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ABSTRACT

In this work, we explore the definition of semantic equivalence to establish a con-
nection between contrastive tasks and their downstream counterparts. Specifically,
we investigate when a contrastive dataset can learn representations that encode for-
mal semantic equivalence relations for a specific downstream task. In our analysis,
we recover a surprising hypothesis resembling the distributional one—dubbed dis-
tributional alignment hypothesis. Under this assumption, we demonstrate that the
optimal model for simple contrastive learning procedure must generate represen-
tations that encode formal semantic equivalence relations for the downstream task.
Furthermore, we support the theory with a series of experiments designed to test
the presented intuitions.

1 INTRODUCTION

Overview. Contrastive Learning has emerged as a prominent self-supervised training technique,
demonstrating success across diverse data modalities. These include, among others, images (Chen
et al. (2020); He et al. (2020)), audio (van den Oord et al. (2018); Saeed et al. (2021)), video (Dave
et al. (2022); Pan et al. (2021)), text (Fang et al. (2020); Xiong et al. (2020)), graphs (Thakoor
et al. (2021); Ling et al. (2023)), and time series (Zheng et al. (2024)). Notable contrastive learning
techniques encompass SimCLR (Chen et al. (2020)), MoCo (He et al. (2020)), BYOL (Grill et al.
(2020)), SWAV (Caron et al. (2020)), MSimCLR (Korman (2021)), and Barlow Twins (Zbontar et al.
(2021)).

Problem Statement. The primary goal of these techniques is to generate high-quality embedding
representations that can be effectively utilized for downstream tasks (potentially with limited data
availability). Empirical evidence suggests that semantically similar objects tend to be encoded into
proximate embedding representations during contrastive training (Chen et al. (2020); Jaiswal et al.
(2020)). While the emergence of semantic structure in these embeddings is well-documented (Le-
Khac et al. (2020); Kang et al. (2020); Poklukar et al. (2022)), to the best of our knowledge, a formal
treatment of this process remains lacking in the current literature.

Proposed Solution.  This work aims to address the aforementioned gap by formalizing the con-
cept of semantic equivalence, as proposed by Bertolotti & Cazzola (2024) for sequence modeling
tasks. Briefly, two symbols are defined as semantically equivalent if they can be substituted without
altering the outcome distribution of a certain task (see Definition 2.1). This property is fundamen-
tally rooted in the notion of semantic equivalence in programming languages (Scott & Strachey
(1971)), where two code snippets are considered semantically equivalent if their substitution does
not affect the program’s output regardless of the context (borrowing the denotational semantics for
an instant, we would write Vp : [p1](p) = [p2](p)).

Research Questions. To summarize, our research aims to address the following questions:

¢ RQq: Under what conditions is a contrastive task useful for a downstream task?
* RQ;: How can we train embeddings that effectively encode semantical equivalence
relations?

Findings. Our findings demonstrate that the SimCLR contrastive learning procedure (Chen et al.
(2020)) inherently encodes semantically equivalent symbols in close proximity within the embed-
ding space. Furthermore, we find a fundamental requirement for a contrastive task to be useful
for the downstream counterpart. We dub this requirement distributional alignment hypothesis, for
its similarity with the classical distributional hypothesis (Bertolotti & Cazzola (2024)). These re-
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sults provide a theoretical foundation for the empirically observed semantic structure in contrastive
learning embeddings.

2 BACKGROUND & NOTATION

Let us begin by introducing some recurring notations. From a classical supervised learning stand-
point, one often uses a data distribution from which input-label pairs are sampled, z,y ~ D. In this
work, we split the input component into symbol and context components. Therefore, we will use a
data distribution from which we can sample symbol-context-label triplets, o, p,y ~ D. In practice,
a symbol may correspond to a word, while the context may represent the rest of the sentence. Sim-
ilarly, with images, a symbol may represent an image patch, while the context may represent the
rest of the image. We will also use 3, P, and ) to denote the symbol, context, and label domains
respectively. We will use the notation pp (or simply p when the underlying data distribution is evi-
dent) to denote the probability function for data sampled according to D. For example, pp(y|o, p)
represents the probability of label y when conditioned on the symbol context pair (o, p) when o, p
and y are sampled according to D.

2.1 SEMANTIC EQUIVALENCE

Intuitively, two symbols u and v are semantically equivalent if we can use them interchangeably
without affecting the output distribution, or formally:

Definition 2.1 (semantic equivalence (Bertolotti & Cazzola (2024))). Given u,v € X, u = v (uis
semantically equivalent to v) iff

VpeP,yed.plylu,p) = pylv, p)

For example, consider a simple Masked Language Modeling (MLM) tasks (Devlin et al. (2019)),
and, consider the sentence

the <MASK> of water is half empty/full.

Here, we could use both empty and full without affecting the outcome distribution of the mask
token. Therefore, we can say that, in this context, empty and full are semantically equivalent.
If this relation were to hold true for all contexts, then, we would say that empty and full are
semantically equivalent in general.

In a different scenario, consider a cat-vs-dog image classifier where each symbol represents an image
patch—similar to the setup used in Vision Transformers (Dosovitskiy et al. (2020)). In this context,
two image patches, such as one depicting a clouded sky and another showing a clear sky, would be
considered semantically equivalent since they do not influence the classification outcome.

A similar notion of semantics is also used by Chiang & Yogatama (2023).

Throughout this work, we will often use the term semantic with its formal meaning in mind rather
than it liguistic meaning. Therefore, unless stated otherwise, when speaking of semantic relations
or semantic learning, we refer to the formal definition of semantic equivalence (Definition 2.1).

2.2  SIMPLE CONTRASTIVE LEARNING

SimCLR (Chen et al. (2020)) is a straightforward contrastive learning procedure initially proposed
for image data (see Figure 1a). The process begins with a batch of [V data points {,Tz} -1 sampled

from the data distribution z; ~ X', and a correspondmg batch of N augmentatlon palrs {(t;, t;)}
sampled from a transformation distribution ¢;,t; ~ 7. The objective is to maximize agreement
between different augmentations of the same data point (¢;(z;) and ¢}(x;)) while maximizing dis-
agreement between different data points (¢;(z;) and t’;(x;) for i # j). This is achieved through the
following loss function (InfoNCE (van den Oord et al. (2018))):

:_leo ( exp(sim(E(ti(x.). B(ti(x)))) > 0

>_; exp(sim(E(t;(zi)), E(t)(x;))))
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maximize agreement maximize agreement maximize agreement

(a) SiImCLR (b) SimCLR variant with labels.  (c) SimCLR variant without labels.

