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Abstract

Modern machine learning applications are char-
acterized by the increasing size of deep models
and the growing diversity of data modalities. This
trend underscores the importance of efficiently
adapting pre-trained multi-modal models to the
test distribution in real time, i.e., multi-modal
test-time adaptation. In practice, the magnitudes
of multi-modal shifts vary because multiple data
sources interact with the impact factor in diverse
manners. In this research, we investigate the the
under-explored practical scenario uni-modal dis-
tribution shift, where the distribution shift influ-
ences only one modality, leaving the others un-
changed. Through theoretical and empirical anal-
yses, we demonstrate that the presence of such
shift impedes multi-modal fusion and leads to
the negative transfer phenomenon in existing test-
time adaptation techniques. To flexibly combat
this unique shift, we propose a selective adapta-
tion schema that incorporates multiple modality-
specific adapters to accommodate potential shifts
and a “router” module that determines which
modality requires adaptation. Finally, we vali-
date the effectiveness of our proposed method
through extensive experimental evaluations. Code
available at https://github.com/chenmc1996/Uni-
Modal-Distribution-Shift.
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Figure 1. A self-driving car equipped with complementary camera
and LiDAR sensors navigating under different conditions. In the
right figure, the icy road surface primarily impacts the LiDAR sig-
nals, while poor light conditions mainly affect the camera signals.

1. Introduction
In recent years, multi-modal learning has emerged as a
crucial area in both academic research and practical applica-
tions due to its remarkable ability to process a wide range
of data types (Huang et al., 2021; Xu et al., 2023). In the
open-world environment across diverse applications, dis-
tribution shifts constantly occur and significantly degrade
the performance of static models (Liang et al., 2024; Shi
et al., 2024; Han et al., 2023). Existing research on distribu-
tion shifts, especially in multi-modal data, often implicitly
assumes a “global” distribution shift where all modalities
experience distribution changes. However, many real-world
corrupting factors impact only specific modalities, e.g., light
changes can solely shift the distribution of camera signals,
while the LiDAR data remains immune as shown in Fig.
1. For the first time, we term this type of shift uni-modal
distribution shift, which is distinct from the previously con-
sidered global distribution shifts. Nevertheless, this setting
is of great practical significance. In many cases, comple-
mentary data modalities are often preferred, yet they are
likely to be subject to different disturbances. We theoreti-
cally show how the uni-modal distribution shift undermines
the attention-based multi-modal model in Sec. 3.3.

Methodologically, to address distribution shifts, Test-Time
Adaptation (TTA), which involves continuously updating
models to adapt to the shifted data distribution in test envi-
ronments, has become a cutting-edge approach (Wang et al.,
2020; Cao et al., 2025; Yang et al., 2024). Therefore, our
work also focuses on utilize TTA to solve the uni-modal
distribution shift problem. Subsequently, we investigate
the adequacy of existing TTA methods for addressing the
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(b) VGGSound with audio shift

Figure 2. TTA methods’ performance on uni-modal distribution
shift. The introduction of adaptation techniques on the unshifted
test data results in limited performance gain or even degeration
(Pre-trained model (Source) vs. Tent, ETA, and SAR).

uni-modal distribution shifts. Recent TTA and multi-modal
TTA techniques—such as Tent (Wang et al., 2020), ETA
(Niu et al., 2022), SAR (Niu et al., 2023), and READ (Yang
et al., 2024)—indifferently perform adaptation on every
modality-specific encoder or the modality fusion module
utilizing techniques like batch re-normalization or entropy
minimization (detailed in Sec. 2). However, when distribu-
tion shift does not occur in all modalities, these approaches
lead to redundancy or even negative effects, resulting in
overfitting in unshifted modalities to which the original
model already generalizes. We perform experiments on
multi-modal datasets with uni-modal distribution shift, and
discovery limited performance gain. Tent and SAR even
exhibit the negative transfer phenomenon (Rosenstein et al.,
2005), as shown in Fig. 2. In short, uni-modal distribution
shift presents a unique challenge that common TTA meth-
ods struggle to address: How to flexibly adapt to the shift
in any modality without harming the multi-modal fusion of
other unshifted modalities?

To achieve this goal, we propose a straightforward yet ef-
fective approach for flexible modality-specific adaptation.
It mainly uses a learnable “router” that determines which
modality should be adapted. On top of that, we introduce
a lightweight adapter for each modality’s feature represen-
tations to accommodate potential distribution shifts at test
time. By allowing the router to automatically activate one
adapter while disabling others, we achieve flexible selective
adaptation. All components are updated in an end-to-end
manner during test time using simple self-training tech-
niques. Consequently, our method effectively enables safe
TTA for uni-modal distribution shifts in multi-modal data.
It is verified on multi-modal datasets, namely Kinetics50
(Kay et al., 2017) and VGGSound (Chen et al., 2020), with
21 types of uni-modal distribution shifts across different
modalities. The main contributions of this work are:

• We identify the unique challenges of uni-modal shift
in multi-modal data through theoretical analysis (i.e.,
large fluctuations in cross-modal attention) and empiri-

cal analysis (i.e., negative transfer).

• We propose a simple but effective method using
lightweight adapters for each modality’s feature repre-
sentation. A learnable “router” is designed to automat-
ically activate the adapter for the shifted modality and
disable the adapters for unshifted modalities.

• Our method is validated through extensive experiments
on the uni-modal distribution shifted datasets, and the
results show that our approach achieves superior perfor-
mance. The comprehensive experimental setup guaran-
tees the robustness and generalizability of our method.

2. Related Works
2.1. Test-Time Adaptation

Distribution shift easily happens between training and test
data. Meanwhile, adaptation to the test distribution is lim-
ited by various factors, with the most prominent ones being
the lack of test data labels and the limited computational
resources for further tuning. TTA enables flexible, online
adaptation to the current test distribution, attracting increas-
ing attention in the field.

Early efforts (Wang et al., 2020; Lim et al., 2023) posit
that the statistics in the batch normalization layers embody
distribution knowledge. For a mini-batch of data x in the
middle batch normalization layer, the activation x̂ is given
by: x̂ = x−E[X]√

V[X]
· γ + β, where E[X] and V[X] are the

estimated mean and variance over the data distribution (For
illustration, we omit the constant for numerical stability).
During test-time, the mean and variance are set as the mov-
ing average of training batches’ statistics. Here, γ and β are
learnable scale and shift parameters. The re-normalization
technique is used to adapt to the new distribution. During
test-time, instead of fixing the running statistics (mean µrun

and standard deviation σrun) computed during training, Ad-
abn (Li et al., 2017) recomputes the batch statistics for every
test batch. The adjusted batch normalization formula for test
data x becomes: x̂ = x−µrun

σrun
· γ + β. This way, it utilizes

the statistics from the test distribution. In contrast, TENT
(Wang et al., 2020) optimizes the affine parameters γ and β
in batch normalization layers by minimizing the entropy of
the prediction probability. ETA (Niu et al., 2022) excludes
unreliable and redundant samples from the entropy mini-
mization calculation. SAR (Niu et al., 2023) performs sam-
ple selection from the gradient aspect, removing samples
that cause large gradients and encouraging model weights
to reach a flat minimum. However, most of the TTA meth-
ods do not consider multi-modal scenarios. These methods
can typically be deployed, for instance, in the encoder of
each modality or the multi-modal fusion module. But in
the context of the new uni-modal distribution shift within
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multi-modal data, these methods would suffer from negative
transfer issues.

