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A B S T R A C T 

Fast and accurate treatment of collisions in the context of modern N -body planet formation simulations remains a challenging 

task due to inherently complex collision processes. We aim to tackle this problem with machine learning (ML), in particular via 
residual neural networks. Our model is moti v ated by the underlying physical processes of the data-generating process and allows 
for flexible prediction of post-collision states. We demonstrate that our model outperforms commonly used collision handling 

methods such as perfect inelastic merging and feed-forward neural networks in both prediction accuracy and out-of-distribution 

generalization. Our model outperforms the current state of the art in 20/24 experiments. We provide a data set that consists of 
10164 Smooth Particle Hydrodynamics (SPH) simulations of pairwise planetary collisions. The data set is specifically suited 

for ML research to impro v e computational aspects for collision treatment and for studying planetary collisions in general. We 
formulate the ML task as a multi-task regression problem, allowing simple, yet efficient training of ML models for collision 

treatment in an end-to-end manner. Our models can be easily integrated into existing N -body frameworks and can be used within 

our chosen parameter space of initial conditions, i.e. where similar-sized collisions during late-stage terrestrial planet formation 

typically occur. 

Key words: hydrodynamics – methods: numerical – astronomical data bases: miscellaneous – celestial mechanics – planets and 

satellites: composition – planets and satellites: formation. 
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 I N T RO D U C T I O N  

.1 Planet formation background 

lanet formation is inherently connected to collisions on all scales,
rom μm-sized dust grains up to planet-sized bodies. The precise
echanisms of early planetary growth generally depend on the

urrent conditions in the protoplanetary disc and the amount and
dominant) size of a vailable b uilding blocks (e.g. Kokubo & Ida
002 ; McNeil, Duncan & Levison 2005 ; Johansen & Lambrechts
017 ). Particularly for terrestrial planets, our current understanding
uggests that their final phase of accretion comprises growth via
airwise collisions of up to planet-sized bodies, lasting on the order of
ens to hundreds of Myr (e.g. Chambers & Wetherill 1998 ; Kokubo &
da 1998 ; Agnor, Canup & Levison 1999 ; Chambers 2001 ; Kokubo,
ominami & Ida 2006 ). This is supported by the long accretion

imes of terrestrial planets in the Solar System, as well as features
ike Mercury’s high bulk density, Earth’s large moon, or Mars’
emispheric dichotomy, all believed to be the consequences of large-
 E-mail: winter@murena.io (PMW); christoph.burger@uni-tuebingen.de 
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cale collisions of roughly similar-sized bodies. Indirect evidence
or such encounters has also been found in extrasolar systems (e.g.

yatt & Jackson 2016 ) in the form of observed infrared excess
aused by warm dust, interpreted as collision debris. These large
ollision events are of particular interest as they shape the final
haracteristics of terrestrial planets, and likely contribute to the broad
ompositional diversity of observed low-mass exoplanets (Marcus
t al. 2009 , 2010 ; Inamdar & Schlichting 2016 ; Bonomo et al. 2019 ).
his phase of planet formation naturally also leads to radial mixing
f material and allows for (dynamical and collisional) transport of
olatiles, such as water to the inner parts of the system, and especially
o potential planets forming in the habitable zone (Morbidelli et al.
000 ; Izidoro et al. 2013 ; O’Brien et al. 2014 , 2018 ; Haghighipour &
inter 2016 ; Burger, Bazs ́o & Sch ̈afer 2020b ). 
Modelling of this final phase of planet formation is typically based

n N -body simulations, where mainly the gravitational interaction of
undreds to thousands of bodies is followed for up to few hundred
yr (e.g. Chambers 2013 ; Fischer & Ciesla 2014 ; O’Brien et al.

014 ; Quintana & Lissauer 2014 ; Quintana et al. 2016 , as some
f the more recent work). As planet formation models become
ore sophisticated and aim to study more than the most basic

utcome quantities, collision modelling has to keep up in order to
 v oid systematic errors caused by too crude approximations of the
nderlying physics. 
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Figure 1. Exemplary snapshots at three different times of a SPH simulation 
of a planet–scale collision. The Mars-sized projectile hits the Earth-sized 
target at an impact angle of 43 ◦ and an impact velocity of 1.3 times the 
mutual escape velocity, resulting in a hit-and-run outcome. Colours indicate 
the different materials – an iron core, a silicate mantle, and a water/ice shell. 
Bodies are cut into halves for visualization. We perform 10 164 collision 
simulations, co v ering a large parameter space of initial conditions. 
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.2 The collision treatment problem 

ccurate modelling of major collisions among large, up to planet- 
ized bodies plays an important role in understanding the formation, 
 volution, and di versity of planetary systems. The prediction task for
wo-body collisions is well-defined: Given the initial conditions, such 
s collision geometry and object properties, we ask for the outcome 
tate at a specific later point in time. 

Up to relatively recently, collisions in planet formation scenarios 
ere typically modeled by assuming complete accretion in all 

ncounters (e.g. Raymond, Quinn & Lunine 2004 , 2007 ; Haghigh- 
pour & Raymond 2007 ; Izidoro et al. 2013 ; Fischer & Ciesla 2014 ;
’Brien et al. 2014 ; Quintana & Lissauer 2014 ), often referred to

s perfect inelastic merging (PIM). This approach is simple and 
ast, but gives reasonably accurate predictions only for the lower 
nd of the spectrum of characteristic collision velocities, or for 
ar ge tar get-to-impactor mass ratios. In general, collisions between 
arge and roughly similar-sized bodies can result in a diverse range 
f outcomes (e.g. Leinhardt & Stewart 2012 ), and often include 
ignificant material losses (Haghighipour & Maindl 2022 ). This 
an affect bulk and chemical composition (e.g. Carter et al. 2015 ;
wyer, Nimmo & Chambers 2015 ; Carter et al. 2018 ), and even
ore so for volatile constituents, especially at or close to the surface

Marcus et al. 2010 ; Maindl et al. 2014 , 2017 ; Burger, Maindl &
ch ̈afer 2018 ; Kegerreis et al. 2020 ; Burger et al. 2020b ). In addition,
ollisions among similar-sized bodies frequently result in two large 
nd gravitationally unbound survivors, instead of a single dominant 
ne, as e x emplified in Fig. 1 . These so-called hit-and-run events
onstitute up to half of all collision outcomes (e.g. Chambers 2013 ;
lement et al. 2019 ; Burger et al. 2020b ). This can prolong planetary
ccretion considerably, naturally leading to a higher o v erall number 
f collisions, and resulting in very different behaviour in terms of
aterial loss and transfer between colliding objects (Burger et al. 

018 ; Burger, Maindl & Sch ̈afer 2020a ; Burger et al. 2020b ). 
Several approaches have been developed to account for this diverse 

ange of possible collision outcomes. Genda et al. ( 2017 ) developed
caling laws for collisional erosion with a focus towards smaller 
rojectile-to-target mass ratios down to 1:10 000, where outcomes 
re generally dominated by a single large surviv or. Zhou, Dv orak &
hou ( 2021 ) propose an approach that also e xclusiv ely assumes a
ingle surviv or, b ut includes randomly picked material losses, based 
n statistics of a large number of Smooth Particle Hydrodynamic 
SPH) collision simulations. Crespi et al. ( 2021 ) suggest an approach
ased on a catalogue of SPH collision outcomes, focusing on the 
istrib ution of smaller -scale collision fragments. A recent framework 
ased on semi-analytical scaling laws (Leinhardt & Stewart 2012 ; 
tewart & Leinhardt 2012 ; Leinhardt et al. 2015 ) has been applied

n various planet formation studies (e.g. Chambers 2013 ; Bonsor 
t al. 2015 ; Carter et al. 2015 ; Quintana et al. 2016 ; Carter et al.
018 ; Clement et al. 2019 ). Albeit fast and relatively straightforward
o implement, its prediction accuracy for more complex behaviour, 
ik e the f ate of surf ace volatiles, or individual material losses and
ransfer in hit-and-run, is naturally limited (Burger et al. 2018 ). 
enda, Kokubo & Ida ( 2011 ), Genda et al. ( 2017 ), and Burger et al.

 2020b ) resolve collisions in N -body planet formation simulations
y running dedicated SPH simulations for each event on the fly, 
hich is the most accurate approach, but computationally complex 

nd e xpensiv e. 
To summarize, depending on the problem at hand and the available 

omputational resources, one has to make design choices which 
ethod to use. Both, simple problems and/or sufficient computa- 

ional resources allow the use of sophisticated collision treatment 

p

ethods, whereas complex problems and/or limited resources re- 
uire certain trade-offs between prediction accuracy and computation 
ime. F or man y applications, it would be desirable to choose and
djust this trade-off more flexibly. Although analytic and heuristic 
pproaches are efficient, they are typically neither very accurate, 
or allow adjusting the accuracy-speed trade-off. In contrast, full 
ydrodynamic simulations for individual collisions are much more 
ostly, but yet very accurate. In this paper, we aim to combine all
hree properties, yielding an efficient, still accurate and flexible 
pproach, where flexible means that it can be easily adapted to
ifferent accuracy-speed trade-offs. 

.3 Machine learning for planetary collisions 

he recent progress of cheap and efficient hardware caused a renais-
ance of machine learning (ML), enabling to solv e comple x tasks
n different fields such as computer vision (Krizhevsk y, Sutskev er &
inton 2017 ) and natural language processing (Brown et al. 2020 )
ith unprecedented accuracy and speed. Recently, Tamayo et al. 

 2020 ) and Cranmer et al. ( 2021 ) applied ML for predicting long-
erm stability and dissolution of compact multiplanet systems, 
ndicating that ML may serve as an efficient tool for fast and accurate
pproximation of astrodynamical processes. 

Recurrent neural networks (RNNs; Jordan 1986 ; Pearlmutter 
989 ; Elman 1990 ) have been applied for approximating hydro-
ynamical simulations (Wiewel, Becher & Th ̈urey 2019 ) and astro-
hysical simulations such as 2D mantle convection (Agarwal et al. 
MNRAS 520, 1224–1242 (2023) 
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1 Based on new (yet unpublished) N -body + SPH simulations in a similar 
dynamical environment. 
2 The ‘ N -body data set’ based on the simulations by Burger et al. ( 2020b ) 
provides data on collision parameters before contact, and basic data on the 
final state after the collision, like masses and composition of the two largest 
remnants, but no dynamical information (positions and velocities) and no 
data on intermediate states. Along with our other data and tools, it is available 
at ht tps://github.com/lit tleblacksheep/csv/tree/main/misc . 
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021 ). Several works successfully demonstrated the applicability
nd usefulness of ML for planetary collision treatment, opening
p a promising research direction for computational astrophysics:
alencia, Paracha & Jackson ( 2019 ) apply gradient boosting re-
ression trees (Breiman et al. 1984 ; Friedman 2001 ), Gaussian
rocesses (GPs; Rasmussen & Williams 2005 ), and a nested method
or classifying collision scenarios and regressing the largest remnant
ass. Cambioni et al. ( 2019 ) use a multiclass support-vector machine

Cortes & Vapnik 1995 ; Hearst et al. 1998 ) for the classification
f different collision scenarios. They apply a small, three-layered
eed-forward neural network (FFN; Rosenblatt 1961 ; Ivakhnenko &
apa 1965 ) to regress accretion efficiencies, i.e. the mass of the

argest remnant. Cambioni et al. ( 2021 ) extend this work and include
urrogate models for predicting core mass-fractions of the largest and
econd-largest remnants. Emsenhuber et al. ( 2020 ) extend the work
rom Cambioni et al. ( 2019 ) to additionally predict orbital parameters
f the two largest remnants with a separate regressor, resulting in a set
f models that can be directly incorporated into N -body frameworks
or collision treatment. Ho we ver, this approach is limited to the main
ollision plane and does not allow prediction of orbital inclinations
nd longitudes of ascending nodes. The abo v e-mentioned works use
he SPH data from Reufer et al. ( 2012 ) that consists of collisions
etween non-rotating, differentiated iron-silicate bodies. 