Figure 1: Figure la illustrates the SimCLR architecture. Figure 1b shows an asymmetric Sim-
CLR architecture, where two different encoder functions, £ and F, are used in separate branches.
Additionally, a different set of augmentations, 7, is applied, with the right branch’s augmentation
conditioned on the left branch. Figure 1c¢ depicts the previous variants without the use of labels

Here, E denotes an encoder network and sim represents a similarity function, typically scalar prod-
uct or cosine similarity (we assume the former in this work). The i-th component in the summation
is minimized when the similarity between ¢;(x;) and ¢}(x;) is maximized, while the similarity be-
tween ¢;(z;) and any other ¢);(z;) is minimized. The full loss £ is obtained by averaging over the
batch (D).

3 CONTRASTIVE LEARNERS (WITH LABELS) ARE SEMANTIC LEARNERS

Contrastive learning techniques typically assume that labels for downstream tasks are unavailable,
as they are often costly to obtain. However, as we will show, if labels are provided to a simple
variation of SIimCLR, it is possible (under appropriate assumptions) to recover representations that
encode semantic equivalence relations (as in Definition 2.1). This means that if two symbols are
semantically equivalent, their representations will also be equivalent. In the next section, we will
explore how to eliminate the need for labels in this framework.

The variant of SImCLR, depicted in Figure 1b, introduces two main differences. First, we employ
two specific types of augmentation functions: ¢; : X — X and t; : X — P. The former is
responsible for extracting the ¢-th symbol from the input, while the latter returns the context of the
i-th symbol. Here, the i-th symbol may represent the i-th image patch, and the ¢-th context may
represent the remaining patches. Using SimCLR terminology, the first augmentation could be a
crop and resize, resulting in the symbol, while the second could be a Cutout specifically removing

the previous symbol to produce the context. Let us refer to the set of these augmentations with 7.

Secondly, we introduce an asymmetric architecture to SimCLR. Specifically, we denote the embed-
ding function £ : ¥ — R?, which maps symbols to a d-dimensional representation. Meanwhile,
let £ : P x ) — R represent the function that maps context-label pairs to a d-dimensional repre-
sentation. The parameters between the embedding function and the encoder function can be shared,
partially shared, or separate.

Consider a batch D = {(05, p;,¥:)},_;  consisting of symbol-context-label triplets, where o; =
t(z) and p; = t'(x) for z,y ~ D, t ~ T, and t' ~ T|t. Here, D represents the input-label data

distribution, 7~ denotes the augmentation distribution for extracting the symbol from x, and ’7A'|t
represents the augmentation distribution for extracting the context of o. Our goal is to minimize this
variation of the InfoNCE loss between the encoder E and the embedding function &:
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1 N exp(sim(&(a;), E(pi, yi)))
£NC’E(D) = _N ;log (Z] exp(sim(g(m‘),E(Pj,Qj)))) @

The effect of this loss is to encourage the embedding function £ to encode symbol o; close to their
corresponding context-label pairs p;,y; and far apart from the noisy pairs p;,y;, for j # 4. This
fact can be seen by simply deriving the update rule for the embedding function £ and the encoder
function E. This is provided in Appendix A.5.

Further, it can be shown that, an optimal model, made of £* and E*, for Lyc g needs to encode
semantically equivalent symbols with exactly the same vector. This is the subject of the following
theorem:

Theorem 3.1. Given the symbols u,v € ¥ such that 1. uw = v, 2. Vp : p(plu) = p(p|v), and 3. if

there are (p1,y1),- .., (pd,ya) context-label pairs such that E*(p;,y;) form a basis for R* then
& (u) =& (v)

On one hand, semantic equivalence relations do not depend on the conditional distribution (p(p|u) =
p(p|v)); therefore, these hypotheses may seem unnecessary. On the other hand, the data must still
reflect these semantic equivalence relations to some extent. For instance, consider an edge case
where two symbols are semantically equivalent, but one of them never appears in the dataset. In this
scenario, it is natural that we would be unable to discover this semantic equivalence relation.

The final hypothesis, concerning the basis, ensures that the only solution is £*(u) = £*(v). Given
that most realistic scenarios encompass thousands of possible context-label pairs while the embed-
ding size typically does not exceed d = 1024. Further, it should be noted that establishing a basis
for R? only requires d linearly independent embeddings. The determinant forms a polynomial of
the entries E*(p1,41), ..., E*(pa,yqa) and has a Lebesgue measure of zero. Thus, slight perturba-
tion of the encoded vectors would establish a basis almost surely. This hypothesis is employed in
the context of invertible neural networks Finzi et al. (2019), where assuming a weight matrix to
be a basis implies non-singularity, allowing for inversion. Additionally, one can always reduce the
embedding size to ensure that this hypothesis holds. Ultimately, this hypothesis can be considered
realistic for most use cases.

Please refer to Appendix A.2 for a formal proof of Theorem 3.1.

4 CONTRASTIVE LEARNERS ARE SEMANTIC LEARNERS

As we have seen, the notion of semantic equivalence is strongly tied to a label distribution. However,
the rise of contrastive learning is partially due to the fact that it does not require labels (which are
usually expensive to obtain) to generate embeddings organized in a semantic structure (Gao et al.
(2021); Le-Khac et al. (2020); He et al. (2020)). This raises a natural question: how do contrastive
learning techniques learn formal semantics without access to labels?

To answer this question, we need to formalize the concepts of downstream and contrastive tasks. Let
us denote with D the data distribution for the downstream task. We also assume to be able to sample
symbol-context-label triplets, o, p, y ~ D. Further, we will denote with pp(y|o, p) the probability
of label y given the symbol-context pair ¢ and p.

