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Abstract

We introduce Adjoint Sampling, a highly scalable
and efficient algorithm for learning diffusion
processes that sample from unnormalized
densities, or energy functions. It is the first
on-policy approach that allows significantly more
gradient updates than the number of energy
evaluations and model samples, allowing us
to scale to much larger problem settings than
previously explored by similar methods. Our
framework is theoretically grounded in stochastic
optimal control and shares the same theoretical
guarantees as Adjoint Matching, being able to
train without the need for corrective measures
that push samples towards the target distribution.
We show how to incorporate key symmetries, as
well as periodic boundary conditions, for mod-
eling molecules in both cartesian and torsional
coordinates. We demonstrate the effectiveness
of our approach through extensive experiments
on classical energy functions, and further scale
up to neural network-based energy models where
we perform amortized conformer generation
across many molecular systems. To encourage
further research in developing highly scalable
sampling methods, we plan to open source these
challenging benchmarks, where successful meth-
ods can directly impact progress in computational
chemistry. Code & and Benchmarks provided
at github.com/facebookresearch/
adjoint sampling.
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1. Introduction
Sampling from complex, high-dimensional distributions un-
derlies many important problems in computational science,
with applications spanning molecular modeling, Bayesian
inference , and generative modeling. In particular, we are
interested in sampling from the target distribution with only
access to its unnormalized energy function E, which defines
the Boltzmann distribution

µ(x) =
exp

(
− 1

τE(x)
)

Z
, (1)

where Z =
∫
Rd exp

(
− 1

τE(x)
)
dx < ∞ is the unknown

normalization constant. The Boltzmann distribution de-
scribes the equilibrium state of many physical systems,
where E(x) denotes the energy of a configuration x, and
τ > 0 is a temperature parameter. Efficiently sampling
from such distributions remains challenging, especially for
high-dimensional systems with intricate energy landscapes.
Additionally many energy functions are extremely computa-
tionally expensive, e.g. requiring physics simulations.

Traditional approaches, such as Markov Chain Monte Carlo
(MCMC) and Sequential Monte Carlo (SMC) using well-
designed Markov Chains (Neal, 2001; Neal et al., 2011;
Del Moral et al., 2006), provide asymptotically unbiased
samples but often suffer from slow mixing and poor scal-
ability to high-dimensional settings. This necessitates the
design of better transition densities and smarter proposal dis-
tributions. Recent works try to address this by augmenting
sampling with learned proposal distribution (Albergo et al.,
2019; Arbel et al., 2021; Gabrié et al., 2022) via normaliz-
ing flows (Chen et al., 2018; Rezende & Mohamed, 2015).

It may seem natural to look towards the recent explosion of
diffusion and flow-based generative models (Song & Ermon,
2019; Ho et al., 2020; Lipman et al., 2023; Albergo et al.,
2023). However, a naı̈ve adaptation of these data-driven
generative modeling frameworks requires access to ground
truth data. This limitation is particularly significant in ap-
plications such as molecular simulations and physics-based
inference, where direct access to samples from the target dis-
tribution is often unavailable. As a result, prior attempts of-
ten require an augmentation with sequential Monte Carlo or
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importance-sampling (Phillips et al., 2024; De Bortoli et al.,
2024; Akhound-Sadegh et al., 2024), making these methods
highly inefficient in terms of energy function evaluations.

The connection between sampling and diffusion processes
was established by Tzen & Raginsky (2019b) through using
classical results of stochastic optimal control (SOC) and
Schrodinger-Bridge problems (Pavon, 1989; Dai Pra, 1991;
Föllmer, 2005; Chen et al., 2016). Using this formulation,
Zhang & Chen (2022) show that by directly parameterizing
the drift of the controlled process, one could solve an SOC
problem given unnormalized density for sampling tasks.
This concept is further generalize by Berner et al. (2023)
and Richter & Berner (2024); however, all of these method
require computationally expensive simulation of the diffu-
sion process per gradient update. Furthermore, they require
at least one—sometimes many—energy evaluations per gra-
dient update.

To overcome these challenges, we introduce Adjoint Sam-
pling, a novel and extremely efficient variational inference
framework based on stochastic control of diffusion pro-
cesses, which we apply at much larger scale than previous
methods. Our method is built on top of Adjoint Matching
(Domingo-Enrich et al., 2024), a recent method developed
for solving general stochastic control problems which we
specialize and improve for efficiently learning to sample.

Our contributions are as follows:

• Efficiency: Our method is the first on-policy approach
to allow far more gradient updates per model sample
and energy evaluation. This is extremely important for
scaling up to difficult amortized settings.

• Theoretically Grounded: Our method is grounded in
stochastic control, following the recent work of Adjoint
Matching (Domingo-Enrich et al., 2024). We improve
upon Adjoint Matching by proposing a new objective
that implicitly projects the model onto a set of optimal
controls. We do not require corrective measures such
as importance sampling or sequential Monte Carlo for
our theoretical guarantees.

• Structure: Graph and Euclidean symmetries can be
easily incorporated. We also adopt the method to han-
dle periodic boundary conditions for modeling torsion
angle representations of molecular systems.

• New Benchmarks: We introduce amortized molecule
sampling benchmarks that challenge new methods to
be applicable at scale. Being successful at these bench-
marks directly drives progress in chemistry.

2. Preliminaries
In this section, we briefly introduce an optimization problem
over a class of stochastic processes that samples from µ at
the optimal solution at the fixed time t = 1. This control
perspective of sample generation was observed by Tzen
& Raginsky (2019b), with similar formulations found in
Zhang & Chen (2022); Berner et al. (2023). A more in-
depth introduction to stochastic control for sampling can be
found in Appendix A.1.

2.1. Optimizing Diffusion Processes for Sampling

Consider the stochastic differential equation (SDE)

dXt = σ(t)u(Xt, t) dt+ σ(t) dBt, X0 = 0, (2)

where σ : [0, 1] → R is a scalar noise function, u :
Rd × [0, 1] → Rd is a learnable control and (Bt)t is a
d-dimensional Brownian motion. Under mild conditions on
σ and u, this controlled process (2) uniquely defines time-
marginals put (Xt) for all t ∈ R and we seek a drift u such
that pu1 (X1) = µ(X1). We denote X = {Xt : 0 ≤ t ≤ 1}
a sample trajectory and pu(X) and pbase(X) the distribu-
tions over trajectories1 generated by the controlled pro-
cess (2) and base process dXt = σ(t) dBt (i.e. setting
u ≡ 0 in (2)), respectively. The drift that transports the
Dirac distribution to the target density µ at time t = 1 is
not unique; however, we can choose a particular target path
density that is a Schrödinger bridge (Pavon, 1989; Chen
et al., 2016) between the Dirac and the target distribution
given by

p∗(X) = pbase(X|X1)µ(X1), (3)

where pbase(X|X1) is the posterior distribution of the base
process conditioned on arriving at X1. This Schrödinger
bridge is, among other processes that coincides with µ at
t = 1, the one that deviates the least from the base process in
KL divergence. Notably, the path KL to p∗ over trajectories
with respect to the control u can be expressed analytically
by factorizing p∗(X) = pbase(X) µ(X1)

pbase
1 (X1)

and invoking
Girsanov’s Theorem (Protter & Protter, 2005),

DKL(p
u(X) ∥ p∗(X)) (4)

= DKL(p
u(X) ∥ pbase(X)) + Epu log

(
pbase
1 (X1)

µ(X1)

)
(5)

= Epu

[∫ 1

0

1
2∥u(Xt, t)∥2 dt+ log

(
pbase
1 (X1)

µ(X1)

)]
. (6)

To this end, we propose to minimize the objective (6), which,
intuitively, minimizes the control energy required to trans-
port to µ. In fact, this criteria corresponds exactly with a

1Formally, path measures of stochastic processes and their
KL divergences are defined by Radon-Nikodyn derivative, e.g.
dPu
dPbase (X) = exp(

∫ 1

0
1
2
∥ut∥2dt+

∫ 1

0
ut · dBt) with X ∼ Pu.
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minimum-energy stochastic optimal control (SOC) problem
with terminal cost function given by log

pbase
1 (x)
µ(x) . This partic-

ular SOC problem is heavily studied in literature and has a
unique optimal solution u∗ satisfying (Kappen, 2005; Tzen
& Raginsky, 2019a) (See Appendix A.1 for more details)

DKL(p
u∗
(X) ∥ p∗(X)) = − logEpbase

[
µ(X1)

pbase
1 (X1)

]
= 0.

(7)

Therefore p∗ can indeed be achieved by u∗ and our prob-
lem is then reduced to optimizing the SOC objective (6) as
efficiently as possible. This is precisely what our proposed
method Adjoint Sampling addresses.

3. Adjoint Sampling
Now that we have equated the sampling problem as the
solution of an SOC problem, we will now propose a highly
efficient method to solve SOC problems of the form

min
u

EX∼pu

[∫ 1

0

1
2∥u(Xt, t)∥2 dt+ g(X1)

]
(8a)

s.t. dXt = σ(t)u(Xt, t) dt+ σ(t) dBt, X0 = 0 (8b)

which we will use to learn a stochastic process that samples
from a target distribution given only an unnormalized energy
function (1) with

g(x) = log pbase
1 (x) + 1

τE(x), (9)

which is (6) without the normalization constant as it does
not affect the optimal solution. Naı̈vely, one could simulate
the SDE (8b), and then differentiate through the objective
(8a), often referred to as the adjoint method (Bryson & Ho,
1969), and is the method of choice for prior works (Chen
et al., 2018; Zhang & Chen, 2022). However, this is very
slow as it requires two simulations per iteration, one for the
state Xt and another one for backpropagating through the
SDE.

3.1. Adjoint Matching

Adjoint Matching (Domingo-Enrich et al., 2024) is an algo-
rithm designed to solve a more general family of stochastic
optimal control problems, being able to make use of base
processes with arbitrary drift dXt = b(Xt, t) dt+σ(t) dBt.
Unlike standard adjoint methods (Bryson & Ho, 1969) that
use gradient-based approaches and differentiate through the
objective (8a), Adjoint Matching turns the problem into
a moving regression formulation. In particular, it solves
for the fixed point u such that u(x, t) = −σ(t)∇J(u;x, t)
where J is the value function. We discuss Adjoint Match-
ing in detail in Appendix A. For our objective, the Adjoint

Matching loss is

LAM(u) := EX∼pū

[
1

2

∫ 1

0

∥∥u(Xt, t) + σ(t)⊤ã(t;X)
∥∥2 dt]

s.t.
d

dt
ã(t;X) = −ã(t;X)⊤∇b(Xt, t)

ã(1;X) = ∇g(X1).

(10)

where ã is referred to as the lean adjoint state, and ū =
stopgrad(u) denotes a stop gradient operation of u, i.e.,
although X ∼ pū is sampled according to the controlled
process.

Our first key observation is that the original Adjoint Match-
ing algorithm can be significantly simplified in the case
of our sampling formulation (8). In particular if we set
set b ≡ 0, the lean adjoint state equation d

dt ã(t;X) =
0, ã(1,X) = ∇g(X1) admits the unique analytical solu-
tion ã(t;X) = ∇g(X1) for all t ∈ [0, 1]. This leads to a
drastically simplified regression loss requiring no additional
simulation of the lean adjoint state.

LAM(u) = EX∼pū

[∫ 1

0

1

2
∥u(Xt, t) + σ(t)∇g(X1)∥2 dt

]
(11)

Roughly speaking, Adjoint Matching offers a simple inter-
pretation: for each intermediate state Xt, simply regress
the control onto the negative gradient of the terminal cost
−∇g(X1) for all possible X1 that can be arrived at from
Xt. Since this is a moving target, this will, over the course
of optimization, slowly shift the process towards regions
with small terminal cost g.

3.2. Reciprocal Adjoint Matching

Adjoint Matching still requires two computationally expen-
sive operations at every iteration: (i) simulation of the con-
trolled process and (ii) evaluation of the terminal cost. Sim-
ulation of an SDE is a slow iterative procedure, and the
terminal cost can also be costly. For instance, in our formu-
lation, the terminal cost involves the energy model E which
in many real-world scenarios is extremely computationally
expensive. Ideally, neither of these two operations should be
done frequently. In this section, we propose modifications to
the Adjoint Matching algorithm to make it highly scalable,
removing both requirements.

Firstly, notice that the training loss only depends on sam-
pling (Xt, X1) ∼ put,1, not the full trajectory. Hence (11) is
equivalent to sampling pairs (Xt, X1) from the joint distri-
bution defined by the stochastic process pu:

LAM(u) =

∫ 1

0

Epū
t,1

[
1

2
∥u(Xt, t) + σ(t)∇g(X1)∥2

]
dt.

(12)
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This does not yet yield any efficiency gains as the only
way to sample (Xt, X1) ∼ pu is through simulating the
controlled process. Our key insight is to make use of the
knowledge that at the optimal solution u∗ we have that
pu

∗

t,1(Xt, X1) = pbase
t|1 (Xt|X1)µ(X1) due to (3). Although

the current control u does not necessarily satisfy this prop-
erty, we can project the path measure—known as a Recip-
rocal projection which we make formal in Section 3.3—
onto the Schrödinger bridge that generates pū1 given by
pbase
t|1 (Xt|X1)p

ū(X1). Based on this, we propose the Re-
ciprocal Adjoint Matching (RAM) objective:

LRAM(u) =∫ 1

0

Epbase
t|1p

ū
1

[
λ(t)

2
∥u(Xt, t) + σ(t)∇g(X1)∥2

]
dt.