Timpe et al. ( 2020b ) establish a high-quality data set that consists
f 14 856 collisions between differentiated, rotating bodies (Timpe
t al. 2020a ). The y apply a two-step classification-re gression ap-
roach to predict post-collision properties. They study several dif-
erent methods for collision treatment and find data-driven methods
o outperform non-data driven methods. Gradient-boosted decision
rees and FFNs are used for both classification and regression,
hereas polynomial chaos expansion (Wiener 1938 ) and GPs are

tudied for re gression only. The y train different regressors for each
ndividual post-impact property, and predict a variety of properties
f the largest and second-largest remnant, and the remaining debris.
FNs and XGBoost (Chen & Guestrin 2016 ) perform best amongst
ata-driven methods. We regard that study as our closest related
ork. 
The o v erall goal of our work is to impro v e the prediction of

lanetary collision outcomes via ML models. In particular, this
ncludes minimizing systematic prediction errors as much as possible
y outperforming the current state of the art. We impro v e upon the
orks abo v e by pro viding a more general data set, reframing the ML

ask as a multi-task problem, and employing a simple, but problem-
dapted ML model for the prediction of planetary collision outcomes.
e train our model to predict masses, material fractions, positions,

nd velocities of the two largest post-collision remnants, and the
emaining debris. Our contributions are summarized as follows: 

(i) We perform e xtensiv e N -body simulations to determine realis-
ic initial conditions for planetary collisions. We base the choice of the
arameter space for our SPH data set on the outcome of the N -body
imulations. To that end, we provide a comprehensive data set that
onsists of 10 164 SPH simulations of pairwise planetary collisions.
e use between 20 and 50k SPH particles, which is relatively low

esolution compared to state-of-the-art simulations in astrophysics
ith up to several million SPH particles. Our data set co v ers typical

ollision setups and is the first of its kind to combine all essential ele-
ents for a comprehensive treatment of collisions, including realistic

bject models (differentiated and rotating bodies), detailed pre- and
ost-collision geometries, and temporal information. The data set
llows to study several generic topics, such as collision treatment in
 broad range of scenarios, inverse problems (e.g. the Moon-forming
NRAS 520, 1224–1242 (2023) 
mpact), and collisional accretion during planet formation. While our
ata set is in general comparable to the one provided by Timpe et al.
 2020b ), it additionally includes volatile (water) layers, which opens
p studies regarding collisional water/volatile transfer and loss, even
hough this is intended rather as a proof of concept in this work,

ainly because of the difficulty to accurately resolve such surface
ayers. 

(ii) In contrast to existing work, we follow a multi-task learning
pproach in the sense of multidimensional regression, in which a
ingle ML model learns to predict the entire post-collision state
ather than only specific, individual aspects of the state. Our ML
ask generalizes the collision treatment problem to 3D space, while
t the same time a v oiding the need for manual definition of class
oundaries for different collision scenarios. Existing approaches
ften formulate the task as a classification problem, requiring
omewhat arbitrary class definitions. We demonstrate that our multi-
ask learning approach leads to simple and computationally efficient
odels, while remaining relatively accurate compared to single-task

earning. 
(iii) We propose an ML model that helps modelling of temporal

ynamics by evolving system states in an autore gressiv e manner.
his closely resembles the data generation process, i.e. classical
umerical solvers that iteratively solve the underlying hydrodynamic
quations. This includes handling both, the properties of the colliding
odies and the spatio-temporal evolution of the system. Our model
llows for flexible prediction of post-collision states at different
imes, and can be employed for collision treatment within existing
 -body frameworks. We demonstrate superior prediction accuracy

n comparison to commonly used baseline methods and the current
tate of the art. Moreo v er, our model requires little computational
osts, reducing the prediction speed by approximately four orders of
agnitude compared to the SPH simulations. 

With our work, we aim to provide high-quality data and an ML
odel that is useful for various downstream applications. The paper

s organized as follows. In Section 2 , we describe our data generation
ipeline, as well as the ML model used for collision treatment. In
ection 3 , we present our experiments and their results. Section 4
ummarizes and concludes the paper. 

 M E T H O D S  

.1 Data generation 

.1.1 N -body simulations 

urger et al. ( 2020b ) developed a hybrid framework, based on
 xtensiv e N -body simulations in combination with realistic collision
reatment by direct SPH simulations. These results and collision
tatistics are also used to inform the choice of initial conditions for
he SPH simulations performed in this study. In addition, we provide
 cleaned and e xtended 1 v ersion of their data set of approximately
0k collisions, which we refer to as ‘ N -body data set’. 2 

https://github.com/littleblacksheep/csv/tree/main/misc
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Figure 2. Data generation pipeline. For each individual simulation, a setup 
is sampled from the parameter space. The SPH particle distribution and its 
properties are set up in ’init’, resulting in the input frame f 0 . The SPH code 
then evolves the system, leading to a number of output frames. All output 
frames are post-processed with a friends-of-friends algorithm to compute all 
spatially connected material ’fragments’. Finally, ’aggregates’ are identified, 
defined as gravitationally bound collections of fragments. 

Table 1. Parameter space of initial conditions for our SPH simulations, 
co v ering a wide range of typical scenarios for rocky planet formation. See 
the text for detailed definitions. All parameters are randomly sampled. 

Parameter Min Max Description 

M tot ( kg ) 2 × M Ceres 2 × M Earth Total mass 
γ (1) 0.05 1 Mass ratio m p / m t 

ζ iron (1) 0.01 0.25 Iron (core) fraction 
ζwater (1) 0; 0.1 0.25 Water (shell) fraction 

v imp ( v esc ) 1 8 Impact velocity 
α(deg) 0 90 Impact angle 

P rot ( P rot,crit ) 0 0.2 Rotation period 
θ rot (deg) 0 180 Rotation axis polar 
φrot (deg) 0 360 Rotation axis azimuthal 

f i (1) 3 7 Initial distance factor 
f t (1) 40 60 Simulation time factor 
N tot (1) 20k 50k Number of SPH particles 
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The scenarios in Burger et al. ( 2020b ) are based on an evolving
isc of ( ∼Mars-mass) planetary embryos + smaller bodies (planetes- 
mals). Their dynamical and collisional evolution is followed o v er 
everal hundred Myr of terrestrial planet formation in an environment 
kin to the early Solar System. The embryos and planetesimals are 
odelled as differentiated, three-layered, self-gravitating bodies, 

imilar to the SPH simulations in this work. The rotation state 
s not tracked across multiple collisions. The approach of on-the- 
y SPH simulations allows not only for accurate treatment of 
ach individual collision, but also a relatively straightforward re- 
ntegration of collision outcomes into the overall N -body dynamics 
for our ML approaches this is discussed in Section B3 ). It also
ncludes individual tracking of both large survivors in hit-and-run 
ollisions, which comprise up to 50 per cent of outcomes between 
imilar-sized bodies. Therefore, this data set also provides reliable 
ollision (input parameter) statistics for the scenarios in this work. 

.1.2 SPH simulations 

PH is a numerical method for modelling visco-elastic fluid flows. 
he method was first proposed by Gingold & Monaghan ( 1977 ) and
ucy ( 1977 ) and has since been applied extensively to model various
spects of astrophysical collision processes, including planetary 
ollisions. In this work, we use the SPH code miluphcuda 3 

Sch ̈afer et al. 2016 , 2020 ) to generate a planetary collision data
et. An example is illustrated in Fig. 1 . The SPH code solves
he continuum mechanics equations for hydrodynamic flow, can 
andle 3D, multimaterial problems, and includes self-gravity. It 
lso includes modules for the simulation of elasto-plastic solid-body 
hysics based on several available material models and equations of 
tate. 

In this work, we perform pure hydro simulations, i.e. only solving 
he Euler equation with scalar pressure, instead of full tensorial 
reatment of material strength. Since we perform a large number 
f simulations, we trade some physical accuracy for numerical 
tability and more data (due to faster computation). Ho we ver, this
esign choice is still a reasonably good proxy within the scope of
ur scenarios (Burger & Sch ̈afer 2017 ; Burger et al. 2018 ). For
ctual collisions in an active planet formation environment, it can be 
ssumed that the physical state of the colliding bodies – and hence 
heir material (strength) response – varies o v er a broad range, even
or otherwise identical scenarios in terms of masses, compositions, 
nd collision parameters. This may be a function of their collision 
istory, thermal state, and possibly various other factors. Considering 
hose ambiguities, our rather simple material model allows the data 
et to remain as general as possible and at the same time consistent
 v er our whole parameter space. We use the Tillotson equation of
tate (Tillotson 1962 ; Melosh 1989 ) for all simulations. Technical 
etails are given in Section A1 . 
The SPH simulation pipeline is fully automated and includes 

ll steps to initialize, run, and post-process individual simulations 
see Fig. 2 ). For each run, a specific parameter set is sampled
rom the parameter space (Table 1 ). The chosen parameters co v er
 broad range of possible collision scenarios during terrestrial 
lanet formation. The particular choices of parameter ranges are 
dditionally informed by the robust statistics of our N -body data set
see Section 2.1.1 ). Note that we use the N -body data set e xclusiv ely
 The SPH code miluphcuda is in active development and publicly available 
t https:// github.com/christophmschaefer/ miluphcuda 

t  

T  

w  

0  

a

or choosing meaningful parameter intervals representative of late- 
tage terrestrial planet formation. For creating the SPH data set, our
arameter space of initial conditions is sampled randomly within the 
hosen intervals. 

For initializing self-gravitating bodies in hydrostatic equilibrium, 
e adopt the approaches and tools from Burger et al. ( 2018 ), who

alculate realistic density and pressure profiles for multilayered 
odies. The colliding objects are referred to as projectile and target ,
he latter being the more massive body. They are initialized at a
ertain distance, on the order of several times the sum of their radii,
o allow for pre-collision tidal deformation, relaxation of rotating 
onfigurations, and settling of residual numerical artefacts (e.g. at 
aterial boundaries). Based on the desired impact velocity and 

mpact angle at ’touching-ball’ distance (cf. Fig. 3 ), initial positions
re calculated via backtracking the analytical two-body trajectories 
p to a distance of d initial = f i × ( R t + R p ). R t and R p are the target
nd projectile radii, and the initial distance factor f i is a parameter.
he total simulation time is calculated via T sim 

= τ col × ( f i + f t )
nd rounded up to the next full hour. τ col is the collision time-scale
col = ( R t + R p )/ v imp . The impact velocity v imp and the impact angle
are specified at touching-ball distance R t + R p , where α = 0 ◦

orresponds to head-on collisions and v imp is the absolute value of
he relative velocity vector v at touching-ball distance (cf. Fig. 3 ).
he minimum number of SPH particles is set such that the resulting
ater shell has a thickness of at least 2 SPH particles at ζ water =
.1 (Burger 2019 ). Note that this resolution may be too low to
ccurately simulate the water layers’ response for a range of scenarios 
MNRAS 520, 1224–1242 (2023) 
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M

Figure 3. Collision geometry for planetary collisions. The impact angle α is 
measured between the relative position r and the relative velocity v between 
target and projectile at ’touching-ball’ distance. Both objects comprise a core- 
mantle-shell structure and have random rotation axes L t and L p , which can 
lie outside the plane spanned by r and v . 
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parameter combinations). This can be particularly problematic for
he second-largest post-collision remnant, while reliable predictions
re possible for the largest remnant already at resolutions similar to
urs, as demonstrated by Burger et al. ( 2018 ). Nevertheless, results
or water mass fractions on post-collision remnants should be taken
ith a grain of salt, and consequently we consider our ML model
redictions for this aspect rather a proof of concept and not generally
ccurate at this point. For other basic outcome properties, on the other
and, like masses and kinematics of the two largest remnants, Burger
t al. ( 2018 ) found resolution convergence for similar collision
cenarios within 10 per cent for their 100k particles simulations.
ur simulations contain either 2 or 3 materials, depending on ζ water ,
here we remo v e the w ater shell if ζ water < 0.1 w as sampled. The

otal colliding mass co v ers a range from 2 × M Ceres up to 2 ×
 Earth . The mantle (basalt) mass-fraction is defined by ζ basalt = 1 −

iron − ζ water . Since the hydrostatic initialization routine is based on
on-rotating objects, we set our maximum rotation period P rot,max =
.2 × P rot,crit for both target and projectile in order to a v oid e xcessiv e
nitial oscillations and instabilities, which typically occur once P rot 

pproaches P rot,crit . The critical rotation period P rot,crit is defined
uch that material at the surface of the (idealized spherical) body is
eightless according to Kepler’s third law. Rotation axes are chosen

andomly for both target and projectile. We refer to Section A2 for
ore details. 
During simulation, the SPH code periodically produces output

rames, which contain the state of all SPH particles at the respective
ime. We keep the first, the last, and intermediate frames for post-
rocessing, where intermediate frames are saved at 5-h intervals
simulated time). All frames undergo the same post-processing
rocedure: 

(i) Spatially connected collision fragments are calculated by the
riends-of-friends algorithm (Geller & Huchra 1983 ). 