Now that the downstream task has been defined, we proceed to the contrastive task. Here, we
are given a data distribution C. From this distribution, we can only sample context-symbol pairs,
o, p ~ C but we have no access to a label.

Of course, we need to realize that we cannot apply contrastive learning to any data distribution and
hope to learn useful representations for a downstream task of interest. For example, we cannot hope
to learn useful representations for an animal classifier from a white noise distribution. Therefore,
we will need some kind of hypothesis between contrastive and downstream data to hold. We refer
to this hypothesis as the distributional alignment hypothesis:

Definition 4.1 (Distributional Alignment Hypothesis). A downstream distribution D and a con-
trastive distribution C are aligned iff.

Vy eV, peP: pp(ylu,p) =pp(ylv,p) <= Vp € P :pe(plu) =pc(plv)
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On the left, we state that u and v are semantically equivalent according to the downstream task. On
the right, we state that u and v are conditionally equivalent for the contrastive task. Notice that, this
definition highly resembles the definition of distributional hypothesis as formalized by Bertolotti
& Cazzola (2024). The main and only difference between the distributional hypothesis and the
distributional alignment hypothesis is simply that the first is concerned with a single data distribution
while the latter is concerned with two distributions (one for the downstream data and one for the
contrastive data).

Now, suppose we aim to minimize the loss in Equation 2 without access to the labels. Then we
minimize the following:

1 N exp(sim(&(a;), E(pi)))
Lnce(D) = N glog <Z] exp(sim(g(di)yE(Pj)))>

One can now show that the following theorem holds:

Theorem 4.2. Given the symbols u,v € % such that: 1. Vp : p(plu) = p(p|v). 2. If there are
p1,- -, pa contexts such that E*(p;) form a basis for R? then £* (u) = £*(v)

This theorem shows that an optimal embedding function needs to encode such symbols u and v with
the same vector. The proof of this theorem is provided in Appendix A.3.

Similar argument discussed for Theorem 3.1 can be applied here. The hypothesis concerning the
basis is necessary to ensure that the only solution is £*(u) = £*(v), and it can be considered
realistic. The p(p|u) = p(p|v) hypothesis, despite being more strong, is necessary to ensure that the
data reflects the semantic equivalence relations.

By combining Definition 4.1 and Theorem 4.2, it is easy to derive the following corollary:

Corollary 4.3. [. Let C and D be a distributionally aligned contrastive and downstream distri-
butions, respectively. 2. Let £* and E* be the optimal embedding and encoder functions for the
contrastive task. 3. Let py, .. ., pg contexts such that E*(p;) form a basis for R?. Then,

u=pv <= E(u)=E"(v)

Here, u =p v denotes the semantic equivalence relation according to the downstream task D. The
proof of this corollary is immediate. Firstly, from the distributional alignment hypothesis (Defini-
tion 4.1), we have that, two symbols are semantically equivalent for the downstream task if and only
if they are conditionally equivalent for the contrastive task. Further, two conditionally equivalent
symbols are encoded with the same vector by the optimal embedding and encoder functions for the
contrastive task (Theorem 4.2). Therefore, two symbols are encoded within the same vector only if
they were semantically equivalent to begin with. The backward implication is derived in Proposition
A.2 of the Appendix Section A.4.

This result highlight a fundamental connection between contrastive learning and semantic learning
(we refer to semantic learning as the process to learn formal semantic relations). In particular, it
shows that contrastive learning can be seen as a form of semantic learning, where the semantic
equivalence relations (precisely those state in Definition 2.1) are learned from the data distribution
itself.

a by a b ¢ y
45 5 0 45 7 0 5
12 21 3 12 7 3 21
66 12 8 7 12 8 66

Table 1: Examples of downstream data for Table 2: Examples of contrastive data from
the ModAdd task. a, b, c € {0,...,100} and the CModAdd task. a,b € {0,...,100,7}
k = 10. and k£ = 10.
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5 EXPERIMENTS

In this section, we will focus on designing a small controlled experiment where the hypothesis of
the previous theorem can be easily verified.

Modular Addition Task. = We will consider an algorithmic task commonly referred to as mod-
ular addition, or ModAdd for short (Power et al. (2022); Gromov (2023); Furuta et al. (2024)). In
ModAdd, a model is tasked with solving simple modular addition equations of the form:

(a+b) modk=y

where y represents the unknown quantity, and a, b, k € {0, ..., N} with N € N. Typically, & is fixed
at the start of training, and the neural network (NN) is presented with pairs of natural numbers and
tasked with predicting the correct modulo class. A few training examples are provided in Table 1.

Semantic Equivalence in ModAdd. It should be apparent that all symbols of the form a + ¢k
are semantically equivalent to a in ModAdd. For example, consider the problem instantiated with
k =10 and N = 100. In this case, symbols like 0, 10, 20, . .., 100 are semantically equivalent. In
other words, if we swap 10 with 80, we do not alter the outcome distribution of the problem (i.e.,
Yy,a : p(y | a+ 80 mod 10) = p(y | a + 10 mod 10)).

Contrastive Modular Addition Task. The contrastive modular addition task, or CModAdd for
short, is a simple extension of the previous ModAdd task. In CModAdd, we generate sequences of
three symbols. The first symbol represents the first addend, a, which is sampled according to a ~
U(0, N). The second symbol represents the second addend, b, sampled according to b ~ U/(0, N).
The third symbol represents the result of the modulus operation, ¢ = (a + b) mod k. Additionally,
we randomly mask one of the symbols a or b, and refer to the masked symbol as y. The goal of this
task is to train a representation for the symbols that can be useful for the downstream task ModAdd.
Table 2 provides a few examples for clarity.

Conditional Equivalence in CModAdd. It should be apparent that all symbols of the form a+ik
are conditionally equivalent to a in CModAdd. For example, consider the problem instantiated with
k =10 and N = 100. In this case, symbols like 0, 10, 20, . .., 100 are conditionally equivalent. In
other words, the probability of seeing 10 under the mask token is always the same as the probability
of seeing 80 under the mask token (i.e., Vy,a : p(a+? mod 10 = y | 10) = p(a+? mod 10 = y |
80)).