2.2. Test-Time Adaptation for Multi-Modal Data

Multi-modal learning has emerged as a promising approach
for understanding the world through different data modal-
ities. Moreover, publicly available large-scale pre-trained
multi-modal models have been widely applied. However,
in the open world, the dynamic and continuously changing
data distribution damages the applicability (Sehwag et al.,
2019; Zhou, 2022; Cao et al., 2023; Xiong et al., 2024; Cao
et al., 2025). Thus, there is an urgent need for the adapta-
tion of corresponding TTA techniques to efficiently adapt
to new multi-modal data. In MM-TTA (Shin et al., 2022),
a co-training-style (Blum & Mitchell, 1998) intra-modal
pseudo-labeling, followed by inter-modal pseudo-label re-
finement, is introduced for 3D semantic segmentation. To
bridge the gap in distribution shift between modalities. It
maintains two norm statistics: one is directly updated by the
test data, another is slowly updated with a momentum from
the direct-updated batch norm parameter. The work focuses
on the situation where distribution shifts occur within all
modalities, yet adaptations should be separately adjusted.
Compared with our method, it manually assigns different de-
grees of shift to specific modalities. In contrast, our method
performs dynamic routing in an end-to-end and learnable
manner. READ (Yang et al., 2024) investigates multi-modal
shifts and includes preliminary experiments on uni-modal
shifts. It identifies the “reliability bias” problem, indicating
that when certain modalities are affected by distribution
shifts, the information discrepancies between modalities are
amplified. To address this, READ modulates the attention-
based fusion layers. However, rather than reducing attention
on the shifted modality, we aim to fully extract informa-
tion from them through modality-specific adaptation, which
utilizes the shifted data more efficiently.

3. Method
3.1. Problem Definition of Uni-Modal Distribution Shift

In multi-modal learning, data is represented through diverse
modalities such as text, images, and audio. Uni-modal distri-
bution shift occurs when the distribution of only one modal-
ity changes between the source and target domains, while
the others remain unchanged. Notably, we do not know
which modality the shift occurs in. This presents unique
challenges as the model must perform selective adaptation.
Its formalization is: The joint distribution of the multi-modal
source domain is given by PS(x

(1),x(2), . . . ,x(M), Y ).
For the target domain, it is PT (x

(1),x(2), . . . ,x(M), Y ).
Here, the marginal distribution of the k-th modality in
the target domain is shifted, i.e., PT (x

(k)) ̸= PS(x
(k)),

while for the other modalities, PT (x
(i)) = PS(x

(i)),∀i ̸=

audio encoder

identity

cross-modal fusion layer

adapter

router

visual encoder

Classifier

unshifted audio shifted video 

Figure 3. The architecture of our model.

k. Additionally, the conditional distribution of the
target label Y given the input x(1),x(2), . . . ,x(M) re-
mains the same, i.e., PS(Y |x(1),x(2), . . . ,x(M)) =
PT (Y |x(1),x(2), . . . ,x(M)).

In TTA for uni-modal distribution shift, the model is tasked
with generating predictions for streaming multi-modal data.
Simultaneously, model updates are carried out to adapt to
the uni-modal shifted distribution.

3.2. Architecture of Pre-trained Model

For simplicity, we will illustrate our approach using two
modalities: audio and video. This framework can be eas-
ily extended to more general multi-modal cases. Suppose
there is a model pre-trained on a labeled multi-modal source
dataset. As shown in Fig. 3, the model comprises modality-
specific encoders (visual encoder f (v) and audio encoder
f (a)), a cross-modal fusion layer f (m), and a classifier
f (c). Both f (a) and f (v) are transformer encoders (Vaswani
et al., 2017) that map the input modality into a series of
tokens. The cross-modal fusion module f (m) is mainly a
self-attention layer (Vaswani et al., 2017).

3.3. Theoretical Analysis

With the problem setting and model architecture established,
we initiate on a theoretical analysis aimed at understanding
the implications of uni-modal distribution shift on multi-
modal fusion. We begin our analysis from the core module
of multi-modal fusion: the self-attention mechanism. It
plays a pivotal role in multi-modal fusion by aggregating
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intra-modal and inter-modal token representations with dif-
ferent weights. Mathematically, it is defined by the formula:

Attention(Q(z),K(z), V (z))

= softmax

(
Q(z)K(z)T√

dk

)
V (z),

(1)

where query Q(·), key K(·), and value V (·) are the linear
transformation of the tokens’ representation z, dk is the
scale factor. The attention logit, a crucial determinant in the
self-attention, is defined as the inner product between the
query and key matrices prior to the softmax function. Its
value depends on the representations of two tokens involved
in the computation. Formally, we define the attention logit:

Definition 3.1 (Attention Logit). The attention logit (AL)
is defined as the inner product between query and key ma-
trices:

AL(zi, zj) = Q(zi)K(zj)
T = zi

(
WQWKT

)
zT
j , (2)

where zi ∈ RF and zj ∈ RF are a pair of embedding
of tokens involved in the self-attention calculation, and
WQ,WK ∈ RF×F are the linear projection matrices.

However, the occurrence of a distribution shift in any modal-
ity can disrupt this mechanism. Without loss of generality,
we analyze the shift in the audio modality: Token repre-
sentations of the shifted audio are corrupted, and we de-
note it as ź

(a)
i and ź

(a)
j , different from the tokens from

unshifted modality z
(v)
k . The distribution shift would result

in the changes of attention logit between two shifted audio
tokens: AL(ź(a)

i , ź
(a)
j ) − AL(z

(a)
i , z

(a)
j ). The change be-

tween one shifted audio token and unshifted one video is
token: AL(ź(a)

i , z
(v)
k )−AL(z

(a)
i , z

(v)
k ).

Proposition 3.2. Under the zero-mean additive shift as-
sumption (Kim et al., 2020):

sup
(
D
[
AL(ź

(a)
i , z

(v)
k )−AL(z

(a)
i , z

(v)
k )︸ ︷︷ ︸

change of cross-modal AL after shift

])
< sup

(
D
[
AL(ź

(a)
i , ź

(a)
j )−AL(z

(a)
i , z

(a)
j )︸ ︷︷ ︸

change of intra-shited-modal AL after shift

])
when E[∥z(v)

k ∥22] < E[∥z(a)
i ∥22] + E[∥z(a)

j ∥22] + E[∥εj∥22]
(3)

where sup(·) is the least upper bound. εj is the noise on
token z

(a)
j . E[∥z(v)

k ∥22], E[∥z
(a)
i ∥22], E[∥z

(a)
j ∥22], E[∥εj∥22]

are the expected value of the squared norm of the token from
different modalities and noise, respectively.

Proof. See the appendix for the formal proof.

Remark 3.3. The presence of uni-modal distribution shift
leads to specific changes in the attention logit of two to-
kens from the shifted-modality (both tokens belonging to

the single shifted modality). The variance of that change
tends to be greater than that of two inter-modal tokens, i.e.,
one token from shifted modality and another token from
the unshifted modality (We first prove the expectation of
the change is zero in the appendix). This implies that the
attention logits within the shifted modality have large fluc-
tuations (e.g., high-variance inputs for the calculation of
softmax of attention scores) after the shift occurs. As a
result, the softmax outputs become more “peaked” within
the shifted modalities’ self-attention. Consequently, it be-
comes more likely that fewer cross-modal attention events
occur, especially between the shifted and unshifted modali-
ties. Ultimately, this has a negative impact on multi-modal
fusion.