(ii) Barycentres, orbital angular momentum, and spin angular
omentum are calculated for each fragment, as well as for the entire

ystem. 
(iii) The two 4 largest aggregates of fragments are calculated.

n aggregate is defined as a collection of gravitationally bound
ragments, determined by an iterative procedure, which starts from
he most-massive fragment as seed (see Burger et al. 2020b , for
NRAS 520, 1224–1242 (2023) 

 Gravity-dominated collisions of roughly similar-sized bodies generally 
esult in either none (if highly destructive), one, or two (in hit-and-run 
cenarios) large surviving bodies, along with orders-of-magnitude smaller 
ebris. 
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etails). In the remainder of the paper, these aggregates are referred
o as ’remnants’ for clarity. 

(iv) Basic visualization is done for the large fragments. A fragment
s considered significant if it consists of at least 5 SPH particles. 

(v) In this work, we focus on the prediction of macroscopic system
tates, requiring information on the level of remnants only. Moreo v er,
e aim to keep memory requirements of the final data set low.
herefore, SPH output frames are subsampled, keeping 1 out of
0 SPH particles. 

Keeping intermediate frames enables in-depth studies of temporal
roperties of the collision process. Moreo v er, the y allow for the
evelopment of sophisticated ML models, i.e. models that not only
redict the final state of the system, but the entire temporal evolution
n detail. Note that since we sample our parameter space randomly,
nputs to ML models do not require initial conditions that are similar
o those in Burger et al. ( 2020b ). 

.2 Machine Learning for collision treatment 

rom an ML perspective, the collision treatment task requires
earning physical laws (e.g. conservation laws, material deforma-
ions, gravitational interactions, etc.) and handling the temporal
volution of the system (e.g. via time-series modelling). Various ML
pproaches can be applied in different contexts, mostly depending
n which level of detail one is interested in. Therefore, we design
ur SPH data set such that it can be used at different levels of detail.
 or e xample, one can use remnant or fragment information (’macro
tates’) rather than SPH particle representations (’micro states’) for
earning certain aspects (e.g. predicting certain quantities such as
he mass of the largest remnant or the thermal energy of the system).
epending on which level of detail ML is applied to, different aspects
ay be able to be learned more or less efficiently. In this work,
e focus on macro states because this setup is the most rele v ant
ne in order to incorporate ML models into N -body simulations
or planet formation and evolution (see Table 2. and Section B3
or more details). In contrast, ML models operating on micro states
ay be a better choice if one is interested in studying details of the

ydrodynamic flow and physical interactions in simulations such as
PH. 

.2.1 Collision treatment as a multi-task regression problem 

upervised learning is the task of selecting (learning) a specific model
rom a certain model class by using example input-target pairs.
he difference between model outputs and desired target outputs

esults in an error, which is used to impro v e a model. We train
ur ML models in a supervised manner to predict several different
uantities (mass, material fractions, position, and velocities) at once,
hich turns the problem into a multi-task problem. Our multi-task
roblem can be interpreted as a multidimensional regression problem
f different physical quantities, since we use shared representations
o predict different modalities. We motivate formulating and solving
he problem as a multi-task problem due to inherent dependencies
nd correlations between the individual subtasks (e.g. trajectories of
ndividual fragments highly depend on the o v erall mass distribution).
ince all of our sub-tasks are highly correlated with each other,
e hope that the multi-task setting supports generalization due

o shared representations within ML models, acting as a form of
egularization. Shared representations naturally allow for exploiting
ependencies and correlations between different tasks, potentially
mproving the ML model’s predictive performance. Note that in
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Table 2. Non-redundant ML features and normalization hyperparameters for feature normalization. Units indicate different physical quantities. All 
data x phys is normalized during pre-processing. Note that since material fractions sum up to 1, only core (iron) and shell (water) fractions are required. 
Initial rotation speeds of the colliding bodies are encoded via the norms of their respective rotation axes. 

State Feature Dim Description σ (ours) σ (Timpe) 

Initial N tot (1) 1 Number of SPH particles 5e + 4 2.3e + 5 
M tot ( kg ) 1 Total mass 1e + 25 100 
γ (1.) 1 Mass ratio m p / m t 1 1 
ζ p (1.) 2 Material fractions projectile 1 1 
ζ t (1.) 2 Material fractions target 1 1 

rot p (rad s −1 ) 3 Rotation axis projectile 6.5e-05 100 
rot t (rad s −1 ) 3 Rotation axis target 6.5e-05 100 

x p (m) 3 Barycentre position projectile [5e + 07, 2e + 08, 2e + 07] [6, 41, 3] 
v p (m s −1 ) 3 Barycentre velocity projectile [2e + 03, 1e + 04, 6e + 02] [2, 16, 0.5] 

x t (m) 3 Barycentre position target [5e + 07, 2e + 08, 2e + 07] [6, 41, 3] 
v t (m s −1 ) 3 Barycentre velocity target [2e + 03, 1e + 04, 6e + 02] [2, 16, 0.5] 

final m 1 (kg) 1 Mass largest remnant 1e + 25 100 
m 2 (kg) 1 Mass 2nd-largest remnant 1e + 25 100 
m r (kg) 1 Mass rest 1e + 25 100 
ζ 1 (1.) 2 Material fractions largest remnant 1 1 
ζ 2 (1.) 2 Material fractions 2nd-largest remnant 1 1 
ζ r (1.) 2 Material fractions rest 1 1 
x 1 (m) 3 Barycentre position largest remnant [5e + 07, 2e + 08, 2e + 07] [6, 41, 3] 

v 1 (m s −1 ) 3 Barycentre velocity largest remnant [2e + 03, 1e + 04, 6e + 02] [2, 16, 0.5] 
x 2 (m) 3 Barycentre position 2nd-largest remnant [5e + 07, 2e + 08, 2e + 07] [6, 41, 3] 

v 2 (m s −1 ) 3 Barycentre velocity 2nd-largest remnant [2e + 03, 1e + 04, 6e + 02] [2, 16, 0.5] 
x r (m) 3 Barycentre position rest [5e + 07, 2e + 08, 2e + 07] [6, 41, 3] 

v r (m s −1 ) 3 Barycentre velocity rest [2e + 03, 1e + 04, 6e + 02] [2, 16, 0.5] 
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ontrast to our multi-task setting, Cambioni et al. ( 2019 , 2021 ),
msenhuber et al. ( 2020 ), and Timpe et al. ( 2020b ) use individual ML
odels for predicting either single or subsets of collision outcome 

uantities, i.e. following single-task approaches. We believe that 
ingle-task approaches introduce unnecessary restrictions to the 
eneralization capabilities of ML models, because individual models 
re e xclusiv ely able to specialize in their respectiv e re gime. Also,
sing individual regression-models for individual outcome scenarios 
i.e. erosion, accretion, and hit-and-run) may lead to various issues 
aused by data-scarcity due to class-imbalances, which are common 
n planetary collision data sets. Moreo v er, using a single ML model
or solving several subtasks at once may allow much better accuracy- 
peed trade-offs, especially in the presence of many subtasks. In 
ur work, the importance of the individual subtasks are implicitly 
iven via data pre-processing, effectively weighting loss terms of 
he respecti ve subtasks. Ho we ver, the importance can be explicitly
djusted depending on specific use cases. 

To our knowledge, this is the first work to fully formulate the
L task as a regression problem. Our formulation allows simple, 

et efficient training in an end-to-end manner and facilitates easy 
ntegration of ML models into existing N -body frameworks. Our 
e gression objectiv e does not e xplicitly optimize for classification 
erformance, but rather for regression of macroscopic properties of 
he system. At the same time, our objective a v oids the need for
omplicated approaches, which require two separate ML models for 
egression and classification, respectively. 

We believe that it is not beneficial to train classifiers that explicitly
iscriminate between different outcome scenarios such as accretion 
r hit-and-run, because such classification can be easily performed 
s a post-processing step on top of regression-model predictions. 
e fa v our performing classification via a post-processing step 

ather than training dedicated classifiers because the former can 
e used in combination with variable class definitions, whereas the 
atter is bound to fixed class definitions. When training dedicated 
lassifiers, changing class definitions would require re-training the 
lassifiers, which can be quite cumbersome in practice. Moreo v er,
ure classifiers cannot be used as a full replacement for collision
reatment in N -body simulations. 

In general, we believe that defining and learning fixed classification 
chemes is not optimal due to continuous transitions between classes 
nd the associated arbitrariness of class definitions. We believe that 
raining dedicated classifiers is only reasonable if one is explicitly 
nterested in accurate classification under the restriction of fixed class 
efinitions. 
The integration of ML models for collision treatment into N -body

imulations might require additional post-processing steps on top 
f ML predictions. This includes restricting predictions to conserve 
ertain quantities such as the total mass, e.g. by re-scaling predicted
asses and/or distributing debris material across the two largest 

emnants. For the actual application in N -body simulations, it is
specially important how (if at all) the remaining collision debris is
reated, which typically consists mostly of physically non-connected 
nd gravitationally unbound fragments. This naturally opens up many 
ossibilities depending on the respective use case (i.e. the precise 
hysical and numerical model). In our experiments, we do not apply
ny additional post-processing steps in order to remain as general as
ossible and to obtain conserv ati ve performance estimates. 
Fragments that are formed from collisions between non-rotating 

bjects mostly remain in the collision’s main symmetry plane (the 
–y plane in our case) with only marginal z-components. Ho we ver,
ollisions between rotating objects generally break this symmetry, 
nd may produce large fragments with significant z-components. 
his symmetry breaking is also confirmed by the data from Timpe
t al. ( 2020b ). We thus generalize the prediction task from Emsen-
uber et al. ( 2020 ) to 3D space, treating all dimensions equally to
onsistently handle deviations from the main collision plane. 
MNRAS 520, 1224–1242 (2023) 
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5 Note that herein term ’parameters’ can either refer to individual parameters 
of initial conditions for our SPH simulations, or to learnable parameters of an 
ML model. Both cases should be apparent from the respective text passages. 
6 Long Short-Term Memory, a special kind of RNN that is widely used 
for processing sequential data such as written texts, time series, or DNA 

sequences. 
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.2.2 Autor egr essive ML models for temporal evolution 

he use of autore gressiv e ML models for predicting collision
utcomes can be moti v ated by studying the data generation process,
.e. the SPH simulations. We know that the data generation process
as the Markov property, i.e. states s t + h at a time t + h depend
ntirely on their previous states s t at time t . We assume continuous
ransitions between states for infinitesimal stepsizes h. The transition
rom s t to s t + h is described by a transition function g . 

 t+ h = g( s t , h ) (1) 

istorically, g refers to a set of hand-crafted equations that incor-
orate certain physical laws (e.g. gravity, friction, etc.), as well as a
rocedure to evolve the system in time (e.g. numerical integration)
y means of differential equations. In practice, these approaches
ften suffer from limitations, such as the requirement to use small
tepsizes when using classical solvers. Too large stepsizes typically
ntroduce large systematic errors, often leading to diverging or
nstable solutions. 
In this work, we aim to approximate solutions obtained using

and-crafted transition functions via an ML model that is learned
rom data. We believe that ML models are – once trained – efficient,
owerful, and flexible transition functions for modelling the underly-
ng physical processes in planetary collisions o v er time. In contrast to
FNs, our proposed model class exploits the Markov property of the
ata generation process, i.e. taking multiple, autore gressiv e steps to
redict system states at a desired time T . There are several arguments
hat support the use of autore gressiv e ML models: 

(i) Neural networks are universal function approximators (Hornik,
tinchcombe & White 1989 ) that allow learning highly complex
unctions. This property allows direct prediction of system states
t various times T , entirely circumventing the need for time-series
odelling. ML models should thus be much more computationally

fficient compared to numerical simulations. The most extreme case
ould be to predict the final state directly, as typically achieved in

he literature. Depending on the choice for the stepsize, our model
llows a flexible accuracy-speed trade-off. Small stepsizes can be
xpected to better model the physical processes and lead to more
ccurate predictions at the cost of computational resources, whereas
arge stepsizes lead to less accurate, but faster predictions. 