CModAdd and ModAdd are aligned. Let v and v be semantically equivalent symbols according
to ModAdd (i.e., Yy,a : p(y | a + v mod k) = p(y | @ + v mod k)). Then, it is easy to see that
u and v are conditionally equivalent for CModAdd (Vy,a : p(a+? mod k = y | u) = p(a+?
mod k = y | v)) and vice versa. This property aligns exactly with Definition 4.1. Therefore,
we can say that CModAdd and ModAdd are distributionally aligned. Furthermore, by applying
Theorem 4.2, we find that employing a simple contrastive procedure will result in conditionally
equivalent symbols for CModAdd being encoded into spatially close vectors. Since conditionally
equivalent symbols in CModAdd are semantically equivalent in ModAdd, we can conclude that
semantically equivalent symbols in ModAdd will be encoded into spatially close embeddings as
stated from Corollary 4.3.

ModAdd & CModAdd Datasets. We generated all possible samples for a ModAdd and
CModAdd problem with N = 16 and k¥ = 8. Of this dataset, only the 80% is used for training
purposes, the other 20% is used as a validation set to perform periodic evaluation (one each 10
epochs).

CModAdd Architecture. The CModAdd architecture consists of two components: 1. an embed-
ding function, and 2. an encoder function. As previously mentioned, the embedding function maps
symbols to their d-dimensional representations. The encoder function, on the other hand, maps con-
texts to their d-dimensional representations. The embedding function is simply a parameter matrix
of size N x d, mapping each symbol index to a randomly initialized d-dimensional vector. The
encoder function consists of: 1. an embedding layer, 2. a 3-layer transformer encoder, and 3. a lin-
ear layer that maps the latent space to the d-dimensional representation. To comply with the third
hypothesis of Theorem 4.2, d is chosen to be small, specifically d = 8.

ModAdd Architecture. The ModAdd architecture consists of: 1. an embedding layer, 2. a 3-layer
transformer encoder, and 3. a linear layer that maps the latent space to the label. Again, the embed-
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Figure 2: Embedding distances for the CModAdd task and validation accuracy for the ModAdd task
with and without pre-trained embeddings

ding size is chosen to be small, d = 8. This allows for initializing these embeddings with those
trained from the CModAdd architecture.

Training Hyperparameters. The training proceed for 1e4 epochs with Adam optimizer (Kingma
& Ba (2015)). The learning rate is set to le—4 and we employ weight decay with value 1e—2. The
batch size is set to 32.

Contrastive Results.  The results are shown in Figure 2a. In this figure, we plot how the Eu-
clidean distance between different symbol embeddings evolves during training. The orange line
represents symbol pairs that are not semantically equivalent, while the purple line represents symbol
pairs that are semantically equivalent. As observed, during training, only semantically equivalent
symbols become close to each other, while the distance between semantically different pairs does
not converge beyond a certain level. We note that the distance does not become zero (as the theory
would suggest) this is likely due to the loss becoming close to zero preventing noticeable movement
between the embeddings.

Classification Results.  The results are shown in Figure 2b. To simulate a common procedure
involving contrastive pre-training followed by classification training, we first train an embedding
function by minimizing the loss shown in Equation 2 On the CModAdd data. Next, we train a clas-
sification model for the ModAdd task. The orange line represents the results for a randomly initial-
ized model, while the purple line represents the results for a model initialized with the pre-trained
embeddings. The model initialized with pre-trained embeddings achieves better results earlier in
training compared to the randomly initialized model.

In Section A.6, we present additional experiments that vary, model size and training procedure.

6 DISCUSSION

Let us recall that the main goal of contrastive learning is to learn good representations of data for
downstream tasks, which often have limited availability. But what constitutes a good representation?
One might be tempted to define it as a representation that facilitates fast and efficient learning of
the downstream task. However, this definition doesn’t specify any particular properties that the
representation should possess. As a result, questions like When is a contrastive dataset good for
a specific downstream task? remain unanswered.

We argue that good representations should, at a minimum, encode semantic equivalence relations
(Definition 2.1). In other words, if two symbols « and v are semantically equivalent (as defined in
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Definition 2.1), their representations should be close to each other, meaning they should be encoded
as vectors in close proximity. Conversely, non-equivalent symbols should have representations that
are further apart. This belief is strongly supported by Figure 2b, where a model initialized with
semantic equivalence relations achieves perfect accuracy early in training compared to the randomly
initialized one.

If we accept that good representations need to encode semantic equivalence relations, the next ques-
tion is: how do we train embeddings that encode these equivalence relations? To address this,
we turn to a popular pre-training method—contrastive learning. Empirically, contrastive learning
has often been observed to generate semantically meaningful relations (Wu et al. (2018); Ge et al.
(2022)), although semantics is rarely discussed formally. If we accept the definition of semantic
as the one presented in Definitions 2.1, we notice that it heavily depends on the presence of la-
bels. Now, if we imagine feeding labels into a contrastive procedure, one could show that a model
minimizing Equation 2 would need to encode semantic equivalence relations. This is the subject of
Theorem 3.1. However, contrastive learners usually do not have access to labels. In such cases, it can
be shown that when the contrastive data are aligned with the downstream data (Definition 4.1), the
trained representation must encode these equivalence relations for the downstream task. This is the
subject of Corollary 4.3. This behavior is also empirically demonstrated in Figure 2a, where, during
contrastive training, embeddings of semantically equivalent symbols converge, while embeddings
of semantically different symbols do not.

To summarize the results of this work let us answer briefly the proposed research question:

Under what conditions is a contrastive task useful for a downstream task?

A contrastive dataset can be used for a downstream task when the distributional alignment
hypothesis holds.

How can we train embeddings that effectively encode semantical equivalence relations?

The optimal SimCLR variant (under the proper hypotheses), discussed in Section 3, is formally
guaranteed to encode semantic equivalence relations. Empirically, the research community has
observed this behavior in a variety of different settings.

7 THREATS TO VALIDITY

In this section, we aim to address the limitations and potential threats that could impact our conclu-
sions.

External Validity We claimed that the distributional alignment hypothesis is crucial to the suc-
cess of contrastive learning. We supported this claim with both empirical and theoretical evidence.
However, it should be noted that, in most realistic scenarios, verifying this hypothesis is impractical.
Consequently, in real-world applications, the achieved performance on downstream tasks remains
the only empirical measure of the quality of the representation.

