentation, Scale-MAE segmentation
from a finetuned UperNet, and segmentation from an analogously
finetuned UperNet from a vanilla MAE, respectively. Scale-MAE
demonstrates better performance across images at both scales. See
the supplementary material for more examples.

adjacent pixels in an image) can vary from 0.3m to 1km, so a
100x100 pixel image could span anywhere from an Olympic-
size swimming pool (900 m?) to almost the entire country of
Jamaica (10,000 km?). The data within each image, and the
corresponding objects and points of interest, can therefore
vary across wide spatial ranges. Data from these multiscale
sensors provide critical and complementary information for
various operational and research applications in areas such
as atmospheric, hydrologic, agricultural, and environmental
monitoring [45, 52].

Few modern computer vision methods have explicitly ad-
dressed multiscale remote sensing imagery [35]. Neverthe-
less, the remote sensing vision community has increasingly
used large, pretrained models [13, 20], where such appli-
cations finetune a pretrained model for a single source of
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Figure 2. Scale-MAE employs the Masked Autoencoder framework. An input image is patchified and masked before being passed into an
MAE encoder. A Ground Sample Distance Positional Encoding (GSDPE) is added to the encoder input, which scales the positional encodings
to the area of ground covered. The Scale-MAE decoders has three stages: (1) Decoding, which uses a smaller number of transformer layers
than MAE to decode the encoded values (2) Upsampling, which progressively deconvolves the decoded feature map to a larger size before
being passed through the Laplacian Blocks (abbreviated LB, see Section 3), (3) Reconstruction, which then reconstructs low and high
frequency features at different scales. These outputs are used to compute an aggregate loss with ground truth low and high frequency features,
where following super resolution literature [2], an L1 loss is used for high frequency output to better reconstruct edges and an L2 loss is used

for low frequency output to better reconstruct average values.

data at a specific scale [13,20,22,32,41]. In this paper we
present Scale-MAE, a masked reconstruction model that ex-
plicitly learns relationships between data at different, known
scales throughout the pretraining process. By leveraging this
information, Scale-MAE produces a pretrained model that
performs better across a wide range of GSDs and tasks.

Masked Autoencoders [26] offer self-supervised learn-
ing without explicit augmentations. A standard Masked
Autoencoder resizes/crops an image, masks the majority of
the transformed image, and then tasks a Vision Transformer
(ViT) based autoencoder with embedding the unmasked com-
ponents. A decoding ViT then decodes the full image from
these learned embeddings, where the decoder is later dis-
carded and the encoder is used to produce representations
for an unmasked input image.

Existing MAE-based pretraining approaches fail to gen-
eralize across domains with images at multiple scales.
Scale-MAE (Figure 1) overcomes this through a GSD-based
positional encoding derived from the land area covered in the
image. This informs the ViT of both the position and scale of
the input image. Scale-MAE also uses a Laplacian-pyramid
decoder to encourage the network to learn multiscale rep-
resentations. The embeddings are decoded to two images
containing low and residual high frequency information, re-
spectively — see Figure 2. As we discuss in Section 3, this
structure allows the ViT decoder to use fewer parameters
than MAE while still producing strong representations across
multiple scales.

We show that Scale-MAE leads to better performing,
more robust multiscale representations than both a stan-
dard MAE and a recently proposed, state-of-the-art MAEs
SatMAE [13] and ConvMAE [21] across remote sensing
datasets with a variety of scale and resolution characteristics.
To the best of our knowledge Scale-MAE is the first self-

supervised MAE to include scale-aware positional encoding
and Laplacian pyramids. In our experiments, Scale-MAE
achieves an average of a 5.6% nonparametric KNN classifica-
tion improvement across eight remote sensing datasets com-
pared to current state-of-the-art in addition to a 0.9 mIoU
to 1.7 mloU improvement on the SpaceNet building seg-
mentation transfer task for a range of evaluation scales (see
Figure 1).