(ii) Autore gressiv e models subdivide the prediction of system
tates by taking multiple iterative steps. Since the universal function
pproximation theorem also applies to autore gressiv e ML models,
hey can use magnitudes larger, more complex time-steps compared
o classical transition functions (numerical solvers) before getting
nstable. This property typically makes these ML models much more
fficient in terms of computational costs compared to hand-crafted
ransition functions. 

(iii) Learned transition functions allow context-dependent time-
teps, i.e. adjusting the transition function automatically, based on
ata-specific information. This property a v oids algorithmic design
ecisions, making ML-based transition functions more general and
exible compared to hand-crafted transition functions. 
(iv) Using autore gressiv e ML models allows for impro v ed in-

erpretability by enabling analysis of intermediate states. Such an
nalysis is not possible for ML models like FFNs or regression trees,
hich typically try to predict final post-collision states directly. 
(v) Due to their design, we believe that autoregressive ML models

an achieve better generalization compared to methods that try
o predict final states directly, allowing more accurate predictions
nd impro v ed o.o.d. generalization capabilities. Autore gressiv e ML
odels that learn fixed time intervals (i.e. taking multiple steps with
NRAS 520, 1224–1242 (2023) 
he same stepsize) are ef fecti vely time-inv ariant per design, in the
ense that they have to learn physical processes at only a single time-
cale. Thereby, the models are not forced to spend their parameters 5 

or learning to become time-invariant. This property can potentially
lso lead to impro v ed parameter efficienc y compared to non-time-
nvariant ML approaches. 

(vi) Longer physical interactions typically lead to the emergence
f more complex dynamical processes during planetary collision
v ents. Using autore gressiv e models naturally accounts for these
ffects by allocating computational resources that linearly scale with
ime, which is consistent with fluid-flow approaches. 

Gated architectures (Hochreiter & Schmidhuber 1997 ; Cho et al.
014 ) and regularized RNNs (Schmidt et al. 2021 ) are able to produce
haotic dynamics, but often suffer from the exploding gradient
roblem (Metz et al. 2021 ), typically leading to diverging sequences
Monfared, Mikhaeil & Durstewitz 2021 ). On the other hand, non-
haotic sequences have bounded loss gradients and converge to fixed
oints. Thus, training autore gressiv e ML models is typically non-
rivial and often very sensitive to hyperparameters, especially when
he data-generating process is itself chaotic. Exploding gradients and
iverging sequences in LSTMs 6 can be mitigated via the forget gate
Gers, Schmidhuber & Cummins 1999 ), thereby reintroducing the
anishing gradient problem (Hochreiter 1998 ). The vanishing gradi-
nt problem can prohibit efficient training of deep neural networks.
or our autoregressive ML model, we find regularization of hidden
tates to be a robust strategy against diverging sequences. Moreover,
e find that gradient descend with backpropagation through time

Robinson & Fallside 1987 ; Werbos 1988 ; Mozer 1995 ) works fine
or training. 

.2.3 Residual neural network for planetary collision handling 

ur proposed model for prediction of collision outcomes can be
nterpreted as a residual neural network (ResNet; He et al. 2016 ).
esNets were originally introduced to ease the training of deep
eural networks. The ’residual’ aspect refers to reformulating neural
etwork layers as learning residual functions with reference to the
ayer inputs, instead of learning unreferenced functions. Comparable
o LSTMs without forget gate, ResNets efficiently mitigate the
anishing gradient problem. 

We refer to our architecture as RES herein. In contrast to a
lassical ResNets, learned parameters in our model are shared across
ifferent steps (see Fig. 4 ). Our architecture treats temporal dynamics
onsistently by evolving system states in an autore gressiv e manner.
ndividual steps of a trained model can be interpreted as evolving
he system for a fixed, but learned time interval. This approach is
omparable to e xplicit iterativ e methods such as the Euler method or
he Runge–Kutta method (Runge 1895 ; Kutta 1901 ). Ideally, smaller
tepsizes should allow for better modelling of physical processes and
hould thus lead to better performance at the cost of computational
esources. Our architecture allows for flexible prediction of system
tates at different times T by taking the respective number of update
teps. Our architecture is autore gressiv e, i.e. only requiring the initial
tate y 0 and the number of steps n steps = s h × T as input. The
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Figure 4. Operations of our weight-tied residual neural network architecture. 
The neural network modules E, R, and D are learned from data and shared 
across individual steps. The initial state y 0 is encoded into the initial hidden 
state h 0 and the input x 0 of R at time t = 0. R then predicts additive updates 
to h t by using h t and x t . At each step, D outputs relative updates, which are 
used to evolve system states y via Euler integration. Sequences y t and h t 

are calculated iteratively, where the number of steps T correlate linearly to 
simulation time. 
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yperparameter s h allows to take different accuracy-speed trade-offs 
y adjusting the temporal resolution (i.e. the stepsize). 
We want to stress that predicted sequences y t and h t [with t ∈

0, n steps )] should not be considered as time sequences per se, but
ay nevertheless be closely related/correlated to time sequences, 

specially when considering our task of predicting system states 
t different points in time. We incorporate this close temporal 
orrelation by choosing the number of steps to correlate linearly 
o the simulated time of the respective SPH simulations. This strong
ssumption may require additional and more detailed consideration 
n future work. 

Our entire model architecture can be formalized as follows: 

 h 

t , x t ) = E( y t , φE ) (2) 

h 

t = h 

t−1 + R( h 

t−1 , x t−1 , φR ) (3) 

y t = y t−1 + D( h 

t , φD 

) (4) 

E , R , and D correspond to the encoder module, residual module,
nd decoder module, respectively. Hidden states that are predicted by 
 are only used for the initial hidden state h 0 . Our architecture a v oids

he vanishing gradient problem via additive updates to hidden states 
 and physical states y . Additive updates to the physical states y can
e interpreted as Euler discretization of a continuous transformation 
nd is closely related to the works of Chen et al. ( 2018 ), He et al.
 2016 ), and Sri v astav a, Gref f & Schmidhuber ( 2015 ). E , R , and D are
FN networks 7 (Rosenblatt 1961 ; Ivakhnenko & Lapa 1965 ) with 

earnable parameters φE , φR , and φD . 

.2.4 Baseline models 

e choose three baseline methods for comparison with our newly 
roposed RES model class. Existing work (Cambioni et al. 2019 , 
021 ; Emsenhuber et al. 2020 ; Timpe et al. 2020b ) use FFNs as
egressors for collision outcomes. We thus choose an FFN as our first
aseline. We choose a linear regression model (LIN) as our second 
aseline to study the benefit of deep learning models compared to a
imple, data-driven model. The third baseline is PIM, which is still
idely used in astrophysical problems involving collisions because 

he method is purely analytic and fast. PIM assumes a perfect inelastic
ollision of target and projectile, al w ays leading to a single surviving
ody, and conserving mass and momentum of the system by design. 
 Historically also referred to as multilayer perceptrons 

8

c
s
u

To enable learning non-linear mappings, artificial neural networks 
equire so-called acti v ation functions, which are applied element- 
ise to individual neurons usually after calculating the matrix- 
ector product for the respective layers. Due to its sound theoretical
dvantage compared to other activation functions, we use the scaled 
xponential linear unit (SELU) acti v ation function (Klambauer 
t al. 2017 ) for hidden layers and linear acti v ation functions for
utput layers of our deep learning models. SELU acti v ations have
elf-normalizing properties, where neuron acti v ations automatically 
onverge towards zero mean and unit variance in the case of
any hidden layers, leading to substantial advantages for training, 

egularization, and robustness when compared to other approaches. 
n optional rotation module can be incorporated into the ML models

s additional pre- and post-processing steps, rendering the models 
otation-equi v ariant (see Section B1 for details). 

Although our SPH results naturally contain approximations and 
ssumptions about the simulated physical processes, and are also 
ubject to typical numerical inaccuracies, we define the SPH data as
ur ground truth. This definition is generally moti v ated by the fact
hat hydrodynamical simulations are currently considered the most 
ccurate method for planetary collision treatment. 

.2.5 ML experiment setup 

e split our data into a development set and a test set. The
evelopment set includes approximately 88 per cent of the data (8927
ata points) and consists of training and validation splits, whereas 
he test set co v ers the remaining 12 per cent (1237 data points). The
ntire data set contains 10 164 data points. Using the development set,
e perform fivefold crossvalidation 8 (Hastie, Tibshirani & Friedman 
017 ) for all experiments, allowing to calculate confidence intervals 
or our results. All training and validation splits share the same data
istribution. Note that validation data are inappropriate for estimating 
erformance on future data because validation data are used for 
yperparameter optimization, which can be a source of information 
eakage. A holdout test set is required to estimate performance on
ompletely new, unseen data. 

Let us recap that our data set co v ers the parameter space as
efined in Table 1 . Although the parameter space is carefully chosen,
arameters of real collisions are naturally not strictly limited to 
ur defined parameter ranges (Quionero-Candela et al. 2009 ), i.e. 
o-called o.o.d. data points. In practice, ML models often fail 
o generalize to such o.o.d. data points. In order to study o.o.d.
eneralization of our ML models, we establish an o.o.d. test set. We
xpect that problem-specific models have better o.o.d. generalization 
apabilities compared to general-purpose models (Mitchell 1980 ). It 
s widely known that the impact velocity and the impact angle are
wo of the most important parameters in the context of planetary
ollisions. Thus, we manually select four regions in the impact angle
impact velocity space that compose our o.o.d. test set (see Table 3 ).
e use this o.o.d. test set as our default test set in experiments unless

tated otherwise. 
Our data set D consists of N = 10 164 tuples ( y 0 i , z 

T 
i ) , i ∈ [1 , N ],

epresenting initial system states (at t = 0) and final system states (at
 = T ). For our supervised learning task, y 0 i and T are used as model
nputs, whereas z T are used as ground truth labels. For intermediate
MNRAS 520, 1224–1242 (2023) 

 Folds are non-intersecting, same-sized subsets of a data set. For five-fold 
rossvalidation, a total of five models are trained independently. Each training 
ession consists of training on four-folds, whereas the remaining fifth fold is 
sed for validation. 
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Table 3. Selected regions for the out-of-distribution (o.o.d.) test set. We 
select regions that may result in qualitati vely dif ferent outcomes compared to 
the development set. The test set contains about 12 per cent of all data points. 

Parameter Region 1 Region 2 Region 3 Region 4 

αmin (deg) 10 65 80 0 
αmax (deg) 30 75 90 20 
v imp,min ( v esc ) 1.5 2 1 6 
v imp,max ( v esc ) 2.5 4 2 8 
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tates 0 < t < T holds. D is split into a development set D dev and a
est set D test . Our training and validation splits are derived from D dev 

epending on the respective crossvalidation fold. 

D = 

{(
y 0 1 , z 

T 
1 

)
, 
(
y 0 2 , z 

T 
2 

)
, ..., 

(
y 0 N , z 

T 
N 

)}
(5) 

 dev ⊂ D , D test ⊂ D , D dev ∩ D test = {} (6) 

We perform data pre-processing to transform features into appro-
riate value ranges for ML. We apply feature-wise normalization
 ML = 

( x phys −μ) 
σ

to transform data x phys given in SI units into data
 ML , whose value ranges are better suited for ML. We set μ = 0
or all features. Note that the barycentre of the system still remains
t the origin of the coordinate system for all data points even after
ormalization. Table 2. summarizes our ML features, along with
ormalization hyperparameters σ . Note that μ and σ implicitly define
he importance between different subtasks during ML model training.
mportance of subtasks can be further adjusted via introducing
edicated weights for the corresponding loss terms. The detailed
re-processing pipeline can be found in the provided source code
see Section 1.1 ). 