(13)

That is, we sample X1 according to the controlled process,
then sample Xt conditioned on X1 using the posterior distri-
bution defined by the base process. Since the base process is
an SDE with zero drift (equivalent to (2) with u ≡ 0), con-
ditionals pbase

t|1 (Xt|X1) are known in closed form and can
be easily sampled. This also has the effect of de-correlating
samples across time because the Xt samples for different
values of t are now conditionally independent given X1,
whereas in (12) the Xt are sampled from the same trajec-
tory. We additionally apply a time scaling of λ(t) = 1

σ(t)2

which does not affect the optimal solution but improves
numerical stability.

We note that (13) is related to the training objectives that
appear in PDDS (Phillips et al., 2024) and TSM (De Bortoli
et al., 2024), where the same formula appears inside the
expectation; however, the expectations differ and makes a
significant difference. In particular, PDDS and TSM take an
expectation with respect to the optimal control, whereas we
take an expectation with respect to the current control. That
is, they require sampling from the target distribution, which
is intractable. Unlike PDDS and TSM, which is a simple
regression formulation with a fixed regression target, our
formulation has a moving regression target and is designed
to solve for a fixed point (see Appendix A).

We can further increase computational efficiency by noting
that we can fix the regression target and delay updating it
(which we justify theoretically in Section 3.3. To design
a highly efficient algorithm, we further decouple p(X1)
from the regression problem of learning u, delaying updates
to p(X1) and performing multiple iterations to train u.
Practically, this leads to the following alternating algorithm
which we refer to as Adjoint Sampling:

1. Using the current control ui, construct a buffer B =

(X
(i)
1 ,∇g(i)) with samples {X(i)

1 }
iid∼ pu1 (X1) and

∇g(i) = ∇g(X(i)
1 ).

Algorithm 1 Adjoint Sampling

1: Input: Terminal Cost: g = log pbase + 1
τE, base pro-

cess: pbaset given by dXt = σ(t)dBt, outer-loop batch
size: n, inner-loop batch size m, SDE drift network: uθ,
Replay buffer B.

2: B ← ∅
3: while Outer-Loop do
4: # Euler-Maruyama with no gradient
5: {X(i)

1 }ni=1 ∼ pū1 , ū = stopgrad(uθ)
6: # gradient of energy is evaluated once per sample
7: ∇g(i) ← ∇g(X(i)

1 )

8: B ← B ∪ {(X(i)
1 ,∇g(i))}ni=1

9: while Inner-Loop do
10: {(X(j)

1 ,∇g(j))}mj=1 ∼ U(B)
11: t(j) ∼ U([0, 1]), X

(j)
t ∼ pbase

t(j)|1(x|X
(j)
1 )

12: L(j)
RAM ←

λ(t)
2

∥∥∥uθ(X
(j)
t , t(j)) + σ(t)∇g(j)

∥∥∥2
13: θ ← optimizer step(θ,∇θ

1
m

∑
j L

(j)
RAM)

14: end while
15: end while
16: Output: SDE sampler drift uθ.

2. Obtain updated control ui+1 by optimizing (13) using
samples {X(i)

1 ,∇g(i)} ∼ B.

We theoretically justify this alternating scheme in the next
section as implicitly performing a projection onto a more
optimal control that aids in decreasing the SOC objective.
Note that optimizing (13) in Step 2 above is extremely
cheap due to the analytical form of the forward base
process. Both pbase

1 and the posterior distribution pbase
t|1 can

be designed as closed-form Gaussian distributions which
we detail in Appendix B. This means that many gradient
updates can be carried out without needing to simulate the
controlled process or evaluation of the energy model. We
provide detailed pseudo-code in Algorithm 1.

Geometric Extensions Symmetries are essential to effi-
ciently sample from energy-based models defining physi-
cal systems. We reduce dimensionality and improve data
efficiency by enforcing symmetries in our model of the
controlled process using Equivariant Graph Neural Net-
works (EGNNs) (Satorras et al., 2021) or Tensor Field Net-
works (Thomas et al., 2018), implemented in e3nn (Geiger
et al., 2022; Jing et al., 2022). See Appendix D for more
details.

3.3. Adjoint Sampling Theory

In this section, we provide theoretical justification to our
proposed Algorithm 1. Firstly, let us define a projection P
of a control u onto the SOC solution where pu1 is the target
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distribution:

P(u) = argmin
v

DKL(p
v(X) ∥ pbase(X|X1)p

u
1 (X1)).

(14)
This is a projection step onto the Schrödinger bridge that
shares the same terminal distribution pu1 (X1). In connection
to existing literature, this can be understood as a combina-
tion of the Reciprocal and Markovian projections of Shi et al.
(2023). In terms of minimizing the objective, the resulting
control process is consistently as effective as, if not superior
to, the original control. We formalize this in the following
proposition:
Proposition 3.1. After projection (14), Reciprocal Adjoint
Matching is equivalent to Adjoint Matching,

LRAM(P(u)) = LAM(P(u)), (15)

and furthermore, this projection improves upon on the SOC
objective: J(u) ≥ J(P(u)), where

J(u) := EX∼pu

[∫ 1

0

1
2∥u(Xt, t)∥2 dt+ g(X1)

]
. (16)

We defer the proof to Appendix C.1. The result of Propo-
sition 3.1 hints that if we explicitly perform this projection
(14) at every iteration, then we are effectively performing
Adjoint Matching iterations with a more optimal control.
However, performing the projection requires additional com-
putation steps, e.g., using algorithm such as Bridge Match-
ing (Shi et al., 2023), which we want to avoid. Fortunately,
it turns out that using just the RAM loss is sufficient and
will implicitly include this exact projection.

Our main theoretical result is the observation that the alter-
nating scheme, where the distribution of X1 samples are
fixed (step 1) and we update the control by fully converging
the RAM loss (step 2), is implicitly performing the projec-
tion (14) while performing Adjoint Matching on the SOC
objective (6). This correspondence is stated informally in
the following Theorem.
Theorem 3.2 (Theoretical guarantees of Adjoint Sampling
(informal)). Starting with any control ui, performing steps
1 and 2 to obtain ui+1 equivalently satisfies

ui+1 = P(ui)−
δLAM

δu
(P(ui)), (17)

where δLAM
δu denotes the functional derivative with respect

to the control u. Moreover, the fixed point where u = P(u)
and u = u− δLAM

δu (u) is the optimal control u∗ to (8).

A more precise statement and proof can be found in Ap-
pendix C.1. This result provides the theoretical justification
for our proposed algorithm (Algorithm 1). In practice, we
differ slightly and use a replay buffer that contains samples
from multiple prior steps, and we do not perform step 2 until
convergence. We find this helps smoothen the optimization
and improve computational efficiency.

3.4. Geometric Extensions

Symmetries are essential to efficiently sample from energy-
based models defining physical systems. Molecules are
symmetric with respect to atom permutations, rotations,
translations, and parity (reflection). We reduce dimension-
ality and improve data efficiency by enforcing symmetries
in our model of the controlled process. Our model is ei-
ther parameterized by E(n) Equivariant Graph Neural Net-
works (EGNNs) (Satorras et al., 2021) or Tensor Field Net-
works (Thomas et al., 2018), implemented in e3nn (Geiger
et al., 2022; Jing et al., 2022), which incorporate graph fea-
tures while respecting symmetry constraints (Kondor et al.,
2018; Weiler et al., 2018; Miller et al., 2020; Geiger &
Smidt, 2022). We experiment with two controlled processes:
one sampling atomic positions using EGNN, and the other
sampling torsion angles with e3nn. See Appendix G for
details.

4. Related Work
Learning Augmented MCMC Markov Chain Monte
Carlo (MCMC) and Sequential Monte Carlo (SMC) meth-
ods have been the standard for sampling from complex
distributions using a well-designed Markov-chain. Due to
prohibitively long mixing times and poor scaling in high-
dimensions, existing work have combined MCMC and SMC
techniques with deep learning. Albergo et al. (2019), Arbel
et al. (2021) and Gabrié et al. (2022) learn better MCMC
proposal distributions with variational inference via normal-
izing flows (Chen et al., 2018). Matthews et al. (2022) pro-
posed learning proposal distributions for improving SMC
using stochastic normalizing flow (Wu et al., 2020). Albergo
& Vanden-Eijnden (2024) and Holderrieth et al. (2025) starts
from MCMC procedures and optimize a learnable compo-
nent by minimizing the Kolmogorov equations.

MCMC-reliant Diffusion Samplers There are many
works that learn diffusion processes but rely on an aux-
iliary sampling mechanism to obtain the correct signal for
training. More recent advances leverage score-based dif-
fusion models (Song & Ermon, 2019; Ho et al., 2020) in
unnormalized sampling tasks to improve sample efficiency
and scalability. Phillips et al. (2024) and De Bortoli et al.
(2024) demonstrate the effectiveness of simple regression
objectives, such as score matching, while Akhound-Sadegh
et al. (2024) propose iterated Denoising Energy Matching
(iDEM), an offline, yet biased, algorithm for learning the
score from a replay buffer, thereby overcoming scalability
issues of simulation. Phillips et al. (2024) and De Bortoli
et al. (2024) use a similar loss to ours but relies on sampling
from the target distribution, using sequential Monte Carlo
(SMC) to obtain samples for training. In general, these ap-
proaches either require access to ground truth samples via
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Table 1. Results for the synthetic energy function experiments. We report a geometric W2 metric based on on Klein et al. (2024b)
and 1D energy histogram E(·)W2 metric (visualized in Appendix I.1) with respect to ground truth MCMC samples. We also report a
path-measure ESS when applicable. See Appendix F.4 for more details. †The values reported are per sample (i.e., divided by the batch
size) and according to the LJ-55 experiment hyperparameters.

DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165) # E(·) evals
per gradient

update†

# uθ(·) evals
per gradient

update†Method path-ESS ↑ W2 ↓ E(·)W2 ↓ path-ESS ↑ W2 ↓ E(·)W2 ↓ path-ESS ↑ W2 ↓ E(·)W2 ↓
PIS (Zhang & Chen, 2022) 0.462±0.081 0.68±0.23 0.65±0.25 0.012±0.011 1.93±0.07 18.02±1.12 0.001±0.000 4.79±0.45 228.70±131.27 1 1000
DDS (Vargas et al., 2023) 0.461±0.076 0.92±0.11 0.90±0.37 0.010±0.011 1.99±0.13 24.61±8.99 0.001±0.000 4.60±0.09 173.09±18.01 1 1000
LogVariance (Richter & Berner, 2023) 0.025±0.042 1.04±0.29 1.89±0.89 — — — — — — 1 1000
iDEM (Akhound-Sadegh et al., 2024) — 0.70±0.06 0.55±0.14 — 1.61±0.01 30.78±24.46 — 4.69±1.52 93.53±16.31 512 3
iDEM w/ 1 MC sample — 1.21±0.02 2.70±0.18 — 2.03±0.02 22.41±0.18 — 5.79±1.60 1e32±1e32 1 3
Adjoint Sampling w/o RP (Ablation) 0.448±0.110 0.63±0.11 1.03±0.23 0.159±0.068 1.68±0.01 2.91±1.39 0.094±0.025 4.50±0.10 94.48±76.12 0.002 3
Adjoint Sampling (Ours) 0.627±0.037 0.62±0.06 0.55±0.12 0.220±0.041 1.67±0.01 2.40±1.25 0.066±0.037 4.50±0.05 58.04±20.98 0.002 3

an auxiliary sampling algorithm such as MCMC, or rely on
importance-weighted estimation or resampling, all of which
require extensive evaluation of the energy function and it
is not clear whether these improve upon simple data-driven
learning algorithms (Appendix E).

SOC-based Diffusion Samplers In contrast, stochastic
optimal control (SOC) based samplers reframe sampling
tasks as an optimization problem. Zhang & Chen (2022)
and Vargas et al. (2023) showcase directly optimizing for
controlled processes that match the desired target distribu-
tion. This framework has been generalized in many ways
Berner et al. (2023); Richter & Berner (2024); Vargas et al.
(2024); Chen et al. (2024a). However, all of these methods
are hindered by their computational requirements, including
computationally expensive differentiation through the sam-
pling procedure, computation of higher-order derivatives in
constructing the training objectives, or the need for impor-
tance sampling (i.e. multiple energy evaluations). Adjoint
Sampling overcomes these challenges by being able to make
significantly more gradient updates per generated sample
and energy evaluation.

Off-policy Methods Off-policy methods (Malkin et al.,
2023; Richter & Berner, 2023; Akhound-Sadegh et al., 2024;
Hua et al., 2024) are those which do not need to use samples
from the current model. As such, off-policy methods do not
inherently make use of the gradient of the energy function,
as they do not differentiate through the model sample. To
alleviate this, it is typical to parameterize the model using
the gradient of the energy function, and it has been found
that performance strongly relies on this trick (He et al.,
2025). As our setting concerns computationally expensive
energy functions, this parameterization is no longer feasi-
ble. Furthermore, being off-policy does not imply being
more efficient. Many off-policy methods still require the
full trajectory to evaluate their loss, only being able to use
sub-trajectories if the time-marginals are either additionally
learned (Bengio et al., 2023; Lahlou et al., 2023; Zhang

et al., 2024) or prescribed (Albergo & Vanden-Eijnden,
2024; Chen et al., 2024a; Holderrieth et al., 2025). In con-
trast, Adjoint Sampling is an on-policy training method,
explicitly uses the gradient of the energy function, but bene-
fits significantly from requiring only (Xt, X1) pairs, being
able to use a replay buffer and Reciprocal projections to
train at a significantly reduced computational cost.

