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ABSTRACT

Representation learning, particularly multi-task representation learning, has
gained widespread popularity in various deep learning applications, ranging from
computer vision to natural language processing, due to its remarkable generaliza-
tion performance. Despite its growing use, our understanding of the underlying
mechanisms remains limited. In this paper, we provide a theoretical analysis elu-
cidating why multi-task representation learning outperforms its single-task coun-
terpart in scenarios involving over-parameterized two-layer convolutional neural
networks trained by gradient descent. Our analysis is based on a data model that
encompasses both task-shared and task-specific features, a setting commonly en-
countered in real-world applications. We also present experiments on synthetic
and real-world data to illustrate and validate our theoretical findings.

1 INTRODUCTION

Multi-task representation learning (Caruana, 1997) is an important machine learning paradigm that
simultaneously learns multiple tasks within a single model. The goal is to extract the shared rep-
resentations from the input data so that they can benefit all tasks. By exploiting the relationships
between tasks, multi-task learning aims to enhance generalization, optimize resource utilization,
and promote transferability. Coupled with the advancements in deep learning models, it has gained
substantial popularity and made notable progress (He et al., 2017; Finn et al., 2017; Liu et al., 2019;
Yao et al., 2022). Take BERT (Devlin et al., 2018) as a well-known example. By training on both
the pre-training task and fine-tuning task, BERT can capture general representations more effec-
tively and combine them with task-specific features to achieve outstanding performance. However,
while learning across tasks produces representations that generalize remarkably well, the formal
understanding of the underlying mechanism remains less explored.
Drawing upon foundational research in generalization and transferability (Baxter, 2000; Yosinski
et al., 2014), a line of theoretical investigations (Evgeniou et al., 2005; Du et al., 2017; Frei et al.,
2022; Shen et al., 2022) has sought to explain the exceptional performance achieved by multi-task
representation learning. However, even for simplified mathematical models, a gap persists between
theoretical understanding and the many observed improvements of multi-task learning in practice.
Specifically, when selecting different tasks to be learned at the same time, there may exist similari-
ties in problem structures or task types among them. For example, the tasks can share the same goal
such as classification or regression. However, they could have totally different or even orthogonal
features. Compared to learning on a single task, jointly learning these tasks can still yield improve-
ment in generalization. Consequently, a crucial question emerges: how do the intrinsic relationships
between tasks help consistently improve model’s performances across different tasks with different
features? The fundamental conditions behind this phenomenon and their important role in obtaining
the exceptional generalization results remain undisclosed.
In this paper, we aim to rigorously investigate the underlying mechanism behind the intriguing
enhancement in generalization observed for of multi-task learning. To achieve this, we perform
a formal examination and comparison of the learning procedures of single-task learning and multi-
task learning, considering a two-layer convolutional neural network with smoothed ReLU activation.
Within our theoretical framework, we consider an image-like data model, where each data consists
of a feature patch and several noise patches. Given the joint training of multiple related tasks, we
consider two possibilities for the feature patch: it could be either a task-shared feature, common to
all tasks, or task-specific feature, unique to each task. With careful design of the setting, we present
a comprehensive theoretical analysis summarized as follows:
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Figure 1: We demonstrate data exam-
ples for two tasks, CIFAR10-Glass and
CIFAR10-Frost, to illustrate the follow-
ing: (1) shared features exist across the
tasks as they share the same original im-
ages in CIFAR10; (2) each task contains
unique features as the corruption signif-
icantly changes the image style. The
bar plots demonstrate the training and
test accuracy for models trained on each
task, where last column show the test
accuracy of a model on its unseen task.
The drop in test accuracy also indicates
the existence of unique features.

1. Through careful examination and analysis of the learning processes, we separate these procedures
into distinct stages. We clarify the learning behaviors exhibited at each stage and elucidate their
influence on learning features of tasks within both multi-task learning and single-task learning
settings.

2. By reviewing learning results of training samples, we identify the types of data that exhibit signifi-
cantly different performances between multi-task learning and single-task learning. Additionally,
we delve into theoretical explanations for this observed phenomenon.