2. Related Work

Representation learning and the Masked Autoencoder.
Representation learning aims to extract meaningful, intrin-
sic features from data for downstream use [5]. In prac-
tice, this often entails pretraining a deep network so that
a lightweight learning routine can then finetune it for a par-
ticular downstream task, see [15,16,17,24,27,30,37,49, 66].
The Masked Autoencoder (MAE) is a recent state-of-the-art
self-supervised representation learning method in computer
vision that pretrains a ViT encoder by masking an image,
feeding the unmasked portion into a transformer-based en-
coder, and then tasking the decoder with reconstructing the
input image [26]. MAEs fail to leverage scale information in
scale-dependent domains as they are often reliant on absolute
or relative positional encodings. To the best of our knowl-
edge, Scale-MAE is the first MAE-based self-supervised
learning method to incorporate a scale-variant positional
encoding.

Remote Sensing Representation Learning Neumann et
al. [46] were one of the first to exhaustively share results on
existing representation learning and semi-supervised learn-
ing techniques for remote sensing imagery. Gao et al. [22]
demonstrated the effectiveness of MAE pretraining for re-
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mote sensing image classification. Ayush et al. [3] lever-
aged the metadata from remote sensing images via spatially
aligned but temporally separated images as positive pairs
for contrastive learning and predicted the latitude and longi-
tude as pretext tasks. Gupta et al. [25] demonstrated the use
of MAEs as a pretraining approach for passive and active
remote sensing imagery. Their method introduced flexible
“adapters” which could be used interchangeably with an en-
coder for a set of input imagery modes. Cong et al. [13]
introduced the SatMAE, which used temporal and spectral
metadata in a positional encoding to encode spatio-temporal
relationships in data. The temporal data contains the year,
month, and hour enabling understanding of long-term change
with the year, weather information from the month, and hour
information for the time of day. Further Liu et al. [41] and
Ibafiez et al. [32] have shown that MAE architectures can
be used for band selection in hyperspectral remote sensing
images, significantly reducing data redundancy while main-
taining high classification accuracy. Scale-MAE leverages
inherent absolute scale information information present in
scale-dependent domains as a way to learn robust, multiscale
features that reduce data usage downstream.

Super-resolution Super-resolution has proven effective in
improving accuracy within remote sensing images due to
the extremely small size of objects within the image [51].
Previous works have aimed to learn continuous implicit rep-
resentations for images at arbitrary resolutions to aid the
super-resolution task. These representations are used to
upsample the images either to specific scales [38] or to ar-
bitrary resolutions [10,31,61]. Most super-resolution work
aims to increase the resolution of the input image, whereas
Scale-MAE produces both higher and lower resolution im-
ages. There is some work on super-resolution for satellite
imagery, but much of this work is focused on synthetically
creating high-resolution datasets for use with models trained
specifically for high-resolution data [28, 35]. Scale-MAE,
however, utilizes super-resolution as a means to obtain mul-
tiscale representations during pretraining.

Multiscale Features Because images can contain objects
of many different pixel resolutions, the vision community has
proposed many methods to extract multiscale features. These
include spatial pyramids [6,34,36,50] and dense sampling
of windows [33,62,63]. These approaches have been com-
bined by methods such as [19], in which dense histogram-
of-gradient features are computed for each feature pyramid
level. Rather than using classical computer vision techniques
to extract multiscale features, convolutional neural networks
have been used to build deep multiscale features. CNNs
with subsampling layers inherently build feature pyramids, a
property exploited explicitly by models such as the Feature
Pyramid Network and the Single-Shot Detector, amongst

others [23,39,40]. Recently, this multiscale idea has been
extended to vision transformers by [ 18], who show that this
architecture improves various video recognition and image
classification tasks, as well as in [21, 67] which proposes
various hybrid CNN-MAE architectures that yield multi-
scale features during MAE pretraining. Different from these
works, Scale-MAE uses a Laplacian pyramid decoder as a
way to force an encoder to learn multiscale features with the
ViT architecture.

3. Scale-MAE

This section describes the Scale-MAE pretraining frame-
work as illustrated in Figure 2. Scale-MAE is a self-
supervised pretraining framework based on the Masked Au-
toencoder (MAE) [26]. Scale-MAE makes two contribu-
tions to the MAE framework. Standard MAE-based methods
use absolute or relative positional encodings to inform the
ViT of the position of the unmasked components, where
an image at resolution r will have the same positional en-
codings regardless of the image content. Scale-MAE in-
troduces the Ground Sample Distance (GSD) based posi-
tional encoding that scales in proportion to the area of land
in an image, regardless of the resolution of the image. In
addition, Scale-MAE introduces the Laplacian-pyramid de-
coder to the MAE framework to encourage the network to
learn multiscale representations. Embeddings from a ViT
encoder are decoded to a lower resolution image that cap-
tures the lower frequency information and a higher resolu-
tion image that captures the high-frequency information. We
formalize Scale-MAE in the following subsections by first
specifying the necessary MAE background, describing the
GSD-based positional encoding, and then explaining the
Laplacian-pyramid decoder.

