
Learning Ordinary Differential Equations with the
Line Integral Loss Function

Anonymous Author(s)
Affiliation
Address
email

Abstract

A new training method for learning representations of dynamical systems with1

neural networks is derived using a loss function based on line integrals from vec-2

tor calculus. The new training method is shown to learn the direction part of an3

ODE vector field with more accuracy and faster convergence compared to tradi-4

tional methods. The learned direction can then be combined with another model5

that learns the magnitude explicitly to decouple the learning process of an ODE6

into two separate easier problems. It can also be used as a feature generator for7

time-series classification problems, performing well on motion classification of8

dynamical systems. The new method does however have multiple limitations that9

overall make the method less generalizable and only suited for some specific type10

of problems.11

1 Introduction12

The theory of dynamical systems is widely applicable for modeling problems in fields like physics,13

engineering and medicine. This approach will often rely on creating explicit system models resulting14

in differential equations. But there are systems where creating explicit models are too difficult to15

realistically achieve for various reasons. This motivates the use of deep learning based methods to16

learn representations for dynamical systems.17

The Neural ODE framework [1] [2] [3] defines a neural network architecture as the limit of a residual18

network, thus ending up with an ordinary differential equation. The forward pass is computed by19

numerically integrating the network ODE forwards in time, and the backward pass by integrating20

the adjoint system backwards in time. Because of the inherent ODE structure of Neural ODEs they21

are capable of learning dynamical systems by training on sampled trajectories.22

This paper presents an alternative training method by utilizing a new loss function based on line23

integrals. The training method is slightly faster compared to adjoint based methods, while also24

generalizing better when learning ODEs. However, there are multiple limitations with the new25

training method which makes it overall less general. The loss function is derived in the next section.26

2 The Line Integral Loss27

2.1 Loss Function28

Consider an autonomous ODEs on the form ẋ = f(x) with state vector x ∈ Rm and system29

dynamics f : Rm → Rm. Initial conditions x(t0) will then evolve in time such that the trajectory30

x(t) in the state space is tangent to the vector field f .31

Submitted to the DLDE Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS
2022). Do not distribute.

Now consider the case where the system dynamics f are unknown but with access to a dataset con-32

sisting of n trajectories x1(t),x2(t), . . . ,xn(t) where each trajectory is sampled from the system33

at discrete points in time t0, . . . , t1. A method for training neural network representations of f34

can be derived by using the fact that trajectories are tangent to the underlying vector field. Define35

a neural network on the form ẋ = h(x;θ) where h(x;θ) is the represented as a neural network36

parametrized by θ. The line integral of a vector field h(x;θ) and trajectory xk(t) is defined as37 ∫
h · dxk =

∫ tk1

tk0
h(xk(t);θ)

Tx′
k(t)dt with x′

k(t) =
dxk(t)

dt .38

A key observation is that the line integral takes its maximum value when the vector field and tra-39

jectory perfectly align, and its minimum value when they are perfectly opposed. However, when40

the vector field is represented by a neural network the line integral becomes potentially unbounded.41

This can be solved by normalizing both vectors inside the integral to make their lengths equal to42

1. Dividing by the length of the interval makes the total line integral bounded between 1 and −1.43

Averaging over the trajectories in the training set then leads to the following optimization problem:44

min
θ

L = − 1

n

n∑
k=1

1

tk1
− tk0

∫ tk1

tk0

h(xk(t);θ)

||h(xk(t);θ)||

T
x′
k(t)

||x′
k(t)||

dt (1)

2.2 Gradients45

Solving this unconstrained optimization problem can be done with any gradient based methods46

commonly used in deep learning, but requires the gradient of the loss function to be known. The47

gradients from the loss function to the parameters can be derived to the form:48

∂L
∂θ

= − 1

n

n∑
k=1

1

tk1
− tk0

∫ tk1

tk0

x′
k(t)

||x′
k(t)||

T [
I

||h|| −
hhT

||h||3

] ∂h

∂θ
dt (2)

The vector-Jacobian product inside the integral can be computed efficiently using automatic dif-49

ferentiation. It is also worth noting that if all the trajectories have the same start time t0 and end50

time t1 it is possible to swap the order of the integral and the summation. This is often useful for51

vectorization purposes, which can give a significant speedup.52

The full gradient derivation is given in Appendix A.53

2.3 Practicalities54

A significant limitation of the normalization is that the magnitude of the vector field is lost when55

training. In practice, the magnitude often goes towards 1 after training for enough epochs. The next56

section demonstrates some experiments that use loss function even with this limitation.57

