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ABSTRACT

We investigate whether in-context examples, widely used in decoder-only lan-
guage models (LLMs), can improve embedding model performance in retrieval
tasks. Unlike in LLMs, naively prepending in-context examples (query-document
pairs) to the target query at inference time does not work out of the box. We in-
troduce a simple approach to enable retrievers to use in-context examples. Our
approach, RARe, finetunes a pre-trained model with in-context examples whose
query is semantically similar to the target query. This can be applied to adapt
various base architectures (i.e., decoder-only language models, retriever models)
and consistently achieves performance gains of up to +2.72% nDCG across var-
ious open-domain retrieval datasets (BeIR, RAR-b). In particular, we find RARe
exhibits stronger out-of-domain generalization compared to models using queries
without in-context examples, similar to what is seen for in-context learning in
LLMs. While our approach incurs additional computational cost to encode length-
ier queries, the impact is less pronounced in large-corpus scenarios. We further
provide analysis on the design choices of in-context example augmentation and
lay the foundation for future work in this space.

1 INTRODUCTION

In-context learning (ICL) (Brown et al., 2020) has emerged as a powerful paradigm enabling diverse
applications without parameter updates in large language models (LLMs). By conditioning on input-
output examples that demonstrate a specific task, LLMs can generate predictions while maintaining
fixed parameters. While in-context learning has been extensively studied for LLMs (Xu et al., 2023;
Min et al., 2022a; Dong et al., 2024), its potential for retriever models remains unexplored.

We study how in-context examples can be effectively leveraged to enhance performance in retriever
models. Unlike in decoder-only LLMs where in-context examples expand model capacity at genera-
tion time, in-context examples may primarily provide task-relevant information rather than increas-
ing model capacity. Specifically, we study injecting in-context examples to build a dense retriever
model (Karpukhin et al., 2020) which embeds queries and documents into a shared representational
space for efficient search over a large corpus. Text retrieval is a core component of many natural
language processing (NLP) tasks, serving as a key component for retrieval-augmented language lan-
guage models (Lewis et al., 2021). State-of-the-art retriever models started to leverage decoder-only
models as a backbone (Wang et al., 2024b; BehnamGhader et al., 2024; Muennighoff et al., 2024;
Meng et al., 2024; Lee et al., 2024a), further motivating our study of applying in-context examples.

We begin by naively prepending in-context examples to the target query and provide it to existing
retriever models (BehnamGhader et al., 2024; Wang et al., 2024b; Meng et al., 2024), observing
that this leads to significant performance drop. We propose a new approach to construct retrieval
models that can leverage in-context examples, which we name as RARe: Retrieval Augmented
Retrieval with In-Context Examples. Our approach modifies the query format of retrieval systems
by providing in-context examples whose query is semantically similar to the target query. Then,
we apply standard continued fine-tuning with contrastive loss. We conduct a comprehensive
evaluation of new query format across various experimental settings, initializing from both
decoder-only checkpoints and pre-trained retriever model checkpoints. We demonstrate that RARe
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Instruct: Given a query, retrieve
relevant documents that best answer
the query.
Query: A Direct Search Method to solve
Economic Dispatch

Instruct: Given a query, retrieve relevant documents
that best answer the query.
Query:  what are direct search methods 
Document: Direct search methods are best known...
Query: what is dynamic economic dispatch
Document: Dynamic economic dispatch is one... 
Query: A Direct Search Method to solve 
Economic Dispatch

Query: A Direct Search Method to solve
Economic Dispatch

Standard Retrieval

Retrieval w Task-Specific Instruction

In-Context Retrieval (Ours)

In-C
ontext Exam

ples

(Asai et al., 2023; Wang et al., 2024)

Figure 1: Overview – Prior work augments a task-specific instruction to a given query as input to the
Retriever. In RARe, we further leverage a set of in-context exemplars that contain pairs of queries
and relevant documents. These in-context examples are augmented with the original query as input
to the retriever along with the instruction.

outperforms baseline models across multiple tasks, achieving up to +1.41% nDCG@10 on standard
retrieval benchmarks (Thakur et al., 2021) and demonstrating even larger gains (+2.72%) on
reasoning-oriented retrieval tasks (Xiao et al., 2024).

Our contributions can be summarized as follows:

• We introduce RARe, an approach that adapts pre-trained checkpoints to use in-context
examples for retrieval.

• We demonstrate that this recipe can be applied to various base architectures, including
decoder-only models and existing retriever models. RARe consistently improves perfor-
mance (up to +2.72% nDCG@10) on both standard retrieval benchmarks and advanced
reasoning tasks.

• We provide detailed analyses on how the quality, quantity, and selection of in-context ex-
amples affect performance, contextualizing the sources of our experimental gains.

All our code and model checkpoints will be publicly released upon publication.

2 SETUP & EXISTING APPROACHES

Standard Retrieval Setup We consider a standard dense retriever (Karpukhin et al., 2020), where
input queries q and documents d are encoded with an embedder E(⋅) into a fixed-dimensional em-
bedding. The embedder E(⋅) is trained on a training set D which consists of multiple retrieval tasks
{D1,D2,⋯,DT }, where each task contains training examples of the form (q, d+, d−) (Wang et al.,
2024b; BehnamGhader et al., 2024). Here, q is the input query, d+ is a positive (relevant) document,
and d

− is a hard-negative (irrelevant) document, which allows for a contrastive-loss based training.

The evaluation task Dtest consists of a corpus of documents C, as well as test pairs (q,D+), where
D

+
= {d+1 , d+2 , ..., d+m} ⊂ C is a set of relevant document(s) for the query (Thakur et al., 2021).

The aim is to retrieve these relevant documents D
+ from the corpus C using the embedder E(⋅).

Specifically, an index Ce of the corpus with document embeddings E(d),∀d ∈ C is created. Then,
the embedding E(q) of a test query q is used to retrieve the documents d whose embedding E(d) is
closest to E(q), typically with the cosine (cos) similarity function.

Existing Methods Current architectures (Asai et al., 2023; BehnamGhader et al., 2024) prepend
task-specific instruction ti, i ∈ [1, 2,⋯, T ] to the query to contextualize the task:

q
inst

= Instruct: {ti}; Query: {q}, q ∈ Di (1)

Then, the embedder E(⋅) is trained with a standard contrastive loss (Izacard et al., 2022; Karpukhin
et al., 2020), incorporating q

inst, and d
+
, d

−
∈ Di, along with in-batch negatives n ∈ N, where N

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1: RARe - Training
Input: Training set D, embedder E(⋅), BM25, the number of in-context examples k,

mini-batch size B.
1: for each training iteration do
2: Sample mini-batch B of size B from D
3: for (ti, q, d+, d−) ∈ B do
4: In-Context Example Retrieval:
5: {qic1 , q

ic
2 , . . . , q

ic
k } ← Retrieve nearest neighbor queries of q from D using BM25

6: {dic+1 , d
ic+
2 , . . . , d

ic+
k } ← {d+ ∶ (q′, d+) ∈ D, q

′
∈ {qic1 , . . . , q

ic
k }}

7: Dic
i ← {(qic

1 , d
ic+
1 ), . . . , (qic

k , d
ic+
k )}

8: Query Augmentation:
9: q

inst+ic
= Instruct: {ti}; Query: {qic1 }; Document: {dic+1 }⋯; Query: {q}

10: Training with Contrastive Loss:
11: Compute the mini-batch contrastive loss LRARe as described in Equation 5.
12: Update E(⋅) by minimizing LRARe.
Output: Trained embedder E(⋅)

represents the set of in-batch negatives,

eqinst = E(qinst); ed+ = E(d+); ed− = E(d−); en = E(n) (2)

L = − log
exp(cos(eqinst , ed+))

exp(cos(eqinst , ed+)) + exp(cos(eqinst , ed−)) + ∑
n∈N

exp(cos(eqinst , en))
(3)

3 OUR METHOD – RARE

RARe consists of two main components – (a) We enhance the query representation by incorporating
in-context examples, which provide additional query-specific guidance to the model, (b) We fine-
tune E(⋅) on D to learn to leverage these in-context examples.