Setup Let I € RA*XWXC represent an input image of
height H, width W, and C channels. The MAE patchifies
I into a sequence S of independent patches of height and
width P pixels, where each of the IV, patches, s € S has
dimension s € RY COA fraction, m, of the patches are
then removed and the remaining patches are then passed
through a projection function (e.g., a linear layer) to project
the patches S into D dimensions, fg : RFP’C RP, to
obtain embedded patches S = fr(S). An R? positional
encoding vector, is then added to the embedded patches with

, . pos
vz (pos, 2t) = sin ———- (D
»(pos, 20 100005
. poOs
vy (pos, 2t + 1) = cos ————+ 2
y(p ) 10000% ( )

where pos is the position of the patch along the given axis
and 1 is the feature index (visualized in Figure 3), exactly
as introduced in [54]. These positional encodings are then
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concatenated and added to the embedded patches, which
are then fed into a ViT encoder. After the encoder, the
removed m patches are then placed back into their original
location in the sequence of patches where a learned mask
token represents the masked patches that were not encoded.
Another positional encoding vector is added to all patches
and a sequence of transformer blocks decodes these patches
to form the original input image, which is used as the learning
target.

Input Scale-MAE performs a super resolution reconstruc-
tion, where the input image [ is downsampled from a higher
resolution image I, at the ground truth GSD. Instead of
targeting the input image, Scale-MAE targets high frequency
and low frequency components of I, which is common in
Laplacian pyramid super resolution models [64], where the
high frequency component is at the same resolution as the
ground truth image Iy, and the low frequency component
is at the same resolution as the input image I, as shown in
Figure 2. Following many works in super resolution [64], the
low frequency target image is obtained by interpolating I,
to a much lower resolution, r4y and then interpolating to the
same resolution as the input image /. The high frequency tar-
get image is obtained by downsampling [}, to another lower
resolution 7pigp-1ow, and then upsampling to the same resolu-
tion as the ground truth image [, and subtracting this image
Iyt = Iyv — Ihightow- The supplementary material provide
more information on the upsampling/downsampling method-
ology. The key components for Scale-MAE are described
next.

GSD Positional Encoding Images from scale-dependent
domains have a metric which defines the absolute scale for
the image. This metric has different names across domains
and is referred to as the Ground Sample Distance (GSD) in
remote sensing. The GSD is critical to understanding, con-
ceptually, the kinds of features that will be available in an
image. An image with finer GSD (lower number) will have
higher frequency details than an image with coarser GSD
(high number). Models are generally unaware of absolute
scale when learning over a set of data. Specifically, even if
they implicitly learn that all images in a dataset share a vary-
ing resolution from input-space augmentations, then these
models do not explicitly condition on the GSDs encountered
in unseen data.

We extend the positional encoding from Equation (2) to
include GSD by scaling the positional encoding relative to
the land area covered in an image as depicted in Figure 3
and mathematically:

. . g pos
Vgsd,z(POS, 21) = sin = ———— 3)
s ) G'10000%
. g pos
Vgsd,y(P0S,21 + 1) = cos = —— 4)

GSDPE PE

9|eds 21Nnjosqge YUM salien 3daso
uonnjosal |axid Yiim Ajuo saliea 34

Figure 3. Ground Sample Distance Positional Encoding (GS-
DPE). (Left) Input images at the same pixel resolution but different
GSDs are shown. The image on the bottom is a subset of the image
on the top. (Center) This overlap in location, albeit at a different
resolution, is reflected in the GSDPE. The finer image with smaller
spatial extent is represented by a corresponding subsection of the
overall sine wave on the bottom. (Right) A standard positional
encoding is strictly dependent on the image resolution and uses the
same embedding for both. The colors behind the sine waves show
the intensity and quantization of the encoding.

where g is the GSD of the image and G is a reference GSD,
nominally set to 1m. Intuitively, an object imaged at a finer
resolution has more pixels representing it. When imaging the
same object at a coarser resolution, those pixels must map to
fewer pixels. In Equation (4), we interpolate the positional
encoding by a factor of % to account for the ordering of the
coarser set of pixels. This simple idea underpins the GSD
Positional Encoding, visualized in Figure 3.