Molecule Conformer Generative Models To our knowl-
edge, no deep learning-based sampling method has been
applied at scale to generate molecular conformers directly
from energy without data. Boltzmann generators use im-
portance sampling to improve performance using energy
information, but require offline molecular dynamics data
to learn the initial models (Noé et al., 2019). Using an an-
nealed importance sampling method, Boltzmann generators
have been able to to sample small, single particle systems
without data, but their results are not amortized and require
many energy evaluations (Midgley et al., 2024). Several
flow-based generative modeling works have learned to gen-
erate conformers and Boltzmann distributions by training on
ground truth data (Köhler et al., 2020; Jing et al., 2022; Xu
et al., 2022; Hassan et al., 2024; Köhler et al., 2023; Klein
et al., 2024a; Diez et al., 2024). These works did not learn
solely from existing energy models.

5. Experiments
We now evaluate Adjoint Sampling on several energy func-
tions over multi-particle systems. We compare to previous
works (Zhang & Chen, 2022; Akhound-Sadegh et al., 2024)
on synthetic energy benchmarks, whose energy is known
analytically and are very cheap to evaluate. We then propose
a challenging molecular conformer generation benchmark,
where one trains amortized models to sample conformers
for a large dataset of organic molecules. For this task, we
used the eSEN energy model (Fu et al., 2025).
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Reciprocal Projection ablation We include an ablation
of Adjoint Sampling, where instead of using the Reciprocal
projection (RP) to sample Xt given X1, we simply store
sample pairs (X1, Xt) in the buffer and train on the Adjoint
Matching objective (12). We call this Adjoint Sampling w/o
RP, which helps demonstrate the effectiveness of the Recip-
rocal projection. Ablation results for conformer generation
are differed to Appendix I.4 Table 5.

5.1. Synthetic Energy Functions

Several synthetic energy functions of n-particle bodies pro-
posed and benchmarked by previous works (Köhler et al.,
2020; Midgley et al., 2023; Klein et al., 2024b; Akhound-
Sadegh et al., 2024). We consider three energy functions:
A 2D 4-particle Double-Well Potential (DW-4), a 3D 13-
particle Lennard-Jones potential (LJ-13) and finally a a 55-
particle Lennard-Jones energy (LJ-55). See Appendix F for
details.

Baselines Along with the Adjoint Sampling ablation, we
compare against the most recent state-of-the-art sampler
iDEM (Akhound-Sadegh et al., 2024) who claims to be first
learned sampler to scale successfully to LJ-55. We also
compare against PIS (Zhang & Chen, 2022) and DDS (Var-
gas et al., 2023), being the most comparable method to
Adjoint Sampling in its SOC / reverse KL formulation.
Lastly, for completeness we present an offline variant of the
PIS loss referred to as the LogVariance (Richter & Berner,
2023), which is actually gradient-free. All methods use the
EGNN (Satorras et al., 2021) architecture for all experiment
settings, where PIS and DDS use fewer number of layers
making back-propogation through the SDE tractable.

Evaluation In Table 1 we report our metrics including
W2: the geometric 2-Wasserstien distance (taking into ac-
count symmetries by first optimizing a rigid transformation
(Klein et al., 2024b) between model generated samples and
the ground truth MCMC data and E(·)W2: The 1D W2

distance between the distribution of energy values produced
by generated samples and ground-truth and path effective
sample size (ESS): Roughly measuring the proportion of
informative sample trajectories with respect to each algo-
rithms target SDE process. Since iDEM is not built on a
reverse KL objective, the path-ESS metric is not meaningful
and is hence omitted. Please see Appendix F.4 for more
details. To demonstrate the energy sample efficiency of
Adjoint Sampling we report the number of energy function
evaluations per gradient update.

Results It can be seen clearly in Table 1 that Adjoint
Sampling is on par with iDEM in terms of particle W-2
distances, however iDEM struggle to remain in low energy
regions as indicated by the much larger E(·)W2 on the LJ-
13 and LJ-55 experiments (visualized as energy histograms

in Appendix I.1). Moreover, iDEM uses O(100, 000) more
energy evaluations than Adjoint Sampling per gradient up-
date since it relies on Monte Carlo (MC) estimation of the
ground truth score function. This is what makes scaling
iDEM to more complex energy functions intractable. To
test a more efficient version of iDEM, we also run iDEM us-
ing only a single MC sample for estimating their objective,
however it proved to yield overall unstable metrics, most
likely due to its biased MC score target estimator. In regards
to SOC-based methods, PIS and DDS struggle to perform
beyond LJ13, while the offline method LogVariance can
not scale beyond DW-4. These results indicate that Adjoint
Sampling is the preferred method for large and complex
energy models.

5.2. Sampling Conformers from an Energy Function

We provide a new benchmark to encourage research into
highly scalable sampling methods capable of finding con-
formers from a molecular energy model. These are local
minima on the molecule’s potential energy surface, i.e. a
fixed molecular topology has a set of conformers determined
by locally stable configurations of rotations around its bonds.
Depending on the flexibility, a molecule can have one or
many different conformers.

Sampling conformations based on quantum mechanical en-
ergy functions such as density functional theory (DFT) is
an important but challenging task. Due to the high cost of
DFT calculations, we use an energy model that was pre-
trained on the SPICE-MACE-OFF dataset (Eastman et al.,
2023; Kovács et al., 2023) called eSEN (Fu et al., 2025).
It has shown very high accuracy in predicting the DFT en-
ergy. eSEN is a transferable message passing neural network
model that can predict the energy of a given molecular con-
formation for molecules containing {H, C, N, O, F, P, S, Cl,
Br, I}. It featurizes a molecule with a sparse graph represen-
tation, encoding the chemical element in the node features
and the Cartesian displacements in the edge features. The
SPICE-MACE-OFF dataset comprehensively samples the
energy surface in high and low energy regions, enabling
eSEN to be generally applicable to many conformations of
small molecules.

Using the Adjoint Sampling framework, we can sample
atomic coordinates of a specific molecule by conditioning
on its connectivity graph. These atomic coordinates are
proposed conformations. The graph conditional method is
appealing as it enables amortization, i.e. learning a sam-
pler for molecules consisting of arbitrary combinations of
organic elements and bonds. We design two approaches:

1. Cartesian Adjoint Sampling (Appendix G.1): We
sample all 3D Cartesian coordinates for each atom, con-
ditioned on elements (nodes) and bond type (edges).
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Table 2. Recall and precision metrics for large scale amortized conformer generation. Coverage values are for thresholds of 1.25Å.
Standard deviations are computed across molecules in the test set. Results split by number of rotatable bonds can be found in Figure 10.

SPICE GEOM-DRUGS

Recall Precision Recall Precision

Method Cov. ↑ AMR ↓ Cov. ↑ AMR ↓ Cov. ↑ AMR ↓ Cov. ↑ AMR ↓

RDKit ETKDG 72.74±33.18 1.04±0.52 69.68±37.11 1.14±0.64 63.51±34.74 1.15±0.61 69.77±38.23 1.09±0.66

Torsional AdjSampling 85.06±24.61 0.86±0.30 70.42±34.54 1.06±0.54 72.91±31.17 0.98±0.40 67.85±36.01 1.09±0.55

Cartesian AdjSampling 82.22±25.72 0.96±0.26 49.13±33.01 1.26±0.38 60.93±35.15 1.20±0.43 28.44±27.77 1.86±0.64

Cartesian AdjSampling (+pretrain) 89.42±17.48 0.84±0.24 65.93±29.53 1.12±0.34 72.98±30.82 1.02±0.34 45.14±31.46 1.47±0.52

w
/r

el
ax

at
io

n RDKit ETKDG 81.61±27.58 0.79±0.44 74.51±35.07 0.97±0.64 71.72±29.73 0.93±0.53 75.37±32.76 0.89±0.60

Torsional AdjSampling 88.25±21.17 0.72±0.33 74.66±32.96 0.94±0.59 76.62±27.73 0.87±0.40 71.85±32.34 0.97±0.54

Cartesian AdjSampling 94.10±15.67 0.68±0.28 62.80±29.63 1.02±0.37 79.08±29.44 0.89±0.45 47.88±30.92 1.40±0.61

Cartesian AdjSampling (+pretrain) 96.65± 7.51 0.60±0.23 77.20±25.76 0.92±0.35 87.01±22.79 0.76±0.34 61.96±31.55 1.10±0.46

C
ar

te
si

an
To
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l

X0 Generation process X1

Figure 1. The figure depicts two sampled trajectories from trained Adjoint Sampling models that use either the cartesian or the torsional
representations. They target conformations of the held-out SMILES string COCSc1sc2ccccc2[n+]1[O-]. The left frame X0 comes
from the initial Dirac distribution and the right frame X1 is a sampled conformer.

2. Torsional Adjoint Sampling (Appendix G.2): We
sample only the torsion angles in the molecule, con-
ditioned on elements, bond lengths, and bond angles
(3-tuples).

In addition, we evaluate a pretraining step on RDKit sam-
ples using Bridge Matching (Shi et al., 2023) which aids in
initial exploration of low energy regions (see Appendix E
for more details). In our experiments, we scale the eSEN
energy by the Boltzmann constant and a low temperature. In
Cartesian Adjoint Sampling, we introduce additional energy
terms to regularize bond lengths, ensuring we are target-
ing the correct molecule according to its connectivity. The
terms do not appear in Torsional Adjoint Sampling; they are
unnecessary since the torsional SDE cannot break bonds by
design.

Datasets We consider two datasets of molecular struc-
tures: SPICE (Eastman et al., 2023) and GEOM-
DRUGS (Axelrod & Gomez-Bombarelli, 2022). SPICE
enumerates over 23,000 diverse drug-like molecules and
their properties; it is designed to be utilized for machine

learning. All of our models are trained on SPICE; however,
we utilize merely the SMILES strings to extract the molec-
ular topology. This is possible because Adjoint Sampling
does not require any data during training, i.e., we do not
use the atomic configurations! We evaluate generalization
capabilities by computing precision and recall on a subset of
GEOM-DRUGS, see Appendix H.2. This is one the largest
datasets and most relevant to pharmaceutical drug design.

We split the SPICE molecules into a train set and a 80
molecule test set, allowing us to validate our sampler’s
ability to extrapolate to unseen molecules. We produce
reference conformers for evaluation purposes using RDKit
(Landrum, 2013); CREST (Pracht et al., 2020), which
is considered the gold standard in molecular chemistry;
and ORCA (Neese, 2012). Because this procedure is
computational expensive, we do this only for the SPICE
test set. GEOM-DRUGS provides conformers for us. See
Appendix H for details about the datasets.

Baselines We compare our approach to RDKit ETKDG
(Riniker & Landrum, 2015), a chemistry-based conformer
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SPICE GEOM-DRUGS

Figure 2. Recall coverage versus RMSD threshold for Adjoint Sampling variants and RDKit. We show performance both with and without
relaxation.

generation method. RDKit combines a rules-based distance
matrix method, an iterative refinement algorithm, a 3D em-
bedding, and experimental torsional preferences to generate
conformers, making it a suitable domain-specific baseline.

Evaluation Our assessment focuses on reference con-
former coverage recall, which measures the percentage
of reference CREST conformers recovered by the gener-
ated samples, and coverage precision, which evaluates how
often generated conformers closely match a low-energy ref-
erence structure. In particular, recall is a very important
metric for molecular design because exploration is typically
challenging and good mechanisms exist to filter candidates.
The number of reference conformers varies significantly for
molecules under consideration, ranging from tens to thou-
sands. We also report Absolute Mean RMSD (AMR) as
an error metric, with lower values indicating better struc-
tural fidelity. See Appendix G.3 for more details. Results
are presented both with and without relaxation, where post-
generation optimization helps refine molecular conformers
in Table 2. While samples without relaxation are a test
of the sampling algorithm’s performance, testing with re-
laxation is ultimately what brings the most value to com-
putational chemistry being a standard refinement process
(see Appendix G).

Results As seen in Table 2, across both SPICE and
GEOM-DRUGS, Adjoint Sampling (both Cartesian and
Torsional) outperform the RDKit baseline in Recall. On
generalizing to the GEOM-DRUGS dataset, we show worse
precision than RDKit but significantly improved recall. As
depicted in Figure 2, Cartesian Adjoint Sampling outper-
forms RDKit on almost all threshold values, with and with-
out relaxation. While relaxation improves coverage across
all methods, it particularly benefits the performance of Ad-
joint Sampling, making the gap between RDKit-ETKDG
even larger. We believe this comes from the fact that Adjoint
Sampling naturally explores more of the configuration space

by being initialized as a noisy stochastic process.

Without relaxation or pretraining, the Torsional AdjSam-
pling variant performs significantly better than Cartesian
Variant in precision and recall on both datasets. However,
after pretraining Cartesian AdjSampling surpasses the Tor-
sional variant and even further exceeds in performance after
relaxation, (being pretrained or not). This may be due to the
Torsional representation evolving on a constrained space as
seen in Figure 1, where the Cartesian representation evolves
with the energy regularizer (see Appendix G.1) but is un-
constrained. This state representation will affect how the
controlled process explores the configuration space, suggest-
ing that the unconstrained Cartesian representation samples
are more diverse.