In addition to the above analysis, we also theoretically
demonstrate that, under non-zero-mean shift, cross-modal
fusion faces similar challenges from the expectation per-
spective, as detailed in the appendix.

3.4. Selective Adaptation with Model-specific Adapters
and Router

Given that an unknown modality would be going through
shift and harm multi-modal fusion, we propose to flexibly
adapt the distribution shift of different modalities. We intro-
duce two lightweight components on top of the base model:
(I). Model-specific adapters: For the two modalities, we
use two learnable matrices, Φ(v) and Φ(a), to fit the possi-
ble domain shift. (II). Router: Router is parameterized by
modality shift semaphore S = [s(v), s(a)]: A vector whose
length equals the number of modalities, indicating the prob-
abilities of a modality shift. In our case, the vector size
is 2. During test-time, the two components for selective
adaptation are updated end-to-end.

3.5. Forward Pass

Feature Extraction During test-time, the test samples
arrive in batches (x(a),x(v)) ∈ B. Our model’s forward
process, illustrated in Fig. 3, first, extract features from the
test data using the modality-specific encoders :

z(a) = f (a)(x(a)),

z(v) = f (v)(x(v)).
(4)

Selective Adaptation Next, each of these features multi-
plies the corresponding modality-specific adapter to form
the distribution-aligned features:

ẑ(v) = z(v)(Φ(v) + I),

ẑ(a) = z(a)(Φ(a) + I),
(5)

where I is an identity matrix make the adaptation works in
a “residual” way. It allows the adapter Φ to build on the
identity mapping and learn only the necessary increments.
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We use the modality shift semaphore to decide whether
to use the original or the adapted features. To provide a
better exploration of the solution space with differentiable
approximation to a categorical distribution, we input the
modality shift semaphore S = [s(v), s(a)] into the Gumbel-
Softmax function (Jang et al., 2017). Concretely, we first
sample a Gumbel noise vector g:

g = − log(− log(u)), (6)

where u ∼ U(0, 1) and u has the same dimension as S.
We then add this Gumbel noise to our input logits to obtain
the noisy logits. We apply the softmax function to the
semaphore to get the selection weights w:

w = softmax
(
(S + g)/τ

)
, (7)

where τ is a scaling temperature. To make the obtained
weight decides whether to use the original or the adapted
features, we obtain a convex combination of the original
feature and the adapted feature. The weights w act as coef-
ficients for the adaptation choice, determining how much of
the corresponding modality’s feature should be adapted:

z̃(v) = w(v) · z(v) + (1− w(v)) · ẑ(v),

z̃(a) = w(a) · z(a) + (1− w(a)) · ẑ(a).
(8)

The choice here is implemented in a soft way to achieve
sufficient training for both adapters. When w(v) ≈ 1, the
output features z̃(v) are more similar to the adapted feature
ẑ(v), while w(a) ≈ 0 causes z̃(a) to be close to the original
feature ẑ(a).

Multi-Modal Fusion Subsequently, the features pass
through an attention layer, which follows the well-known
design from (Vaswani et al., 2017), before entering the clas-
sifier to yield the class prediction p̂:

p̂ = Softmax
(
f (c)(mean(f (m)(z̃(v), z̃(a))))

)
, (9)

where mean(·) calculates the mean features of all tokens
output by the fusion layer.

Traverse Inference Schema Test-time adaptation, unlike
the classic supervise training framework, must produce pre-
dictions for performance evaluation as soon as the data
arrive. If the router has not fully converged in the early
data stream, performance may be compromised. To ad-
dress this issue, we propose a straightforward schema called
traverse inference. In this approach, predictions for test-
ing are generated through an ensemble of multiple forward
passes, each activating one of the adapters. For instance,
both forward processes for (ẑ(a), z(v)) and (z(a), ẑ(v)) are
traversed. The final predictions given by choosing the most
confident predictions from these outputs. It is worth noting
that this schema is only for inference, adaptation only needs
one forward routed by the selective adaptation schema.

3.6. Adaptation through Self-Training

To produce supervision signals without annotations, we use
the self-training techniques that common in TTA and other
relevant tasks (Sohn et al., 2020; Lee, 2013).
Self-Training Loss We first generate pseudo-labels based
on the model’s predictions p̂. The class index corresponding
to the most confident prediction is used as the pseudo-label
p̂ = argmaxi(p̂)i. Additionally, we threshold each sam-
ple’s loss according to the maximum probability to ensure
accurate self-supervision:

Lself = 1(max
i

(p̂)i > τ)CE(p̂, p̂), (10)

where threshold τ filters out less confident predictions. 1(·)
is the indicator which transforms the bool value in it to 1
or 0. CE(·) is the cross-entropy loss function (The loss
is averaged in each batch. We omit this for simplicity of
illustration.).

Balance Loss Following (Yang et al., 2024; Zhou et al.,
2023), we use the negative entropy loss term Lbal to regu-
larize a balanced class distribution of the test batch. The
details are in the appendix.

Overall Self-Training Objective The final adaptation ob-
jective combines these two losses:

L = Lbal + αLself , (11)

where α is a weight between the two terms. By minimiz-
ing this combined loss, the model can benefit from both
the regularization of the class distribution via Lbal and the
exploitation of test data through pseudo-labeling in Lself .

4. Experiments
4.1. Experiment setting

Dateset Construction To validate the effectiveness of our
method, we perform comparison experiments and on two
multi-modal datasets, Kinetics50 (Kay et al., 2017; Peng
et al., 2022) and VGGSound (Chen et al., 2020), with
diverse domain shifts. The dataset construction and cor-
ruption follow the procedures in (Hendrycks & Dietterich,
2019; Yang et al., 2024). Specially, we use the Kinetics50
dataset, which is a 50-class subset of the Kinetics dataset
and contains 29,204 YouTube videos of human actions (e.g.,
wrestling or eating cake), 15 types of video shifts are in-
troduced. These include Gaussian noise, shot noise, im-
pulse noise, defocus blur, glass blur, motion blur, zoom blur,
snow, frost, fog, brightness, elastic, pixelate, contrast, and
JPEG. Additionally, 6 types of audio corruptions-Gaussian
noise, traffic noise, crowd noise, rainy noise, thunder noise,
and windy noise-are applied. The videos in Kinetics50
are trimmed to a duration of 10 seconds as per (Yang et al.,
2024). For the VGGSound dataset, which consists of 14,046
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Table 1. Comparisons with SOTA methods on Kinetics50-C benchmark with corrupted video modality. “LF” refers to late fusion, “AF”
refers to attention-based fusion. The results are the mean values among 5 random seeds, and the best results are highlighted in bold.
Performance of other methods are from (Yang et al., 2024).