Scale-MAE decoder The standard MAE learns represen-
tations by tasking a network with reconstructing an image
after masking out most of its pixels. While the standard
MAE decoder reconstructs the input image at the same scale
as its input, the objective of Scale-MAE is to learn multi-
scale representations. We draw on works from progressive
super-resolution such as [56], that learn a high resolution,
high frequency image and a lower resolution low frequency
image, that when combined together, yield the input image
at a higher resolution.

The Scale-MAE introduces a novel decoder which de-
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codes to multiple scales with a progressive Laplacian de-
coder architecture, replacing the traditional MAE “decoder”,
which is really a Transfomer encoder. This architecture
consists of three stages: decoding, upsampling, and recon-
struction, which are shown in Figure 2 and detailed below.

Decoding follows the standard MAE decoder where fol-
lowing the encoder, the removed m patches are then placed
back into their original location in the sequence of patches
where a learned mask token represents the masked patches
that were not encoded, a positional encoding is added, and
then a series of transformer layers decode all patches. In
contrast to the standard MAE decoder, the Scale-MAE de-
coder uses fewer transformer layers (e.g. 3 layers instead of
8), which reduces the parameter complexity as quantified
in Section 5. The output of these layers is then fed into the
upsampling stage.

Upsampling The latent feature maps from the decoding
stage are progressively upsampled to 2x and 4x resolution
using deconvolution blocks, where the first deconvolution
is 2x2 with stride 2 that outputs a feature map at 2x the in-
put resolution (28 in Figure 2), followed by a LayerNorm
and GELU, and then another 2x2 deconvolution layer that
outputs a feature maps at 2x the previous resolution (56 in
Figure 2). See the supplementary material for a full architec-
tural diagram.

Reconstruction After having been upsampled, the lower
resolution and higher resolution feature maps are passed into
Laplacian Blocks (LBs in Figure 2) that reconstruct high
and low resolution images for the high and low frequency
reconstruction, respectively. Architecturally, the Laplacian
Blocks consist of a sequence of three sub-blocks: a Lapla-
cian Feature Mapping Block, a Laplacian Upsample Block,
and a Laplacian Pyramid Reconstruction Block. The Feature
Mapping Block is used to project features within a particular
layer of the Laplacian Pyramid back to the RGB space. The
Laplacian Upsample Block represents a learnable upsam-
ple function that maps latent features from one layer of the
Laplacian Pyramid to a higher level. Finally, the Laplacian
Pyramid Reconstruction Block is used to reconstruct infor-
mation at the different frequencies in RGB space. Following
super resolution literature [2], an L1 loss is used for high
frequency output to better reconstruct edges and an L2 loss
is used for low frequency output to better reconstruct aver-
age values. The supplementary material has architectural
diagrams for each block.

4. Experiments

We investigate the quality of representations learned from
Scale-MAE pretraining through a set of experiments that
explore their robustness to scale as well as their transfer
performance to additional tasks. First, we present our main
experiments in Section 4.1 and compare with SatMAE [13],
a current state-of-the-art MAE for remote sensing imagery,

Figure 4. Scale-MAE reconstruction. Examples from Functional
Map of the World are shown. From left to right, an input image
at 224x224 resolution is shown. Its corresponding mask is visual-
ized as well. Columns 3 and 4 show the low and high frequency
produced by the Scale-MAE decoder. The last column is the re-
construction obtained from summing the low and high frequency
features together.

ConvMAE [21], a state-of-the-art multiscale MAE, as well
as several other approaches detailed throughout. The exact
implementation of Scale-MAE for the main experiments was
determined through a set of ablation experiments presented
in Section 4.2.