Given a query q, we use BM25 (Robertson & Zaragoza, 2009), a sparse retrieval technique that
ranks documents based on keyword matching, and find k closest queries qj from Di ∈ D to obtain
in-context examples Dic

i = {(qic
1 , d

ic+
1 ), (qic

2 , d
ic+
2 ),⋯, (qic

k , d
ic+
k )}. As shown in Figure 1, we then

augment these examples to the original query q
inst to obtain the final query q

inst+ic,

q
inst+ic

= Instruct: {ti}; Query: {qic
1 }; Document: {dic+

1 }⋯; Query: {q} (4)

We then train embedder E(⋅) with the same loss as Equation 3, but with q
inst+ic instead of qinst,

LRARe = − log
exp(cos(eqinst+ic , ed+))

exp(cos(eqinst+ic , ed+)) + exp(cos(eqinst+ic , ed−)) + ∑
n∈N

exp(cos(eqinst+ic , en))
(5)

Algorithm 1 presents our training procedure in detail. At inference time, we similarly perform a
search to find nearest in-context examples to form an augmented query. Algorithm 2 in the Appendix
provides an overview of the inference procedure.

4 EXPERIMENTAL SETUP

4.1 FINE-TUNING

Base Models We explore two training setups: fine-tuning decoder-only models for retrieval, and
fine-tuning existing retriever models. For the first setup, we train the Llama-3 family of models,
following the training methodology outlined by Ma et al. (2023); Weller et al. (2024b). For the
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second setup, we use two high-performing publicly available embedding models that were trained
with task-specific instructions: LLM2Vec-Llama-3-8b-Supervised (BehnamGhader et al., 2024) and
E5-Mistral-Instruct (Wang et al., 2024b). We chose these two models because, unlike some other
strong performers (Meng et al., 2024; de Souza P. Moreira et al., 2024), they were not trained on
most of the datasets used in our downstream benchmarks. The LLM2Vec-Llama-3-8b-Supervised
model is initially trained using an unsupervised text reconstruction objective and then fine-tuned
with supervised contrastive learning on a public subset of the E5 dataset, which incorporates various
supervised training datasets (Gao et al., 2021; Nguyen et al., 2016; Kwiatkowski et al., 2019). In
contrast, E5-Mistral-Instruct undergoes further training on synthetic data that is not publicly avail-
able. These models are chosen to assess the impact of additional supervised training on an existing
retriever model versus training a generative model for retrieval from scratch.

Training Data For fine-tuning existing retriever models, we follow prior work (BehnamGhader
et al., 2024) and train on a publicly available portion of E5 dataset (Springer et al., 2024; Wang et al.,
2024b), which contains MS-MARCO (Nguyen et al., 2016) NLI (Gao et al., 2021), ELI5 (Fan et al.,
2019), FEVER (Thorne et al., 2018), HotpotQA (Yang et al., 2018), NQ (Kwiatkowski et al., 2019),
SQuAD (Rajpurkar et al., 2016), Quora Duplication Questions (DataCanary et al., 2017). For fine-
tuning decoder-only models from scratch, we use the MS-MARCO (Nguyen et al., 2016) passage
ranking dataset and train without a task-specific instruction prefix, following Ma et al. (2023).

Constructing In-Context Examples During training, we provide each training example with five
in-context examples from the dataset that it belongs to (k=5). Specifically, the set of examples Dic

i

for each task is drawn from the training set Di, q ∉ Dic
i .

4.2 EVALUATION

Datasets We evaluate on the widely used BeIR retrieval benchmark (Thakur et al., 2021). For
ablative experiments, we follow prior work and focus on low-resource datasets (Wang et al., 2023)
that potentially benefit more from few-shot examples. Since the BeIR benchmark contains a few
datasets whose training sets are in the E5 dataset mixutre, we categorize them as in-domain and
out-of-domain i.e. not seen during training. See Table 7 in the Appendix for a list of in-domain
and out-of-domain datasets from BeIR. We also evaluate on a subset of the RAR-b (Xiao et al.,
2024) benchmark, which requires complex reasoning for retrievers. Specifically, we evaluate on
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-C (Clark et al., 2018), TempReason-
L1 (Tan et al., 2023), WinoGrande (Sakaguchi et al., 2021), α-NLI (Bhagavatula et al., 2020),
SiQA (Sap et al., 2019), and Quail (Rogers et al., 2020). Unlike BeIR, some RAR-b queries are
composed of sentences with (multiple) indicators (e.g., Start:, End:). Each dataset is associated
with a task-specific instruction, following prior work (Muennighoff et al., 2023; Wang et al., 2024b;
BehnamGhader et al., 2024). We provide additional preprocessing details in Appendix A.

Constructing In-Context Examples We construct Dic
test from the training/development set of each

datasets. For datasets on BeIR that do not have either of these, we use a synthetically generated
collection of document-query pairs (GenQ) from Thakur et al. (2021). For all experiments, we use
k=5 in-context examples.

Metrics We use standard metrics for retrieval benchmarks. Following Thakur et al. (2021), we
report nDCG@10, which measures the ranking quality of the top 10 retrieved documents, taking
into account both the relevance and position of each retrieved document (Wang et al., 2013).

5 RESULTS

We evaluate in-context example augmented queries in three settings. First, we evaluate the perfor-
mance after inference-only modification, where we take existing pre-trained retrievers and simply
provide in-context examples at inference time (Section 5). Second, we evaluate training retriever
with in-context examples from an LLM (decoder-only) backbone (Section 5.1). Third, we compare
training retriever models with in-context examples from a pre-trained retriever (Section 5.2).
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Figure 2: Inference-only modification does not work Performance after adding in-context exam-
ples to the query without updating model parameters. We see that embedding models are not able to
leverage in-context examples out of the box, as opposed to decoder-only models.

Table 1: Training from decoder-only (LLM) checkpoint. Performance is measured by
nDCG@10. RARe shows up to +2.72% absolute gain on average over Promptriever, demonstrating
that starting from an existing embedding model is not a requirement. We provide a breakdown of
In-Domain (ID) and Out-of-Domain (OOD) performance.