Another drawback of the loss function is that it requires access to the time derivatives of the trajec-58

tories in the dataset, unlike the standard Neural ODE approach which can learn dynamical system59

representations without derivatives. However, this limitation can be overcome by approximating the60

derivatives using a finite difference scheme if the sample interval h is small enough, and without too61

noisy data: dxk(ti)
dt ≈ xk(ti+1)−xk(ti)

h .62

Computing the integral numerically must also be done with consideration to the discretely sampled63

trajectory points. A simple numerical method that works well enough is to use the trapezoid integra-64

tion method, which can be implemented in an efficient way that does not require any more function65

calls than a simple Riemann sum approximation. More advanced numerical integration methods66

turns out in practice to be significantly more computationally expensive while only giving marginal67

improvements to performance.68

3 Experiments69

3.1 Learning Dynamical Systems70

A model is trained with the normalized line integral loss function and compared against other types71

of models to determine how well the training method works. All the models are set up with the same72

2

Figure 1: Loss values when training ODE models on a double pendulum system. Both loss functions
are evaluated on the testing set.

underlying neural network structure. The models to compare against are: a basic regression model73

that directly models the relation between a point x(t) and its time derivative ẋ(t), a Neural ODE74

(NODE) [1] that learns without knowing derivatives and finally a Second Order Neural ODE (SON-75

ODE) [4]. The regression model uses the MSE loss function applied to predicted derivatives and76

true derivatives when training, while the NODE models are trained by integrating numerically and77

comparing points along the trajectory also using the MSE loss, followed by gradient computation78

with the adjoint method.79

The line integral model is set up to only learn the direction of the underlying vector field. Therefore80

the line integral model is combined with a regression model similar to the one above that only learns81

the magnitude. The final learned vector field is then the multiplication of the output of the two82

models. Decoupling the vector field into direction and magnitude turns out to be an easier problem83

to learn than directly regressing on the whole vector field.84

The models are trained on the same trajectories sampled from a double pendulum system, which85

is nonlinear and chaotic making the learning process non-trivial. The trajectories are generated86

by integrating the system numerically. Normally distributed noise is also added to the training87

points, and the noise is added before the derivatives are computed with finite differences to make the88

setting more realistic. All the details regarding the experiment and implementation are described in89

Appendix B.90

To compare the models, two different loss functions are computed over a testing set each epoch. The91

first is similar to the loss for the NODE models in that trajectories are integrated from initial values92

and compared pointwise with the MSE loss function. The second is the normalized line integral93

computed over the learned vector fields of the models.94

Figure 1 shows the resulting test losses from training all the models on the double pendulum. Look-95

ing at the trajectory loss it might seem that the basic regression model starts to overfit on the training96

data, and thus falls behind the other models which are all approximately performing the same. When97

looking at the line integral loss it is clear that the NODE and SONODE models perform significantly98

worse than the regression and line integral models.99

3.2 Motion Classification100

Now consider a time-series classification problem where the goal is to classify trajectories sampled101

from different dynamical systems. This experiment uses a double pendulum as the first system,102

and a double pendulum being controlled by a PD-controller as the second system, making a binary103

classification problem. A simple approach is to train a model consisting of an LSTM followed by104

a classifier head. This classifier will be used as a baseline for comparison. The second classifier105

will work by training two different line integral models on the two systems separately. To classify a106

new trajectory, line integrals are computed for both models and used as features for another classifier107

model. This experiment uses a Support Vector Classifier (SVC). More details are found in Appendix108

B.109

3

Figure 2: Classification accuracy from training two classifiers on time-series sampled from two
different double pendulum systems. Evaluated on the testing set.

Figure 2 displays the classification accuracy on the testing set for each epoch when training the110

classifiers described above. The SVC is reset and trained from scratch each epoch, to show how111

the accuracy improves as the line integral models learn their vector fields. The line integral + SVC112

classifier clearly outperforms the simple LSTM classifier.113

4 Discussion114

When learning dynamical systems, the line integral model is comparable in loss values to the NODE115

models, while significantly outperforming them on the line integral loss. This could be an indication116

that the line integral model learns the overall structure of the vector field better, while the NODE117

models are better at integrating trajectories that move initial points to their ending points without118

considering the details of the structure. It does however also require an additional model to learn119

the magnitude, which doubles the parameter count at the current setup. Other similar models could120

also have been useful to benchmark against to get a better overview, such as the Hamiltonian [5] and121