We pretrain a ViT-Large model with Scale-MAE using the
Functional Map of the World (FMoW) [12] RGB training set,
which consists of 363.6k images of varying image resolution
and GSD, for 800 epochs. The initial higher resolution image
I, is taken as a random 448px? crop of the input image, and
the input image [ is then a downsampled 224px2 from I,.
The low frequency groundtruth is obtained by downscaling
I, to 14px? and then upscaling to 224px?, while the high
frequency groundtruth is obtained by downscaling I;; to
56px? and then upscaling to 448px? and subtracting this
image from Iy;.

Figure 4 shows examples of the masked input, low resolu-
tion/frequency, high resolution/frequency, and combined re-
construction of FMoW images during training. The low res-
olution/frequency images capture color gradients and land-
scapes, while the residual high resolution/frequency images
capture object edges, roads, and building outlines.

4.1. Representation Quality

We evaluate the quality of representations from
Scale-MAE by freezing the encoder and performing a non-
parametric k-nearest-neighbor (kNN) classification with
eight different remote sensing imagery classification datasets
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Figure 5. Learning better representations at all scales. Scale-MAE (blue) features perform better than state-of-the-art. We evaluate kNN
accuracy on eight datasets with a large variance in GSD. Scale-MAE consistently produces better results at coarser resolutions. In addition
to using evaluation datasets at different GSDs, to further test the multiscale representations, we create multiple test sets for each dataset

G%

in which we downsampled the full resolution validation set to coarser GSDs at fixed percentages: X,.7°, G € {12.5,25,50, 100}, where
EuroSat does not include the 12.5% because the images are at a resolution of 64px, our patch size is 16px, and an input image of 8px is too

small.

with different GSDs, none of which were encountered dur-
ing pretraining. The kNN classifier operates by encoding
all train and validation instances, where each embedded in-
stance in the validation set computes the cosine distance
with every other embedded instance in the training set. The
instance is classified correctly if the majority of its k-nearest-
neighbors are in the same class as the validation instance,
and incorrectly if they are in any other.

The reasoning behind the kNN classifier evaluation is
that a strong pretrained network will output semantically
grouped representation for unseen data of the same class.
This evaluation for the quality of representations occurs in
other notable works [7,9,57]. In addition to using evalua-
tion datasets at different GSDs, to further test the multiscale
representations, we create multiple test sets for each dataset.
Since we cannot synthesize data at a finer GSD than the
provided ground truth, we only downsample the full reso-
lution validation set to coarser GSDs at fixed percentages:
XG% G € {12.5,25,50,100}.

Our analysis uses eight different land-use classification
datasets: RESISC-45 [11], the UC Merced Land Use Dataset
[65], AiRound and CV-BrCT [43], MLRSNet [48], EuroSAT
[29], Optimal-31 [55], WHU-RS19 [14], SpaceNet vl and
v2 [53], and Functional Map of the World [12]. The datasets
used span a wide range of GSDs, e.g., MLRSNet consists of
data captured from aerial platforms with 0.1m GSD, while
RESISC45 has imagery from medium-resolution satellites
at >30m GSD. In some cases, the datasets present imagery
at mixed GSDs which are not specified, in which case we as-
sume an approximate constant GSD: see the supplementary
material for all details. Furthermore, we provide an expanded
set of experiments with linear probing and finetuning in the
supplementary material.

Average Accuracy (%)

Dataset Scale-MAE SatMAE ConvMAE
AiRound 63.2 57.8 59.7
CV-BrCT 69.7 66.2 68.4
EuroSAT 86.7 84.4 88.8
MLRSNet 81.7 75.0 79.5

OPTIMAL-31 65.5 55.7 61.7
RESISC 70.0 61.0 67.0
UC Merced 75.0 69.8 70.0
WHU-RS19 79.5 78.5 77.0

Table 1. Scale-MAE performs better, across all GSDs (as in Fig-
ure 5), for all datasets we experimented with compared to SatMAE.
The average improvement across all datasets for Scale-MAE com-
pared to SatMAE is 5.6% and 2.4% compared to ConvMAE with
ViT-Large backbones.

We run kNN classification with & = 20. Figure 5 shows
that Scale-MAE outperforms SatMAE and ConvMAE across
GSD scales in the different evaluation datasets and across
relative GSD scales within individual datasets. For example,
the UC Merced has a GSD of 0.3m, but evaluating at scales
[12.5%,100%] provides an artificial GSD range of [0.3m,
2.4m]. On this example, we see that Scale-MAE provides
the largest performance gap at the 2.4m GSD, with similar
performance at 0.3m.