Finally, in Figure 10 we also compare across different num-
ber of rotatable bonds—the number of conformers increases
drastically with the number of rotatable bonds (see Fig-
ure 6)—where we see that the gap between our model and
RDKit increases as the difficulty increases.

6. Conclusion
We introduce Adjoint Sampling, a highly scalable approach
for learning diffusion-based samplers from energy functions.
Using the Reciprocal Adjoint Matching objective and a
replay buffer, our method enables efficient training by
allowing many gradient updates with few energy evaluations
and model samples. Based on continuous-time diffusion
processes, our framework naturally integrates symmetries
and periodic boundary conditions, making it effective for
molecular modeling and conformer generation. We achieve
state-of-the-art performance on synthetic energy functions
and are the first to scale up to much more difficult conformer
generation. We open-source our benchmarks to encourage
further advancements in highly scalable sampling methods.
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Impact Statement
Our method primarily serves scientific and industrial re-
search and does not pose immediate risks for misuse. How-
ever, as with any advancement in generative modeling, there
is a broader responsibility to ensure its use aligns with ethi-
cal guidelines, particularly in fields like drug discovery and
materials engineering, where biases in models or training
data could impact real-world outcomes. Our work has di-
rect applications in computational chemistry, particularly in
molecular modeling and conformer generation, which could
accelerate scientific discovery in drug design, material sci-
ence, and biophysics.
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D. J., and Csányi, G. Mace-off23: Transferable machine
learning force fields for organic molecules. arXiv preprint
arXiv:2312.15211, 2023.

Lahlou, S., Deleu, T., Lemos, P., Zhang, D., Volokhova,
A., Hernández-Garcıa, A., Ezzine, L. N., Bengio, Y., and
Malkin, N. A theory of continuous generative flow net-
works. In International Conference on Machine Learning,
pp. 18269–18300. PMLR, 2023.

Landrum, G. Rdkit documentation. Release, 1(1-79):4,
2013.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E. A.,
Nie, W., and Anandkumar, A. I2sb: Image-to-image
schr\” odinger bridge. arXiv preprint arXiv:2302.05872,
2023.

Liu, G.-H., Lipman, Y., Nickel, M., Karrer, B., Theodorou,
E., and Chen, R. T. Q. Generalized schrödinger bridge
matching. In The Twelfth International Conference on
Learning Representations, 2024.

Ma, N., Goldstein, M., Albergo, M. S., Boffi, N. M., Vanden-
Eijnden, E., and Xie, S. Sit: Exploring flow and diffusion-
based generative models with scalable interpolant trans-
formers. In European Conference on Computer Vision,
pp. 23–40. Springer, 2024.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment in
gflownets. arXiv preprint arXiv:2201.13259, 2023.

Matthews, A., Arbel, M., Rezende, D. J., and Doucet, A.
Continual repeated annealed flow transport monte carlo.
In International Conference on Machine Learning, pp.
15196–15219. PMLR, 2022.

Midgley, L., Stimper, V., Antorán, J., Mathieu, E.,
Schölkopf, B., and Hernández-Lobato, J. M. SE(3) equiv-
ariant augmented coupling flows. Advances in Neural
Information Processing Systems, 36, 2024.

Midgley, L. I., Stimper, V., Simm, G. N., Schölkopf, B., and
Hernández-Lobato, J. M. Flow annealed importance sam-
pling bootstrap. In The Twelfth International Conference
on Learning Representations: ICLR 2024, 2023.

Miller, B. K., Geiger, M., Smidt, T. E., and Noé,
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A. Additional preliminaries
A.1. Stochastic optimal control

Stochastic optimal control (SOC; (Bellman, 1957; Fleming & Rishel, 2012; Sethi, 2018)) considers general optimization
problems over stochastic differential equations. Specifically, a class of SOC problems can be expressed as the following
optimization problem:

min
u∈U

E
[ ∫ 1

0

(
1

2
∥u(Xu

t , t)∥2 + f(Xu
t , t)

)
dt+ g(Xu

1 )
]
, (18)

s.t. dXu
t = (b(Xu

t , t) + σ(t)u(Xu
t , t)) dt+ σ(t)dBt, Xu

0 ∼ p0 (19)

where in (19), Xu
t ∈ Rd is the state of the stochastic process, u : Rd × [0, 1]→ Rd is commonly referred to as the control,

b : Rd × [0, 1]→ Rd is a base drift, and g : [0, 1]→ Rd×d is the diffusion coefficient. These jointly define the controlled
process Xu ∼ pu that we are interested in optimizing; often both b and g are fixed and we only optimize over the control u.

In the following proposition show that for the case of b ≡ 0, f ≡ 0 and X0 = 0 that the Schrodinger-Bridge p∗(X) =
pbase(X|X1)µ(X1) can actually be achieved by pu(X).

Proposition A.1. For the stochastic process (2), there exists a unique minimizer u∗ to the following optimization problem

min
u

DKL (p
u(X)||p∗(X)) = 0, (20)

and the optimal controlled distribution pu
∗

satisfies:

pu
∗

t,1(Xt, X1) = p∗t,1(Xt, X1) = pbase
t|1 (Xt|X1)µ(X1), (21)

where pbase
t|1 (Xt|X1) is the posterior distribution of the base process conditioned on X1.

Proof. By using the definition of the KL divergence of path measures, p∗(X) = pbase(X|X1)µ(X1) can be factorized as

DKL (p
u(X)||p∗(X)) = DKL

(
pu(X)||pbase(X)

µ(X1)

pbase
1 (X1)

)
= DKL

(
pu(X)||pbase(X)

)
+ EX∼pu log

(
pbase(X1)

µ(X1)

)
.

(22)

By Girsanov’s Theorem (Protter & Protter, 2005) to further evaluate the right-hand side as

DKL
(
pu(X)||pbase(X)

)
+ EX∼pu log

(
pbase(X1)

p∗(X1)

)
= EX∼pu

[∫ 1

0

1
2∥u(Xt, t)∥2 dt+ log

(
pbase(X1)

p∗(X1)

)]
.

This criteria corresponds exactly with a minimum-energy stochastic optimal control (SOC) problem with stage cost
1
2∥u(Xt, t)∥2 and terminal cost function g(X1) = log

(
pbase(X1)
p∗(X1)

)
.

min
u

EX∼pu

[∫ 1

0

1
2∥u(Xt, t)∥2 dt+ g(X1)

]
(23)

s.t. dXt = σ(t)u(Xt, t) dt+ σ(t) dBt, X0 = 0 (24)

We can define the cost-to-go of our problem at a particular state and time t by

J(u;x, t) := EX∼pu

[∫ 1

0

1
2∥u(Xt, t)∥2 dt+ g(X1) | Xt = x

]
(25)

then we know that (under mild conditions on g) the value function or cost-to-go under the optimal control takes a rather
surprising form and that indeed the optimal control u∗ is unique and takes the form of a time-varying function of the current
state (Kappen, 2005):

V (x, t) := min
u

J(u;x, t) = − logEpbase

[
exp(−g(X1)) | Xt = x

]
, u∗(x, t) = −σ(t)∇xV (x, t) (26)

14



Adjoint Sampling: Highly-Scalable Diffusion Samplers via Adjoint Matching

With this fact about the optimal solution of the SOC problem, we can upper bound the aforementioned path KL divergence
between the optimally controlled process and our target Schrodinger-bridge as

DKL

(
pu

∗
(X)||p∗(X)

)
= V (X0, 0) = − logEX∼pbase

[
exp(−g(X1))

]
(27)

= − log

∫
Rd

µ(x) dx = 0, (28)

By the data processing inequality we have

DKL

(
pu

∗

t,1(Xt, X1)||p∗t,1(Xt, X1)
)
≤ DKL

(
pu

∗
(X)||p∗(X)

)
= 0, ∀t ∈ [0, 1] (29)

which implies that pu
∗

t,1(Xt, X1) = pbase
1|t (Xt|X1)µ(X1) for all t ∈ [0, 1]. This is exactly our claim and completes the

proof.

A.2. Adjoint Matching

Adjoint Matching (Domingo-Enrich et al., 2024) is an algorithm designed to solve stochastic optimal control problems of
the form (18). Unlike standard adjoint methods (Bryson & Ho, 1969) that differentiate through the objective and perform
gradient descent, Adjoint Matching directly tries to find the fixed point

u(x, t) = −σ(t)∇J(u;x, t) (30)

where J is the expected future cost according to the control u,

J(u;x, t) = Epu

[∫ 1

t

1
2∥u(Xs, s)∥2 + f(Xs, s)ds+ g(Xu

1 )

∣∣∣∣∣Xt = x

]
. (31)

Adjoint Matching then solves this fixed point (30) by replacing∇xJ with a stochastic estimator. This stochastic estimator is
the lean adjoint (Domingo-Enrich et al., 2024) denoted by α̃. Domingo-Enrich et al. (2024) then showed that the unique
solution to the fixed point

u(x, t) = −σ(t)EX∼pu [α̃(x, t)|Xt = x] (32)

is the optimal control u∗. This then motivated the following objective as a means to solve this fixed point problem.

LAM(u) := Epū

[
1

2

∫ 1

0

∥∥u(Xt, t) + σ(t)⊤ã(t;X)
∥∥2 dt], X ∼ pū, ū = stopgrad(u), (33)

where
d

dt
ã(t;X) = −(ã(t;X)⊤∇xb(Xt, t) +∇xf(Xt, t)), (34)

ã(1;X) = ∇X1g(X1). (35)

where ã is referred to as the “lean adjoint” state, and stopgrad(·) denotes a stop gradient operation, i.e., although X ∼ pū

is sampled according to the controlled process, Adjoint Matching does not differentiate through the sampling procedure.

Note that for the general problem formulation (18), Adjoint Matching requires two simulations, one to sample a trajectory
from the stochastic process X ∼ pu and one to solve the lean adjoint state backwards in time (34) from a terminal condition
at t = 1 (35).

Adjoint Matching is greatly simplified for simple base processes. One of our key observations is that the Adjoint
Matching algorithm greatly simplifies when the b = 0 and f = 0, since then (34) is zero. This means that the lean adjoint
state ã(t,X) = ∇g(X1) for all t. The Adjoint Matching algorithm hence reduces to

LAM(u) := Epū

[
1

2

∫ 1

0

∥∥u(Xt, t) + σ(t)⊤∇X1g(X1)
∥∥2 dt], X ∼ pū, ū = stopgrad(u). (36)
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B. Base process derivations
B.1. Euclidean space

Our base process is modeled by a stochastic differential equation (Xt ∈ Rn and σ : R→ R+):

dXt = σ(t)dBt, X0 = 0 (37)

corresponding to (2) with the control set to zero, i.e., ut = 0. With this, the forward transition distributions are (t > s):

pbase
t|s (x|Xs) = N (x|Xs, νt|sI), where νt|s =

∫ t

s

σ(s)2ds. (38)

With s = 0 and X0 = 0, we obtain the time marginals of (37):

pbase
t (x) = N (x|0, νtI), where νt =

∫ t

0

σ(s)2ds. (39)

Furthermore, the backward transition distributions are (t > s):

pbase
s|t (x|Xt) =

pbase
s (x)pbase

t|s (Xt|x)
pbase
t (Xt)

= N (x|αs|tXt, ⃗νs|tI), (40)

where αs|t =
νs

νs + νt|s
, ⃗νs|t =

(
1

νs
+

1

νt|s

)−1

= αs|tνt|s (41)

As such, the Reciprocal Adjoint Matching objective (13) becomes tractable when νt|s can be derived in closed form.

Constant noise schedule. Setting the diffusion coefficient to be a constant σ(t) = σ results in

νt|s = σ2(t− s), αs|t =
s
t (42)

and hence the following terminal and backward transition distributions:

pbase
1 (X1) = N (X1; 0, σ

2I), pbase
t|1 (x|X1) = N (x; tX1, σ

2(1− t)tI). (43)

Geometric noise schedule. Song et al. (2021); Karras et al. (2022) propose the following geometric schedule (stated here
in reverse-time)

σ(t) = σmin

(
σmax
σmin

)1−t√
2 log σmax

σmin
(44)

results in

νt|s = σ2
max

((
σmin
σmax

)2s
−
(

σmin
σmax

)2t)
, αs|t =

(
σmin
σmax

)2s
− 1(

σmin
σmax

)2t
− 1

(45)

and hence the following terminal and backward transition distributions:

pbase
1 (X1) = N (X1; 0, σ

2
max

(
1−

(
σmin
σmax

)2)
I), pbase

t|1 (Xt|Xt) = N (Xt;αt|1X1, αt|1ν1|tI). (46)

B.2. Flat tori

Simulating the base process (37) in T = R/Z produces a wrapped Gaussian distribution p̄base
t

p̄base
t (x) =

∑
k∈Z

pbase
t (x+ k), (47)
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where pbase
t is the time marginal of the base process over R defined in (39) and Z is the set of integers. We can equivalently

can interpret (47) as marginalizing a random variable k. That is, we view pbase
t (x+ k) as a joint distribution pt(x, k) over

x ∈ T and k ∈ Z,

pt(x, k) :=
pbase
t (x+ k)∫

x′∈T p
base
t (x′ + k)︸ ︷︷ ︸

:=pt(x|k)

∫
x′∈T

pbase
t (x′ + k)︸ ︷︷ ︸

:=pt(k)

. (48)

Intuitively, the variable k represents which sub-interval on R was collapsed to obtain x. Furthermore, we can infer k given x
at time t:

pt(k|x) =
pt(x, k)∑
k′ pt(x, k′)

, (49)

hence arriving at the following backward transition distribution (s < t) in which we marginalize k:

p̄base
s|t (x|Xt) =

∑
k∈Z

ps|t(x|k,Xt)pt(k|Xt) =
∑
k∈Z

(∑
k′∈Z

pbase
s|t (x+ k′|Xt + k)

)
pbase
t (Xt + k)∑

k′∈Z p
base
t (Xt + k′)

, (50)

where pbase
s|t (x|Xt + k) is the backward transition probability in R defined in (40). Thus sampling from p̄base

t|1 (x|X1) given in
(50) can be done by the following sampling process

1. Sample k ∼ p(k) where p(k) ∝ pbase
1 (X1 + k).

2. Sample Yt ∼ pbase
t|1 (·|X1 + k).

3. Project Xt = Yt mod 1.0.

For the n-dimensional Tn, since the base process is factorized, we simply sample independently for each dimension.