Methods Noise Blur Weather Digital Avg.
Gauss. Shot Impul. Defoc. Glass Mot. Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG

LF

Source 31.8 33.4 31.7 64.0 54.3 67.5 61.9 50.9 54.8 38.4 72.3 44.0 60.2 61.7 56.4 52.2
MM-TTA 46.2 46.6 46.1 58.8 55.7 62.6 58.7 52.6 54.4 48.5 69.1 49.3 57.6 56.4 54.6 54.5
Tent 28.6 29.8 28.3 63.4 51.1 67.7 61.7 46.5 51.3 24.5 72.3 38.6 60.7 61.8 54.9 49.4
ETA 31.8 33.3 31.6 64.2 54.6 67.7 62.2 51.3 54.7 38.1 72.5 44.2 60.4 62.0 57.0 52.4
SAR 31.9 33.3 31.7 63.8 54.0 67.7 61.8 50.7 54.5 38.8 72.3 44.0 60.3 62.0 56.5 52.2
READ 34.0 34.5 33.8 65.3 57.7 68.7 64.9 56.1 57.5 41.1 73.2 48.7 62.9 64.6 59.2 54.8

AF

Source 46.8 48.0 46.9 67.5 62.2 70.8 66.7 61.6 60.3 46.7 75.2 52.1 65.7 66.5 61.9 59.9
Tent 46.3 47.0 46.3 67.2 62.5 71.0 67.6 63.1 61.1 34.9 75.4 51.6 66.8 67.2 62.7 59.4
ETA 46.8 47.6 47.1 67.2 62.7 70.6 67.2 62.3 60.9 46.7 75.2 52.4 65.9 66.8 62.5 60.1
SAR 46.7 47.4 46.8 67.0 61.9 70.4 66.4 61.8 60.6 46.0 75.2 52.1 65.7 66.4 62.0 59.8
READ 49.4 49.7 49.0 68.0 65.1 71.2 69.0 64.5 64.4 57.4 75.5 53.6 68.3 68.0 65.1 62.5
Ours 52.6 52.3 52.0 68.7 68.0 70.7 68.8 65.2 66.6 64.3 74.6 57.4 70.5 69.0 66.2 64.5

10-second videos of everyday audio events labeled into 309
classes (such as snake rattling or pheasant crowing), the
same uni-modal shifts as in Kinetics50 are constructed.

Model and Training Protocol For fair comparisons, all
compared methods use the same backbone models, pre-
trained parameters and training protocol. The CAV-MAE
(Gong et al., 2023) model is pretrained on the training sets
of Kinetics50 and VGGSound dataset (To simulate the TTA
setting, the TTA algorithm does not access training data.
The original training set of Kinetics50 and VGGSound,
as source domain, are only used for pre-training). The
hyperparameters and other details are in the appendix.

Compared Methods To comprehensively verify the ef-
fectiveness of our methods, We compare our method with
four SOTA TTA methods, including the direct transfer of
single modality TTA methods, namely Tent (Wang et al.,
2020), ETA (Niu et al., 2022), and SAR (Niu et al., 2023),
on the multi-modal TTA setting and the multi-modal TTA
methods: MM-TTA (Shin et al., 2022) and READ (Yang
et al., 2024). Following (Yang et al., 2024), we report the
these methods’ results with two versions of modality fusion:
Late fusion (LF), e.g., directly emsembling the outputs of
modality-specific encoders as the input to the classification
head. Attention-based Fusion (AF), e.g., the outputs of the
modality-specific encoders are first fused through an atten-
tion layer, and the resulting fused representation is then fed
into the classification head.

4.2. Experimental evaluation

Q1: How is the performance of our method compared
with SOTA TTA method?

The presented tables 1, 2, and 3, compare our method with
SOTA techniques across different datasets (Kinetics50-C
and VGGSound-C) and modality shift types (corrupted
video and audio modalities). In all three tables, for vari-

ous corruption types such as noise, blur, weather, and dig-
ital in the video modality, and noise and weather in the
audio modality, our method achieves the best average re-
sults. In the Kinetics50-C benchmark with corrupted video
modality (Table 1), across all corruption types like Gaussian,
shot, and impulse noise, defocus, glass, motion, zoom blur,
snow, frost, fog, brightness, contrast, elastic, pixelate, and
JPEG compression, our method has the highest average ac-
curacy (64.5). Similarly, in the audio-corrupted Kinetics50-
C benchmark (left part of Table 3), for noise (Gaussian,
traffic, crowd) and weather (rain, thunder, wind) corrup-
tions, our method attains the best average accuracy (71.5).
In the VGGSound-C benchmark, whether with corrupted
video (Table 2) or audio (right part of Table 3) modalities,
our method leads in terms of average performance.

For the Kinetics50-C dataset, video can be considered a
dominant modality. In the case of video-related corruptions
(Table 1), the performance gap between our method and
others is more pronounced. This indicates a more substantial
gain in the dominant modality shift scenario. On the other
hand, for the VGGSound-C dataset with video shift (Table
2), the performance improvement of our method over SOTA
is relatively less. This shows that on VGGSound-C with
vide shift, there is less room for performance enhancement
compared to the dominant modality shift cases like video in
Kinetics50-C.

In summary, the experimental results clearly demonstrate
that our method outperforms SOTA across different modal-
ity shift types and datasets, with a more significant gain
in dominant modality shifts, while also highlighting the
performance limitations in certain datasets and modality-
corruption combinations.

Q2: How is the shifted data behaves from the attention
view?

In our experiments as shown Fig. 4, we analyze the atten-
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Table 2. Comparisons with SOTA methods on VGGSound-C benchmark with corrupted video modality.

Methods Noise Blur Weather Digital Avg.
Gauss. Shot Impul. Defoc. Glass Mot. Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG

LF

Source 37.7 36.5 37.8 52.7 51.3 55.2 53.7 51.9 52.3 50.4 55.3 45.2 52.5 51.7 52.3 49.1
MM-TTA 7.1 7.3 7.3 44.8 41.5 48.0 45.5 27.4 23.5 30.5 46.9 24.2 40.3 40.7 45.7 32.0
Tent 7.6 6.8 7.2 53.1 52.1 55.5 54.5 52.6 32.7 16.0 55.9 16.6 52.6 54.2 53.1 38.0
ETA 37.7 36.5 37.7 53.2 52.3 56.0 54.4 52.4 52.9 51.0 55.0 45.2 53.5 52.3 52.7 49.5
SAR 37.7 36.4 37.7 52.8 51.5 55.5 53.9 51.9 52.5 50.4 55.4 44.8 52.7 51.8 52.3 49.2
READ 42.1 41.5 42.1 49.3 50.9 53.5 52.5 50.6 52.1 51.1 54.0 46.2 52.5 49.1 50.2 49.2

AF

Source 52.8 52.7 52.7 57.2 57.2 58.7 57.6 56.4 56.6 55.6 58.9 53.7 56.9 55.8 56.9 56.0
Tent 52.7 52.7 52.7 56.7 56.5 57.9 57.2 55.9 56.3 56.3 58.4 54.0 57.4 56.2 56.7 55.8
ETA 53.0 52.8 53.0 57.2 57.1 58.6 57.8 56.3 56.8 56.4 59.0 54.1 57.4 56.1 57.0 56.2
SAR 52.9 52.8 52.9 57.2 57.1 58.6 57.6 56.3 56.7 55.9 58.9 54.0 57.0 56.0 57.0 56.1
READ 53.6 53.6 53.5 57.9 57.7 59.4 58.8 57.2 57.8 55.0 59.9 55.2 58.6 57.1 57.9 56.9
Ours 53.9 53.9 54.0 57.6 58.0 59.0 58.6 56.9 57.0 56.6 59.8 54.7 58.6 56.7 57.9 56.9

Table 3. Comparisons with SOTA methods on Kinetics50-C (left) and VGGSound-C (right) benchmarks with corrupted audio modality.