Across all other evaluation datasets and wider range of
GSDs, Scale-MAE outperforms SatMAE and ConvMAE,
where Scale-MAE outperforms both methods by a larger gap
as the GSD increasingly varies from the original GSD, indi-
cating that Scale-MAE learns representations that are more
robust to changes in scale for remote sensing imagery. We
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outperform SatMAE by an average of 5.6% and ConvMAE
by an average of 2.4% across all resolutions and datasets (see
Table 1). UC Merced at 100% of the true GSD is the only
evaluation where SatMAE outperforms Scale-MAE. The
supplementary material contains an extensive table demon-
strating kNN classification results with varying k.

Linear probing and finetuning We perform linear classi-
fication on the RESISC-45 and FMoW-RGB datasets. We
fine-tune for 50 epochs using the same hyperparameter set-
tings as SatMAE [13]: a base learning rate of 5 x 1072, a
weight decay of 5 x 102, We do not use temporal data for
classification. For RESISC-45, we fine-tune for 100 epochs
with a base learning rate of 4 x 1073, a weight decay of
5x 1073, and a global batch size of 256 across 2 GPUs. The
learning rate on the backbone is multiplied by a factor of 0.1.
We use RandomResizedCrop for augmentation. We train on
224x224 images and evaluate 256x256 images because we
found evaluating at a higher scale improves the performance
of all models. We report both the performance of end-to-end
fine-tuning and linear probing with a frozen backbone. The
linear probing setup was the same as finetuning except the
learning rate was 0.1. The results are shown in Table 2 and
Table 3.

Model Backbone Frozen/Finetune
Scale-MAE Vit-Large 89.6/95.7
SatMAE [13] Vit-Large 88.3/94.8
ConvMAE [21] ConvVit-Large 81.2/95.0
MAE [26] Vit-Large 88.9/93.3

Table 2. Transfer classification results on RESISC-45. Frozen
indicates a linear probe and finetune is a full end-to-end finetuning
of the entire model.

Model Backbone Top-1/Top-5

Scale-MAE ViT-Large 77.9/94.3
SatMAE 7 [13] ViT-Large 72.4/91.9

MAE [26] ViT-Large 68.4/90.3
ConvMAE [21] ConvVit-Large 74.1/91.4
SatMAE x [13] ViT-Large 77.8/-

GASSL [4] ResNet-50 71.55/-
MoCo-V2 [27] ResNet-50 64.34/-

Table 3. Full finetuning results on FMoW-RGB. {: We repro-
duce SatMAE and ConvMAE by taking their publicly available
codebases and pretraining on FMoW dataset for 800 epochs. The
results differ from their reported results, but are evaluated consis-
tently with ours. * Reports the results from the SatMAE paper [13].

Semantic segmentation transfer We use the SpaceNet v1
building segmentation dataset [53] to evaluate semantic seg-
mentation results on contrastive and MAE-based pretraining

methods. Prior methods relied on the PSANet [68] segmen-
tation architecture, while Scale-MAE uses the UperNet [58]
segmentation architecture which is more common for ViT
backbones. For even comparison, we test the current state-
of-the-art SatMAE and ConvMAE methods with UperNet
as well. Results are detailed in Table 4.

Method Backbone Model mloU
Sup. (Scratch) ResNet50 PSANet 75.6
GASSL [3] ResNet50 PSANet  78.5
Sup. (Scratch) ViT-Large PSANet 74.7
SatMAE [13] ViT-Large PSANet 78.1
Sup. (Scratch) ViT-Large UperNet 71.6
Vanilla MAE  ViT-Large UperNet 77.9
SatMAE ViT-Large UperNet  78.0
ConvMAE ViT-Large UperNet 77.6
Scale-MAE ViT-Large UperNet 78.9

Table 4. Semantic segmentation results on SpaceNet vl.
Scale-MAE outperforms other methods across backbone and seg-
mentation architectures, where Sup. (Scratch) indicates a super-
vised model trained from scratch (a randomly initialized network).