C. Theory of Reciprocal Adjoint Matching
As a preliminary, let us first define precisely what is meant be Reciprocal projection. We take some terminology and
results from Shi et al. (2023), denoting M the subset of Markov path measures associated with an SDE of the form
dXt = v(Xt, t)dt+ σ(t) dBt, with σ, v locally Lipschitz.
Definition C.1 (Reciprocal class, Def. 3 of Shi et al. (2023)). A Borel probability measure Π ∈ P(C) is in the Reciprocal
classR(Q) of Q ∈M if Π = Π0,TQ(0,T )|0,T .

The Reciprocal projection of P ∈ P(C) is defined as Π∗ = PR(Q)(P) = P0,TQ(0,T )|0,T . By construction, Π∗ belongs to
the Reciprocal classR(Q). The following characterization shows that the Reciprocal projection is indeed a projection, i.e.
P2
R(Q) = PR(Q).

Lemma C.2 (Reciprocal projection characterization, Prop. 4 of Shi et al. (2023)). Let P ∈ P(C), Π∗ = PR(Q)(P). Then,
Π∗ = argminP{KL(P|Q) : Π ∈ R(Q)}.

Throughout the paper, we set Q = Bν , i.e. Q is the probability measure of the process (
∫ t

0
σ(s) dBs)t∈[0,T ], which we

denote as PR(Q).

Although this projection is exactly what is used by the proposed reciprocal adjoint matching objective Equation (13), we
will now proceed to define a similar projection in terms of drifts which will allow us to analyze an idealized version of the
adjoint sampling algorithm.

C.1. Reciprocal projections decrease the SOC objective

In the case that pu = P is generated by some drift function u, we can view the reciprocal projection as a projection of drifts
P as proposed in Theorem 3.2, noting that the unique drift generating PR(pu) is given as the solution of the following
Schrodinger bridge problem

P(u) := argmin
w

EX∼pw

[∫ 1

0

1
2∥w(Xt, t)∥2 dt+ log

(
pbase(X1)

pu(X1)

)]
. (51)
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This projection of drifts allows us to reason about the RAM loss with respect to both the AM and SOC functionals which are
described in Proposition 3.1.

Proof of Proposition 3.1. Let v = P(u). Because P2(u) = P(u), the reciprocal projection “approximation” introduced in
RAM is exactly the distribution induced by v and so LAM(v) = LRAM(v).

To show that J(u) ≥ J(P(u)), we simply apply the definition of P(u) (51) which yields

J(u) = EX∼pu

[∫ 1

0

1
2∥u(Xt, t)∥2 dt+

(
log

pbase

µ

)
(X1)

]
= EX∼pu

[∫ 1

0

1
2∥u(Xt, t)∥2 dt+

(
log

pbase

pu
+ log

pu

µ

)
(X1)

]
≥ EX∼pv

[∫ 1

0

1
2∥v(Xt, t)∥2 dt+

(
log

pbase

pu

)
(X1)

]
+ EX1∼pu

[
log

pu

µ
(X1)

]
by (51)

= EX∼pv

[∫ 1

0

1
2∥v(Xt, t)∥2 dt+

(
log

pbase

pu
+ log

pu

µ

)
(X1)

]
pv1(X1) = pu1 (X1)

= J(v) = J(P(u)).

C.2. Adjoint Sampling Preserves Critical Points of Adjoint Matching

Consider a slightly more general version of the Reciprocal Adjoint Matching (RAM) objective with arbitrary fixed reference
drift v,

L(u; v) = EX∼pv

[∫ 1

0

1

2
∥u(Xt, t) + σ(t)∇g(X1)∥2 dt

]
(52)

s.t. dXt = σ(t)u(Xt, t) dt+ σ(t) dBt, X0 = 0 (53)

Then the RAM and AM loss can be both be equivalently restated in terms of L

LRAM(u) = L(u; ũ), LAM(u) = L(u, ū) s.t. ũ = P(ū), , ū = stopgrad(u),

where RAM is shown by first projecting via P , and then setting this as the reference drift with stop gradient applied.

If in our main algorithm we consider sequentially minimizing the RAM loss where starting from some drift vi we only
populate the buffer B with samples from pvi , we can model adjoint sampling via the following update procedure:

vi+1 = argmin
u

L(u; ṽi), s.t. ṽi = P(vi) (54)

with this iterative formulation, we can actually re-frame Adjoint Sampling in terms of the stationary condition of the Adjoint
matching loss derived in (Domingo-Enrich et al., 2024). To show this, we first consider the first variation of L with respect
to the first argument which is defined by

δL(u; v)(η) := d

dε
L(u+ εη; v)|ε=0 = EX∼pv

[∫ 1

0

⟨u(Xt, t) + σ(t)∇g(X1), η(Xt, t)⟩dt
]

the first-order necessary condition of an extremum of this cost functional is that δL(u; v) ≡ 0 which is to say

δL(u; v)(η) = EX∼pv

[∫ 1

0

⟨u(Xt, t) + σ(t)Epv [∇g(X1) | Xt] , η(Xt, t)⟩dt
]
= 0, ∀η ∈ C(Rd × [0, 1],R) (55)

We know that if pv has support over Rd and Epv

[∫ 1

0
⟨ δLδu (Xt, t), η(Xt, t)⟩dt

]
= 0 for all η, then it must be that

δL
δu (u; v)(x, t) = 0 almost everywhere. This is the functional derivative with respect to u which satisfies

δL
δu

(u; v)(x, t) := u(x, t) + σ(t)Epv [∇g(X1) | Xt = x] = 0, a.e. (56)
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In view of this general necessary condition, we can identify the corresponding necessary condition for LAM(u).

δLAM

δu
(u)(x, t) :=

δL
δu

(u; ū)(x, t) = u(x, t) + σ(t)Epū [∇g(X1) | Xt = x] = 0, a.e. (57)

This coincides with the functional derivative derived in (Domingo-Enrich et al., 2024), where it was observed that the critical
points of Adjoint Matching are exactly when (57) is zero. Furthermore, it was determined that the only critical point is
the optimal control u∗ to the SOC problem (8). We can now state Theorem 3.2 more precisely and provide a proof in the
following Theorem.

Theorem C.3 (Adjoint Sampling). Suppose we have a feedback ui. Then performing the iteration (54) to obtain ui+1 is
equivalent to the iteration

ui+1 = P(ui)−
δLAM

δu
(P(ui)), (58)

Moreover, u is a fixed point satisfying u = P(u) and u = u− δLAM

δu (u) if and only if u is a critical point of LAM (i.e. it is
the optimal control u∗ to (8)).

Proof. By minimizing L(u; ũi) point-wise for a fixed ũi = P(ui), we know the optimal iterates take the form

ui+1(x, t) = −σ(t)Epũi [∇g(X1) | Xt = x] . (59)

Recalling the Adjoint Matching loss LAM(u) = L(u; ū) we can identify its functional derivative at P(ui) that stems from
first variation to be

δLAM

δu
(P(ui)) = P(ui) + σ(t)EpP(ui) [∇g(X1) | Xt = x] . (60)

Through a simple algebraic manipulation, we can arrive at a new expression for the iterate given by

ui+1(x, t) = P(ui)(x, t)−
δLAM

δu
(P(ui)) (x, t).

We will now show that v is a fixed point of the Adjoint Sampling iteration and P(v) = v if and only if v is a critical
point of LAM (and hence v = u∗). First of all, if v is a critical point of LAM, then it must be v = u∗ (Domingo-Enrich
et al., 2024) and δLAM

δu (v) = 0. Because v = u∗ is the optimal solution of the SOC loss, it is its own projection and so
P(u∗)− δLAM

δu (P(ui))(u
∗) = u∗. Therefore v is a fixed point of the Adjoint Sampling iteration.

On the other hand, if v is a fixed-point of the Adjoint Sampling iteration and P(v) = v, our iteration formula tell us that
δLAM

δu (v) = 0 and so v is a critical point of LAM and that v = u∗ necessarily.

There are some important practical difference between this statement and what we do in practice. In practice, we optimize
over a finite size buffer B, where the iterations discussed here in Theorem C.3 assumes we sample from pui

1 . Furthermore,
we do not need to exactly solve the RAM step to convergence in practice and only partially optimize for a fixed number of
iterations before collecting new samples for B. This may be desirable as it will have a smoothing affect on our functional
gradient descent of Theorem C.3 which tracks a large unit step-size gradient update.

D. Geometric Extensions
Symmetries are essential to efficiently sample from energy-based models defining physical systems. Molecules are symmetric
with respect to atom permutations, rotations, translations, and parity (reflection). We reduce dimensionality and improve
data efficiency by enforcing symmetries in our model of the controlled process. Our model is either parameterized by
E(n) Equivariant Graph Neural Networks (EGNNs) (Satorras et al., 2021) or Tensor Field Networks (Thomas et al., 2018),
implemented in e3nn (Geiger et al., 2022; Jing et al., 2022), which incorporate graph features while respecting symmetry
constraints (Kondor et al., 2018; Weiler et al., 2018; Miller et al., 2020; Geiger & Smidt, 2022). We experiment with two
controlled processes: one sampling atomic positions using EGNN, and the other sampling torsion angles with e3nn. See
Appendix G for details.

19



Adjoint Sampling: Highly-Scalable Diffusion Samplers via Adjoint Matching

D.1. Graph-Conditioned SE(3)-Invariant Sampling

Consider the graph G(V, E). Each node vi ∈ V and edge eij ∈ E has feature attributes relating the topological structure of
the data (e.g., atom types and bond orderings), including a spatial coordinate xi ∈ Rd. We can condition an equivariant drift
uθ on the graph features such that it is equivariant to the spatial symmetries given by the group g ∈ G := Aut(G)× SO(d)
acting via g · x = (P ⊗ R)x. (i.e. uθ(g · Xt, t;G) = g · uθ(Xt, t;G)). Here P ∈ Aut(G) are graph automorphisms —
represented as a permutation matrix that reorders the graph nodes while preserving its structure — and R ∈ SO(d) is an
d-dimensional rotation matrix.

Translation Invariance To enforce translation invariance, the system is restricted to the zero center-of-mass subspace
X CoM = {x |

∑k
i=1 x

i = 0} ⊂ Rkd. This is achieved by projecting the particle positions y ∈ Rkd to the zero CoM
subspace using the projection operator:

x = Ay, A =

(
Ik −

1

k
1k1

⊤
k

)
⊗ Id, (61)

where Ik is the identity matrix, and 1k is a vector of ones. With this we can define a zero CoM process.

dXt = σ(t)Auθ(Xt, t;G) dt+ σ(t)AdBt, X0 = 0

Now pbase is a singular Gaussian pbase
t (x) = N (x; 0, νtAA⊤), which can be sampled by first sampling the isotropic Gaussian

N (x; 0, νt) and then projecting viaA. We have pbase
t (x) ∝ N (x; 0, νt) for all x ∈ X CoM and the posterior pbase

t|1 also projects
onto X CoM.

Geometric Adjoint Sampling By ensuring the drift is G-equivariant and zero CoM, we ensure the model distributions
are G-invariant for all t ∈ [0, 1] (Köhler et al., 2020; Xu et al., 2022). Putting this all together, our RAM loss (13) can be
modified to support the proposed symmetries.

LGeoRAM(θ) =

∫ 1

0

λ(t)Epbase
t|1p

ū
1

[
1

2
∥A(uθ(Xt, t;G) + σ(t)∇g(X1))∥2

]
dt (62)

Assuming that energy E and pbase
1 are G-invariant, the target −σ(t)A∇g(X1) for our learned drift will be G-equivariant

and zero CoM.