Note that although accurate tracking of the rotation state is impor-
ant for many aspects of planet formation and evolution modelling,
e do not include rotation in our model predictions. This is because

t is non-trivial to derive physically reliable (and unique) post-
ollision rotation states within our post-processing chain for SPH
ollision simulations. A major point to consider is that our definition
f a remnant is not restricted to a single physically connected
ragment, but also includes all gravitationally bound fragments in
ddition. In reality, these fragments may or may not be actually
ccreted at some later point in time, or interact otherwise with each
ther. Nevertheless, we consider including these fragments into the
efinition of remnant as the best possible option, considering the
lternative of simply ignoring them. This comes on top of the general
ssue that approximate rotational equilibrium has to be achieved
fter the collision in order to extract a reliable rotation state, which
s highly scenario-dependent in terms of the rele v ant dynamics and
ime-scales. Considering those difficulties, we decided not to include
he rotation state in our ML model predictions. Therefore, while pre-
ollision rotation is fully accounted for, we do not attempt to predict
ost-collision rotation states in this work. 
Our optimization objective is to minimize the mean absolute error

MAE) between model predictions y T i and ground truth labels z T i 
 v er our training data: 

 

T 
i = f 

(
y 0 i , T , φ

)
(7) 

L = 

1 

M 

M ∑ 

i= 1 

ξ · || y T i − z T i || (8) 

f : R 

d → R 

k refers to an ML model that regresses final states
hen given initial states. In this work, we focus on handling macro-

copic system states for both model inputs and outputs, resulting
n d = 25 and k = 27. f has learnable parameters φ that we aim
NRAS 520, 1224–1242 (2023) 

r  
o optimize. M refers to the size of the training split for individual
rossvalidation folds. 

We treat every unit of mass (i.e. every kilogram) as equally
mportant in our ML task. We account for this treatment by cal-
ulating mass-dependent weights ξ in order to re-weight errors for
utput features that correspond to the largest remnant, second-largest
emnant, and the rest (of material), respectively. 

ξ = [ ξlr , ξ2lr , ξrest ] (9) 

ξ = 

[
m lr 

m tot 
, 
m 2lr 

m tot 
, 
m rest 

m tot 

]
(10) 

 tot = m lr + m 2lr + m rest (11) 

We consider this re-weighting to be essential to accurately reflect
he prediction problem, especially if m 2lr < < m lr or m rest < < m lr .
arly experiments without re-weighting lead to poor prediction per-

ormance originating from small objects (remnants and fragments).
n general, small objects are more difficult to predict compared
o large objects. Moreo v er, the assignment of the second-largest
emnant tends to jump in the presence of many small objects, making
t almost impossible to predict robustly. This labelling noise then
eads to large error gradients, hampering learning significantly. This
roblem is ameliorated with our re-weighting approach. 
We use identical training hyperparameters for our deep learning
odels (FFN and RES). Training is performed via stochastic gradient

escend (Robbins & Monro 1951 ), utilizing the backpropagation
lgorithm (Kelley 1960 ; Rumelhart, Hinton & Williams 1986 ).
e use the adamax optimizer (Kingma & Ba 2014 ) with default

yperparameters, a minibatch size of bs = 128, a constant learning
ate of η = 0.0005, and a weight decay of wd = 0.0001. We
pply gradient-norm clipping (P ascanu, Mikolo v & Bengio 2013 ),
llowing for maximum gradient norms of n grad = 50. Moreo v er,
e use exponential moving average models (Ruppert 1988 ; Polyak
990 ; Tarvainen & Valpola 2017 ) with a rate of r ema = 0.999
or validation and testing. We find that the mean-squared error
eads to worse validation performance than the MAE, which is

ore robust to outliers. To alleviate the exploding gradient problem
s described by Metz et al. ( 2021 ), we additionally penalize too
arge acti v ations of hidden states h t in our RES model. We train
ach of our models for 5000 epochs, which is sufficient to reach
onvergence. 

Since different ML architectures are inherently difficult to com-
are, we try to find the best architectures and respective models
n terms of validation performance for each model class (i.e. FFN
nd RES) separately. We optimize hyperparameters manually in an
terative manner (i.e. al w ays optimizing one hyperparameter at a
ime while keeping others fixed, and repeating the procedure until
onvergence in validation performance) and dedicate approximately
he same amount of time and computational resources to optimize
ach set of hyperparameters for FFN and RES. Table B1 summarizes
ll optimized hyperparameters for FFN and RES, while LIN has no
odel-class hyperparameters. In order to prevent information leak-

ge and misleading test performance, we solely perform hyperparam-
ter finetuning based on validation performance. Test performance
s measured after model development was completed. In principle,
ES allow using intermediate states as additional learning signals.
nless stated otherwise, we only use final states for training to ensure
 fair comparison with our baselines. 

We use the root mean squared error (RMSE) as our validation met-
ic. For certain applications, prediction speed may play a significant
ole. We note that the RMSE metric does not account for this aspect
nd thus purely focuses on prediction accuracy. All performance
esults reported below are obtained by first taking the best RMSE
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Table 4. Class counts for different outcome regimes, and for random and 
realistic collision parameters. The three major outcome regimes are each 
further divided into subclasses, based on remnant masses. Random parameters 
are obtained from uniform, random sampling, whereas realistic conditions are 
obtained from dynamically consistent N -body simulations. 

Class Subclass Random Realistic 

Erosion m lr < m t /2 18.3 % (1856) 3.0 % (151) 
Erosion m lr > m t /2 55.1 % (5600) 58.5 % (2968) 
Accretion m lr < m t + m p /2 1.3 % (135) 2.0 % (102) 
Accretion m lr > m t + m p /2 5.2 % (526) 5.5 % (281) 
Hit-and-run m 2 lr < m p /2 0.4 % (40) 4.4 % (221) 
Hit-and-run m 2 lr > m p /2 19.7 % (2007) 26.7 % (1353) 

Figure 5. Overview of collision outcomes in impact angle – impact velocity 
space. Each data point represents a simulation in our SPH data set. Colours 
indicate major outcome regimes: erosion (grayish), accretion (reddish), and 
hit-and-run (greenish). Each regime is further divided into subcategories, 
depending on remnant masses. The contour o v erlay indicates collision statis- 
tics in a realistic dynamical environment, obtained from N -body simulations 
by Burger et al. ( 2020b ), see Section 2.1.1 . Contour levels correspond to 
iso-proportions of the density (in 10 per cent steps). 
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minimum) o v er all epochs for ev ery fold individually, then av eraging
hem o v er the folds. Errors indicate the minimum and maximum
o v er folds) of best RMSE values. The same procedure holds for
lassification accuracies, except for first taking the maximum instead 
f the minimum. Measuring and interpreting RMSE in the data space 
s unintuitive in our multi-task setting due to v astly dif ferent v alue
anges of individual quantities. Thus, RMSE is measured in ML 

eature-space. Moreo v er, since RMSE values have to be interpreted 
n consideration of the o v erall ML task, we recommend comparing
eported results relative to each other. 

We use the balanced accuracy score for validating classification 
erformances of our models. Balanced accuracy in the multiclass 
lassification setting is defined by taking the average of true-positive 
ates for individual classes. The true-positive rate is also referred 
o as sensitivity or recall. Considering the strong class-imbalances 
hat are typically present in planetary collision data, we consider the 
alanced accuracy score to be much more problem-focused and more 
pplicable compared to the unbalanced accuracy score. 

.2.6 Efficiency considerations of ML 

n practice, researchers are interested at which point using ML starts
o pay off compared to classical approaches for a fixed computational 
udget. Consider the goal of predicting m collision outcomes. For 
lassical approaches such as PIM or direct SPH simulations, we 
nly need to consider inference times, which scale linearly with m .
n the other hand, ML requires consideration of data generation, 

raining, and inference. In general, the required computation times 
or these three components are mostly independent from each other. 
n our case, data generation requires by far the most time, followed
y training. Finally, ML inference requires only a tiny fraction of
he o v erall computation budget. Thus, we recommend using ML
pproaches in case of e xtensiv e inference, i.e. large m . Let us define
he three computation times τ d for generating one data point, τ t 

or ML model training, and τ i for inference of one data point. In
ur case, we consider τ t as the total wall-clock training time for
vefolds, each having 5000 epochs. N refers to the training data 
et size. We can calculate for which m the use of ML pays off
i.e. T ML < T CL ) when comparing the o v erall computation times
 CL for classical approaches with computation times T ML for ML 

pproaches: 

T CL = m × τi , CL (12) 

 ML = N × τd + τt + m × τi , ML (13) 

m > 

N × τd + τt 

τi , CL − τi , ML 
(14) 

 RESULTS  

.1 SPH collision data 

he provided SPH data serves as the basis for ML models in order
o solve the collision treatment problem accurately and fast. To our 
nowledge, this data set is the first of its kind to combine different
spects such as object rotation, realistic object models including 
ater layers, and providing time-series data. All data can be freely 

ccessed (see Section 1.1 ). 
Our results are consistent with Leinhardt & Stewart ( 2012 ) and

tewart & Leinhardt ( 2012 ) in identifying three major outcome 
egimes, erosion, accretion, and hit-and-run. We define these regimes 
s 

(i) erosion: m lr < m t 

(ii) accretion: m lr > m t ∧ m 2 lr ≤ 0.1 m p 

(iii) hit-and-run: m lr > m t ∧ m 2 lr > 0.1 m p 

where subscripts indicate the largest remnant, second-largest 
emnant, target, and projectile, respectiv ely. Each of these re gimes
an be further divided into subclasses, based on thresholds for 
emnant masses, as defined in Table 4 , and plotted in Fig. 5 . 
rosion typically results from high impact velocities and/or low 

mpact angles, whereas accretion mostly emerges for lower impact 
elocities. Hit-and-run either results from high impact angles, or 
rom a combination of lower impact angles, large-enough projectile- 
o-target mass ratios, and impact velocities that are low enough to
 v oid global disruption but high enough to avoid an accretion-type
utcome. 
MNRAS 520, 1224–1242 (2023) 
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Table 5. Test performance (RMSE and balanced accuracy, both measured on the final state) of different approaches for planetary collision treatment. 
Classification is performed as a post-processing step on top of predicted masses. We assume the SPH simulation data to be the ground truth. For single- 
task learning (last six rows), each entry corresponds to the performance of individually trained ML models and column headers indicate optimized tasks, 
respectively. We use data from Timpe et al. ( 2020b ) to obtain the results in the last four rows. Best results are indicated in bold, whereas ∗ indicate statistically 
significant results according to a Wilcoxon test (comparing FFN and RES). Our proposed RES model outperforms the other baseline methods in most 
experiments. 