Methods
Kinetics50-C VGGSound-C

Noise Weather Avg. Noise Weather Avg.
Gauss. Traff. Crowd. Rain Thund. Wind Gauss. Traff. Crowd. Rain Thund. Wind

LF

Source 71.1 67.8 67.4 67.4 70.6 68.6 68.8 29.5 17.1 22.6 17.3 33.7 20.6 23.5
MM-TTA 70.8 69.2 68.5 69.0 69.8 69.4 69.4 14.1 5.2 6.4 6.9 8.6 4.5 7.6
Tent 71.1 68.6 67.8 67.4 71.2 68.9 69.2 6.4 2.1 2.9 1.9 9.5 3.1 4.3
ETA 71.2 67.9 67.5 67.8 70.9 68.7 69.0 28.8 17.1 22.4 17.4 33.8 20.4 23.3
SAR 71.1 67.5 67.4 67.4 70.6 68.6 68.8 28.5 16.6 22.4 17.4 33.7 20.2 23.1
READ 71.3 68.5 68.5 68.4 71.8 69.0 69.6 36.4 25.3 28.9 27.3 35.6 26.6 30.0

AF

Source 73.7 65.5 67.9 70.3 67.9 70.3 69.3 37.0 25.5 16.8 21.6 27.3 25.5 25.6
Tent 73.9 67.4 69.2 70.4 66.5 70.5 69.6 10.6 2.6 1.8 2.8 5.3 4.1 4.5
ETA 73.7 66.1 68.5 70.3 67.9 70.1 69.4 39.2 26.1 22.9 26.0 31.7 30.4 29.4
SAR 73.7 65.4 68.2 69.9 67.2 70.2 69.1 37.4 9.5 11.0 12.1 26.8 23.7 20.1
READ 74.1 69.0 69.7 71.1 71.8 70.7 71.1 40.4 28.9 26.6 30.9 36.7 30.6 32.4
Ours 74.5 69.6 70.5 71.4 72.0 71.0 71.5 41.5 31.8 30.9 32.6 38.9 32.6 34.7

tion mechanisms of our proposed method in the context
of multi-modal fusion, particularly when dealing with cor-
rupted video inputs. Shifted video features would exhibit
smaller similarity to the unshifted audio modality. This
discrepancy led to reduced attention allocation to the audio
modality, ultimately resulting in poorer multi-modal fusion
outcomes. When examining the attention maps generated
by the pre-trained model, in the first row of Fig. 4, we note
that there was a reduction in video-to-audio attention, as
evidenced by the darker color in the top right of the first row
of figures. In contrast, our method demonstrated a recovery
in attention dynamics: the video modality not only attended
to itself but also engaged more effectively with the audio
modality, as highlighted by the lighter color in the top right
of corresponding figures of the second row.

Furthermore, our method consistently achieved smaller vari-
ance across all five video shifts as shown in the number in
each figure in Fig. 4, indicating a more stable and reliable
attention pattern. These results suggest that our approach
not only enhances the attention allocation towards relevant
modalities but also contributes to a more coherent and con-
sistent fusion of information across modalities.

Table 4. The comparison of number of trainable parameters.
∗Tent’s computation cost represents a series of methods that tunes
the parameters normalization layer.

Methods # of Params (million) Time cost (seconds per epoch)

Kinetics50-C VGGSound-C

Tent∗ 0.226 54.56 OOM
READ 1.772 35.43 190.70
Ours 1.180 35.96 191.76

Q3: How is the efficiency of our method compared with
other TTA method?

Test-time training methods prioritize computational effi-
ciency as they aim to optimize model performance without
incurring excessive resource costs, particularly in environ-
ments with limited GPU memory or time constraints. In
this context, we evaluated various approaches in Table 4,
including Tent, READ, and our proposed method. Tent,
which adjusts normalization layer parameters, boasts the
fewest trainable parameters at 0.226 million. However, it
significantly increases computational demands, leading to
out-of-memory (OOM) errors on the VGGSound-C dataset.
This inefficiency stems from the necessity to save gradient

7



Test-Time Selective Adaptation for Uni-Modal Shift in Multi-Modal Data

video audio

vi
de

o
au

di
o

89.20

Gaussian noise

video audio
vi

de
o

au
di

o

91.41

shot noise

video audio

vi
de

o
au

di
o

88.26

impulse noise

video audio

vi
de

o
au

di
o

103.01

defocus blur

video audio

vi
de

o
au

di
o

105.35

glass blur

video audio

vi
de

o
au

di
o

81.08

video audio

vi
de

o
au

di
o

85.64

video audio
vi

de
o

au
di

o

83.59

video audio

vi
de

o
au

di
o

93.96

video audio

vi
de

o
au

di
o

102.84
−20

−15

−10

−5

0

5

Figure 4. Attention map (logit) of the multi-modal fusion layer on Kinetics50-C dataset with five video shifts. The first row shows the
pre-trained model’s attention maps, the second row is our method’s attention maps. The number in the middle is the average variance over
the whole dataset. The first 196 tokens are from the video modality, the last 512 tokens are from the audio modality. The lighter the color,
the bigger the attention logit as shown in the right color bar.

graphs for shallow layers, which complicates the training
process and escalates memory usage. In contrast, both our
method and READ, despite having more parameters—1.180
million and 1.772 million respectively—demonstrate greater
computational efficiency. They require less GPU memory
and avoid OOM issues, highlighting a critical finding that a
higher parameter count does not inherently compromise re-
source efficiency. This analysis underscores the importance
of balancing parameter count and computational demands
in the design of effective test-time training methods. The
detailed hardware information is provided the appendix.

Q4: Are the components of our method effective?

In our ablation study, we systematically strip off three com-
ponents one by one from our proposed method to evaluate
their contributions to performance. We first try to change
the Gumbel-softmax to direct softmax function. Then, we
removed the test-time ensemble schema, followed by the
selective adaptation schema, which utilizes the adapted fea-
tures across all modalities. Without these adapters, the
model reverts to the pre-trained source model. The results,
summarized in Table 5, demonstrate the effectiveness of the
components in our method.

Two plots in Fig. 5 show the sensitivity test of two hy-
perparameters. The first plot shows that as the batch size
increases from 8 to 128, the accuracy for both Gaussian and
shot noise declines. This indicates that the batch size has a
strong influence on the model’s performance. Even though
layer normalization is used, the significant impact of the
batch size implies that the update rate of our model, which
is related to the batch size, is crucial in the TTA task. The
second plot shows that our method is not sensitive to the
temperature for Gumbel-softmax. We show more sensitivity

Table 5. Ablation study on Kinetics50-C with five video shifts.
Ablation Gauss. Traff. Crowd. Rain Thund.

Ours 52.6 52.3 52.0 68.7 68.0
-Gumbel-softmax 52.0 51.9 51.4 67.8 68.0
-Traverse inference 51.5 51.5 51.1 67.2 67.5
-Selective adaptation 50.3 50.7 50.5 65.1 65.7

Source model 46.8 48.0 46.9 67.5 62.2
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Figure 5. Sensitivity test of the loss coefficient and batch size.

tests in the appendix.