Method Base model Training Data ID OOD Average
MS-MARCO BeIR RAR-b

RepLLaMA Llama-2 MS-MARCO 42.00 53.69 20.23 38.64
RepLLaMA Llama-3 MS-MARCO 43.56 53.99 18.50 38.68
RARe Llama-3 MS-MARCO 44.77 55.87 22.34 40.99
RepLLaMA Llama-3.1-Instruct MS-MARCO 43.67 54.34 19.20 39.07
Promtpriever Llama-3.1-Instruct MS-MARCO + Synthetic 42.70 56.10 20.95 39.94
RARe Llama-3.1-Instruct MS-MARCO 42.93 56.05 23.67 40.88

Inference-only Modification Figure 2 illustrates the impact of incorporating in-context examples
at inference time. Here, we simply modify the query format with retrieved in-context examples (i.e.
q

inst+ic, Eq. 4) at inference time and compare its performance with the query format that does not have
retrieved in-context examples (i.e. qinst, Eq. 1). We evaluate the performance on three retriever mod-
els: SFR-Embedding-2-R (Meng et al., 2024), LLM2Vec-Llama-3-8B-Supervised (BehnamGhader
et al., 2024), and E5-Mistral-7B-Instruct (Wang et al., 2024b). Unlike in autoregressive LLMs, these
embedding models generally exhibit decreased performance when in-context examples are added,
with LLM2Vec-Llama-3-8B-Supervised showing the largest drops in performance, except on one
dataset (SciFact), where 2 out of 3 models show marginal gains over providing only instructions.
Our experiments, which include adding more in-context examples and using nearest-neighbor ex-
amples, extend the findings of Muennighoff et al. (2024), where in-context examples led to decrease
in performance on the GritLM models.

5.1 TRAINING FROM LLM CHECKPOINTS

Next, we present the results of applying our approach when training from LLM checkpoint. This
might preserve in-context learning capacity of the LLM, which can be lost during standard IR train-
ing, which compresses query and passage into a fixed dimensional vector. We experiment with
three LLM checkpoints (Llama-2 (Touvron et al., 2023), Llama-3 (Dubey et al., 2024), Llama-3.1-
Instruct) to enable comparison with prior work Ma et al. (2023); Weller et al. (2024b).

Comparison Systems We compare training with our in-context example augmented query with
two baselines. The first baseline is vanilla query (Eq. 1), which was explored in RepLLaMA (Ma
et al., 2023). The second baseline is Promptriever (Weller et al., 2024b) which augments query-
specific instructions using a synthetically generated training set from MS-MARCO. In all these

5
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Table 2: Training from retriever checkpoint. Performance (nDCG@10) on BeIR (Thakur et al.,
2021) and RAR-b (Xiao et al., 2024) benchmarks when fine-tuning retriever model on E5 dataset.
We report a breakdown of performance on In-Domain (ID) and Out-of-Domain (OOD) tasks on
BeIR. We consider all RAR-b tasks as OOD.

Method
LLM2Vec-Llama-3-8b-Supervised E5-Mistral-Instruct

BeIR RAR-b BeIR RAR-b
ID OOD All ID OOD All

Base 71.31 49.28 56.63 21.55 71.95 49.33 56.87 22.17
Instruct 70.46 47.79 55.35 23.44 72.91 48.98 56.96 24.12
RARe 71.67 49.30 56.76 23.10 72.98 50.93 58.28 25.79

systems, the task-specific instruction is a null string (Ma et al., 2023) as we train on a single task
(MS-MARCO).

Results Table 1 presents the performance on downstream benchmarks when training from LLM
checkpoints. Comparing within the same base LLM checkpoint, our apporach outperforms both
baselines (RepLLaMA and Promptriever). Our performance is competitive to that of Promptriever
(Weller et al., 2024b), without incorporating synthetic data during training. Specifically, RARe
achieves an absolute gain of +2.7% over Promptriever on the RAR-b benchmark.

5.2 TRAINING FROM RETRIEVER CHECKPOINTS

Lastly, we continue training retriever models – LLM2Vec-Llama-3-8B-Supervised (BehnamGhader
et al., 2024), E5-Mistral-Instruct (Wang et al., 2024b) on a training set where queries are augmented
with in-context examples. As these initial checkpoints have already been trained on the training
dataset, the extent that retrievers adapt to new query format can be limited.

Comparison Systems We first report the initial retriever performance (Base) without any mod-
ification. Then, we compare continued fine-tuning with the task-specific instruction query format
(Eq. 1) which only prepends the task specific instruction (Instruct, qinst) to our in-context example
augmented query format (Eq. 4).

Results Table 2 reports experimental results in this setting. Overall, both fine-tuning approaches
provides gains over the base checkpoints. Comparing two settings, Instruct (qinst) vs. RARe (qinst+ic),
our method achieves notable improvement with E5-Mistral-Instruct base model (1.95% over In-
struct on out-of-domain tasks, and 1.32% overall). Our method performs similar to Instruct (qinst)
setting when trained with the LLM2Vec base model. It is hard to attribute why experimental results
varies based on the base retriever checkpoint, but we note the following differences between the
two models. LLM2Vec-Llama-3-8b-Supervised is the only model in our experiments where further
fine-tuning with only instructions led to a decrease in in-domain performance. E5-Mistral-Instruct
employs causal attention with last token pooling, and trains on a proprietary synthetic dataset,
LLM2Vec-Llama-3-8b-Supervised uses bidirectional attention with mean pooling, training only on
the E5 public portion. The effectiveness of learning with in-context examples may depend on the
model architecture or data setting, and further investigation can be explored in future work.

6 DISCUSSIONS AND ANALYSIS

6.1 CHOICE OF IN-CONTEXT EXAMPLES

Retrieved (Similar) vs. Random In-Context Examples In Figure 3, we study the impact of
retrieving the nearest neighbor query-document pairs as examples against randomly chosen exam-
ples during training and evaluation. We observe that using retrieved examples during both train-
ing and evaluation (Retrieved, Retrieved) consistently outperforms other configurations across most

6
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Figure 3: Retrieved vs. Random In-context Examples. Change in performance (∆nDCG@10) on
E5-Mistral-Instruct with RARe (qinst+ic) from the baseline setting (qinst both during training and eval-
uation time). Using retrieved examples during training and inference enhance model performance
in most benchmark datasets.
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RARe, qinst + ic

Instruct, qinst

Figure 4: Change in performance (∆nDCG@10) from the base model (E5-Mistral-Instruct) for
varying similarity between the closest in-context example query and target query (Score@Top-1).

datasets. (Random, Retrieved) and (Retrieved, Random) generally outperform (Random, Random),
suggesting retrieved examples are advantageous even when trained with randomly paired in-context
examples. In ArguAna dataset, we observe that (Retrieved, Random) performs the worst. There is a
mismatch in the lengths of the queries used as in-context examples1 (which are significantly shorter)
versus the actual test queries in this dataset. This mismatch may introduce some variability in per-
formance, which has also been observed in decoder-only LLMs (Mishra et al., 2022). Overall, our
findings align with prior work in in-context learning – that the incorporation of semantically similar
examples is beneficial (Agrawal et al., 2022; Rubin et al., 2022). We observe similar overall trends
on the other OOD datasets on the BeIR benchmark, reported in Figure 5 in the Appendix.