Lagrangian [6] Neural ODE models.122

The line integral model is dependent on derivatives, so if the datasets were sampled at a lower123

frequency or contained too much noise, the derivatives could easily become too inaccurate to make124

the training reliable. Another consideration is that the training method only makes sense for learning125

dynamical systems directly, while the NODE models are more general and comparable to residual126

networks [7]. The gradients of the line integral loss is currently only defined to the parameters, and127

finding gradients to the input does not necessarily make as much sense because the whole trajectory128

must be considered as the input.129

The motion classification experiment showcases how the line integral model can be used without130

the magnitude. The LSTM model is not optimized well and could probably gain much better per-131

formance. Other more advanced methods could also be used for comparison, but the main goal of132

the experiment above is to show that it is possible to use the feature generation in this manner. The133

current setup is also straightforward to extend to more than two classes.134

The line integral method could also be extended to learning non-autonomous systems, meaning135

systems that also depend on time explicitly. The network could be constructed to handle time, for136

example taking inspiration from [8].137

5 Conclusion138

This paper presents a new method for learning representations for dynamical systems that is derived139

and experimentally tested. The method has some advantages over previous methods on certain140

problems, but also has many limitations making the method less useful in the general case. Future141

work could look into how to also learn the magnitude in a more efficient manner.142

4

References143

[1] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary144

differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,145

and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Cur-146

ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/147

69386f6bb1dfed68692a24c8686939b9-Paper.pdf.148

[2] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes, 2019.149

[3] Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dis-150

secting neural odes, 2021.151

[4] Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On sec-152

ond order behaviour in augmented neural odes, 2020. URL https://arxiv.org/abs/2006.153

07220.154

[5] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural net-155

works. In Advances in Neural Information Processing Systems, volume 32. Curran As-156

sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/157

26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf.158

[6] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley159

Ho. Lagrangian neural networks, 2020. URL https://arxiv.org/abs/2003.04630.160

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image161

recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),162

pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.163

[8] Jared Quincy Davis, Krzysztof Choromanski, Jake Varley, Honglak Lee, Jean-Jacques E.164

Slotine, Valerii Likhosterov, Adrian Weller, Ameesh Makadia, and Vikas Sindhwani. Time165

dependence in non-autonomous neural odes. CoRR, abs/2005.01906, 2020. URL https:166

//arxiv.org/abs/2005.01906.167

[9] Kaare Brandt Petersen and Michael Syskind Pedersen. The matrix cookbook. 2008.168

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.169

5

https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://arxiv.org/abs/2006.07220
https://arxiv.org/abs/2006.07220
https://arxiv.org/abs/2006.07220
https://proceedings.neurips.cc/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://arxiv.org/abs/2003.04630
https://arxiv.org/abs/2005.01906
https://arxiv.org/abs/2005.01906
https://arxiv.org/abs/2005.01906

Appendices170

A Gradient Derivation171

∂L
∂θ

=
∂

∂θ

[
− 1

n

∑n
k=1

1
tk1

−tk0

∫ tk1

tk0

h(xk(t);θ)
||h(xk(t);θ)||

T x′
k(t)

||x′
k(t)||

dt
]

= − 1

n

n∑
k=1

1

tk1
− tk0

∫ tk1

tk0

∂

∂θ

[
h(xk(t);θ)

||h(xk(t);θ)||
T x′

k(t)
||x′

k(t)||

]
dt

= − 1

n

n∑
k=1

1

tk1
− tk0

∫ tk1

tk0

x′
k(t)

||x′
k(t)||

T
∂

∂θ

[
h(xk(t);θ)

||h(xk(t);θ)||

]
dt

(3)

The partial derivative ∂
∂θ

[
h(xk(t);θ)

||h(xk(t);θ)||

]
= ∂

∂θ
h

||h|| can then be expanded using the chain rule:172

∂

∂θ

h

||h||
=

[
∂
∂h

h
||h||

] ∂h

∂θ
(4)

The innermost partial derivative ∂
∂h

h
||h|| can be computed explicitly using the following formula for173

differentiating a normalized vector [9]:174

∂

∂x

x− a

||x− a||
=

I

||x− a||
− (x− a)(x− a)T

||x− a||3
(5)

with x = h and a = 0. This leads to the expression for the gradient of the normalized vector as:175

∂

∂θ

h

||h||
=

[
I

||h|| −
hhT

||h||3

] ∂h

∂θ

Inserting this into equation (3) leads to the final gradient expression:176

∂L
∂θ

= − 1

n

n∑
k=1

1

tk1 − tk0

∫ tk1

tk0

x′
k(t)

||x′
k(t)||

T [
I

||h|| −
hhT

||h||3

] ∂h

∂θ
dt (6)

Additionally, if all the sample times are the same t0, . . . , t1, the order of the sum and integration can177

be swapped:178

∂L
∂θ

= − 1

n

1

t1 − t0

∫ t1

t0

n∑
k=1

x′
k(t)

||x′
k(t)||

T [
I

||h|| −
hhT

||h||3

] ∂h

∂θ
dt (7)