Method Notes Mass Material Position Velocity Total Accuracy 

PIM o.o.d. test 0 . 1501 + 0 . 0000 
+ 0 . 0000 0 . 0605 + 0 . 0000 

+ 0 . 0000 0 . 3046 + 0 . 0000 
+ 0 . 0000 0 . 2229 + 0 . 0000 

+ 0 . 0000 0 . 2450 + 0 . 0000 
+ 0 . 0000 0 . 1667 + 0 . 0000 

+ 0 . 0000 

LIN o.o.d. test 0 . 0460 + 0 . 0009 
−0 . 0012 0 . 0250 + 0 . 0002 

−0 . 0002 0 . 1880 + 0 . 0007 
−0 . 0007 0 . 1509 + 0 . 0015 

−0 . 0014 0 . 1479 + 0 . 0009 
−0 . 0010 0 . 2340 + 0 . 0043 

−0 . 0057 

FFN o.o.d. test 0 . 0121 + 0 . 0008 
−0 . 0008 0 . 0129 + 0 . 0006 

−0 . 0003 0 . 0487 + 0 . 0014 
−0 . 0012 0 . 0433 + 0 . 0010 

−0 . 0010 0 . 0408 + 0 . 0008 
−0 . 0009 0 . 4964 + 0 . 0480 

−0 . 0538 

RES o.o.d. test ∗0 . 0108 + 0 . 0003 
−0 . 0005 0 . 0127 + 0 . 0002 

−0 . 0002 
∗0 . 0386 + 0 . 0015 

−0 . 0018 0 . 0428 + 0 . 0004 
−0 . 0003 

∗0 . 0364 + 0 . 0009 
−0 . 0010 0 . 4887 + 0 . 0160 

−0 . 0139 

FFN o.o.d. test, + labels 0 . 0122 + 0 . 0009 
−0 . 0010 0 . 0136 + 0 . 0002 

−0 . 0004 0 . 0500 + 0 . 0015 
−0 . 0020 0 . 0433 + 0 . 0005 

−0 . 0004 0 . 0416 + 0 . 0009 
−0 . 0010 0 . 5309 + 0 . 0673 

−0 . 1678 

RES o.o.d. test, + labels ∗0 . 0107 + 0 . 0008 
−0 . 0009 0 . 0136 + 0 . 0002 

−0 . 0002 
∗0 . 0372 + 0 . 0012 

−0 . 0014 0 . 0426 + 0 . 0011 
−0 . 0006 

∗0 . 0358 + 0 . 0007 
−0 . 0009 0 . 5311 + 0 . 0548 

−0 . 0311 

FFN o.o.d. test, single 0 . 0083 + 0 . 0003 
−0 . 0004 0 . 0098 + 0 . 0002 

−0 . 0002 0 . 0422 + 0 . 0009 
−0 . 0010 0 . 0409 + 0 . 0007 

−0 . 0008 – 0 . 4720 + 0 . 0417 
−0 . 0470 

RES o.o.d. test, single 0 . 0083 + 0 . 0008 
−0 . 0004 

∗0 . 0090 + 0 . 0003 
−0 . 0003 

∗0 . 0364 + 0 . 0024 
−0 . 0017 0 . 0422 + 0 . 0004 

−0 . 0010 – ∗0 . 5165 + 0 . 0349 
−0 . 0228 

PIM i.i.d. test, Timpe 0 . 2088 + 0 . 0000 
+ 0 . 0000 0 . 1925 + 0 . 0000 

+ 0 . 0000 0 . 3691 + 0 . 0000 
+ 0 . 0000 0 . 2880 + 0 . 0000 

+ 0 . 0000 – 0 . 1667 + 0 . 0000 
+ 0 . 0000 

LIN i.i.d. test, Timpe 0 . 0518 + 0 . 0003 
−0 . 0002 0 . 0473 + 0 . 0003 

−0 . 0005 0 . 2105 + 0 . 0005 
−0 . 0002 0 . 1693 + 0 . 0002 

−0 . 0005 – 0 . 3160 + 0 . 0025 
−0 . 0015 

FFN i.i.d. test, Timpe 0 . 0132 + 0 . 0002 
−0 . 0001 0 . 0144 + 0 . 0002 

−0 . 0001 0 . 0877 + 0 . 0017 
−0 . 0012 0 . 0631 + 0 . 0006 

−0 . 0004 – 0 . 4675 + 0 . 0039 
−0 . 0021 

RES i.i.d. test, Timpe ∗0 . 0126 + 0 . 0003 
−0 . 0004 0 . 0141 + 0 . 0006 

−0 . 0006 
∗0 . 0840 + 0 . 0037 

−0 . 0036 0 . 0628 + 0 . 0007 
−0 . 0009 – 0 . 4690 + 0 . 0026 

−0 . 0023 
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Figure 6. Learning curves depicting the training, validation, and test perfor- 
mance for our multi-task objective. RMSE is measured on the final state ( t = 

T ). Shaded regions indicate the minimum and maximum performance over 
the five crossvalidation folds. Performance increases significantly during the 
first 1000 epochs before converging. RES significantly outperforms the FFN 

baseline. 
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.2 ML experiments 

elow we present our results for the experiments described in
ection 2.2.5 . Results indicated by ∗ are statistically significant ( p <
.05) according to a Wilcoxon test when comparing FFN with RES
or the respective experiments. 

.2.1 Performance 

e compare commonly used methods for planetary collision treat-
ent with our proposed RES model and summarize the results in
ables 5 and B2 . Our o.o.d. test set consists of data points within
anually selected regions in the impact angle – impact velocity space

dashed regions in Fig. 7 ). 
All deep learning models outperform the PIM and LIN baselines

y a large margin. Impro v ed performance o v er PIM was e xpected,
ince it is an analytic model that applies very simplistic assumptions
n collision dynamics. Ho we ver, we still regard PIM as a useful
ethod in case of limited computational resources. Impro v ed results
 v er the LIN baseline were also expected since it assumes that the
ata are linearly dependent. RES perform best amongst the deep
earning approaches that we studied, significantly outperforming the
FN baseline, also illustrated in Fig. 6 . In general, our deep learning
odels generalize well to the o.o.d. test set, indicating that they might

ven generalize beyond our covered parameter space (Table 1 ). RES
onsistently outperforms the FFN baseline in terms of RMSE on the
.o.d. test set. 
We do not observe performance gains when using intermediate

tates as additional labels during training. We observe a shrinkage
ffect (regression to the data set mean) in model predictions when
sing intermediate states, which may harm performance measured
n the final state. Moreo v er , non-con verged intermediate states may
ave a relatively high labelling noise due to the discretization into
emnants, potentially making intermediate states more difficult to
redict compared to final states. We also believe that intermediate
acro states are somewhat redundant, unless operating on a micro-

copic scale, i.e. directly learning from SPH particle representations
r similar. 
NRAS 520, 1224–1242 (2023) 
Direct prediction of final states with FFNs only allows analysis of
idden representations, which are typically too abstract to interpret
ue to their high-dimensional, learned nature. In addition to the
nalysis of hidden representations, our RES architecture allows
nalysing predicted intermediate states, opening up an entry point for
nterpreting model predictions in more detail. This is also illustrated
n Fig. B1 . Although our learning objective contains no incentive for
redicted remnant trajectories to align with ground truth trajectories,
e observe spatio-temporally continuous transitions from initial to
nal states. This indicates that steps in RES may correlate to the

emporal evolution of the physical system to a certain e xtent, ev en
hough our results do not allow for strong conclusions. 

We also train our ML models on the planetary collision data set
rovided by Timpe et al. ( 2020a, b ; single-task setting) and report
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Table 6. Number of learnable parameters and number of optimized hyper- 
parameters of our methods, as well as typical computation times for data 
generation, training, and inference on the same hardware (GPU: Nvidia GTX 

1080Ti). τ d and τ i are the average computation times for generating one 
data point and model inference for one data point, whereas τ t is the total 
wall-clock training time for fivefolds, each having 5000 epochs. The required 
time for data generation is τD = N × τ d and takes the largest part of the 
o v erall computational budget. s h is the number of RES model steps taken per 
simulated hour. 

Method #Param #Hyper τ d τ t τ i 

PIM 0 0 – – < 1 s 
LIN 729 0 0.75 h < 1 s < 1 s 
FFN 22203 2 0.75 h 11.95 h < 1 s 
RES, s h = 1 64417 3 0.75 h 33.51 h < 1 s 
RES, s h = 2 64417 3 0.75 h 44.78 h < 1 s 
RES, s h = 3 64417 3 0.75 h 56.45 h < 1 s 
RES, s h = 4 64417 3 0.75 h 66.74 h < 1 s 
SPH 0 ∼5 – – 0.75 h 

Table 7. RMSE of deep learning models on the fixed-size o.o.d. test set when 
using 100 per cent, 50 per cent, and 25 per cent of training data. RES requires 
50 per cent less data to achieve similar performance compared to FFN. 

Method 100 per cent data 50 per cent data 25 per cent data 

FFN 0 . 0408 + 0 . 0008 
−0 . 0009 0 . 0442 + 0 . 0004 

−0 . 0005 0 . 0516 + 0 . 0012 
−0 . 0012 

RES ∗0 . 0364 + 0 . 0009 
−0 . 0010 

∗0 . 0398 + 0 . 0009 
−0 . 0013 

∗0 . 0469 + 0 . 0013 
−0 . 0010 
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erformance results on the independent and identically distributed 
i.i.d.) test set in Table 5 . Without performing any additional 
yperarameter finetuning, we observe that RES outperforms the other 
aseline methods in all sub-tasks, verifying that our RES model is
ata set-agnostic. Ho we ver, our results are not statistically significant 
or 2/4 subtasks. 

.2.2 Efficiency 

e report the required computational resources of our methods in Ta- 
le 6 . As expected, PIM marks one extremum of the accuracy-speed
rade-off, requiring the least amount of computational resources. On 
he other hand, SPH marks the other extremum, scaling badly with m
see Section 2.2.6 ). ML models co v er intermediate trade-off regions,
epending on the model class and hyperparameter choices. ML 

odels are approximately 4 magnitudes faster in inference compared 
o SPH (both running on a single GPU), allowing ML models to
e efficiently used in large-scale planetary evolution simulations. 
onsidering the results from Table 6 , for our deep learning models

t holds that N × τ d � τ t � N × τ i for N = 10164. This indicates 
hat the most ef fecti ve way to save computation when using ML is
y requiring less training data, i.e. small N . Ho we ver, using less data
ill inevitably lead to worse performance in terms of RMSE and to
egrading generalization. 
Therefore, we perform ablation studies using different training 

ata set sizes to inv estigate data-efficienc y of our deep learning
odels and report the corresponding o.o.d. test performances in 
able 7 . The results indicate that RES requires 50 per cent less data

o achieve comparable performance to the FFN baseline. In other 
ords, using RES is much more efficient than the FFN baseline 

n the case of comparable performance. Once trained, ML methods 
re practically as fast as PIM, while maintaining high prediction 
ccuracy. 
Table 6 also summarizes the number of learnable parameters and 
he number of model class hyperparameters of all collision treatment 

ethods we studied in this work. ML training requires additional 
yperparameters such as bs , η, wd , and n grad . The number of learnable
arameters for LIN is fully determined by the ML task, i.e. the
imensions of input and label v ectors. F or deep learning methods,
he number of learnable parameters depends on the hyperparameter 
hoices that ultimately define model architectures. We optimize 
yperparameters w.r.t. validation performance and perform e xtensiv e 
blation studies for both FFN and RES to verify their optimal
yperparameters. We consider the reported model capacities (i.e. the 
umber of learnable parameters) to be optimal in terms of validation
erformance for our data. We find that the optimal FFN architecture
equires less learnable parameters compared to the optimal RES 

rchitecture. In particular, increasing FFN’s size does not impro v e
ts prediction performance anymore. We refer to Section B2 for more
etails about hyperparameters. The number of hyperparameters for 
he direct-SPH method accounts for the most important method- 
pecific aspects such as the smoothing length and settings related to
he equation of state of the simulated material. 

We study the effects of multi-task learning and single-task learning 
n model performance and report ablation studies in Table 5 .
ulti-task learning is computationally more efficient by design 

i.e. prediction speed and required parameters), requiring only a 
ingle model for predicting several different modalities. However, we 
bserve a performance decrease when comparing multi-task learning 
one model with four tasks) to single-task learning (four models, each
ith one task) in fa v our of single-task learning for both FFN and RES.
e perform statistical significance tests (Wilcoxon) between single- 

ask and multi-task experiments. We find single-task significantly 
 p < 0.05) outperforms multi-task for almost all subtasks for both
FN and RES. Two exceptions are performances for the position 
nd velocity tasks on the o.o.d. test set for the RES model. We
onclude that our hypothesis of impro v ed generalization due to
utual benefit via exploiting shared representations does not hold 

n our experiments. Since we optimized model hyperparameters for 
he multi-task setting, single-task models might be even better with 
urther finetuning. RES outperforms FFN in 4/4 subtasks for multi- 
ask learning, but only in 2/4 for single-task learning, indicating that
ES benefits a bit more from multi-task learning. 
We verify that our regression-approach is suited to perform clas- 

ification of different collision scenarios as a post-processing step, 
 v oiding the need for two-step classification-regression approaches. 
lassification accuracies are calculated on top of regression results 
.r.t. the six different classes as defined in Table 4 . Balanced
ccuracies are reported in Table 5 . Fig. 7 visualizes predicted
ollision outcomes based on predicted masses of the largest and 
econd-largest remnants. 