Does Having Semantically Relevant In-Context Example Help? For some test examples, aug-
mented in-context examples are very relevant, and for others, much less so. In this section, we group
the evaluation examples by the maximum similarity of in-context query and the test query measured
by an off-the-shelf sentence embedding model (Score@Top-1).2 and plot the performances for each
group. Figure 4 presents the performance of our system (RARe) and baseline (Instruct). On NFCor-
pus and SciFact datasets, we observe that when the closest in-context example has a high similarity
with the target query, RARe demonstrates over 10% gains compared to the base model. On the other
hand, fine-tuning exhibits relatively lower performance gains with increasing similarity thresholds.
On some datasets, such as ArguAna and FiQA2018, gains with increasing Score@Top-1 are less
pronounced, but generally matches the performance of the base model. We observe similar overall
trends on other OOD datasets on the BeIR benchmark, reported in Figure 6 in the Appendix.

How Many In-Context Examples Are Sufficient? We analyze the performance of RARe when
varying the number of in-context examples provided during training and inference. Table 3 shows
that increasing the number of in-context examples generally enhances performance. However, the
impact is not uniformly positive across all datasets, suggesting that the optimal number of in-context

1https://huggingface.co/datasets/BeIR/arguana-generated-queries
2https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

7

https://huggingface.co/datasets/BeIR/arguana-generated-queries
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Impact of the number of in-context examples (k) during training and evaluation. All
results are on E5-Mistral-Instruct. In general, performance increases when increasing the number
of examples, and the optimal number of examples depends on the task.

k Arguana CQADupStack FiQA2018 NFCorpus SciFact Touche2020 Average

Instruct (0) 61.19 44.82 57.39 40.99 77.28 29.35 51.84

1 60.47 46.76 56.07 40.67 81.47 29.78 52.54
3 62.98 47.12 57.08 40.77 83.71 27.12 53.13
5 60.87 48.46 57.31 42.28 84.79 28.70 53.74
10 58.85 48.92 57.03 42.24 87.61 28.29 53.82

Table 4: In-Context Format Comparing variants of in-context example format on E5-Mistral-
Instruct. Instruct refers to the baseline which does not use any in-context examples.

Method ArguAna CQA FiQA2018 NFCorpus SciFact Touche2020 Average

Instruct 61.19 44.82 57.39 40.99 77.28 29.35 51.83

Queries-Only 58.88 46.66 54.44 41.42 78.84 28.09 51.39
Doc-Only 57.54 48.28 56.02 41.62 79.80 29.01 52.05

Shuffle-NC 60.17 45.78 54.25 41.17 80.70 29.18 51.88
Shuffle-C 58.97 47.97 55.98 41.78 80.51 28.97 52.36
RARe 60.87 48.46 57.31 42.28 84.79 28.70 53.74

examples may be dataset-dependent. We observe similar trends when we fix the number of in-
context examples to five during training and vary the number of examples provided during inference,
which are provided in Table 12 in the Appendix.

Ablating Content and Format of In-context Examples One can view in-context examples as
a form of query expansion (Lv & Zhai, 2009; Wang et al., 2023), providing useful keywords to
improve the performance. In Table 4, we analyze the impact of various formats of in-context ex-
amples. All models are trained with the same format that they are evaluated on. Query-Only and
Doc-Only contain only queries and documents of in-context examples, respectively. For Shuffle-
C, we randomly shuffle the mapping between q and d. On the other hand, for Shuffle-NC, we do
not assume any structure, meaning that a query can be followed by a query as well as a document.
First, we observe that Query-Only shows a larger performance drop over Doc-Only, suggesting in-
context documents might contain more useful contents than in-context queries. Second, we observe
that shuffling the pairings (Shuffle-C) marginally hurts in-context learning in RARe, as opposed to
Shuffle-NC. Our findings align with prior study in decoder-only models (Min et al., 2022b) which
showed strict correspondence between q and d is not required for performance gains from in-context
examples. We observe similar trends on all OOD datasets and when keeping the training format
fixed and vary only the evaluation format – see Table 15 and Table 14 in the Appendix.

Negative Documents in the Query So far, we have used (q, d+) i.e (Query, Positive Document)
pairs as the in-context prompt. Therefore, we study the impact of including negative documents.
Specifically, the augmented query q

inst+ic+neg includes examples of the form (q, d+, d−), where the

Table 5: Impact of adding negative documents in the in-context prompt. All results are on E5-
Mistral-Instruct. Negative documents (d−) in the prompt do not enhance performance.

Training / Eval Setting ArguAna CQA FiQA2018 NFCorpus SciFact Touche2020 Average

RARe-qinst+ic 60.87 48.46 57.31 42.28 84.79 28.70 53.74

RARe-qinst+ic+neg 61.19 48.09 56.89 41.58 82.37 30.51 53.44
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Table 6: Latency breakdown (in milliseconds per query) of each stage in the retrieval pipeline for
q

inst and q
inst+ic evaluation settings. # Corpus denote the number of documents and Avg Q len.

denote the average number of query tokens split by whitespace. Table 11 in the Appendix provides
numbers on additional datasets.

Dataset # Corpus Eval Setting Avg Q len. NN Query Search Total Inc.

NFCorpus 3633 q
inst 3.3 0 10.22 1.67 11.89 -

q
inst+ic 866.0 0.62 473.65 1.76 476.04 40.04×

FiQA2018 57638 q
inst 10.9 0 10.68 12.22 22.90 -

q
inst+ic 1016.6 0.69 429.97 13.63 444.29 19.40×

TRECCOVID 171332 q
inst 10.6 0 36.60 81.60 118.20 -

q
inst+ic 722.54 6.20 435.60 86.00 527.80 4.47×

Touche2020 382545 q
inst 6.6 0 28.98 189.59 218.57 -

q
inst+ic 1287.8 4.08 822.86 214.29 1041.22 4.76×

Quora 522931 q
inst 9.5 0 11.39 98.64 110.04 -

q
inst+ic 129.5 0.32 53.03 98.26 151.61 1.38×

DBPedia 4635922 q
inst 5.5 0 92.33 1470.95 1563.28 -

q
inst+ic 158.2 0.48 115.53 1773.18 1889.18 1.21×

documents are prefixed with the term “Positive Document: ” and “Negative Document: ” respec-
tively. Table 5 presents the downstream performance comparison between RARe variants trained
solely on positive examples and those trained with augmented negative documents. The results
indicate no performance gains from including negative documents. In fact, training with negative
examples led to a slight decrease in performance.

6.2 EFFICIENCY ANALYSIS

In Table 6, we present a breakdown of the latency of each stage of the retrieval pipeline for both
baseline (qinst) and in-context (qinst+ic) settings. We measure the total time required to obtain
nearest-neighbour in-context examples (NN) from BM25, compute query embeddings (Query),
and perform search with FAISS (Douze et al., 2024) with encoded query embeddings on the
pre-computed document index (Search). We observe that the largest contributing factors to latency
are the average length of input queries (Avg Q len.), and the size of the index (# Corpus). For
large query length and small corpus sizes, the in-context setting demonstrates a significant increase
in total latency (19.40-40.04× for FiQA2018 and NFCorpus, respectively). However, for smaller
average query lengths, this latency diminishes, as seen for Quora (1.38×) and DBPedia (1.21×).
Moreover, the added latency due to the in-context setting also diminishes when the corpus size
grows, as the time required for search outweighs the time to encode the query. For example, on
Touche2020 with a larger corpus of 380K documents, the increase in latency is 4.76× compared to
FiQA2018 (19.40×) for similar query lengths.