D.2. Periodic boundary conditions

In many cases we may want to model a state space with periodic boundary conditions. Concretely, we consider a state
space that is the flat tori in n dimensions, denoted Tn = Rn/Zn. It is a quotient space resulting from identifying any point
x = (x1, . . . , xi, . . . , xn) with (x1, . . . , xi +1, . . . , xn) for all i ∈ [n]. The derivations for the SOC objective in Rn (6) can
directly be extended to this quotient space and also general Riemannian manifolds (De Bortoli et al., 2022; Thornton et al.,
2022; Huang et al., 2022). Let us denote by p̄base the distribution of the SDE modeling the base process, i.e., (2) with ut = 0,
that lives on Tn. The RAM objective (13) requires computing∇ log p̄base

1 (·) as part of the terminal cost, and sampling Xt

from p̄base
t|1 (·|X1). Simulating the base process in Tn produces a factorized wrapped Gaussian distribution,

p̄base
t (x) =

n∏
i=1

∞∑
k=−∞

pbase
t (xi + k), (63)

where p̄base is the distribution of the base process in R. In practice, we can easily compute this up to high numerical precision
by truncating the summation in (63). Furthermore, we can sample from the backwards transition distribution independently
for each dimension i ∈ [n]:

ki ∼ p(ki), p(ki) ∝ pbase
1 (Xi

1 + ki), Xi
t = Y i

t mod 1.0, Y i
t ∼ pbase

t|1 (Y i
t |Xi

1 + ki). (64)

In practice, we consider only values of k within some truncated set {−ktrunc, . . . , ktrunc} with ktrunc sufficiently large to cover
the region where pbase

1 (Xi
1 + k) is practically non-zero. Details for the derivation can be found in Appendix B.2.
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E. Bridge Matching and Pretraining
There may be situations where we have some initial data distribution pdata, but want to improve our generated samples even
further using an energy function. We can in fact pretrain our control drift uθ on this data using Bridge Matching (Peluchetti,
2023a;b; Shi et al., 2023; Liu et al., 2024; 2023; Somnath et al., 2023; Ma et al., 2024; Chen et al., 2024b), which can be
similarly formulated as a controlled SDE diffusing from X0 = 0 and switch to Adjoint Sampling from the energy without
changing the optimal distribution.

Specifically, given our controlled stochastic process Equation (2), we can write down the following Bridge Matching loss to
regress onto ∫ 1

0

λ(t)Epbase
t|1(Xt|X1)pdata(X1)∥σ(t)uθ(Xt, t)− σ(t)2∇Xt log p

base
1|t (X1|Xt)∥2dt, (65)

where for general base process dXt = σ(t) dBt, we have

pbase
1|t (x|Xt) = N (x|Xt, ν1|tI), ν1|t =

∫ 1

t

σ(s)2 ds.

Therefore our score target is

σ(t)2∇Xt
log pbase

1|t (X1|Xt) = σ(t)2∇Xt

(
−1

2

(X1 −Xt)
2

ν1|t
+ const

)
= σ(t)2

X1 −Xt

ν1|t
.

Additionally, we apply a scaling λ(t) :=

√
α(t)

σ(t) to the loss so that the target is (X1 − Xt) which improves numerical
stability, resulting in the following Bridge Matching objective.

LBM(θ) =

∫ 1

0

Epbase
t|1(Xt|X1)pdata(X1)

∥∥∥∥ ν1|tσ(t)
uθ(Xt, t)− (X1 −Xt)

∥∥∥∥2 dt (66)

F. Synthetic Energy Experiment Details
F.1. Double Well Potential (DW-4)

We use the same double-well potential as in iDEM (Akhound-Sadegh et al., 2024), which was originally proposed in Köhler
et al. (2020). DW-4 describes a pair-wise distance potential energy for a system of 4 particles {x1, x2, x3, x4}, where each
particle has 2 spatial dimensions xi ∈ R2 (d = 8). The potentials analytical form is given by:

E(x) =
1

τ

∑
ij

a(dij − d0) + b(dij − d0)
2 + c(dij − d0)

4, dij = ∥xi − xj∥2 (67)

where we set a = 0, b = −4, c = 0.9 and temperature τ = 1.

F.2. Lennard-Jones Potential (LJ-13, LJ-55)

Similarly to DW-4, the Lennard-Jones potential is also based pair-wise distances of a system with n particles, but each each
particle has 3 spatial dimensions. Its analytical form is given by

ELJ(x) =
ϵ

τ

∑
ij

((
rm
dij

)6

−
(
rm
dij

)12
)
, dij = ∥xi − xj∥2 (68)

where rm, τ, ϵ and c are physical constants. As in Köhler et al. (2020) and Akhound-Sadegh et al. (2024), we add the
additional a harmonic potential:

Eosc(x) =
1

2

∑
i

∥xi − xCOM∥2 (69)

where xCOM refers to the center of mass of the system. Therefore, the final energy is then ETot = ELJ(x) + cEosc(x), for c
the oscillator scale. As in previous work, we use rm = 1, τ = 1, ϵ = 1 and c = 1.0.
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F.3. Architectures and Hyper parameters

In this section we give a brief overview of the parameters used to train Adjoint Sampling on the synthetic energy functions.
For all experiments, we an EGNN architecture similar to Akhound-Sadegh et al. (2024). Results for iDEM on all experiments
are reproduced using the same configurations found in Akhound-Sadegh et al. (2024).

DW-4: For the DW-4 energy we use an EGNN with 3 layers and 128 hidden features. We train Adjoint Sampling for 1000
outer iterations, generating 512 new samples and energy evaluations per iteration into a buffer of max size 10000. In each
iteration we optimize on 500 batches of batch size 512 from the replay buffer, using a learning rate of 3× 10−4. We use a
geometric noise schedule with σmin = 10−4 and σmax = 3.0.

LJ-13: For the LJ-13 energy we use an EGNN with 5 layers and 128 hidden features. We train Adjoint Sampling for 1000
outer iterations, generating 1024 new samples and energy evaluations per iteration into a buffer of max size 10000. In each
iteration we optimize on 500 batches from the replay buffer of batch size 512, using a learning rate of 3× 10−4. We use a
geometric noise schedule with σmin = 10−3 and σmax = 3.0.

LJ-55: For the LJ-55 energy we use an EGNN with 5 layers and 128 hidden features. We train Adjoint Sampling for 1000
outer iterations, generating 128 new samples and energy evaluations per iteration into a buffer of max size 10000. In each
iteration we optimize on 500 batches from the replay buffer of batch size 512, using a learning rate of 3× 10−4. We use a
geometric noise schedule with σmin = 0.5 and σmax = 3.0.

F.4. Reported Metrics

GeometricW2 Because our energy and diffusion process is invariant to rotational and permutations symmetries, we also
take these symmetries into account when measuring distance between generated and ground truth point clouds (e.g., from
long run MCMC). Note thisW2 metric is different from what is reported in Akhound-Sadegh et al. (2024), which uses the
euclidean metric.

W2(µ, ν) =

(
inf
π

∫
π(x, y)d(x, y)2 dxdy

) 1
2

(70)

where π is the transport plan with marginals constrained to µ and ν respectively. Here the distance metric d takes into account
all point-cloud symmetries, and is obtained by minimizing the squared Euclidean distance over all possible combinations of
rotations, reflections (O(d)), and permutations (S(k)) for k particles of spatial dimension d.

d(x0, x1) = min
R∈O(d),P∈S(k)

∥x0 − (R⊗ P )x1∥22. (71)

However, computing the exact minimal squared distance is computationally infeasible in practice. Therefore, we adopt the
approach of Köhler et al. (2020) and approximate the minimizer by performing a sequential search

d(x0, x1) ≈ min
R∈SO(d)

∥x0 − (R⊗ P̃ )x1∥22, P̃ = arg min
P∈S(k)

∥x0 − Px1∥22. (72)

Energy W2 (E(·)W2) An informative way to assess the quality of the generated samples is to look at their energy
distribution with respect to the ground truth distribution obtained from energies of long-run MCMC simulations. This shows
how well the generated samples are avoiding high-energy regions. Specifically, we use the Wasserstein-2 (W2) distance on
the 1-dimensional energy distribution on R. This results in the standard euclideanW2 metric

W2(Eµ, Eν) =

(
inf
π

∫
π(x, y)|x− y|2 dxdy

) 1
2

, (73)

Path effective sample size (path-ESS). We use importance weights over paths X ∼ pu (Zhang & Chen, 2022),

w(X) =
dp∗(X)

dpu(X)
=

µ(X1)

pbase
1 (X1)

dpbase(X)

dpu(X)
= exp

(
−1

2

∫ 1

0

∥u(Xt, t)∥2 dt−
∫ 1

0

ut(Xt, t)
⊤dBt − g(X1)

)
. (74)
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As these are unnormalized weights, we use the normalized effective sample size:

ESS =
1

nEX∼pu [w(X)]
≈

(
∑n

i=1 wi)
2

n
∑n

i=1 w
2
i

, (75)

estimated over n samples Xi
iid∼ pu with weights wi = w(Xi). Additionally, this ESS is normalized by the number of

samples n and takes a value in [0, 1].

G. Sampling Molecular Conformers
Conformer generation is a fundamental task in computational chemistry with applications from drug discovery to catalyzing
particular reactions of interest. In the context of this paper, conformers represent different stable states, i.e. local minima on
the potential energy surface, of the same molecule. The number of conformers a molecule has is generally proportional to
the number of rotatable bonds present in the molecule. For example, large molecules with lots of rotatable bonds have many
conformers. A bond is considered rotatable if there is a sufficiently low energy barrier to rotation and the bond is attached to
non-terminal heavy atoms (Veber et al., 2002). We define a specific substructure to match this definition in Appendix G.2
and use it to determine the torsion angles sampled by our torsion model. However, we apply a slightly different, more
restrictive, definition to classify molecules into strata based on the standard definition from RDKit in Appendix H.

In many molecules and polymers torsion angles are particularly important degrees of freedom for sampling conformations. A
molecule has 3k − 6 degrees of freedom corresponding to relevant atomic motion. This quantity subtracts global translation
(3 degrees) and orientation in space (3 degrees), which are both irrelevant to the intrinsic molecule. The remaining degrees
of freedom can be broken down into bond lengths (pairs of atoms), bond angles (3-tuples containing two atoms bonded to
one common neighbor), and torsion angles (4-tuples containing a central bond and two atoms connected at either end). The
energy required to stretch a bond or distort a bond angle is typically much higher than rotating a torsion angle. As a result,
torsion angles are the most important degrees of freedom for determining the distribution of possible molecular states, or the
Boltzmann distribution, and only allowing torsion angles to rotate is a common approximation used in many algorithms.

Relaxation Conformers represent local minima in the energy landscape; therefore, we are interested in descent algorithms
to refine structures generated by Adjoint Sampling or RDKit to reach those minima. We apply the same energy model, eSEN,
that we utilized to train our drift estimator on energy to define an optimization target. Doing gradient descent on energy
using forces is called relaxation. In our relaxations, we use the LBFGS algorithm and bound the maximum force norm
Fmax := maxi∥∇xi

E(X̃1)∥ on any of the k atoms as a stopping criteria, where X̃1 is the latest structure in the descent
sequence. We stop when Fmax ≤ 0.0154 eV/Å or at 200 descent iterations, whatever comes first.

G.1. Sampling the target molecule in Cartesian coordinates

Bond Structure Energy Regularization Although we condition on the molecular graph, our drift control estimator aims
to approximate gradient of the energy function. During the evolution of our stochastic trajectories we may wander through
energy troughs that have alternative connectivity than that of our target molecule. Since we aim to generate conformers of a
specific target molecule, we need to avoid this. We do so by adding a regularizer to the energy. This regularizer assigns
atoms particular bond / no bond lengths based on empirically known interatomic radii and repulsive van der Waals radii.

Ẽ(x) =
1

τ
E(x) + αEreg(x) (76)

where α > 0 is regularizer scaling constant. The regularizer energy function Ereg : Rd → [0,∞) is designed to be a
“flat-bottom” potential having the property that

Ereg(x) = 0⇐⇒ x ∈ S (77)

where S is the desired molecular structure class. In practice, we slightly relax this to be x ∈ S =⇒ Ereg(x) = 0, for
training stability and due to our inability to exactly characterize S.

In practice, we determine an upper-bound distance using well-established empirical covalent radii between atoms with
bonds, and lower-bound distances using van der Waal radii between atoms without bonds. We then penalize any pairwise
distances which violate these bounds taking into account a relaxation factor γ ≥ 1. With the adjacency matrix A = (aij)
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and atom type attribute vector H = (hi), we can determinine the molecule structure class S(A,H). With accompanying
interatomic bond limit functions dbond(hi, hj) and dno-bond(hi, hj), we compute the regularizer iterating over all edges as
follows:

Ereg(x,A,H; γ) =
∑

i,j∈Ibond

max {||xi − xj ||2 − γ · dbond(hi, hj), 0} (78)

+
∑

k,l∈Ino-bond

max

{
1

γ
· dno-bond(hk, hl)− ||xk − xl||2, 0

}
(79)

where Ibond and Ino-bond are the index pairs of A corresponding to a bond or no-bond between atoms respectively. Assuming
accurate interatomic radiis, our regularizer satisfies x ∈ S(A,H) =⇒ Ereg(x,A,H; γ) = 0 for all γ ≥ 1.

G.2. Torsion Angles and Torques

Figure 3. Multiple representations of the molecule diiodoethane with SMILES string ICCI. (Left) Molecular graph representation. (Right)
3D coordinates representation. We chose the torsion angle as I-C-C-I, where I indicates a purple iodine atom and C indicates a gray carbon
atom. We identify the torsions with a 4-tuple of indices, selecting the heaviest atoms on either side of the central bond as the first and last
members. Ties are broken by arbitrary atomic index. We take the zero dihedral angle to be when first and last members of the 4-tuple are
close, the so-called cis-isomer. Following Jing et al. (2022), we adjust the dihedral angle by rotating all the atoms at one end of the torsion
about the bond axis, leaving the remaining atoms in place. This can be described as a torque pointing along the bond axis. When the
torque would asymmetrically act on the molecule, we define the positive direction towards the side of the molecule with more atoms.