5. Conclusion
In this paper, we systematically define and study the prob-
lem of test-time uni-modal distribution shift. We find that
previous methods do not efficiently transfer to this new
setting, primarily due to a negative transfer phenomenon.
Without knowledge of which modality will experience a
distribution shift, blindly applying adaptation methods to
modality-specific modules is not only redundant but also po-
tentially has a negative effect. Furthermore, we theoretically
analyze how uni-modal distribution shift hinders a stable
attention mechanism in multi-modal fusion. To address the
unique challenges posed by this novel problem, we propose
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a simple method with the core idea of selective adaptation.
The model maintains a router to choose which modality
to adapt and modality-specific adapters in a self-training
fashion. As a result, our method effectively achieves test-
time adaptation for uni-modal distribution shift. We conduct
extensive experiments to demonstrate the superiority of our
method. From the perspectives of attention maps and com-
putational cost, we also prove the practical significance of
our method. We anticipate that the proposed new problem
has both application and research value. By addressing
these challenges, the broader implications of our work can
be further expanded, leading to more reliable and deployable
multi-modal models.
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A. Theoretical Analysis
A.1. Analysis of Cross-Modal Attention under Uni-Modal Distribution Shift with Zero-Mean Additive Noise

The self-attention mechanism lies at the core of multi-modal fusion. This mechanism is fundamental as it allows the model
to selectively focus on different regions within and across modalities. It aggregates intra-modal and inter-modal token
representations with distinct weights, following the formula:

Attention(Q(z),K(z), V (z)) = softmax

(
Q(z)K(z)T√

dk

)
V (z), (12)

where query Q(·), key K(·) and value V (·) are the linear transform on the tokens’ representation z, dk is the scale factor.
The attention logit, which determines the relative importance of token pairs in the self-attention mechanism, is defined as
the inner product between the query and key matrices prior to the softmax operation. Its value varies depending on the
representations of a pair of tokens. Formally, we define the attention logit in Definition 3.1.

Definition A.1 (Attention Logit). The attention logit (AL) is defined as the inner product between query and key matrices:

AL(zi, zj) = Q(zi)K(zj)
T = zi

(
WQWKT

)
zT
j , (13)

where zi ∈ RF and zj ∈ RF are a pair of embedding of tokens involved in the self-attention calculation, and the linear
projection matrices WQ,WK ∈ RF×F are considered to be constant.

However, the presence of a distribution shift in any modality can have adverse effects on this self-attention mechanism.
Without loss of generality, we analyze the case of a shifted audio modality. Under the uni-modal distribution shift, tokens
from the shifted modality are corrupted. We denote the corrupted tokens as ź(a)

i and ź
(a)
j , and the tokens from the unshifted

modality as z(v)
k .

Following the work of distribution shift with additive noise (Kim et al., 2020), we assume that, after the distribution shift,
zero-mean noise ε is added to the tokens z of the input modality (Song et al., 2015; Huang et al., 2022; Yasarla et al., 2024),
Specifically,

ź = z + ε where E[ε] = 01×n, (14)

The noise ε is independent of the distribution of the clean token z and is independent across different tokens.

Let z(a)
i and z

(v)
k represent tokens from different modalities, where z

(a)
i is corrupted to ź

(a)
i by εi. We can show that the

expectation of the attention logit remains unchanged after the corruption:

E
[
Q(ź

(a)
i )K(z

(v)
k )T −Q(z

(a)
i )K(z

(v)
k )T

]
(15)

= E
[
(z

(a)
i + εi)W

QWKT

(z
(v)
k )T − z

(a)
i WQWKT

(z
(v)
k )T

]
(16)

= E
[
εWQWKT

(z
(v)
k )T

]
(17)

=
〈
E[εi],E

[
WQWKT

(z
(a)
i )T

]〉
(18)

= 0 (19)

Let z(a)
i and z

(a)
j represent tokens from the same modality. The expectation of the attention logit also remains unchanged.

E
[
Q(ź

(a)
i )K(ź

(a)
j )T −Q(z

(a)
i )K(z

(a)
j )T

]
(20)

= E
[
(z

(a)
i + εi)W

QWKT

(z
(a)
j + εj)

T − z
(a)
i WQWKT

(z
(a)
j )T

]
(21)

= E
[
εiW

QWKT

(z
(a)
j )T + z

(a)
i WQWKT

εTj + εiW
QWKT

εTj

]
(22)

=
〈
E[εi],E

[
WQWKT

(z
(a)
j )T

]〉
+
〈
E
[
z
(a)
i WQWKT ]

,E[εj ]
〉
+

〈
E[εi],E

[
WQWKT

εj
]〉

(23)

= 0 (24)
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Since the expectation of the attention logit of the noisy token is the same as that of the clean token, we then turn our attention
to the variance.

The variance of the difference between the attention logit of tokens from different modalities:

D
[
Q(ź

(a)
i )K(z

(v)
k )T −Q(z

(a)
i )K(z

(v)
k )T

]
(25)

= D
[
εiW

QWKT

(z
(v)
k )T

]
(26)

= E
[ (

εiW
QWKT

(z
(v)
k )T

)2 ]
−

(
E
[
εiW

QWKT

(z
(v)
k )T

])2

(27)

=
∥∥∥E[ (εiWQWKT

(z
(v)
k )T

)2 ]∥∥∥
2

(28)

=
∥∥∥E[εiWQWKT

(z
(v)
k )T εiW

QWKT

(z
(v)
k )T

]∥∥∥
2

(29)

≤ σ2
max

∥∥∥E[εi(z(v)
k )T εi(z

(v)
k )T

]∥∥∥
2

(30)

= σ2
max

∥∥∥E[z(v)
k εTi εi(z

(v)
k )T

]∥∥∥
2

(31)

= σ2
max

∥∥∥E[tr(z(v)
k εTi εi(z

(v)
k )T

)]∥∥∥
2

(32)

= σ2
max

∥∥∥E[tr(εTi εi(z(v)
k )Tz

(v)
k

)]∥∥∥
2

(33)

= σ2
max

∥∥∥tr(E[εTi εi]E[(z(v)
k )Tz

(v)
k

])∥∥∥
2

(34)

≤ σ2
max

∥∥∥tr(E[εTi εi])tr(E[(z(v)
k )Tz

(v)
k ]

)∥∥∥
2

(35)

= σ2
max

∥∥∥tr(E[εiεTi ]tr(E[z(v)
k (z

(v)
k )T ])

∥∥∥
2

(36)

= σ2
max∥E[εiεTi ]∥2 · ∥E[z

(v)
k (z

(v)
k )T ]∥2 (37)

= σ2
maxE[εiεTi ] · E[z

(v)
k (z

(v)
k )T ] (38)

= σ2
maxE[∥εi∥22] · E[∥z

(v)
k ∥22] (39)

The combination of linear transformation WQWKT

can be decomposed by singular value decomposition into UΣV T ,
where σmax > 0 represents the largest singular value of Σ (excluding the trivial case of WQWKT

is all-zero matrix). The
inequality ∥aUΣV T ∥2 <= σmax∥a∥2 is used to obtain the upper-bound in Eq. 30. εTi εi denotes a positive semidefinite
outer product and tr(·) is the trace. The inequality 0 ≤ tr(AB) ≤ tr(A)tr(B) for positive semidefinite matrices is used to
deduce Eq. 35. We denote Eq. 39 as sup

(
D
[
Q(ź

(a)
i )K(z

(v)
k )T −Q(z

(a)
i )K(z

(v)
k )T

])
.