7 RELATED WORK

In-context learning ICL (Brown et al., 2020) allows models to adapt to new tasks in a few-shot
manner by conditioning on the input data and the context provided at inference time. ICL has been
effectively applied to a wide range of tasks such as classification (Milios et al., 2023), translation
(Zhu et al., 2024), mathematical reasoning (Wei et al., 2022; Zhou et al., 2022), and code generation
(Li et al., 2023a). Recent advancements have enhanced the ICL capabilities of language models
through additional training procedures (Huang et al., 2022; Gu et al., 2023; Shi et al., 2024). Min
et al. (2022a) and Chen et al. (2022) perform meta-learning with in-context examples on a wide col-
lection of tasks, with the goal of adapting to a new task at inference time through few-shot in-context
examples. Other works have explored improving performance through more principled approaches

9
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to select in-context examples during inference (Zhang et al., 2022; Sorensen et al., 2022; Wang et al.,
2024c; Qin et al., 2024; Lee et al., 2024c). A simple and popular approach is to retrieve examples
that are most similar to the input (Liu et al., 2022; Rubin et al., 2022; Li et al., 2023c). Providing
in-context examples to re-ranking models has been studied in prior work (Drozdov et al., 2023), but
the potential of augmenting retrievers themselves by leveraging in-context examples remains un-
explored. Muennighoff et al. (2024) explored providing an in-context example out-of-the-box, but
showed an overall decrease in performance compared to zero-shot inference.

Retrieval Large language models pre-trained with autoregressive setups (Jiang et al., 2023; Dubey
et al., 2024) have shown remarkable performance when adapted to retrieval tasks (Wang et al.,
2024b; BehnamGhader et al., 2024), outperforming encoder-style retrievers (Izacard et al., 2022;
Wang et al., 2024a). Despite these advancements, a challenge that remains is the ability to tailor
retrieval systems to specific tasks or queries. To address this, a recent line of work explores incorpo-
rating instructions into retrieval by training models to use task-specific instructions along with the
query (Su et al., 2023; Asai et al., 2023). Oh et al. (2024) and Weller et al. (2024a) further propose
using instructions that are specific to each query. Another well-established technique in retrieval
is query expansion (Jagerman et al., 2023; Li et al., 2023b; Chen et al., 2024), where the query is
augmented with additional terms to enrich the embedding as a form of relevance feedback (Lv &
Zhai, 2009). Recent efforts have focused on applying LLMs to expand the original query before
retrieval (Wang et al., 2023; Shen et al., 2024). These techniques are not mutually exclusive, and
can be integrated with our approach.

8 CONCLUSION

In this paper, we explored augmenting in-context examples to retrieval models. Building on the lim-
itations of existing retriever models in following in-context examples, we introduced RARe, a sim-
ple strategy that equips retrievers with the ability to leverage in-context examples by training with
semantically similar in-context examples. Through detailed experiments and analyses, we demon-
strated that RARe consistently improves performance across various architectures and downstream
retrieval tasks, demonstrating the effectiveness of in-context learning for retriever models.

9 LIMITATIONS AND FUTURE WORK

Similar to in-context settings in autoregressive models, a limitation of our approach is the require-
ment for a set of in-context examples in the form of (q, d+) pairs at inference time. RARe also
introduces additional latency at inference time due to the encoding of in-context examples in the
augmented query. This latency becomes more pronounced with longer documents, resulting in cor-
respondingly extended queries. While the overhead is particularly significant for small indexes, it
diminishes as the size of the index grows. To address these challenges, future research could explore
several avenues, such as using efficient long-context retrievers (Saad-Falcon et al., 2024; Zhang
et al., 2024) as a backbone, or developing extractive and/or abstractive compression techniques on in-
context documents to reduce query length. In this work, we used BM25 due to its lightweight nature
to retrieve nearest neighbour examples. Future work could explore stronger models and approaches
to reduce latency. Our current experiments are limited to English-language tasks, with potential to
expand the scope to multilingual settings. Future work could explore curating synthetic data, an in-
creasingly popular area of study for embedding models (Lee et al., 2024b; Wang et al., 2024b; Weller
et al., 2024b), but for training with in-context examples. Future work could also explore developing
new contrastive objectives to provide better signals during training with in-context examples.
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Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Jia Li, Ge Li, Chongyang Tao, Jia Li, Huangzhao Zhang, Fang Liu, and Zhi Jin. Large language
model-aware in-context learning for code generation, 2023a. URL https://arxiv.org/
abs/2310.09748.

Minghan Li, Honglei Zhuang, Kai Hui, Zhen Qin, Jimmy Lin, Rolf Jagerman, Xuanhui Wang,
and Michael Bendersky. Generate, filter, and fuse: Query expansion via multi-step keyword
generation for zero-shot neural rankers. arXiv preprint arXiv:2311.09175, 2023b.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang,
and Xipeng Qiu. Unified demonstration retriever for in-context learning. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), Toronto, Canada, July 2023c. Association for Computational Linguistics. URL https:
//aclanthology.org/2023.acl-long.256.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for GPT-3? In Proceedings of Deep Learning Inside Out (Dee-
LIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Ar-
chitectures, Dublin, Ireland and Online, May 2022. Association for Computational Linguistics.
URL https://aclanthology.org/2022.deelio-1.10.

Yuanhua Lv and ChengXiang Zhai. A comparative study of methods for estimating query language
models with pseudo feedback. In Proceedings of the 18th ACM Conference on Information and
Knowledge Management, CIKM ’09, pp. 1895–1898, New York, NY, USA, 2009. Association for
Computing Machinery. ISBN 9781605585123. doi: 10.1145/1645953.1646259. URL https:
//doi.org/10.1145/1645953.1646259.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval, 2023. URL https://arxiv.org/abs/2310.08319.

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih
Yavuz. Sfr-embedding-mistral:enhance text retrieval with transfer learning. Salesforce
AI Research Blog, 2024. URL https://blog.salesforceairesearch.com/
sfr-embedded-mistral/.

Aristides Milios, Siva Reddy, and Dzmitry Bahdanau. In-context learning for text classification with
many labels. In Proceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation
in NLP, Singapore, December 2023. Association for Computational Linguistics. URL https:
//aclanthology.org/2023.genbench-1.14.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn
in context. In Proceedings of the 2022 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Seattle, United States, July
2022a. Association for Computational Linguistics. URL https://aclanthology.org/
2022.naacl-main.201.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?,
2022b. URL https://arxiv.org/abs/2202.12837.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh Hajishirzi. Reframing
instructional prompts to GPTk’s language. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (eds.), Findings of the Association for Computational Linguistics: ACL 2022, pp.
589–612, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/
v1/2022.findings-acl.50. URL https://aclanthology.org/2022.findings-acl.
50.