Internal Validity = While Theorems 3.1, and 4.2 formalize the intuitions of this work, they also
rely on somewhat strong hypotheses that limit their applicability to most real-world scenarios.

One common assumption in this manuscript is the conditional equivalence Vp : p(p|lu) = p(p|v).
This assumption is often too strong for practical applications. However, it can be justified by the fact
that if the symbols « and v never appear in the same context, discovering their semantic equivalence
would be impossible. Nevertheless, it is important to note that contrastive learners are often capa-
ble of encoding semantic similarities even when this assumption is violated to some extent. This
suggests that the results of this work could be generalized by relaxing the conditional equivalence
assumption.

The alignment hypothesis (Definition 4.1) used in the proof of Corollary 4.3 is quite strong. In
practice, the alignment between representations of semantically equivalent symbols is often only
partial, yet contrastive learning has shown success even in such cases. Nevertheless, the conditions
under which a contrastive dataset can effectively support a downstream task remain very stringent.
For example, randomly generated data is unlikely to be useful for any downstream task, and genomic
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contrastive data would provide little value to a natural language sentiment classifier. Ultimately, this
suggests that strong hypotheses are necessary even in practical applications.

8 RELATED WORKS

Contrastive Learning in practice.  Contrastive learning is one of the most popular and studied
pre-training techniques. While we present a fairly general framework, other works focus on specific
data modalities. For example, contrastive learning techniques for text sentences are discussed by
Gao et al. (2021) and Aberdam et al. (2021), see Xu et al. (2023) for a review. On source code
contrastive learning has been applied by Bertolotti & Cazzola (2023); Wang et al. (2022b) and Ding
et al. (2023). You et al. (2020); Zhu et al. (2020), and Qiu et al. (2020) focus on graph represen-
tations, see Liu et al. (2022) for a review. In particular, the work of Xia et al. (2022) focuses on a
framework that does not require augmentation. Meanwhile, the work of Wang et al. (2020); Park
et al. (2020) and Wang et al. (2023) focuses on images. Tsai et al. (2021a) combine a mixture of
expert techniques with contrastive learning image representations. Several long-term forecasting
problems are addressed by Park et al. (2024). Other works focus on multiple data modalities (Daun-
hawer et al. (2023) and Yuan et al. (2021)), see Zong et al. (2024) for a recent survey. Lo et al. (2024)
applied contrastive learning to the agent communication problem. Refer to Rani et al. (2023) and
Gui et al. (2024) for general survey regarding self-supervised learning and contrastive learning.

Contrastive Learning Techniques. ~ While we mainly focus on the InfoNCE loss with SimCLR.
However, there are several other contrastive objectives and technique that have been proven useful
in practice that we do not address in the previous sections. Cho (2005) propose one of the first con-
trastive objectives introduced in the literature that aims to maximize similarity from pairs of the same
class and minimize otherwise. A similar objective in principle is the triple loss (Schroff et al. (2015)).
An extension to the triple loss, known as Lifted Structured Loss is proposed by Oh Song et al. (2016).
NCE and InfoNCE losses developed by Gutmann & Hyvérinen (2010) and van den Oord et al. (2018)
exploit the concept of matching a data point with the correct one among a set of noise data points.
More recently, Shidani et al. (2024) proposes a multi-view objective. Lu et al. (2022) tackles the
out-of-distribution problem proposing invariant Causal Representation Learning—iCaRL. Zero-CL
(Zhang et al. (2022)) is a contrastive learning technique that does not rely on negative pairs. Wang
et al. (2022a) develops PiCO, a contrastive learning framework for partial label learning. Zhang et al.
(2023) proposes a contrastive loss based distributionally robust optimization. The work of Fort et al.
(2021); Ge et al. (2021); Wen & Li (2021) focuses on studying and designing the effect multiple and
different augmentations.

Understanding Contrastive Learning.  In their works, Arora et al. (2019); Lee et al. (2021)
present some of the first theoretical analyses of contrastive learning, establishing a connection be-
tween the contrastive task and the downstream task. Similarly, HaoChen et al. (2021) and Wang
et al. (2022c) relax some of the strong assumptions made in earlier analyses. Their work is based on
the existence of a latent variable from which positive and negative contrastive data pairs can be sam-
pled. The work of Saunshi et al. (2022) challenge prior theoretical result in scenarios with different
inductive biases. Wang & Isola (2020) prove that cross-entropy contrastive loss optimizes closeness
and uniformity. An information-theoretical perspective is provided by Tian et al. (2020); Tsai et al.
(2021b); Tosh et al. (2021), focusing on learning sufficient statistics for the downstream task. John-
son et al. (2022) unveils a connection between contrastive learning and kernel PCA (Scholkopf et al.
(1997)). Alon et al. (2023) focus on providing a bound on the sample complexity for several con-
trasting learning scenarios. Simon et al. (2023) study the stepwise learning phenomenon observed
in contrastive learners through the lenses of linearized model. The work of Shen et al. (2022) and
Garg et al. (2024) compares these techniques when distributional shifts occur. Cui et al. (2023) fo-
cuses on contrastive learning when joined with weak supervision. The works of Tschannen et al.
(2019); Poole et al. (2019); Lee et al. (2024); Galvez et al. (2023) study the relation between con-
trastive learning and mutual information. In this line of work, Levy & Goldberg (2014) shows that
skip-grams with negative sampling is equivalent to perform matrix factorization. Wu et al. (2023)
offers a perspective from distributionally robust optimization theory. Compared to these works, our
analysis stems from the notion of semantic equivalence and explores under what conditions this
relationship can be learned using contrastive data.
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9 CONCLUSION

In this work, we analyzed what constitutes a good contrastive task from the theoretical perspective
of semantics. In Sections 3 and 4 we formalized the conditions under which contrastive learning can
effectively encode semantics equivalence relations in both scenarios—with and without labels avail-
able. In the latter scenario, we found that the distributional alignment hypothesis (Definition 4.1)
plays a fundamental role. Furthermore, we empirically verified the intuitions formalized earlier
in Section 5 through small, controlled experiments where all hypotheses could be easily tested.
To further validate the presented intuitions, we conducted additional experiments discussed in Ap-
pendix A.6. The code to reproduce the experiments is freely available at the following URL:

https://redacted-for—-anonimity.com/

10 FUTURE WORK

In this work, we have shown that an optimal contrastive model must learn to encode semantic equiva-
lence relations under the distributional alignment hypothesis (Definition 4.1) and ideal assumptions.
However, in practical scenarios, the alignment between contrastive data and downstream tasks is of-
ten partial, and the conditional equivalence assumption is frequently violated. A potential direction
for future research is to explore the robustness of the proposed theory when these assumptions are
only partially met or entirely invalid.