With the same pretraining settings, Scale-MAE outper-
forms SatMAE by 0.9 mloU, ConvMAE by 1.3 mloU, and
a vanilla MAE by 1.0 mloU. Scale-MAE outperforms all
other prior work, including GASSL [3], which SatMAE did
not outperform on the mean Intersection over Union (mloU)
metric for semantic segmentation. Particularly, Scale-MAE
increases the gap in performance as the resolution of input
imagery becomes coarser, highlighting the absolute scale-
invariance introduced by our method.

In Figure 6, we compare SpaceNet v1 evaluations across
downscaled images (at 50%, 75%, and 100% of the origi-
nal image size) for Scale-MAE, SatMAE, and ConvMAE.
Similar to the classification results, Scale-MAE maintains
higher semantic segmentation performance over both meth-
ods, even with images at a coarser GSD. In fact, the per-
formance gap grows at coarser GSDs. Compared to the
next-best-performing method at the input GSD, Scale-MAE
is 0.9 mloU higher, at 75% GSD Scale-MAE is 1.2 mloU
higher, and at 50% Scale-MAE is 1.7 mloU higher.

In Table 5, we further evaluate Scale-MAE, SatMAE, and
ConvMAE across SpaceNet v1, SpaceNet v2 [53], INRIA
Aerial Image [44], and GID-15 [59] remote sensing datasets
at native resolution. Scale-MAE outperforms both compara-
ble methods across all benchmarks.

4.2. Ablations

We ablate the key components of the Scale-MAE pretrain-
ing framework. For these experiments, we use a lightweight
pretraining setting, where we pretrain for 300 epochs on
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Figure 6. SpaceNet v1 evaluation across downscaled images for
both Scale-MAE and SatMAE. Scale-MAE maintains higher se-
mantic segmentation performance over SatMAE, even with images
of coarser GSD.

Mask Rate KNN 50% KNN 100%
70% 77.3 79.3
75% 78.1 80.7
80% 78.1 79.9

SN1 SN2 INR. | GI5
RI SH VE PA KH - -
Conv. | 77.6 | 787 822 783 748 | 822 | 374

Sat. | 78.0 | 81.9
Scale | 78.9 | 82.2

86.6 80.3 76.1 | 83.0 | 44.3
874 81.1 77.1 | 84.2 | 46.2

Table 5. mIoU on semantic segmentation tasks. SN1/2 (SpaceNet
v1/2), RI: Rio, SH: Shanghai, VE: Vegas, PA: Paris, KH: Khar-
toum; INR: INRIA; G15: GID-15. Conv., Sat., and Scale. are
ConvMAE, SatMAE, and Scale-MAE.

Method  GSDPE KNN50% KNN 100%
Vanilla MAE 72.8 77.8
Vanilla MAE v 75.4 78.5

MAE + LP 75.3 79.6
Scale-MAE v 78.1 80.7

Table 6. Ablation results indicating the importance of GSDPE as
determined by a KNN classification on RESISC-45 at a relative
GSD of 50% and 100% of its native GSD. Using the GSDPE
leads to better performance for both Scale-MAE and the Vanilla
MAE. MAE + LP denotes the vanilla MAE with the addition of
our progressive Laplacian decoder.

FMoW (rather than 800) and use a ViT-Base encoder (rather
than ViT-Large), and evaluate using a kNN evaluation on
RESISC-45 at 100% and 50% of its native GSD. The key
contributions that we ablate are as follows: the GSD posi-
tional encoder in Table 6, in which we find that the GSD
postional encoder benefits both Scale-MAE and Vanilla MAE
across resolutions. In Table 8, we see that the number of
transformer layers can be reduced from 8 to 3 compared to a
Vanilla MAE, which results in a performance improvement.
The standard masking rate of 75% still appears optimal for
Scale-MAE according to the results in Table 7.

In Table 9 we ablate the necessity of the low and high res-
olution reconstructions. Specifically, we test reconstructing
the low resolution image only, the high resolution image, and

Table 7. Ablation results indicating that a 75% mask rate is optimal
as determined by a KNN classification on RESISC-45 at a relative
GSD of 50% and 100% of its native GSD.

a combined image (rather than independent low/high recon-
structions). In this case, when the high resolution component
is reconstructed, we do not use the low-resolution residual,
but rather, directly reconstruct the high resolution result. The
“Combined” entry combines the low and high resolution re-
sults instead of treating them as separate learning objectives.
The separate low/high resolution reconstructions obtain the
best performance and robustness to changes in scale.