Similarly, for the variance of the attention logit bias between tokens from the same modality:

D
[
Q(ź

(a)
i )K(ź

(a)
j )T −Q(z

(a)
i )K(z

(a)
j )T

]
(40)

= D
[
εiW

QWKT

(z
(a)
j )T + z

(a)
i WQWKT

εTj + εiW
QWKT

εTj

]
(41)

= D
[
εiW

QWKT

(z
(a)
j )T

]
+ D

[
z
(a)
i WQWKT

εj

]
+ D

[
εiW

QWKT

εTj

]
(42)

+ 2Cov
[
εiW

QWKT

(z
(a)
j )T , z

(a)
i WQWKT

εTj

]
+ 2Cov

[
εiW

QWKT

(z
(a)
i )T , εiW

QWKT

εTj

]
(43)

+ 2Cov
[
z
(a)
i WQWKT

εj , εiW
QWKT

εTj

]
(44)

= D
[
εiW

QWKT

(z
(a)
j )T

]
+ D

[
z
(a)
i WQWKT

εj

]
+ D

[
εiW

QWKT

εTj

]
(45)

= E
[(
εiW

QWKT

(z
(a)
j )T

)2]
+ E

[(
z
(a)
i WQWKT

εTj
)2]

+ E
[(
εiW

QWKT

εTj
)2]

(46)

≤ σ2
max∥E[εiεTi ]∥2 · ∥E[z

(a)
j (z

(a)
j )T ]∥2 + σ2

max∥E[εjεTj ]∥2 · ∥E[z
(a)
i (z

(a)
i )T ]∥2 + σ2

max∥E[εiεTi ]∥2 · ∥E[εjεTj ]∥2 (47)

= σ2
max∥E[εiεTi ]∥2 · ∥E[z

(a)
j (z

(a)
j )T ]∥2 + σ2

max∥E[εiεTi ]∥2 · ∥E[z
(a)
i (z

(a)
i )T ]∥2 + σ2

max∥E[εiεTi ]∥2 · ∥E[εjεTj ]∥2 (48)
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= σ2
maxE[εiεTi ] · E[z

(a)
j (z

(a)
j )T ] + σ2

maxE[εiεTi ] · E[z
(a)
i (z

(a)
i )T ] + σ2

maxE[εiεTi ] · E[εjεTj ] (49)

= σ2
maxE[|εi∥22] · E[∥z

(a)
j ∥22] + σ2

maxE[|εi∥22] · E[∥z
(a)
i ∥22] + σ2

maxE[∥εi∥22] · E[∥εj∥22] (50)

Denote Eq. 50 as sup
(
D
[
Q(ź

(a)
i )K(ź

(a)
j )T −Q(z

(a)
i )K(z

(a)
j )T

])
. We have

sup
(
D
[
Q(ź

(a)
i )K(z

(v)
k )T −Q(z

(a)
i )K(z

(v)
k )T

])
− sup

(
D
[
Q(ź

(a)
i )K(ź

(a)
j )T −Q(z

(a)
i )K(z

(a)
j )T

])
(51)

= σ2
maxE[|εi∥22]

(
E[∥z(a)

j ∥22] + E[∥z(a)
i ∥22] + E[∥εj∥22]− ∥z(v)

k ∥22]
)

(52)

We then state the following proposition:

Proposition A.2. Under the additive shift assumption (Kim et al., 2020):

sup
(
D
[
AL(ź

(a)
i , z

(v)
k )−AL(z

(a)
i , z

(v)
k )︸ ︷︷ ︸

change of cross-modal AL after shift

])
< sup

(
D
[
AL(ź

(a)
i , ź

(a)
j )−AL(z

(a)
i , z

(a)
j )︸ ︷︷ ︸

change of intra-shited-modal AL after shift

])
when E[∥z(v)

k ∥22] < E[∥z(a)
i ∥22] + E[∥z(a)

j ∥22] + E[∥εj∥22]

(53)

where sup(·) is the least upper bound. εj is the noise related to token z
(a)
j . E[∥z(v)

k ∥22], E[∥z
(a)
i ∥22], E[∥z

(a)
j ∥22], E[∥εj∥22]

are the expected value of the squared norm of the token representations from the different modality and noise, respectively.

In practical terms, the expected value of the squared norm of the token representations gives us a measure of the average
"energy" or magnitude of the vector across its possible realizations.

A.2. Expectation Analysis of Cross-Modal Attention under Uni-Modal Disdistribution Shift with Non-Zero-Mean
Additive Noise

In this section, we further analysis the case with non-zero-mean noise. The expectation of the attention logit between
uncorrupted tokens as follow.

E
[
Q(z

(a)
i )K(z

(a)
j )T

]
=

〈
E
[
z
(a)
i WQ

]
,E

[
z
(a)
j WK

]〉
+ tr(Σ

(z
(a)
i ,z

(a)
j )

) (54)

= E[z(a)
i ]WQWKT

(E[(z(a)
j )])T + tr(Σ

(z
(a)
i ,z

(a)
j )

) (55)

The matrix Σ
(z

(a)
i ,z

(a)
j )

denotes the covariance between z
(a)
i WQ and z

(a)
j WK . Similarly, we have additive noise as:

ź
(a)
i = z

(a)
i + εi, ź

(a)
j = z

(a)
j + εj (56)

where the noise ε is independent of tokens’ feature z and follows an independent and identically-distributed (i.i.d.)
distribution across different tokens. Unlike Sec. A.1, its mean is not zero. The expectation of the attention logit between the
clean token and corrupted token is as follows:

E
[
Q(ź

(a)
i )K(z

(v)
k )T

]
= E

[
Q(z

(a)
i + εi)K(z

(v)
k )T

]
(57)

= E[z(a)
i ]WQWKT

(E[z(v)
k ])T + tr(Σ

(z
(a)
i ,z

(v)
k )

) + E[εi]WQWKT

(E[z(v)
k ])T (58)

The expectation of the attention logit between corrupted tokens is as follows:

E
[
Q(ź

(a)
i )K(ź

(a)
j )T

]
(59)

= E
[
Q(z

(a)
i + εi)K(z

(a)
j + εj)

T
]

(60)

= E[z(a)
i ]WQWKT

(E[z(a)
j ])T + tr(Σ

(z
(a)
i ,z

(a)
j )

) + E[z(a)
i ]WQWKT

(E[εj ])T (61)

+ E[εi]WQWKT

(E[z(a)
j ])T + E[εi]WQWKT

(E[εj ])T (62)
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We consider the change in attention logits after corruption, e.g., Q(ź
(a)
i )K(z

(v)
k )T − Q(z

(a)
i )K(z

(v)
k )T and

Q(ź
(a)
i )K(ź

(a)
j )T −Q(z

(a)
i )K(z

(a)
j )T . The expectation of Q(ź

(a)
i )K(z

(v)
k )T −Q(z

(a)
i )K(z

(v)
k )T is:

E
[
Q(ź

(a)
i )K(z

(v)
k )T −Q(z

(a)
i )K(z

(v)
k )T

]
= E

[
Q(z

(a)
i + εi)K(z

(v)
k )T

]
− E

[
Q(z

(a)
i )K(z

(v)
k )T

]
(63)

= E[εi]WQWKT

(E[z(v)
k ])T (64)

The expectation of Q(ź
(a)
i )K(ź

(a)
j )T −Q(z

(a)
i )K(z

(a)
j )T is:

E
[
Q(ź

(a)
i )K(ź

(a)
j )T −Q(z

(a)
i )K(z

(a)
j )T

]
(65)

= E
[
Q(z

(a)
i + εi)K(z

(a)
j + εj)

T
]
− E

[
Q(z

(a)
i )K(z

(a)
j )T

]
(66)