Multitask learning is a paradigm focused on training models to perform multiple tasks simultane-
ously. In the work of Maurer et al. (2016), the learning model is structured with a shared repre-
sentation function across tasks and a task-specific classification (or regression) head for each task.
We hypothesize that the shared representation function should encode semantic equivalence rela-
tions across all tasks concurrently. However, an intriguing question arises: what happens when the
semantic structure is not well-aligned across tasks? Addressing this issue presents a compelling
avenue for future work.
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A APPENDIX

In these appendices, we present the proofs for Theorems 3.1 and 4.2 in Sections A.2 and A.3, respec-
tively. Additionally, we provide details on the updates to the embedding function £ in Section A.5,
followed by a series of supplementary experiments in Section A.6.
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A.1 PRELIMINARIES

Firstly, let us begin with a Lemma that will be proven useful in later sections.

Lemma A.1. Let £*, E* be the optimal embedding and encoder functions such that for an uncon-
strained hypothesis H = {(£,E)|€ : ¥ — R4 E : P,y — R} we minimize the conditional risk

associated with the infoNCE loss:
log exp(sim(&(0i), E(y, p)))
2. exp(sim(&(a4), E(y, p)))

Where i represents the random variable that associates the context-label pair (p, y) with the correct
symbol from o1, ..., 0,.

Then

H iY,0,01,,0n

5*,E*:argmin{ E

plojlp, y)

Yo,y 01,0 (il y) = exp(sim(E7(0:), By, p)))p(0) 3 p(;)

Proof. Let us begin by considering the conditional risk associated with the infoNCE loss:

R(EED) = E [—log< exp(sim(€(0:), E(y, p))) ﬂ

2.5 exp(sim(&(a;), E(y, p)))

For brevity, let us denote f; as the term exp(sim(&(o;), E(p,y))). Then, we obtain:

i (s
R(¢,E,D) = “y,p,z}?...,an [ log (ZJ fJ)]

It should be fairly easy to see that this term amounts to a cross-entropy term between a one-hot

. . . . . . . . _ fO f“ .
distribution, e;, and the predicted distribution f = [Ej FRRREED o ] :
R(E,ED)= E  [-eflog(f)]= E  [H(e;[)
i|y,0,01,...,0n ily,p,01,..,0n

It is a standard result that the probability distribution minimizing the conditional expectation of the
cross-entropy, arg min; E, . [H (e, f)], is p(y|z) Hastie et al. (2009). Applying this result to our
context, we conclude that:

fi* :p(i‘pvyao—l ~~';0n)

Furthermore, as shown in van den Oord et al. (2018):

(Z| o o ): p(gl‘pvy) Hk#p(ak)
pp,Y,01y...,0n Z,p(aj‘p, )Hk’;éjp(ak)

P00 [ plon)
5 2l p(05) Ty p(ow)
2ele) T, plo)
Y HEE T (o)

p(oilp,y)
p(oi)

p(o;lp.y)
Z p 0'7)
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Therefore, we have:

p(oilp,y)
p(o’l)
P plojlpy) |P y)
p(oj)
(UL‘P y)
p(”z)
P plojlp.y) |p )
p(o;)

p(oilp,y) = fip(o:) Z W —

( |p7y7017"'70n) -

=f =

p(0ilp,y) = exp(sim(E" (o), B* (v, p)))plos) 3 W

Notice that we made no assumptions about p, y, or o1, . . . , 0, €xcept that one symbol is distributed
conditionally on the context-label pair, while the others are not. Therefore, we conclude that the
statement of the lemma holds for any choice of these variables.

O

A.2 THEOREM 3.1

Let us consider the first theorem:
Theorem. Given the symbols w,v € ¥ such that

1. u=v,

2. Vp: p(plu) = p(p|v), and
3. ifthere are (p1,y1),- - -, (pa,ya) context-label pairs such that E*(p;,y;) form a basis for
Rd

then £*(u) = £*(v)

This theorem states the condition for SimCLR to encode semantically equivalent symbols into equiv-
alent embeddings.

Proof. Since u = v, (i.e. Vp : p(ylu, p) = p(y|v, p)), we can write:
p(u,y,p)  pylu, p)p(u,p)  p(ylv, p)p(u,p)  p(y,v,p)p(u,p)  pvly, p)p(u,p)

pluly, p) = py,p)  pl.p)  ply,p)  py,ppw.p)  pv.p)
Or,
p(uly, p)p(v, p) = p(vly, p)p(u, p)
p(uly, p)p(plv)p(v) = p( |y, p)p(plu)p(u)
(%) exp(sim(E* (u), E*(y, p)) )p(w)p(p|v)p(v) = exp(sim(E*(v), E*(y, p)))p(v)p(plu)p(u)
exp(sim(E*(u), E*(y, p)))p(plv) = exp(sim(E*(v), E*(y, p)))p(p|u)

The step (*) can be concluded by considering Lemma A.1. Take a context-label pair p,y sampled
with symbols o1, ..., oy, one of which will be v and one of which will be v. Further, let i,, and ¢,
be the indices of u and v in the set of symbols. By Lemma A.1, we have:

plulp, y) = exp(sim(€* (u), E* (v, p)))p(u) p(;‘}f;)% 'P’ 3 P%(lg

7521“%
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E*(u) = E*(v)

Figure 3:
2—dimensional representation of: (£*(u) — £*(v))” By = 0 (purple) and (£ (u) — £*(v)) By = 0
(orange). F; and F; have to form a basis of R? in order for the solution to be unique.