13

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2310.09748
https://arxiv.org/abs/2310.09748
https://aclanthology.org/2023.acl-long.256
https://aclanthology.org/2023.acl-long.256
https://aclanthology.org/2022.deelio-1.10
https://doi.org/10.1145/1645953.1646259
https://doi.org/10.1145/1645953.1646259
https://arxiv.org/abs/2310.08319
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://aclanthology.org/2023.genbench-1.14
https://aclanthology.org/2023.genbench-1.14
https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.naacl-main.201
https://arxiv.org/abs/2202.12837
https://aclanthology.org/2022.findings-acl.50
https://aclanthology.org/2022.findings-acl.50


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text em-
bedding benchmark. In Andreas Vlachos and Isabelle Augenstein (eds.), Proceedings of the 17th
Conference of the European Chapter of the Association for Computational Linguistics, pp. 2014–
2037, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.eacl-main.148. URL https://aclanthology.org/2023.eacl-main.148.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. Generative representational instruction tuning, 2024. URL https://arxiv.
org/abs/2402.09906.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. MS MARCO: A human generated machine reading comprehension dataset. CoRR,
abs/1611.09268, 2016. URL http://arxiv.org/abs/1611.09268.

Hanseok Oh, Hyunji Lee, Seonghyeon Ye, Haebin Shin, Hansol Jang, Changwook Jun, and Minjoon
Seo. Instructir: A benchmark for instruction following of information retrieval models, 2024.
URL https://arxiv.org/abs/2402.14334.

Chengwei Qin, Aston Zhang, Chen Chen, Anirudh Dagar, and Wenming Ye. In-context learn-
ing with iterative demonstration selection, 2024. URL https://arxiv.org/abs/2310.
09881.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, November 2016.
URL https://aclanthology.org/D16-1264.

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Found. Trends Inf. Retr., 3(4):333–389, apr 2009. ISSN 1554-0669. URL https://doi.org/
10.1561/1500000019.

Anna Rogers, Olga Kovaleva, Matthew Downey, and Anna Rumshisky. Getting closer to ai complete
question answering: A set of prerequisite real tasks. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 8722–8731, 2020.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Seattle, United States, July
2022. Association for Computational Linguistics. URL https://aclanthology.org/
2022.naacl-main.191.

Jon Saad-Falcon, Daniel Y. Fu, Simran Arora, Neel Guha, and Christopher Ré. Benchmarking and
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APPENDIX

The appendix is organized as follows:

• In Appendix A, we present details on additional data preprocessing and other training de-
tails.

• In Appendix B, we present additional results and experiments.
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A EXPERIMENTAL DETAILS

A.1 TRAINING DETAILS

Hyperparameters For fine-tuning Llama-3-8B, we follow the setting outlined in Ma et al. (2023).
We train on 4 H100 GPUs with per-device batch size 8 and gradient accumulation steps 4. We
apply LoRA (Hu et al., 2021) with r=32, temperature of 0.01, learning rate 1e-4 with 100 warmup
steps. We use a sequence length of 512 for documents and 1024 for queries as in-context augmented
queries are longer. For RARe we use a mixture of 70% examples with in-context examples and 30%
without Table 16.

When fine-tuning existing retriever models (E5-Mistral-Instruct, LLM2Vec-Llama-3-8B-
Supervised), we follow a setting similar to BehnamGhader et al. (2024). We train on 8
H100 GPUs with a largest possible per-device batch size of 32 along with 2 gradient accumulation
steps. We consider a random subset of 100K examples from the public E5 dataset mixture (Springer
et al., 2024; Wang et al., 2024b). We use a learning rate of 2e-4, maximum sequence length 1024,
warmup ratio 0.1 for 1 epoch. For E5-Mistral-Instruct, we apply LoRA (Hu et al., 2021) r=16, and
r=4 for LLM2Vec-Llama-3-8B-Supervised since a higher rank was leading to severe overfitting on
the instruction baseline.

A.2 DATA PROCESSING

RAR-b Since RAR-b benchmark provides only test split, we parse the original training data
for each dataset to use as in-context examples. We exclude datasets without any training splits
and 2 datasets that were a mixture of multiple tasks or datasets, thereby being difficult to parse.
This results in 8 datasets to evaluate on. We preprocess the training split to match the for-
mat of RAR-b test split, without excluding any instances. An exception is made for α-NLI,
where there were multiple identical instances. Therefore, we removed such duplicates, result-
ing in 72,046 in-context candidates. Furthermore, some RAR-b queries are composed of sen-
tences with (multiple) indicators (e.g., Start:, End:). To address this, we make a minor modifica-
tion in formatting, enclosing the queries in brackets. The final query representation is q

inst+ic
=

Instruct: {t}; Query: [{qic1 }]; Document: {dic+1 }⋯; Query: [{q}].

Inference Algorithm Algorithm 2 provides a detailed outline of inference with RARe.

Promptriever Promptriever(Weller et al., 2024b) employs 10 different prompts and reports the
highest score for each dataset. We apply the prompt that works the best (outperforms 5/15 datasets),
which is as follows: A document that meets these criteria is considered
relevant, while a document that does not meet these criteria is
considered non-relevant.

B ADDITIONAL EXPERIMENTS

B.1 PERFORMANCE ON BEIR AND RAR-B

Table 7 and Table 8 provide detailed numbers on each dataset from BeIR and RAR-b respectively
when training from retriever checkpoints. Table 9 and Table 10 provide detailed numbers on each
dataset from BeIR and RAR-b respectively when training from decoder-only LLMs.

B.2 EFFICIENCY EVALUATION

Table 11 provides a breakdown of latency on additional datasets.

B.3 CHOICE OF IN-CONTEXT EXAMPLES

Table 13 provides detailed numbers for varying in-context examples on all OOD BeIR tasks. Ta-
ble 15 provides detailed numbers for various prompt formats on all OOD BeIR tasks.
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Algorithm 2: RARe - Inference

Input: A list of test queries Dtest, Corpus C, embedder E(⋅), the number of in-context
examples k, Training dataset DT , task instruction t.

1: Ce ← Construct document index as E(d),∀d ∈ C.
2: for i ∈ [0, len(Dtest)] do
3: q = D

test[i]
4: In-Context Example Retrieval:
5: {qic1 , q

ic
2 , . . . , q

ic
k }← Retrieve nearest neighbor queries of q from DT using BM25

6: {dic+1 , d
ic+
2 , . . . , d

ic+
k } ← {d+ ∶ (q′, d+) ∈ D, q

′
∈ {qic1 , . . . , q

ic
k }}

7: Dic
← {(qic

1 , d
ic+
1 ), . . . , (qic

k , d
ic+
k )}

8: Query Augmentation / Encoding:
9: q

inst+ic
= Instruct: {t}; Query: {qic1 }; Document: {dic+1 }⋯; Query: {q}

10: eq ← E(qinst+ic
test )

11: Prediction:
12: d = argmaxd∈C exp(cos(eq, ed))
13: Dpred.append(d)
Output: Predictions Dpred.

Table 7: Performance (nDCG@10) on BeIR (Thakur et al., 2021) when fine-tuning retriever model
on E5 dataset. We report a breakdown of performance on In-Domain (ID) and Out-of-Domain
(OOD) tasks on BeIR. * indicates statistical significance over Instruct (p < 0.05) using the paired
bootstrap test. For the Average score, we compute the overall p-value using Fisher’s method.