= E[z(a)
i ]WQWKT

(E[εj ])T + E[εi]WQWKT

(E[z(a)
j ])T + E[εi]WQWKT

(E[εj ])T (67)

The combination of linear transformation WQWKT

can be decomposed by singular value decomposition into UΣV T , where
σmax > 0 represents the largest singular value of Σ (excluding the trivial case of WQWKT

is all-zero matrix). Based on the
Cauchy-Schwarz inequality, i.e., |⟨a, b⟩| ≤ ∥a∥2∥b∥2, and the properties of singular values, i.e., ∥aUΣV T ∥2 <= σmax∥a∥2,
we can calculate the least upper bound of the absolute values of the two expectations mentioned above.∣∣∣E[Q(ź

(a)
i )K(z

(v)
k )T −Q(z

(a)
i )K(z

(v)
k )T

]∣∣∣ = ∥∥E[εi]WQWKT

(E[z(v)
k ])T

∥∥
2

(68)

≤
∥∥E[εi]WQWKT ∥∥

2
· ∥E[z(v)

k ]∥2 (69)

≤ σmax∥E[εi]∥2 · ∥E[z(v)
k ]∥2 (70)

Similarly, ∣∣∣E[Q(ź
(a)
i )K(ź

(a)
j )T −Q(z

(a)
i )K(z

(a)
j )T

]∣∣∣ (71)

=
∥∥∥E[εi]WQWKT

(E[z(a)
j ])T + E[z(a)

i ]WQWKT

(E[εj ])T + E[εi]WQWKT

(E[εj ])T
∥∥∥
2

(72)

≤ σmax∥E[εi]∥2 · ∥E[z(a)
j ]∥2 + σmax∥E[z(a)

i ]∥2 · ∥E[εj ]∥2 + σmax∥E[εi]∥2 · ∥E[εj ]∥2 (73)

Proposition A.3. According to Eq. 70 and Eq. 73, we obtain the relationship of least upper bound between the absolute
expected attention logit difference of shited-modality-to-unshifted-modality and unshited-modality-to-unshifted-modality as
Eq. 74.

sup
(∣∣∣E[AL(ź

(a)
i , z

(v)
k )−AL(z

(a)
i , z

(v)
k )︸ ︷︷ ︸

change of cross-modal AL after shift

]∣∣∣) < sup
(∣∣∣E[AL(ź

(a)
i , ź

(a)
j )−AL(z

(a)
i , z

(a)
j )︸ ︷︷ ︸

change of intra-shited-modal AL after shift

]∣∣∣)
when E[z(v)

k ]∥2 < ∥E[z(a)
i ]∥2 + ∥E[z(a)

j ]∥2 + ∥E[εj ]∥2

(74)

Remark A.4. The relationship in the above least upper bounds indicates that the attention logit between noisy tokens has
larger extreme values. This reaches to the conclusion of damaged multi-modal fusion similar to A.2. We can also have the
conclusion from Eq.73 that when the magnitude of noise (∥E[ε]∥2) is greater, the difference between the extreme values
of corrupted intra-modal attention logit and cross-modal attention logit will also be larger. This explains the experimental
phenomenon of the heavier the noise in TTA, the worse the performance (Yang et al., 2024).

B. Single Modality Experiments
Previous TTA methods such as Tent (Wang et al., 2020), ETA (Niu et al., 2022), SAR (Niu et al., 2023), and READ
(Yang et al., 2024) utilize techniques like batch re-normalization, entropy minimization, and sample selection. Blindly
applying TTA methods to each modality-specific encoder can lead to redundancy or even harm when no distribution shift
is present, resulting in overfitting in unshifted modalities that the original model already generalizes to. This challenge
renders previous test-time adaptation methods inadequate, particularly those that apply adaptation without considering the
disparities between modalities. As shown in Fig. 6, to observe the performance gap in individual modality-specific modules,
we perform experiments on single modality datasets with no shift, and discovey the negative transfer (Rosenstein et al.,
2005) phenomenon. This mimics the failure of TTA when they operate on modality-specific encoder for unshifted modality.
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Figure 6. The special “negative transfer” phenomenon on the unshifted modality. The introduction of adaptation techniques on the
unshifted data results in performance degeration (Source model vs. Tent, ETA, and SAR).

C. Partial Adaptation Trends
To investigate how the model adapts to synthetic data shifts in specific modalities, we design experiments where we explicitly
control shifts in either the video or audio data in Table 6. When synthetic shifts are introduced to the audio data during
inference (e.g., Gaussian or traffic noise on audio), the model prioritizes audio adaptation in 62–69% of cases, relying less
on video adaptation (31–38%). Conversely, under video shifts (e.g., Gaussian or shot noise on video), the model adapts to
video in 53–56% of cases, minimizing reliance on audio adaptation (44–46%). The results are:

Table 6. Audio and Video Shift Percentages

Audio Shift Percentage

Gaussian Noise 62%
Traffic 69%

Video Shift Percentage

Gaussian Noise 53%
Shot Noise 56%

Notably, not all samples with a shifted modality follow the expected route. For example, even with video shifts, 44-47% of
predictions still rely on the adapted audio data. We suspect this could be attributed to two reasons: 1) Modality imbalance,
where certain modalities exert a greater influence on predictions in multi-modal tasks, makes the model tend to learn from
the dominant modalities. 2) Convergence dynamics of the adapter and router. They may not receive sufficient adaptation on
one iteration over the test set. It’s important to note that making predictions with a partially adapted model is a characteristic
of test-time adaptation. This observation highlights a potential area for further research.

D. Adaptation Details
D.1. Hyper-parameters

We mainly have the following hyper-parameters: The coefficient and threshold of self-training loss, the softmax temperature,
the batch size. We use one set of hyper-parameters for the shift on one modality on each dataset ( we keep the temperature
to 0.001 and loss coefficient as 0.5 across all experiments). For Kinetics50-C with video shift, the threshold as 0.9, the batch
size as 16. For Kinetics50-C with audio shift, the threshold as 0.9, the batch size as 64. For VGGSound-C with video shift,
the threshold as 0.8, the batch size as 128. For VGGSound-C with audio shift, the threshold as 0.8, the batch size as 64.
During test-time, our model is updated using the Adam optimizer. We implement the network on a GeForce RTX(TM) 3090
GPU and Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz. For the software information and other experimental settings,
please refer to our code https://github.com/chenmc1996/Uni-Modal-Distribution-Shift.

D.2. Balance Loss

The class balance loss is caculated as:

psum =
∑
i

(p̂i), (75)
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where p̂i corresponds to the i-th sample. The balance loss, Lbal, is then defined as its negative entropy:

Lbal = −entropy(psum). (76)

This loss serves to regularize the distribution of the model’s confidence across different classes, promoting a more even
distribution of probabilities.

E. Sensitivity Test
We avoided heavily tuning the loss coefficient and confidence threshold as it simply follows the self-training loss.
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Figure 7. Sensitivity test of the on self-training loss on Kinetics50-C and VGGSound-C with video shifts.

The plots in Fig. 7, which vary the confidence threshold for the self-training loss on two dataset. We find that the model can
achieve competitive performance with only the balance loss on the Kinetics50-C dataset. However, on the VGGSound-C
dataset, removing the self-training loss results in about 2% drops. We also observe consistent performance for varying loss
coefficient as shown in Fig. 8.
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Figure 8. Sensitivity test of the on self-training loss on Kinetics50-C with video shifts.
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