5. Discussion

In this section, we share observations about Scale-MAE,
sketch our vision for future work, and discuss high-level
questions about Scale-MAE.

Computational complexity. Scale-MAE requires a much
smaller decoder than vanilla MAE—instead of a decoder
depth of eight, Scale-MAE works well with a depth of three.
In fact, with 322.9M vs 329.5M parameters using ViT-
Large, Scale-MAE is smaller than vanilla MAE. However,
GPU memory usage for equal batch sizes are higher for
Scale-MAE since we reconstruct a higher resolution image
in the Scale-MAE Decoder.

Multi-spectrality and modality. Electro-optical (EO)
satellites, such as the ones comprising the datasets mentioned
in this work, capture light at different wavelengths. Each
wavelength has a different sensor, and each sensor can have a
different resolution. Scale-MAE requires input tensors to be
stacked to pass through the model. This means that we are
unable to use Scale-MAE when the input image’s bands are
all of different GSDs. Additionally, synthetic aperture radar
(SAR) imagery is another form of remote sensing where res-
olution varies across a single band. Extending Scale-MAE
to work with different resolution bands and modalities is
reserved for future work.

Can the Scale-MAE methodology be applied to other
backbones? Methods such as ConvNeXt [42] provide
competitive performance compared to Transformers. The
core components of our work can be integrated, with ad-
ditional work, into different architectures. The Laplacian
Decoder in Scale-MAE can be engineered to ingest convo-
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Decoding Layers KNN50% KNN 100%
1 76.0 78.4
2 77.9 80.4
3 78.1 80.7
4 77.5 80.0
8 71.7 78.9

Table 8. Ablation results indicating that fewer transformer layers in
the decoding stage tend to work better for Scale-MAE as determined
by a KNN classification on RESISC-45 at a relative GSD of 50%
and 100% of its native GSD.

Low Res High Res Combined KNNS50% KNN 100%
v 77.6 80.2
v 72.9 74.3
v 772 80.3
v v 78.1 80.7

Table 9. These ablation results indicate that reconstructing both the
low resolution and high resolution components lead to robust perfor-
mance. Note: when the high resolution component is reconstructed,
the low-resolution residual is not used—the high resolution result is
directly reconstructed. The “Combined” entry merges the low and
high resolution results instead of treating them as separate losses.
The evaluations are a KNN classification (k=20) on RESISC-45 at
relative GSDs 50% and 100% of its native GSD.

lutional feature maps. Existing work on scale-aware CNNs
can be extended to work with the Laplacian Decoder.

Evaluating on more remote sensing datasets. The field
of remote sensing has had a renaissance in the last five years
with the amount of available datasets. These can be generic,
like Functional Map of the World, to highly specific, such
as identifying illegal airstrips in Brazil [1, 8] or identifying
illegal fishing vessels [47]. In fact, there are so many small,
specific remote sensing datasets that entire review papers
are written to enumerate them [60]. We chose to focus
datasets with properties of remote sensing that are relevant
to multiscale representation learning.

6. Conclusion

Remote sensing imagery has accelerated the rate of scien-
tific discovery in a broad set of disciplines. With increasingly
precise methods to extract environmental indicators using
computer vision methods, automated understanding of re-
motely sensed sources has become a mainstay in scientific
literature. Remote sensing payloads are diverse and capture
data at a wide range of resolutions, a feature heavily utilized
by scientists. Current computer vision methods for remote
sensing necessitate the training of a new model per input
resolution. Not only is the training process expensive, but
the overhead of curating a dataset at multiples scales makes

this a daunting task.

We introduce Scale-MAE, a pretraining framework which
introduces scale invariance into encoders that are used
for a diverse set of downstream tasks. Our insights into
scale-inclusive positional encodings and progressive multi-
frequency feature extraction result in models that perform
significantly better than state-of-the-art pretraining methods
across (1) multiple scales and (2) many benchmarks.

Our goal is to take the extremely diverse and rich source
of information present in remote sensing imagery and make it
simple to use with minimal training iterations required. With
the introduction of Scale-MAE, we hope to further accelerate
the rate at which scientific disciplines create impact.
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