LLM2Vec-Llama-3-8b-Supervised E5-Mistral-Instruct

Category Dataset Base Instruct RARe Base Instruct RARe

Eval Format q
inst

q
inst

q
inst

q
inst+ic

q
inst

q
inst

q
inst

q
inst+ic

ID

FEVER 90.20 88.12 88.43 86.62 87.84 91.50 90.18 90.48
HotpotQA 71.76 72.50 73.83 79.09* 75.72 73.91 72.18 75.95*
NQ 64.21 63.63 65.00 66.13* 63.53 67.44 68.15 67.66
QuoraRetrieval 87.16 87.85 87.88 87.63 89.61 89.82 89.59 88.95
MSMARCO 43.24 40.19 40.77 38.88 43.06 41.89 41.88 41.88

OOD

ArguAna 62.78 60.51 59.54 57.05 61.65 61.19 62.90 60.87
ClimateFEVER 34.27 34.49 34.67 34.73* 38.35 39.03 38.99 37.50
CQADupStack 48.25 49.76 49.10 49.93 42.97 44.82 45.57 48.46*
DBPedia 48.34 48.61 48.41 49.09* 48.89 48.92 49.24 49.65*
FiQA2018 55.33 52.99 54.26 52.82 56.81 57.39 56.33 57.31
NFCorpus 41.83 41.92 41.61 41.84 38.58 40.99 41.19 42.28*
SCIDOCS 22.96 23.97 22.92 23.35 16.32 17.94 18.71 20.19*
SciFact 78.22 76.89 77.70 81.77* 76.42 77.28 77.11 84.79*
Touche2020 20.50 22.11 22.71 19.54 26.27 29.35 27.56 28.7
TRECCOVID 80.34 68.37 78.55 82.78* 87.03 72.89 77.03 79.58

Average 56.63 55.35 56.36 56.76* 56.87 56.96 57.11 58.28*

B.4 MIXTURE OF TRAINING DATA

In Table 16, we analyze the impact of training with only in-context examples when starting from
decoder-only LLMs. As opposed to starting from existing retriever models, which have been trained
without in-context examples, we observe that performance drops in the instruction-only setting. This
can be largely mitigated by considering a mixture of in-context and instruction-only queries.
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Table 8: Performance on reasoning-focused IR benchmark RAR-b (Xiao et al., 2024) when fine-
tuning existing retriever models. * indicates statistical significance over Instruct (p < 0.05) using
the paired bootstrap test. For the Average score, we compute the overall p-value using Fisher’s
method.

LLM2Vec-Llama-3-8b-Supervised E5-Mistral-Instruct

Dataset Base Instruct RARe Base Instruct RARe
Eval Format q

inst
q

inst
q

inst
q

inst+ic
q

inst
q

inst
q

inst
q

inst+ic

ARC-C 18.81 18.77 18.28 17.02 19.00 20.37 22.72 26.44*
α-NLI 26.59 27.29 25.25 23.66 26.04 25.70 24.19 23.23
HellaSwag 34.32 34.19 34.19 33.29 35.38 35.99 35.07 36.29*
PIQA 33.57 37.07 38.12 39.72* 39.80 39.35 37.22 41.35*
Quail 6.83 6.06 5.57 4.25 8.40 10.94 15.34 14.69
SiQA 6.99 5.34 4.39 4.55 5.66 5.45 5.75 6.15
TempReason-L1 5.24 5.89 5.55 7.87* 3.60 4.71 4.55 4.67
WinoGrande 40.02 52.88 48.47 54.44* 39.48 50.41 44.26 53.50*

Average 21.55 23.44 22.48 23.10 22.17 24.12 23.64 25.79*

Table 9: Performance (nDCG@10) on BeIR when training decoder-only models. * indicates sta-
tistical significance over RepLLaMA (p < 0.05) using the paired bootstrap test. For the Average
score, we compute the overall p-value using Fisher’s method.

Dataset
Llama2 Llama3 Llama-3.1-Instruct

RepLLaMA RepLLaMA RARe RepLLaMA Promptreiver RARe
Eval Format q

inst
q

inst
q

inst+ic
q

inst
q

inst
q

inst
q

inst+ic

ArguAna 48.60 52.83 49.48 51.38 58.90 54.77 52.83
ClimateFEVER 29.30 32.52 32.12 33.13 29.80 35.91 34.24*
CQADupStack 37.91 42.59 42.96 41.58 42.18 42.55 43.31*
DBPedia 44.80 45.62 45.79 44.73 46.00 45.87 45.95*
FEVER 82.90 81.79 83.66 79.22 85.50 80.05 81.84*
FiQA2018 45.00 44.31 47.13 44.50 47.20 44.36 46.20*
HotpotQA 68.80 72.24 72.72 70.90 71.70 70.55 74.01*
MSMARCO 42.00 43.56 44.77 43.67 42.70 41.65 42.93*
NFCorpus 36.00 37.73 39.34 38.77 38.50 38.16 39.74*
NQ 63.00 62.70 65.96 61.09 63.80 60.92 65.20*
Quora 86.00 88.34 87.65 86.84 87.30 87.95 87.65*
SCIDOCS 16.10 19.66 19.45 19.26 20.80 20.02 19.52
SciFact 75.30 75.02 77.20 75.38 77.50 74.59 76.54
TRECCOVID 83.90 83.15 85.76 83.15 84.50 77.52 85.30*
Touche2020 34.10 27.84 32.89 30.77 31.70 25.47 32.38

Average 52.91 53.99 55.13 53.62 55.21 53.36 55.18*
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Table 10: Performance (nDCG@10) on datasets from RAR-b when training decoder-only models.
* indicates statistical significance over Promptriever (p < 0.05) using the paired bootstrap test. For
the Average score, we compute the overall p-value using Fisher’s method.

Dataset
Llama2 Llama3 Llama-3.1-Instruct

RepLLaMA RepLLaMA RARe RepLLaMA Promptreiver RARe
Eval Format q

inst
q

inst
q

inst+ic
q

inst
q

inst
q

inst
q

inst+ic

ARC-C 11.79 11.65 13.48 11.68 14.63 13.24 15.02
α-NLI 25.40 24.35 30.38 24.96 24.70 27.34 31.58*
HellaSwag 30.83 31.47 30.27 31.03 32.57 31.42 28.81
PIQA 31.56 32.84 34.12 33.42 34.80 34.23 35.59*
Quail 6.40 6.21 5.98 5.71 7.80 6.92 6.91
SiQA 2.82 2.61 3.87 2.75 3.53 2.18 3.14
TempReason-L1 1.49 1.75 3.61 2.05 4.32 4.84 6.59*
WinoGrande 51.58 37.11 57.01 42.01 45.25 44.72 61.69*

Average 20.23 18.50 22.34 19.20 20.95 20.61 23.67*

Table 11: Latency breakdown (in milliseconds per query) of each stage in the retrieval pipeline for
q

inst and q
inst+ic evaluation settings. # Corpus denote the number of documents and Avg Q len.

denote the average number of query tokens split by whitespace. Table 11 in the Appendix provides
numbers on additional datasets.

Dataset # Corpus Eval Setting Avg Q len. NN Query Search Total Inc.