A similar equation can be written for v:

pl0lp.) = explsim(E (o), " p)p(e) | sl UL 4 57 R

p(u) p(v)
JFbu st
Since both summation term are equal, in equation (*) they can be canceled out. Further, me made no

assumption from the context-label pair p, y. Therefore, by applying the hypothesis p(p|u) = p(p|v)
we can write:

Yo,y s exp(E(w) E*(y, p)) = exp(E*(v) E*(y, p))

Next consider (p1,¥y1),-- -, (pd,ya) context-label pairs such that E*(y;, p;) = E; form a basis of
R<:

exp(E*(u)" By) = exp(E*(v) Ey) = (E*(u) — E* () By =0

exp(E*(w)T Ey) = exp(E*(v) T Ey) = (£*(u) —E*(v)) ' Eq4=0
The above system has d equations stating that £*(u) — £*(v) is perpendicular to every basis vector
Ey,...,E4. Thus, Only one solution is possible: £*(u) = £*(v). Fig. 3 provides a graphical
representation of the system when d = 2. In this case, we have only two equations whose solutions

lie onto a line. The solution is unique when F; and F are linearly independent (i.e., form a basis
for R?). O

A.3 THEOREM 4.2

Let us consider the first theorem:
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Theorem. Given the symbols u,v € ¥ such that:
1. Vp : p(plu) = p(plv).
2. Ifthere are py, . .., pq contexts such that E*(p;) form a basis for R?
then £*(u) = £*(v)
This theorem states the condition for our approach to encode conditionally equivalent symbols into

equivalent embeddings. For completeness, we provide the complete proof to this theorem. However,
this is an almost exact match to the proof of Theorem A.2.

Proof. Let us begin by considering the hypothesis: p(p|u) = p(p|v):

Vp = —
p(u)  p(v)
wp - Ple)e(e) _ plp)p(o)
p(u) p(v)
(x)¥p : exp(E"(u)" E*(p)) = exp(E"(0) E*(p))

The step () follows, once again, from an application of Lemma A.1. Next consider py,..., p4
contexts such that E*(p;) = E; form a basis of R%:

exp(EX(u)" Ey) = exp(E*(v) Ey) = (E*(u) — E* () By =0

-e;<.p(5*(u)TEd) = exp(E*(v) T Ey) = (E*(u) — E*()) E4=0

The above system has d equations stating that £*(u) — £*(v) is perpendicular to every basis vector
Ey,...,E4. Thus, Only one solution is possible: £*(u) = £*(v). Fig. 3 provides a graphical
representation of the system when d = 2. In this case, we have only two equations whose solutions
lie on2to a line. The solution is unique when E; and FEs are linearly independent (i.e., form a basis
for R?). O

A.4 PROPOSITION A.2

Now, let us introduce a discuss the proposition for the backward implication of the Corollary 4.3.

Proposition A.2. Given symbols u and v such that¥p : p(p|u) = p(p|v). Given optimal embedding
Sfunction £*. Then:
E(u)=E"(v) = u=v

The proof is derived in a simila manner to the Theorem 3.1.

Proof. Take a context-label pair p, y sample with symbols o1, ..., o, one of which will be u and
one of which will be v. Further, let 7,, and 7, be te indices of v and v in the set of symbols. Then,
by Lemma A.1, we know that:

plulp.y) = exp(sim(€" (u), B (y, p)p(uw) | 2428 | 2ULY) 5~ p(zglf ’)y)

p(u) p(v) ‘
s

[e3%
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By isolating the exponential term, we get:

- pule = exp(sim(€” (), B (3 )
<p<u> T o) +0‘)p(“)
Similarly, for v, we have:
p(vlp,y) e .
= exp(sim(E*(v), E*(y, p)))
plulp,y) | p(vlpy)
(pw) T o) +0‘)p(“)

By hypothesis, we know that £*(u) = £*(v). Therefore, the exponentials terms are equal. This
implies the following:

p(ulp,y) _ p(vlp,y)
p(ulp,y) | plpy) pulpy) | p(lpy)
(( + ()—i—a)() ( + ()+a)()

p(u) T plv)

pulp,y) _ p(vlp,y)
p(w) p(v)

Note that, no assumption is made on p or y. Therefore, using p(p|u) = p(p|v) concludes the result
(u = v).

O

A.5 EMBEDDING SYMBOL FUNCTION UPDATE RULE

Let us consider the infoNCE loss with the scalar product as similarity function:

=3 T . L.
3 g( exp (€(0::0)" By, pis6) )

>_jexp(E(oy:0)" E(y;,p5:0))

Now, let us assume that £ maps each symbol, w;, to a corresponding parameter vector, denoted as
w;. For simplicity, let us call E(y;, p;; @) = ¢;. Next, we differentiate the infoNCE loss wrt. ;.

dL(D,6) 9 €L %
B _8ak< 2 log (Eea?c]))

2 Zj 7 7
7
eok Cj
=—cC g — c —C E ,;C
o S, ek 7 kT JJ
J t J
0<a; <1

Thus, the update rule with learning rate 7:

O < 0Ok + U(Ek - ZO&jCj)
J

Since ) oy =1 the update on &, pushes towards ¢, and away from the weighted sum of all ¢;.
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Figure 4: Embedding distances and validation accuracy for bigger architectures
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Figure 5: Embedding distances and validation accuracy for architecture without weight decay

A.6 EXPERIMENTS

A.6.1 BIGGER EMBEDDINGS

One of the hypotheses in Theorems 3.1 and 4.2 concerns the existence of context-label pairs that
form a basis for R?, where d is the embedding dimension. Consequently, when the embedding
dimension is sufficiently large, there is no guarantee that the model will encode semantically equiv-
alent symbols in close proximity. However, even when the embedding dimension is increased to
128 (which is 16 times larger than required by the theorems), the model still represents semantically
equivalent symbols near each other (see Figure 4a).

In Figure 4b, we report the validation accuracy for a model initialized with pre-trained represen-
tations (shown in purple) and the same model with randomly initialized symbol representations
(shown in orange). Both models perform equally well, suggesting that if the model’s capacity is
sufficiently large, it can effectively compensate for differences in initialization.