We observe that our ML models typically tend to mispredict 
ctual accretion scenarios as hit-and-run, ultimately resulting in 
isclassifications in post-processing. This is pronounced for low- 

elocity (close to v esc ) collisions, and particularly for lower impact
ngles ( � 30 ◦), and directly visible when comparing Figs 7 and 5 .
e assume that this mistreatment stems from the relative under- 

epresentation of accretion scenarios in our data (see Table 4 ),
hich results in models having poor classification performance for 

he respective scenarios. This is a common problem in imbalanced 
lassification tasks and can be tackled with different approaches such 
s generating more data for under-represented classes, o v ersampling 
f under-represented classes, regularizing the model during training, 
r introducing problem-specific model architectures. Note that the 
alanced accuracy score succeeds in reflecting the reduced classi- 
MNRAS 520, 1224–1242 (2023) 
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M

Figure 7. Classification results on validation and o.o.d. test data using 
predicted remnant masses of the RES model. Data points for validation are 
obtained by combining the respective validation splits that originate from 

dif ferent crossv alidation folds, whereas o.o.d. test set regions are marked with 
dashed boxes. The model learned to differentiate between typical collision 
scenarios/outcomes and generalizes to the o.o.d. test set. 
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cation performance on under-represented classes. In contrast, the
nbalanced accuracy score typically tends to be much higher, since
nder-represented classes are not accounted for properly. 

 C O N C L U S I O N  

e perform N -body and SPH simulations to tackle the problem of
ccurate and fast treatment of planetary collisions with ML methods.
e use the SPH data to employ a simple but problem-adapted ML
odel for predicting masses, material fractions, positions, and ve-

ocities of the two largest post-collision remnants and the remaining
ebris. Our model helps the modelling of temporal dynamics by
volving system states in an autore gressiv e manner, which closely
esembles the data-generating process. The model allows for flexible
rediction of post-collision states at different times and can be
mployed for collision treatment within existing N -body simulation
rameworks. 

We summarize our experiment results by comparing the perfor-
ance of our two best methods, the FFN baseline and our proposed
ES model, for all experiments on the respective test sets. We
ount a total of 24 comparisons. RES outperforms FFN in 20/24
ases. In 13/20 cases for RES and 0/4 cases for FFN, impro v ements
re statistically significant ( p < 0.05). Moreo v er, RES is also
ore data-ef ficient, achie ving similar performance while requiring

pproximately half as much data compared to FFN. Although multi-
ask learning is more computationally efficient than single-task
earning, we do not observ e impro v ed generalization induced by
hared representations. 

We demonstrate that the FFN baseline is outperformed by our
ES model due to its problem-adapted algorithmic bias (i.e. its
utore gressiv e structure), which is better suited for modelling the
nderlying physical processes in planetary collisions o v er time (see
lso Section 2.2.2 ). The optimal RES architecture requires more
earnable parameters than the optimal FFN architecture because RES
onsists of three neural network modules, whereas FFN consists of
NRAS 520, 1224–1242 (2023) 
nly one module. Ho we ver, we find that increasing FFN’s size does
ot increase its performance anymore. This finding indicates that
he performance impro v ement from RES originates from its better
lgorithmic bias rather than from its relatively larger number of
earnable parameters. Moreo v er, the superiority of RES is apparent
n both our own data and data from Timpe et al. ( 2020b ), indicating
 general trend rather than a data-specific effect. 

Measuring the actual effects of systematic errors induced by ML
odel predictions still remains an open topic in the context of

lanetary formation and evolution modelling. Thus, a natural follow-
p work could be to test various ML methods for collision treatment
n such simulations. 

Beyond studying the basic task of collision outcome prediction,
ur data and methods also open up further interesting lines of research
elated to planet formation in general. This includes studying inverse
roblems or focusing on specific collision scenarios (Canup, Barr &
rawford 2012 ; Chau et al. 2018 ). Other possible directions are

he extension of our methods to different regimes such as small
odies or objects including (proto-)atmospheres, probably requiring
o extend the underlying physics model. The latter can include more
ophisticated equations of state for more realistic thermodynamics
nd advanced models for material strength to accurately simulate
olid-body behaviour. 

ML models might benefit from learning directly based on mi-
roscopic representations, i.e. fragments or even down to the SPH
article level, and thereby improve aspects regarding generalization
nd interpretability. Incorporating certain aspects like symmetries,
onserved quantities, and sophisticated numerical approaches that
av e been dev eloped in recent years (Chen et al. 2020 ; Alet et al.
021 ; Hoedt et al. 2021 ; Satorras, Hoogeboom & Welling 2021 ;
randstetter et al. 2022 ) could be promising directions for further im-
ro v ements of ML architectures. F or e xample, graph neural networks
GNNs; Scarselli et al. 2009 ; Defferrard, Bresson & Vandergheynst
016 ; Kipf & Welling 2017 ) and regression forests (Ho 1995 ) have
een successfully applied to the approximation of numerical simu-
ations (Ladick ́y et al. 2015 ; Martinkus, Lucchi & Perraudin 2020 ;
faff et al. 2020 ; Sanchez-Gonzalez et al. 2020 ; Mayr et al. 2021 ).
fficient ML approaches begin to replace traditional PDE solvers

n the context of hydrodynamic simulations (Li et al. 2020a , b ).
esidual neural networks (He et al. 2016 ) showed promising results

n modelling complex dynamical processes by formulating the neural
etwork layer-structure as a continuous-depth model (Queiruga et al.
020 ) in the context of neural ODEs (Chen et al. 2018 ; Kidger 2022 ).
L methods allow accurate collision modelling at scale, while at the

ame time being orders of magnitude faster compared to classical,
on data-driven approaches. 
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ATA  AVAILABILITY  

s e xtensiv e simulation data sets for ML begin to emerge
Villaescusa-Navarro et al. 2022 ), we advocate making these data 
ets publicly available in order to optimize the benefit from network 
ffects among the research community. Data sharing helps to reduce 
pending computational resources for data generation, making ML 

pproaches more efficient and sustainable in the long term. 
We provide our data, source code, and pre-trained ML models to 

ncourage independent researchers to reproduce our results and to 
ncorporate our methods into their own work. The data underlying 
his article are available in the Phaidra repository at https://phai 
ra.univie.ac.at/o:1206181 , and can be accessed with the handle 
1353/10.1206181. Our source code and pre-trained ML models can 
e accessed at ht tps://github.com/lit tleblacksheep/csv/tree/main . We 
indly ask users to report possible bugs to winter@murena.io. 
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PPENDIX  A :  SPH  DATA  SET  DETA ILS  

1 Technical details 

e use three Nvidia GeForce GTX1080 Ti (11 GB) GPUs for the
eneration of SPH collision data. The total computation time can be 
plit up into pre-processing, SPH simulations, and post-processing. 
re-processing and post-processing are performed on the CPU, 
hereas SPH simulations are performed on the GPU. The average 

omputation times per simulation (average over 10 164 simulations) 
n these categories are 169 s, 42 min, and 4.8 s using a single GPU,
hich resulted in approximately 317 GPU days for the entire SPH 

ata set. Similar computation times hold for the N -body data set (see
ection 2.1.1 ) from Burger et al. ( 2020b ). 
The relatively large number of data points (one data point 

orresponds to one simulation) does not allow for high-resolution 
uns due to hardware limitations. We perform data reduction 
n the fly to significantly reduce the memory footprint from 

pproximately 200 TB of raw data. After post-processing, in- 
ividual simulation runs require less than 2 MB of storage 
pace. The complete data-set requires about 12.2 GB of storage 
pace. 

We performed a total of 10 794 SPH simulations. 630 of those runs
ailed, mostly because they ran into numerical issues either in the 
etup script or during the actual simulation with miluphcuda . The 
ensity of failed runs is higher in the disruption regime compared to
ther regimes due to excessively small time-steps (via the adaptive 
ime integration). This tends to be more likely in the disruption
e gime, where v ery high pressures are more common. We end up
ith 10 164 valid simulations for our data set. Note that due to the

nhomogeneous distribution of invalid simulations, the distribution 
f valid simulations is also somewhat inhomogeneous, leading to a 
lightly worse co v erage of high-v elocity, low-impact-angle scenarios 
i

igure A1. Distribution of invalid simulation runs. The chance that miluphcuda
elocities and low impact angles. 

76
see Fig. A1 ). We keep configuration files of invalid simulations for
ossible future data analysis. 

2 Pre-collision spin 

et us consider a single rotating body, consisting of n SPH particles.
he rotation axis can either be defined in spherical coordinates 

radius r , azimuth φ, polar angle θ ) or in Cartesian coordinates
 x , y , z): 

 = r cos ( φ) sin ( θ ) (A1) 

 = r sin ( φ) sin ( θ ) (A2) 

z = r cos ( θ ) (A3) 

In our case, r is either the length of the angular momentum vector
 , or the rotation period P rot . 

� 
 = 

n ∑ 

i= 1 

� r i × ( m i � v i ) (A4) 

Here, m i , � r i , and � v i refer to the masses, positions, and velocities
f individual SPH particles w.r.t. the barycentre of the object. The
ritical rotation period P rot,crit is defined such that a test mass at the
urface of the (idealized spherical) body is weightless according to 
epler’s third law: 

 rot, crit = 

√ 

4 π2 r 3 

G m 

= 

2 π

ω crit 
(A5) 

Here, r , m , and G refer to the object radius, its mass, and the
ravitational constant. For data set generation, the rotation speed 
angular velocity) ω is randomly sampled between ω = 0 and
 = 0.2 × ω crit , whereas the rotation axis is randomly sampled

n Cartesian coordinates. 
MNRAS 520, 1224–1242 (2023) 
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PPENDIX  B:  M AC H I N E  L E A R N I N G  

1 Rotation equi v ariance 

n optional rotation module can be used as a pre- and post-processing
tep. The module rotates the system in the 3D domain, making the ML
odels equi v ariant to rotations. Thus, the models are geometrically

onsistent and do not require to spend their capacity on learning to
e rotation equi v ariant. We propose to rotate and de-rotate the entire
ystem before and after applying learnable modules. 

y 0 i = rot 
(

ˆ y 0 i , R i 

)
(B1) 

 

T 
i = f 

(
y 0 i , T , � 

)
(B2) 

ˆ  T i = rot 
(
y T i , R 

−1 
i 

)
(B3) 

rot refers to the rotation module, f is an ML model with its
espective learnable parameters � , and ˆ y refers to systems with
ny orientation, whereas y have a fixed orientation. We calculate a
otation matrix R i for each data point such that the system is rotated
nto a fixed basis. The pre-rotation basis is given via the impact
eometry and is calculated as follows (see Fig. 3 ): 

�  0 = 

� v 

| � v | � e 1 = 

� e 0 × � r 
| � e 0 × � r | � e 2 = 

� e 0 × � e 1 
| � e 0 × � e 1 | (B4) 

v and r are the relativ e v elocity and relativ e distance v ectors
etween the projectile and the target. The rotation matrix R i is chosen
s the inverse of the pre-rotation basis: 

 i = 

⎛ 

⎝ 

e 00 e 01 e 02 

e 10 e 11 e 12 

e 20 e 21 e 22 

⎞ 

⎠ 

−1 

(B5) 

The rotation module can be easily embedded into ML frameworks
or collision treatment. 

2 Miscellaneous 

able B1 summarizes optimized hyperparameters for our deep
earning models. Formally, model architectures can also be inter-
reted as hyperparameters. We tested a handful of different possible
rchitectures and performed ablation studies before settling on the
est-performing architecture, which is presented in the main text.
or FFN, we tested a residual neural network approach and different
cti v ation functions. 

We studied LSTMs (Hochreiter & Schmidhuber 1997 ; Hochreiter
998 ; Gers et al. 1999 ) in-depth and investigated the following setups:

(i) Direct prediction of final states without Euler updates for study-
ng performance of direct predictions versus relative predictions. 

(ii) LSTM without forget gate for mitigating the vanishing gradi-
nt problem. 

We also investigated several different GNN architectures (Scarselli
t al. 2009 ; Defferrard et al. 2016 ; Kipf & Welling 2017 ). Our best
NRAS 520, 1224–1242 (2023) 

able B1. Model-class hyperparameters for deep learning collision 
reatment approaches. Hyperparameters are optimized w.r.t. validation 
erformance. 

ethod Description Value 

FN Number of layers 8 
FN Hidden state size 56 
ES Number of steps per simulated hour 4 
ES Number of layers for each module E, R, and D 3 
ES Hidden state size 64 

d
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f
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rchitecture was a latent GNN (Dong et al. 2019 ), which slightly
utperformed the FFN baseline. For the GNN, we investigated
e veral architecture v ariations that use the initial SPH representation
n combination with clustering approaches. These variations were

ostly inspired by the architecture of Sanchez-Gonzalez et al.
 2020 ). Increasing the number of graph nodes may require hier-
rchical graph structures (Martinkus et al. 2020 ; Ramp ́asek & Wolf
021 ) to account for learning long–range interactions such as gravity.
For the weight-tied residual network RES, we tested state updates

ia the Bulirsch–Stoer method (Stoer & Bulirsch 1980 ; Press,
eukolsky & Vetterling 1992 ) instead of the classical Euler update,
ut we did not observe any improvements. 