6

B Experimental Details179

B.1 Implementation180

A PyTorch implementation of both experiments be found at this anonymous repository.181

B.2 Data Generation182

The controlled double pendulum system can be written as an ODE on the state-space form:183

d

dt

q1q2q̇1
q̇2

 =


q̇1
q̇2[

(m1 +m2)l
2
1 m2l1l2 cos(q1 − q2)

m2l1l2 cos(q1 − q2) m2l
2
2

]−1 [−m2l1l2 sin(q1 − q2)q̇
2
2 − (m1 +m2)gl1 sin q1 + u1

m2l1l2 sin(q1 − q2)q̇
2
1 −m2gl2 sin q2 + u2

]
 (8)

with a four dimensional state vector [q1 q2 q̇1 q̇2]
T and two dimensional input vector184

[u1 u2]
T . All experiments uses the parameters m1 = 1,m2 = 1, l1 = 1, l2 = 1, g = 9.81185

for simplicity.186

A new batch of size 200 is generated for every epoch during training by integrating the double187

pendulum (8) using a step size of h = 0.01 from t0 = 0 to t1 = 1. The initial values to be188

integrated are randomly sampled uniformly in a box around the origin. A testing batch of size 20189

is also generated at every epoch to evaluate the performance on the two loss functions in Figure 1.190

Normally distributed noise with mean 0 and standard deviation 0.01 is added to the training batch,191

and then derivatives are computed with finite differences after the noise is added.192

All the experiments are ran with the same seeding so that the data generation remains the same.193

B.3 Learning Dynamical Systems194

The input is set to u1 = u2 = 0.195

All the trained models use the same neural network structure consisting of 6 linear layers with the196

tanh activation function in between layers. The layers has nodes: 4, 50, 100, 200, 100, 50, 4, except197

for the SONODE with 2 output nodes and the magnitude regression part of the line integral model198

with 1 output node. All the models are trained with the Adam optimizer [10] using a learning rate199

of 0.001.200

The line integral model is combined with the magnitude regression model by first normalizing the201

output of the line integral model and then multiplying with the magnitude. The line integral usually202

converges to a magnitude of 1 after some time, but the normalization makes it more stable when203

evaluating on the testing set early.204

When training the line integral model it is not actually necessary to compute the line integral, only205

the gradients (2) are necessary. But the line integral can still be useful to compute to determine if206

the loss is decreasing.207

Finally, the two loss functions evaluated on the testing set are the trajectory loss and the line integral208

loss. The trajectory loss takes the first values of the test batch and integrates these as intial values on209

the trained model. During integration, points are sampled at the same points in time as the testing210

batch. The integrated trajectories are then compared to the full testing trajectories using the MSE211

loss. The line integral loss function is computed by using the derivatives of the testing trajectories212

with the trained models. The derivatives of the testing batch are also approximated using finite213

differences, but without any noise.214

B.4 Motion Classification215

Two systems are now used for data generation: one uncontrolled double pendulum similar to the216

previous experiment and one controlled with a PD-controller. The controller is on the form: u1 =217

−0.1q1−0.01q̇1 and u2 = −5(q2−q1)−2q̇2. This ends up driving the second joint angle towards the218

7

https://anonymous.4open.science/r/line_integral_loss-F104/README.md

same angle as the first joint, while also slowing down the overall system. This causes the pendulum219

to appear more constrained in its motion.220

The LSTM classifier consists of an LSTM layer with 300 hidden units followed by a neural network221

with layers of nodes: 300, 150, 1 and sigmoid activations in between. It is trained as a binary clas-222

sification problem on trajectories from the two systems using the Adam optimizer using a learning223

rate of 0.001 and the binary cross entropy loss function.224

The second model trains two line integral models separately on the two double pendulum systems.225

These models are used as feature generators by computing normalized line integrals with trajectories226

to see how well they align with the two vector fields. These alignments can then be used to classify227

them. The simplest classifier would be to simply see what double pendulum system the trajectory228

aligns the most with. However, as the two systems can produce similar looking trajectories, this229

approach will not always be perfect. So for each trajectory to be classified, the line integral of both230

models are used as features for a new classifier model, here using an SVC. Figure 2 shows accuracy231

over time by re-training the SVC from scratch each epoch, but the simplest approach would be to232

fully train the two line integral models first, and then train the classifier afterwards.233

8

	Introduction
	The Line Integral Loss
	Loss Function
	Gradients
	Practicalities

	Experiments
	Learning Dynamical Systems
	Motion Classification

	Discussion
	Conclusion
	Appendices
	Gradient Derivation
	Experimental Details
	Implementation
	Data Generation
	Learning Dynamical Systems
	Motion Classification