A.7 NO WEIGHT DECAY

It is instructive to introduce a failure case. In this experiment, we disable weight decay during
training, removing the regularization that encourages the model to use low-magnitude weights. The
results are shown in Figure 5a. Without weight decay, the model fails to encode semantically equiv-
alent symbols (shown in purple) close to each other within a reasonable time. However, a trend
toward pushing semantically equivalent symbols closer together is still observable. This results in
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Figure 6: Embedding distances and validation accuracy for architecture without weight decay but
with low embedding initialization

semantic equivalence relationships that are only marginally better than those produced by a ran-
domly initialized model.

The effect of poor semantic encoding is visualized in Figure 5b. The model initialized with pre-
trained embeddings (shown in purple) performs only slightly better than the randomly initialized
model (shown in orange).

Furthermore, we speculate that weight decay may have additional effects on the model’s capacity to
encode semantic equivalence relationships. As weight decay pushes all embeddings toward zero, the
model is discouraged from encoding semantically different symbols too close to each other, as doing
so would eventually make it unable to distinguish between them. This limitation does not apply to
semantically equivalent symbols; if they become indistinguishable, the model’s performance would
still be correct.

A.8 NO WEIGHT DECAY & LOW WEIGHT INITIALIZATION

The failure caused by the absence of weight decay can be mitigated by employing a lower initial-
ization scheme. In this experiment, we initialize the embeddings using a normal distribution with a
mean of 0 and a standard deviation of 0.02. The results are shown in Figure 6a. Under this scheme,
the model is able to encode semantically equivalent symbols (shown in purple) close to each other
within a reasonable time. Additionally, the model initialized with pre-trained embeddings (shown in
purple) performs better than the randomly initialized model (shown in orange), as seen in Figure 6b.

Since all the embeddings are initialized with low-magnitude values, the distance between symbols
starts small, compared to the standard PyTorch initialization, which uses a normal distribution with
a mean of 0 and a standard deviation of 1 !, as shown in Figure 2a.

A.9 WEIGHT DECAY & SLIGTHLY LOW WEIGHT INITIALIZATION

Another scenario worth visualizing is the case where we employ both weight decay and low-weight
initialization. The results are shown in Figure 7a. In this setup, the model successfully encodes
semantically equivalent symbols (shown in purple) close to each other within a reasonable time.
Consequently, the model initialized with pre-trained embeddings (shown in purple) outperforms the
randomly initialized model (shown in orange), as seen in Figure 7b.

Interestingly, despite the presence of weight decay, the distances between semantically different
embeddings end up being larger compared to the previous experiment, which did not use weight

"https://github.com/pytorch/pytorch/blob/v2.4.0/torch/nn/modules/
sparse.py#L1l4
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Figure 8: Embedding distances and validation accuracy for a slightly misaligned contrastive and
classification datasets

decay. Additionally, the distances between semantically different embeddings appear divided into
three distinct bands. Unfortunately, we do not yet have a clear explanation for this behavior.

A.10 SLIGTHLY MISALIGNED CONTRASTIVE DATASET

The proposed theory suggests that when a contrastive dataset and a classification dataset are distribu-
tionally aligned (see Definition 4.1), training on the contrastive dataset should produce embeddings
that are semantically meaningful for the target classification task. But what happens if the distribu-
tional alignment is imperfect? In this experiment, we introduce a slight misalignment between the
contrastive and classification datasets.

The misalignment is created by assigning a fixed probability to all correct contexts of a particular
symbol. Specifically, we assign a probability of 0.9 to one chosen context, while the remaining
probability is evenly distributed among all other contexts.

The results are presented in Figure 8a and 8b. The model is still able to position semantically equiv-
alent symbols (shown in purple) close to each other in a reasonable amount of time. Furthermore,
the model initialized with pre-trained embeddings (shown in purple) outperforms the randomly ini-
tialized model (shown in orange), as seen in Figure 8b. However, compared to the perfectly aligned
case (see Figures 2a and 2b), the model takes longer to bring semantically equivalent symbols closer
together. As a result, the generated embeddings are less effective for the classification task.
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A.11 WORD EMBEDDINGS

Until now, we have exclusively experimented with algorithmic data. However, real-world data are far
from being as clean as the data we have used so far. In this experiment, we aim to train a Word2Vec-
like model Mikolov et al. (2013) on a small text corpus. Specifically, we will use the BookCorpus
dataset Zhu et al. (2015) as our source. To access this dataset?, we will utilize Hugging Face’s
datasets library Lhoest et al. (2021). Our objective is to observe whether the patterns identified in
algorithmic data are replicated in this real-world context.

We will also artificially inject semantic equivalences into the dataset by replacing certain words with
fabricated perfect synonyms. For instance, a word such as good may be replaced with equal proba-
bility by good; or good, within the dataset. Specifically, we selected 100 words and replaced each
with one of the fabricated synonyms. Further, we will compare these artificially created synonyms
with naturally occurring synonyms.

To generate symbol-context pairs, we will sample a sentence and randomly mask one word. The
masked word will serve as the symbol, while the remainder of the sentence will act as the context.

We will train a Transformer encoder-only model® to generate context-embedding. The symbol em-
bedding will be generated by a simple embedding layer. * As previously, we will use the InfoNCE
loss van den Oord et al. (2018) to match the context-embedding with the correct symbol-embedding,
while pushing away the incorrect symbol-embeddings.

During training, we expect the embeddings of semantically similar symbols to converge, while em-
beddings of unrelated symbols should remain far apart. This behavior is confirmed in Figure 9.
Specifically, we observe that the embeddings of semantically equivalent symbols (shown in purple)
converge to a small distance, whereas the embeddings of semantically different symbols (shown in
orange) remain distant. In blue, we have naturally occuring synonyms which position themeselves
in between the perfect semantically equivalent and the semantically different symbols.

Zhttps://huggingface.co/datasets/bookcorpus/bookcorpus
3https://pytorch.org/docs/stable/generated/torch.nn. Transformer.html
*https://pytorch.org/docs/stable/generated/torch.nn. Embedding.htm]
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