SciFact 5183 q
inst 12.5 0 15.07 2.03 17.10 -

q
inst+ic 1250.7 0.83 707.83 2.03 710.70 41.56×

SCIDOCS 25657 q
inst 9.4 0 11.29 5.74 17.03 -

q
inst+ic 901.1 0.67 354.82 5.79 361.28 21.21×

CQADupStack 38100 q
inst 8.6 0 9.13 7.75 16.88 -

q
inst+ic 678.2 1.15 466.23 7.79 475.17 28.15×

ClimateFEVER 5416593 q
inst 20.2 0 16.98 1124.36 1141.34 -

q
inst+ic 831.3 2.31 424.60 1123.02 1549.93 1.36×

Table 12: Impact of the number of in-context examples (k) at inference time. k = 5 during
training. All results are on E5-Mistral-Instruct. In general, performance increases when increasing
the number of examples, and the optimal number of examples can vary by task.

# Examples

Dataset Instruct (0) 0 1 3 5 10

ArguAna 61.19 62.90 61.24 60.99 61.18 60.37
ClimateFEVER 39.03 38.99 38.27 37.97 37.50 37.67
CQADupStack 44.82 45.57 47.49 48.33 48.46 48.48
DBPedia 48.92 49.24 49.79 48.34 49.65 49.82
FiQA2018 57.39 56.33 57.61 57.42 57.31 57.38
NFCorpus 40.99 41.19 41.48 42.10 42.28 42.29
SCIDOCS 17.94 18.71 19.83 20.17 20.19 20.20
SciFact 77.28 77.11 83.56 84.45 84.79 85.12
Touche2020 29.35 27.56 27.53 27.70 28.70 30.77
TRECCOVID 72.89 77.03 76.96 78.99 79.58 78.77

Average 48.98 49.46 50.38 50.65 50.96 51.09
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Table 13: Impact of the number of in-context examples (k) during training and inference. All
results are on E5-Mistral-Instruct. In general, performance increases when increasing the number
of examples, and the optimal number of in-context examples can vary by task.

# Examples

Dataset Instruct (0) 0 1 3 5 10

Arguana 61.19 62.90 60.47 62.98 60.87 58.85
ClimateFEVER 39.03 38.99 37.94 36.45 37.50 36.54
CQADupStack 44.82 45.57 46.76 47.12 48.46 48.92
DBPedia 48.92 49.24 47.70 49.05 49.65 47.95
FiQA2018 57.39 56.33 56.07 57.08 57.31 57.03
NFCorpus 40.99 41.19 40.67 40.77 42.28 42.24
SCIDOCS 17.94 18.71 20.01 19.28 20.19 21.54
SciFact 77.28 77.11 81.47 83.71 84.79 87.61
Touche2020 29.35 27.56 29.78 27.12 28.70 28.29
TRECCOVID 72.89 77.03 78.95 73.25 79.58 86.11

Average 48.98 49.46 50.18 48.83 51.11 53.16

Table 14: In-Context Format Comparing variants of in-context example format on E5-Mistral-
Instruct during inference only. Training is done with the Regular format. Instruct refers to the
baseline which does not use any in-context examples.

Instruct RARe

Dataset - Query-Only Doc-only Shuffle-NC Shuffle-C Regular

ArguAna 61.19 57.36 60.35 55.64 60.49 60.87
ClimateFEVER 39.03 38.35 38.32 37.44 37.84 37.50
CQADupStack 44.82 39.56 48.43 47.70 48.27 48.46
DBPedia 48.92 49.14 49.69 49.72 50.04 49.65
FiQA2018 57.39 55.67 56.85 56.64 57.41 57.31
NFCorpus 40.99 41.00 42.09 42.02 41.92 42.28
SCIDOCS 17.94 19.06 20.06 19.98 20.25 20.19
SciFact 77.28 77.46 81.88 81.51 82.20 84.79
Touche2020 29.35 27.04 29.02 28.60 29.31 28.70
TRECCOVID 72.89 75.11 79.97 79.07 80.03 79.58

Average 48.98 47.98 50.67 49.83 50.78 50.93

Table 15: In-Context Format Comparing variants of in-context example format on E5-Mistral-
Instruct. Instruct refers to the baseline which does not use any in-context examples.

Instruct RARe

Dataset - Query-Only Doc-Only Shuffle-NC Shuffle-C Regular

ArguAna 61.19 58.88 57.54 60.17 58.97 60.87
ClimateFEVER 39.03 36.21 35.59 30.83 35.71 37.50
CQADupStack 44.82 46.66 48.28 45.78 47.97 48.46
DBPedia 48.92 49.98 49.08 50.93 50.24 49.65
FiQA2018 57.39 54.44 56.02 54.25 55.98 57.31
NFCorpus 40.99 41.42 41.62 41.17 41.78 42.28
SCIDOCS 17.94 20.04 20.12 20.35 20.11 20.19
SciFact 77.28 78.84 79.80 80.70 80.51 84.79
Touche2020 29.35 28.09 29.01 29.18 28.97 28.70
TRECCOVID 72.89 79.54 83.29 82.14 82.97 79.58

Average 48.98 49.41 50.04 49.55 50.32 50.93
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Table 16: Performance (nDCG@10) on datasets from the BeIR benchmark Thakur et al., 2021 when
training decoder-only model (Llama3). Applying RARe with only in-context examples can lead to
degradation of performance in the zero-shot setting (qinst), but this is easily mitigated my including
a mixture of qinst and q

inst+ic data (30% and 70%) respectively.

Training Eval NQ Quora NFCorpus SciFact SCIDOCS FiQA2018 CQA Average

RepLLaMA-qinst
q

inst 62.70 88.34 37.73 75.02 19.66 44.31 42.59 52.91

q
inst 39.64 88.39 35.42 74.52 21.04 30.44 37.74 46.74

RARe-qinst+ic

q
inst+ic 65.19 86.79 38.87 78.41 19.70 46.58 43.75 54.18
q

inst 63.68 87.84 38.06 76.07 20.11 46.02 42.99 53.54
RARe-qinst + q

inst+ic

q
inst+ic 65.96 87.65 39.34 77.20 19.45 47.13 42.96 54.24
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Figure 5: Retrieved vs. Random In-context Examples. Change in performance (∆nDCG@10)
on E5-Mistral-Instruct with RARe (qinst+ic) from the baseline setting (qinst both during training and
evaluation time). Using retrieved examples during training and/or inference enhance model perfor-
mance in 7/10 datasets.
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Figure 6: Change in performance (∆nDCG@10) from the base model (E5-Mistral-Instruct) for
varying similarity between the closest in-context example query and target query (Score@Top-1).
Incorporation of semantically similar examples is beneficial on 3/5 datasets.

22


	Introduction
	Setup & Existing Approaches
	Our Method – RARe
	Experimental Setup
	Fine-Tuning
	Evaluation

	Results
	Training from LLM Checkpoints
	Training from Retriever Checkpoints

	Discussions and Analysis
	Choice of In-context Examples
	Efficiency Analysis

	Related Work
	Conclusion
	Limitations and Future Work
	Experimental Details
	Training Details
	Data Processing

	Additional Experiments
	Performance on BeIR and RAR-b
	Efficiency Evaluation
	Choice of In-Context Examples
	Mixture of Training Data