Representing Torsion Angles and Torques The orientation around a given bond can be quantified with a torsion angle.
Specifically, a torsion angle is defined between four atoms (a, b, c, d), where the torsion angle is the angle between the
planes formed by a, b, c and b, c, d, which are rotated around the central bc bond. The choice of atoms a and d are typically
not unique, thus a different choice of a or d can lead a different torsion angle to describe the same molecular conformation.
Our convention is that a and d correspond to the heaviest atoms on either side of the central bond bc. We break any ties by
arbitrary existing atomic index. Next, we represent torsion angles symbolically. . . Assuming that atoms a, b, c, d ∈ R3 are
positions in Cartesian space, we define a few vectors that lie along undirected bond axes:

dx1 :=
−→
ab := b− a, dx2 :=

−→
bc := c− b, dx3 :=

−→
cd := d− c. (80)

Those vectors allow us to define torsion angle as follows:

φ(dx1, dx2, dx3) := atan2 (dx2 · ((dx1 × dx2)× (dx2 × dx3)) , |dx2| (dx1 × dx2) · (dx2 × dx3)) . (81)

We define the function T : R4×3 → R that takes in four column vectors of atomic positions (a, b, c, d) and outputs a torsion
angle by (81), i.e., T : (a, b, c, d) 7→ φ(dx1(a, b), dx2(b, c), dx3(c, d)).

Following Jing et al. (2022), we can adjust a torsion angle by rotating all the atoms on one side of the bc bond about the
bond axis

−→
bc. This can be described as a torque t in the standard angle-axis representation where the axis points along

−→
bc. A
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positive sign indicates positive rotation according to the right-hand-rule and the magnitude indicates the rotation’s effect on
the existing torsion angle. The action of the rotation R(t) on our system Xt with constituent atoms xi ∈ R3, can be written
as follows:

R(t)xi =

{
R′(t)(xi − b) + b if i ∈ C(c)

xi otherwise
, (82)

where R′(t) is the rotation matrix defined by the axis-angle representation of t, and C(c) denotes the connected component
of c in an identical graph to the molecule except with bond bc removed! C(c) therefore denotes one “half,” or “side,” of the
molecule when hypothetically divided at bond bc.

Since every torque points along
−→
bc by design, we need a convention for ordering torsion angle 4-tuples to determine the

direction of rotation. We choose atom c to sit on the side of the bc bond with more atoms (Jing et al., 2022). To be
more specific, if one broke bond bc, there would be two connected components C(b) and C(c). We choose c such that
|C(c)| > |C(b)|. (This is the opposite convention to the definition Jing et al. (2022) write in their paper, but the same as in
their code.) Given ties, we use the current arbitrary index.

Finding torsional degrees of freedom with RDKit Sampling conformations by sampling torsion angles requires
identifying the torsional degrees of freedom in our target molecule. We use the package RDKit (Landrum, 2013) to find
and represent the 4-tuples for those degrees of freedom. We look for matches to the following substructure: (1) two atoms
must be connected by a bond, (2) neither end of that bond can be aromatic, (3) neither end of that bond is merely connected
only to a single hydrogen, and (3) only one end of the bond can be part of a ring. Such a substructure can be encoded in a
SMARTS string, specifically [!$(*#*)&!D1]-&!@[!$(*#*)&!D1]. This matching can be done on directly on the
SMILES string of a molecule.

Substructure matching identifies the torsional degrees of freedom with a list of 4-tuples containing atoms in every position.
Recall, this representation is not unique, as described above! Furthermore, this search technique typically finds more
torsional degrees of freedom than RDKit returns when querying the number of rotatable bonds. RDKit has a specific
definition of rotatable bond as defined implicitly in CalcNumRotatableBonds.

Considerations for torsion angles geometry We model a stochastic differential equation in the torsion angle space where
we can reason with the base distribution more practically and the dimensionality is reduced. However, this comes with a few
additional considerations. For this section, consider a molecule with drot torsional degrees of freedom. Due to the periodic
boundary conditions on torsion angles, the space is modeled as a flat torus D := [−π, π)drot where the extrema are identified
with zero displacement due to the torus distance function, or so-called logmap. Let Drot = {1, . . . , drot} denote the index set
for each torsion angle.

We use a Dirac source distribution centered at φ = 0 with φ ∈ D at t = 0. This choice of origin in D must have
a corresponding unique position in cartesian space. Given atoms (ai, bi, ci, di) that are constituents of torsion angle
φi ∈ [−π, π) with i ∈ Drot, we choose φi = 0 to be the state in Cartesian space where ai, di are closest in terms of
Euclidean distance, i.e.,

T (ai, bi, ci, di) = 0 ⇐⇒ di = argmin∥ai − di∥2. (83)

The definition is the same for all i ∈ Drot. We rely on intuition and ignore the details to prove that this choice is unique, and
that the distance between ai and di is the only necessary component to specify the torsion angle φi.

We now construct the molecule X0 in cartesian space that has φi = 0 for all i ∈ Drot. We first embed the molecular graph
in cartesian space to an arbitrary, approximate conformer using RDKit’s EmbedMolecule (or EmbedMultipleConfs
with numConfs=1). Once embedded, we can identify atoms that are constituents of torsion angles, (ai, bi, ci, di) with i ∈
Drot, using GetSubstructMatches and determine the current torsion angles using T . Given any atomic configuration
X created using this method, we can reach X0 by iteratively transforming X using R(−T (ai, bi, ci, di))X for every i.
Iterative application of this transformation is typical (Jing et al., 2022) in other work and will bring us to φi = 0 for all
torsion angles. This is the starting point for Torsional Adjoint Sampling! By setting the torsion angles to zero, but retaining
the atom types, molecular topology, bond lengths, and bond angles, we have an initial sample to transform with stochastic
control.

Our SDE evolves in D starting at φ0 = 0 and ending at φ1 with the standard behavior of an SDE on a flat torus. However, our
drift estimator of the torque is a function of Xt, implying we need to update the Xt positions as φt evolves under the SDE.
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Given drift estimate t̂(Xt) from our model, we update positions Xt+1 = Πi∈DrotR
i
Xt

(̂ti + ϵi)Xt with ϵi ∼ N (0, σ(t)2∆t).
∆t the increment between steps and σ(t) is determined by the geometric noise schedule in (44) as a function of time.

Regression target In Cartesian Adjoint sampling, the regression target is 1
τ∇Xg(X1) where the gradient is taken in

Cartesian space. For our problem, we need to compute regression target 1
τ∇φg(X1). These two quantities are related by the

Jacobian dφ
dX , namely ∇φg(X1) =

dφ
dX∇Xg(X1). We compute this vector-Jacobian product using automatic differentiation

of the function R(φ1)X0 = X1 applied to the ∇Xg(X1) vector determined by our energy model. To clarify, when we clip
the gradient for the torsion model, we clip∇φg(X1).

Torsion space posterior Adjoint sampling’s innovations include fast sampling of points along the control trajectory using
a posterior. In the torsion case, we sample φt from the posterior p̄baset|1 (φ | φ1). This is done by affine transformation of the
coordinates [0, 1] of the flat torus distributions from Section B.2 to [−π, π).

Transformation of torque t When we send X 7→ −X , the torque is transformed t 7→ −t, such quantities are called
pseudovectors and their signed magnitudes are called pseudoscalars. Following Jing et al. (2022) and the implementation in
Geiger et al. (2022), our networks predict drot pseudoscalars without data augmentation.

G.3. Coverage Recall and Precision Metrics

Root Mean Square Deviation (RMSD) Similarly to Ganea et al. (2021) and Jing et al. (2022), we measure the so-called
Average Minimum RMSD (AMR) and Coverage (COV) for Precision (P) and Recall (R). When measuring these metrics,
we generate twice as many conformers as provided by CREST reference conformers. For K = 2L let {C∗

l }l∈[1,L] and
{Ck}k∈[1,K] be the sets of ground truth and generated conformers respectively. In our evaluations, we use L = max(L′, 128),
where L′ is the number of reference conformers given by CREST, taking the lowest energy conformers as a subset. The
RMSD metric finds the best average distance between atoms of molecule with respect to the reference molecule, taking into
account all possible symmetries.

Coverage Recall

COV-R(δ) :=
1

L
|{l ∈ {1, . . . , L} : ∃k ∈ {1, . . . ,K}, RMSD(Ck, C

∗
l ) < δ}| (84)

AMR-R :=
1

L

∑
l∈{1,...,L}

min
k∈{1,...,K}

RMSD(Ck, C
∗
l ) (85)

Coverage Precision

COV-P(δ) :=
1

K
|{k ∈ {1, . . . ,K} : ∃l ∈ {1, . . . , L}, RMSD(Ck, C

∗
l ) < δ}| (86)

AMR-P :=
1

K

∑
k∈{1,...,K}

min
l∈{1,...,L}

RMSD(Ck, C
∗
l ) (87)

where δ > 0 is the coverage threshold.

G.4. Hyperparameters and Architecture Details for SPICE and GEOM-DRUGS

Cartesian Adjoint Sampling: We use an Equivariant Graph Neural Network (EGNN, Satorras et al. 2021) with 12 layers
and a hidden feature dimension of 128. The model is trained for 5000 outer-loop iterations, sampling 100 batches each
iteration from the replay buffer. Each GPU maintains its own buffer with max size of 64000 samples and each iterations we
generate 128× 8 new molecules and energy evaluations for the buffer across 8 GPUs. The model is trained with a batch size
of 64 per GPU and follows a geometric noise schedule with σmin = 10−3 and σmax = 1. Weight gradient clipping of 1020

is applied. Additionally we ues the temperature τ = 5× 10−3 and a regularization constant α = 100.0 for the regularized
energy function. The regression target, the temperature-scaled gradient of the energy function is clipped at ℓ2 norm 150. We
use a step size of dt = 0.001 (i.e. 1000 nfe) for Euler-Maruyama SDE integration during training and evaluation.

Torsional Adjoint Sampling: We use a different equivariant graph neural networked called e3nn (Geiger & Smidt,
2022; Geiger et al., 2022) with 6 convolutional layers with 32 scalar features and 8 vector features at each layer. There
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is additionally a specialized layed called a pseudotorque layer by Jing et al. (2022) that we use at output to predict the
pseudoscalar torque quantities. Our edge and node embeddings have 32 scalar features. The cutoff radius is 5.0 and we
construct 50 Gaussian radial basis functions to embed distances between atoms. We use 8 GPUs with 1024 × 8 initial
molecules and each iteration we generate 128× 8 new molecules and evaluate their energy (gradient), which are then added
to the GPU buffers. The model is trained for 3000 outer-loop iterations, sampling 100 batches each iteration from the
replay buffer with max size 64000. The model is trained with a batch size of 64 and follows a geometric noise schedule
with σmin = π × 10−2, σmax = π, and a “number of tiles” truncation parameter of 6 to approximate pbase on the flat tori
(Appendix G.2). Weight gradient clipping of 1020 is applied. Additionally we use the temperature τ = 5× 10−3 and the
direct energy function without any regularization. The regression target, the temperature-scaled gradient of the energy
function w.r.t. torsions is clipped at ℓ2 norm 200. We use a step size of dt = 0.01 (i.e. 100 nfe) for Euler-Maruyama SDE
integration during training and evaluation.

H. Data Preparation for the Conformation Benchmark
Adjoint Sampling, in this context, takes in SMILES strings and outputs conformations. Here we explain the splits of the
input SMILES strings and representative coordinates samples of conformations. Additionally, we explain the processes we
used to produce, relax, and deduplicate our reference atomic conformations with RDKit (Landrum, 2013), CREST (Pracht
et al., 2024), and ORCA (Neese, 2012) by following an extremely similar procedure to that of GEOM-DRUGS (Axelrod &
Gomez-Bombarelli, 2022).

We are releasing the data we used in this paper as a challenging Conformation Benchmark with the goal of fostering
development of scalable, amortized sampling algorithms. The data has three parts:

• A training split of 24,477 SMILES strings from SPICE (Eastman et al., 2023). These define the molecular topology
for the target molecule, but do not have any atomic coordinate information. The molecules have differing levels of
flexibility with between 0 and 18 rotatable bonds2.

• A test split3 of 80 SMILES strings from SPICE divided into groups of 10, each with between 3 and 10 rotatable bonds.
We also release 44,448 DFT annotated and geometry optimized conformations.

• A test split of 80 SMILES strings from GEOM-DRUGS divided into groups of 10, each with between 3 and and 10
rotatable bonds. We identify 7024 conformations corresponding to those SMILES strings.

The details of are described below in Appendix H.1. Since we are repackaging data from SPICE and GEOM-DRUGS,
our main contributions include (a) the organization of the benchmark and (b) the computational effort of finding 44,448
conformations from our SPICE test split using a similar procedure to that of GEOM-DRUGS.

One utilizes the benchmark by applying a sampling algorithm to find conformers of a given molecular topology and
determining whether the algorithm recovers the samples we provided. In Figure 2, we report this as Coverage Recall
% versus RMSD. We additionally provide tabulated values in Table 2. The conformers we provide should be treated as
held-out data generated using an effective and expensive standard method. We do not claim to have comprehensively
sampled the conformation space for these molecules, but we argue that they are a representative sample given modern
methods. Furthermore, since we only release local minima, the sample does not come from a Boltzmann distribution at a
fixed temperature, i.e. the samples are not drawn from a probability distribution. There is no sense of a conformer being
more “likely” than another in a probabilistic manner in our data. Instead, the benchmark represents a loosely defined notion
of sampling by finding many low energy conformations in an attempt to cover the configuration space.