Preliminary investigation of predicted water mass fractions did
ot allow for in-depth analysis of generalization to the low-water-
ontent regime (i.e. ζ water < 0.1), because model predictions were too
naccurate. 

We summarize the training and validation performance of our ex-
eriments in Table B2 . Results are consistent with the corresponding
est results, which can be found in Table 5 . 

We provide pre-trained FFN and RES models for direct integration
nto existing N -body frameworks. We train these models using the
ntire development set (i.e. training + validation data) and report
heir performance in Table B3 . 

3 Incorporation of ML models into N -body frameworks 

ll our models can in principle be employed for collision treatment
ithin existing N -body simulation frameworks. In the following, we

ist some important aspects related to implementation and technical
etails thereof: 

(i) As our data are highly imbalanced (see Fig. 7 and Table 4 ),
ifferent use cases might require re-training the ML model using
ifferent data subsets. This benefit might be especially true for
lassification accuracy, which is sensitive to class-imbalances. Note
hat using the entire data set might lead to miss-classifications of
ollision outcome types (e.g. compare Fig. 7 versus Fig. 6 ). Also,
epending on the use case, one might want to incorporate additional
estrictions (such as imposing conservation laws) as post-processing
tep on top of model predictions. Further details are elaborated in
ection 2.2.1 . 
(ii) Our models require consistent input features, produced by

ollisions that lie within our parameter space as defined in Table 1 .
aving consistent input features also includes applying the identical
re-processing pipeline (e.g. the numerical scaling of features) in
nalogy to the pre-processing pipeline that is used for model training.
e believe that producing consistent input features is the most

rror-prone process when implementing ML methods for collision
reatment. For sophisticated frameworks or if o.o.d. data points are
xpected to be common, one may even consider applying anomaly
etection methods to check for potential invalid inputs. 
(iii) Note that we define the onset of the collision process before

bjects come in direct contact in order to include tidal effects.
his should be considered for triggering collision events in N -body

rameworks. We propose taking two measurements, one when tidal
nteraction begins, and another one once the objects come into direct
ontact (cf. Fig. 3 ). We initialize the colliding bodies at a distance
f d initial = f i × ( R t + R p ). R t and R p are the target and projectile
adii, while the initial distance factor f i is a hyperparameter (between
 i = 3 and f i = 7 for our data). Therefore, reasonable estimates of R t 

nd R p might be required to define the first measurement in N -body
imulations. 
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Figure B1. Visualization of predicted intermediate states (in red) of our RES model for four different data points of the o.o.d. test set. Each plot depicts 
two predicted trajectories, where one corresponds to the largest remnant (solid) and the other one to the second-largest remnant (dotted). Final positions are 
indicated by red dots (predictions) and black crosses (ground truth). Ground truth initial positions are indicated by the starting point of the respective predicted 
trajectories. Final velocity vectors (for both prediction and ground truth) are indicated by blue arrows for all objects. Note that projectiles are flying into the 
ne gativ e y-direction initially and the x–y plane is the main collision plane. The labels indicate the initial conditions (mass in units of 10 25 kg, cf. Table 1 ). 
We find that z-components (which are caused by rotating bodies) were quite significant in many simulations. Prediction performance in the z-component is 
comparable to the x- and y-components. We observe spatio-temporally continuous transitions from initial to final states, possibly indicating a correlation to the 
temporal evolution of the physical system to a certain extent. The first four panels were cherry-picked for predicted positions in the x–y plane. The last two 
panels visualize typical failure cases of model predictions, where positions and velocities of the second-largest remnants are poorly approximated. 
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M

Table B2. Training and validation performance (RMSE and balanced accuracy, both measured on the final state) of different approaches for planetary 
collision treatment. Classification is performed as a post-processing step on top of predicted masses. We assume the SPH simulation data to be the ground 
truth. For single-task learning (lower half of the table), each entry corresponds to the performance of individually trained ML models and column headers 
indicate optimized tasks, respectively. We use data from Timpe et al. ( 2020b ) to obtain results in the lower half. Best results are indicated in bold, whereas 
∗ indicate statistically significant results according to a Wilcoxon test (comparing FFN and RES). Our proposed RES model outperforms the other baseline 
methods in most experiments. 

Method Split Mass Material Position Velocity Total Accuracy 

PIM Training 0 . 1388 + 0 . 0008 
−0 . 0012 0 . 0619 + 0 . 0002 

−0 . 0001 0 . 4055 + 0 . 0010 
−0 . 0008 0 . 4411 + 0 . 0022 

−0 . 0018 0 . 3619 + 0 . 0010 
−0 . 0007 0 . 1667 + 0 . 0000 

+ 0 . 0000 

LIN Training 0 . 0441 + 0 . 0003 
−0 . 0003 0 . 0280 + 0 . 0001 

−0 . 0001 0 . 1617 + 0 . 0005 
−0 . 0006 0 . 1579 + 0 . 0011 

−0 . 0015 0 . 1375 + 0 . 0006 
−0 . 0007 0 . 2296 + 0 . 0068 

−0 . 0088 

FFN Training 0 . 0060 + 0 . 0003 
−0 . 0004 0 . 0115 + 0 . 0002 

−0 . 0001 0 . 0403 + 0 . 0007 
−0 . 0007 0 . 0446 + 0 . 0006 

−0 . 0007 0 . 0367 + 0 . 0005 
−0 . 0005 0 . 4422 + 0 . 0444 

−0 . 0416 

RES Training ∗0 . 0047 + 0 . 0001 
−0 . 0001 

∗0 . 0108 + 0 . 0002 
−0 . 0003 

∗0 . 0272 + 0 . 0002 
−0 . 0003 

∗0 . 0339 + 0 . 0003 
−0 . 0006 

∗0 . 0272 + 0 . 0002 
−0 . 0002 

∗0 . 5234 + 0 . 0089 
−0 . 0182 

PIM Validation 0 . 1388 + 0 . 0048 
−0 . 0032 0 . 0619 + 0 . 0004 

−0 . 0008 0 . 4056 + 0 . 0031 
−0 . 0041 0 . 4411 + 0 . 0071 

−0 . 0087 0 . 3619 + 0 . 0030 
−0 . 0041 0 . 1667 + 0 . 0000 

+ 0 . 0000 

LIN Validation 0 . 0443 + 0 . 0012 
−0 . 0009 0 . 0280 + 0 . 0005 

−0 . 0008 0 . 1619 + 0 . 0024 
−0 . 0018 0 . 1581 + 0 . 0066 

−0 . 0042 0 . 1377 + 0 . 0033 
−0 . 0021 0 . 2380 + 0 . 0485 

−0 . 0220 

FFN Validation 0 . 0066 + 0 . 0003 
−0 . 0004 0 . 0117 + 0 . 0002 

−0 . 0001 0 . 0420 + 0 . 0016 
−0 . 0017 0 . 0458 + 0 . 0023 

−0 . 0032 0 . 0379 + 0 . 0012 
−0 . 0021 0 . 4558 + 0 . 0328 

−0 . 0334 

RES Validation ∗0 . 0052 + 0 . 0003 
−0 . 0004 

∗0 . 0111 + 0 . 0003 
−0 . 0004 

∗0 . 0320 + 0 . 0019 
−0 . 0012 

∗0 . 0382 + 0 . 0015 
−0 . 0022 

∗0 . 0309 + 0 . 0014 
−0 . 0010 

∗0 . 5381 + 0 . 0438 
−0 . 0631 

PIM T raining, T impe 0 . 2080 + 0 . 0003 
−0 . 0003 0 . 1933 + 0 . 0014 

−0 . 0009 0 . 3598 + 0 . 0019 
−0 . 0014 0 . 2897 + 0 . 0017 

−0 . 0017 – 0 . 1667 + 0 . 0000 
+ 0 . 0000 

LIN T raining, T impe 0 . 0528 + 0 . 0005 
−0 . 0004 0 . 0493 + 0 . 0004 

−0 . 0003 0 . 2040 + 0 . 0013 
−0 . 0014 0 . 1691 + 0 . 0009 

−0 . 0007 – 0 . 3019 + 0 . 0063 
−0 . 0037 

FFN T raining, T impe 0 . 0124 + 0 . 0003 
−0 . 0002 0 . 0145 + 0 . 0002 

−0 . 0002 0 . 0757 + 0 . 0017 
−0 . 0009 0 . 0589 + 0 . 0002 

−0 . 0003 – 0 . 4172 + 0 . 0040 
−0 . 0040 

RES T raining, T impe ∗0 . 0112 + 0 . 0004 
−0 . 0004 

∗0 . 0138 + 0 . 0005 
−0 . 0006 

∗0 . 0658 + 0 . 0010 
−0 . 0008 

∗0 . 0548 + 0 . 0007 
−0 . 0007 – ∗0 . 4252 + 0 . 0063 

−0 . 0059 

PIM Validation, Timpe 0 . 2080 + 0 . 0013 
−0 . 0011 0 . 1933 + 0 . 0035 

−0 . 0058 0 . 3598 + 0 . 0056 
−0 . 0077 0 . 2897 + 0 . 0066 

−0 . 0070 – 0 . 1667 + 0 . 0000 
+ 0 . 0000 

LIN Validation, Timpe 0 . 0529 + 0 . 0015 
−0 . 0009 0 . 0495 + 0 . 0014 

−0 . 0005 0 . 2044 + 0 . 0046 
−0 . 0064 0 . 1695 + 0 . 0043 

−0 . 0046 – 0 . 3010 + 0 . 0181 
−0 . 0105 

FFN Validation, Timpe 0 . 0137 + 0 . 0010 
−0 . 0008 0 . 0155 + 0 . 0009 

−0 . 0006 0 . 0834 + 0 . 0056 
−0 . 0025 0 . 0642 + 0 . 0024 

−0 . 0019 – 0 . 4196 + 0 . 0163 
−0 . 0116 

RES Validation, Timpe ∗0 . 0130 + 0 . 0013 
−0 . 0011 0 . 0152 + 0 . 0005 

−0 . 0003 0 . 0826 + 0 . 0054 
−0 . 0035 0 . 0649 + 0 . 0028 

−0 . 0017 – 0 . 4265 + 0 . 0059 
−0 . 0049 

Table B3. Performance of provided pre-trained models. 

Method Split Mass Material Position Velocity Total Accuracy 

FFN Development 0.0055 0.0111 0.0399 0.0442 0.0364 0.4535 
RES Development 0.0046 0.0108 0.0273 0.0341 0.0273 0.5035 
FFN o.o.d. test 0.0119 0.0120 0.0483 0.0432 0.0405 0.5593 
RES o.o.d. test 0.0104 0.0125 0.0375 0.0425 0.0357 0.5091 
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(iv) Collisions can happen at arbitrary orientations. We provide
 rotation module to account for rotation-equi v ariance of our ML
odels. We recommend re-training ML models using data aug-
entation (i.e. randomly rotating the systems) in combination with

he rotation module as a sanity check for guaranteeing rotation-
qui v ariance. Note that all ML models in this paper were trained
ithout using the rotation module, i.e. projectiles flying into the
e gativ e y-direction initially, where the main collision plane is the
–y plane. Our data pre-processing is also specifically adjusted
or this fixed-orientation setup, i.e. different axes getting scaled
ifferently in order to account for the variability in the respectiv
 directions. 
NRAS 520, 1224–1242 (2023) 
(v) Our ML models can be ran on CPUs if using GPUs is
nfeasible or none are available. We estimate that CPU inference
imes τ i,ML are in the order of 1–10 s. 

(vi) As discussed in Section 2.2.5 , extracting reliable post-
ollision rotation states from our data remains an open issue,
otentially restricting the full usability of our ML models in N -
ody simulations, specifically for full tracking of rotation states o v er
e veral collisions. Ho we ver, once post-collision rotation states can
e extracted reliably from collision simulations, they can be easily
ncorporated into our multi-task regression objective. 
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