H.1. SPICE Dataset

We used the PubChem subset of the SPICE dataset (Eastman et al., 2023) to train and evaluate our models. This subset
includes small, drug-like molecules comprised of between 18 and 50 atoms with elements Br, C, Cl, F, H, I, N, O, P, and S.
We are interested in conformations of molecules, implying that we care about the rotational degrees of freedom. We identify
two different sets describing these degrees of freedom: number of rotatable bonds and torsional degrees of freedom, or

2Rotatable bonds are defined by RDKit’s function CalcNumRotatableBonds (Landrum, 2013).
3The test split is disjoint from the train split and their union is all of SPICE.
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Figure 4. Histograms of rotatable bonds and torsional degrees of freedom in the SPICE training set. Left: Number of rotatable
bonds determined using RDKit’s CalcNumRotatableBonds. Right: Number of torsional degrees of freedom determined by
GetSubstructMatches with SMARTS string [!$(*#*)&!D1]-&!@[!$(*#*)&!D1].

torsions for short. In our case, rotatable bonds ⊆ torsional degrees of freedom. We compute the number of rotatable bonds
using the RDKit package CalcNumRotatableBonds. We count the number of torsional degrees of freedom using
the SMARTS string [!$(*#*)&!D1]-&!@[!$(*#*)&!D1] and GetSubstructMatches, also from RDKit. We
group molecules into classes according to the number of rotatable bonds, but we provide the torsional degrees of freedom
to our Adjoint Sampling Torsion model. The distributions of rotatable bonds and the comparison between the two sets of
rotational degrees of freedom can be found in Figure 4 and Figure 5. We find fewer rotatable bonds than torsions matching
our substructure query, which is expected. More information about our torsional model is in Appendix G.

We randomly subsampled 10 molecules from each class of molecules with a fixed number of rotatable bonds, in the
range of 3-10, to create the test set. We performed pre-processing and CREST (Pracht et al., 2024) on the resulting 80
molecules. We also removed 30 additional molecules from the training set; 10 from each of the classes where the number of
rotatable bonds was between 0-2. These do not appear in the test set since they are quite simple. Our procedure follows
GEOM-DRUGS (Axelrod & Gomez-Bombarelli, 2022).

During pre-processing, we first used RDKit to generate 50 conformers with EmbedMultipleConfs using parameters
pruneRmsThresh=0.01, maxAttempts=5, useRandomCoords=False corresponding to a pruning threshold
of similar conformers of 0.01 Å, a maximum of five embedding attempts per conformer, coordinate initialization from the
eigenvalues of the distance matrix, and a random seed. If no conformers were successfully generated then numConfs was
increased to 500. Afterwards, the conformers were optimized in the RDKit default MMFF force field. We deduplicated the
conformers using RDKit’s GetBestRMS, unless the calculation took longer than 48 hours then we switched to RDKit’s
AlignMol. (97 used GetBestRMS, 3 used AlignMol.) After removing the duplicate conformers that exhibited an
RMSD < 0.1Å, the ten conformers with the lowest energy were further optimized with an approximate energy model known
as extended tight binding (xTB) (Grimme et al., 2017; Friede et al., 2024). The conformer with the lowest xTB energy was
used as input to the CREST simulation. We used the default hyperparameters from CREST version 3.0.2 including a 6
kcal/mol cutoff on final conformers. Any SMILES strings containing slash or backslash indicate a cis/trans stereochemistry
and were skipped since their SMILES string is not preserved during the above procedure.

The output of the above procedure was a thoroughly sampled potential energy surface by the standards of modern methods;
however, the structures are optimized using the xTB level of accuracy. We took the process a step further and performed
geometry optimizations using DFT with ORCA on each conformer in the test set. Specifically, we took the output of CREST
and ran ORCA relaxation with settings:

Opt wB97M-V def2-tzvpd RIJCOSX def2/J NoUseSym DIIS NOSOSCF NormalConv DEFGRID2
NormalPrint AllPop
%scf Convergence Tight maxiter 300 end
%elprop Dipole true Quadrupole true end
%output Print[P_ReducedOrbPopMO_L] 1 Print[P_ReducedOrbPopMO_M] 1
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Print[P_BondOrder_L] 1 Print[P_BondOrder_M] 1 Print[P_Fockian] 1 Print[P_OrbEn] 2 end
%geom MaxIter 100 end
%scf THRESH 1e-12 TCUT 1e-13 end

Some lines were broken in the latex version of the code snippet above due to space limitations. These results are run at a
very high level of DFT theory. Further geometry optimization may be desired at DEFGRID3 with TightOpt; however,
such an extreme precision was prohibitive given our resources available at the time.

After the geometry optimization, we utilized RDKit’s GetAllConformerBestRMS and a threshold of 0.1 Å to identify
pairwise duplicates and remove them from the dataset. The average number of reference conformers for each number of
rotatable bonds is presented in the left side of Figure 6.

We investigated the reason that the 80 molecule test set from SPICE generated an order of magnitude more conformers than
the 80 molecule GEOM-DRUGS test set. We found, after replicating the GEOM-DRUGS conformers, that the molecules in
the SPICE test set are inherently more flexible than the ones from the GEOM-DRUGS test set. GEOM-DRUGS molecules
tended to have more rings and hydrogen bonds, leading to fewer conformations. In other words, SPICE tended to have a
flatter potentially energy surface. Since we followed the GEOM-DRUGS procedure, we applied the same 6 kcal/mol cutoff
in CREST and kept many more conformers from SPICE. For Coverage Recall %, we capped the reference conformers
per molecule at 512.

Figure 5. Correlation heatmap between the torsional degrees of freedom (y-axis) versus the number of rotatable bonds (x-axis) in the
combined SPICE train and test sets. Torsional degrees of freedom are identified using GetSubstructMatches while rotatable bonds
are identified using CalcNumRotatableBonds. There are always more or equal torsional degrees of freedom than rotatable bonds.
Colors indicate a conditional probability: for each number of rotatable bonds (x-axis), the color shows the fraction of molecules with a
given number of torsional degrees of freedom (y-axis). Numbers in cells show the raw counts.

H.2. GEOM-DRUGS Dataset

We also evaluated our models on the GEOMDRUGS dataset (Axelrod & Gomez-Bombarelli, 2022). We took the test set
from Torsional Diffusion (Jing et al., 2022), and excluded molecules that have elements other than Br, C, Cl, F, H, I, N, O, P,
and S. From the remaining molecules, we randomly sampled 10 molecules for each number of rotatable bonds in the range
of 3-10 (calculated by RDKit’s CalcNumRotatableBonds). The smallest molecule was comprised of 19 atoms and the
largest of 65, so slightly larger than SPICE.
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SPICE GEOM-DRUGS

Figure 6. Average number of conformers in the SPICE (left) and GEOM-DRUGS (right) test sets vs number of rotatable bonds calculated
by RDKit’s function CalcNumRotatableBonds. Note the different y-axes between the figures.

SPICE: number of atoms. SPICE: number of heavy atoms (excludes Hydrogen).

Figure 7. Atom counts appearing in the SPICE (train + test) dataset: (left): Frequency of total atoms. (right): Frequency of only heavy
atoms (excluding Hydrogen). Our conformer generation predicts positions of all atoms.

We use the conformers in the GEOM-DRUGS dataset as the reference for evaluation. The conformers are represented as
RDKit molecule object. To use the same format as the SPICE dataset, we extracted the Cartesian coordinates from the
RDKit molecules and wrote them into .xyz files for each molecule. The average number of reference conformers for each
number of rotatable bonds are presented in the right side of Figure 6.
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I. Additional Experimental Results
I.1. Energy Histograms for Synthetic Energy Experiments

In this section, we provide additional qualitative comparisons between the energy distributions generated by our synthetic
energy benchmarks and those obtained via ground-truth MCMC sampling. Appendix I.1 illustrate histograms for three
distinct systems — DW4, LJ13, and LJ55. These results clearly indicate that Adjoint Sampling is more effective at avoiding
high-energy regions, especially in the case of LJ55, which features the highest-dimensional energy surface.

(a) DW4 (b) LJ13 (c) LJ55

Figure 8. Energy Histograms of the Synthetic energy benchmark overlayed on the ground-truth MCMC generated samples.

I.2. Runtime Analysis of Molecular Conformer Generation

This section further examines the computational efficiency of our proposed Adjoint Sampling technique through a detailed
runtime analysis of molecular conformer generation task.

As illustrated in Figure 9, Adjoint Sampling overcomes two significant computational bottlenecks found in prior approaches,
namely the intensive SDE simulation and the costly energy evaluation steps. By mitigating these challenges, our method is
able to perform substantially more gradient updates within the same execution time, leading to enhanced overall performance
in tasks with expensive energy function evaluation, such as conformer generation.

Figure 9. Conformer Generation Run-time: A run-time analysis breakdown of Adjoint Sampling compared to selected baselines at the
level of gradient updates. Adjoint Sampling overcomes the two primary bottle-knecks of previous methods: SDE simulation and energy
evaluation, allowing Adjoint Sampling to perform far more gradient updates in the same run-time.

I.3. Choice of energy function

The eSEN energy model (Fu et al., 2025), used in this work, has been shown to accurately predict DFT energy and forces on
the SPICE dataset. We use an eSEN network with 2 layers, Lmax = 2,Mmax = 0, 64 channels, and a radius cutoff of 4.5 Å.
This model has around 900k trainable parameters. To demonstrate the robustness of the adjoint matching algorithm to the
choice of the energy function, we conduct additional molecular conformation sampling experiments using adjoint matching
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Table 3. Test set MAE for eSEN-900k and MACE-OFF-23-M on the SPICE-MACE-OFF test dataset. Energy (E) MAE is in meV/atom.
Force (F) MAE is in meV/Å.

PubChem DES370K M. DES370K D. Dipeptides Sol. AA Water QMugs
Model E F E F E F E F E F E F E F

eSEN-900k 0.66 14.37 0.50 5.32 0.52 5.62 0.37 8.52 1.41 17.16 0.71 12.66 0.44 14.56
MACE-OFF-23-M 0.91 20.57 0.63 9.36 0.58 9.02 0.52 14.27 1.21 23.26 0.76 15.27 0.69 23.58

on a pretrained MACE-OFF-23 energy model (Batatia et al., 2022; Kovács et al., 2023). The test-set prediction errors of
eSEN-900k and the MACE-OFF-23-M (Kovács et al., 2023) model are reported in Table 3. The same energy model is
used for both relaxation and for optimizing adjoint sampling, where applicable. Table 4 shows that adjoint matching with
MACE-OFF-M and eSEN achieve similar performance in generating molecular conformation.

Table 4. Recall and precision metrics for conformer generation using different energy models. Coverage values are for thresholds of 1.25Å.
Standard deviations are computed across molecules in the test set. (These experiments were done with an earlier version of the code.)

SPICE

Recall Precision

Method Cov. ↑ AMR ↓ Cov. ↑ AMR ↓

eSEN 80.28±27.68 0.96±0.28 47.97±32.24 1.25±0.37

MACE 74.93±30.36 1.02±0.27 50.22±32.22 1.28±0.39

eSEN (+pretrain) 88.58±19.96 0.85±0.25 65.12±29.90 1.13±0.34

MACE (+pretrain) 89.62±19.25 0.84±0.25 67.07±29.48 1.11±0.34

w
/r

el
ax

at
io

n eSEN 91.49±18.27 0.71±0.29 60.00±29.97 1.02±0.38

MACE 91.06±17.94 0.72±0.28 65.19±28.27 1.05±0.37

eSEN (+pretrain) 96.36± 8.92 0.60±0.25 76.46±26.22 0.92±0.35

MACE (+pretrain) 95.73±11.32 0.61±0.25 77.08±25.73 0.92±0.34
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I.4. Ablating Reciprocal Projection

Here we present the same ablation of the Reciprocal Projection as performed for the Synthetic experiments in Table 1, but
for the molecular conformer generation task. Recall that instead of using the Reciprocal projection (RP) to sample Xt given
X1, we simply store sample pairs (X1, Xt) in the buffer and train on the Adjoint Matching objective (12). We call this
Adjoint Sampling w/o RP, which helps demonstrate the effectiveness of the Reciprocal projection. For the purpose of this
ablation, we only consider the MACE energy and do not perform any post generation relaxation.

Table 5. Recall and precision metrics for Adjoint Sampling with and without use of the Reciprocal Projection (RP). Coverage values are
for thresholds of 1.25Å. Standard deviations are computed across molecules in the test set. We see that the Reciprocal Projection results in
significant improvements across all metrics, especially when generalizing to the unseen dataset GEOM-DRUGS. No pretraining and no
relaxation is performed post generation. (These experiments were done with an earlier version of the code.)

SPICE GEOM-DRUGS

Recall Precision Recall Precision

Method Cov. ↑ AMR ↓ Cov. ↑ AMR ↓ Cov. ↑ AMR ↓ Cov. ↑ AMR ↓

Adjoint Sampling w/o RP (Ablation) 78.25±30.06 0.98±0.34 57.64±32.00 1.23±0.43 53.46±36.17 1.30±0.48 35.16±33.60 1.74±0.68

Adjoint Sampling (Ours) 80.28±27.68 0.96±0.28 47.97±32.24 1.25±0.37 61.36±38.74 1.17±0.60 41.19±35.93 1.46±0.67
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I.5. Threshold Ablation for Molecular Conformation Generation
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Figure 10. Coverage recall (%) after relaxation for molecules of different number of rotatable bonds. We see that the gap between our
model and RDKit increases for higher number of rotatable bonds.
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