3. Combining the above aspects, we establish bounds on optimization and generalization for single-
task learning and multi-task learning. Furthermore, we offer explanations on intrinsic relation-
ships underlying different results, with a particular focus on generalization.

1.1 OUR CONTRIBUTION

The contributions of this paper are summarized as follows.
• We prove the global convergence of gradient descent with weight decay for both multi-task learn-

ing and single-task learning. In a polynomial number of iterations, the two-layer convolutional
neural network can be trained to attain zero training error on both multiple tasks and a single task.

• We further prove that the global solutions attained by multi-task learning and single-task learning
are different and they have very different generalization abilities. While the model trained on
multiple tasks can generalize well with a nearly zero test error, the model trained on a single task
has much worse performance on generalization with a test error no less than a constant.

• We depict the learning process of neural networks under these two different circumstances. For
multi-task learning, the model fits the training data on the feature patches including both task-
shared features and task-specific features, so that the solution contracts all the information of
features. But for single-task learning, the model fits the noise patches instead for the part of the
data with task-shared feature, which ends in losing some information on features.

• We conduct extensive experiments on both synthetic data generated from our data model and real-
world benchmark data including MNIST-C (Mu & Gilmer, 2019) and CIFAR10-C (Hendrycks &
Dietterich, 2018). The empirical results confirm and support our theoretical findings.

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters
to denote scalars, vectors, and matrices respectively. For a vector v = (v1, · · · , vd)>, we denote
by ‖v‖2 :=

(∑d
j=1 v

2
j

)1/2
its 2-norm. For two sequence {ak} and {bk}, we denote ak = O(bk)

if |ak| ≤ C|bk| for some absolute constant C, denote ak = Ω(bk) if bk = O(ak), and denote
ak = Θ(bk) if ak = O(bk) and ak = Ω(bk). We also denote ak = o(bk) if lim |ak/bk| = 0. Finally,
we use Õ(·) and Ω̃(·) to omit logarithmic terms in the notation. We denote the set {1, · · · , n} by [n].
The carnality of a set S is denoted by |S|. Additionally, we denote xn = poly(yn) if xn = O(yDn )
for some positive constant D, and xn = polylog(yn) if xn = poly(log(yn)).

2 RELATED WORK

Multi-task Representation Learning. The ideas of representation learning and multi-task rep-
resentation learning have been studied since 90’s (Caruana, 1997; Thrun & Pratt, 1998; Baxter,
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2000). Since its excellent performance has been discovered on many applications, a growing num-
ber of multi-task learning methods on different specific problems have been studied (Ben-David
& Schuller, 2003; Ando et al., 2005; Argyriou et al., 2006; Cavallanti et al., 2010; Kuzborskij &
Orabona, 2013; Maurer et al., 2013; Pontil & Maurer, 2013; Pentina & Lampert, 2014; Widmer
et al., 2014). Notably, it yields some of the best results in computer vision (He et al., 2017) and nat-
ural language processing (Devlin et al., 2018). On the theoretical analyses, a series of works (Baxter,
2000; Maurer et al., 2016; Maurer, 2006; Cavallanti et al., 2010; Lounici et al., 2011; Tripuraneni
et al., 2020) focus on analyzing multi-task representation learning, including its generalization ca-
pabilities and sample complexities. While these works study the linear setting, Tripuraneni et al.
(2021) generalizes to non-linear settings. Our work focuses on the more complex non-linear setting.
However, few of them consider a model as close to real-world as ours, which is to train neural net-
works on data that consists of different sources of features, and multiple sparse noises with feature
noises. Also, a thorough analysis of feature learning and noise memorization during the process is
also relatively rare.

Optimization and generalization in deep learning. There have been many theoretical explo-
rations on the optimization and generalization mechanisms of neural networks (Du et al., 2018;
2019; Allen-Zhu et al., 2019b; Zou et al., 2020; Allen-Zhu et al., 2019a; Arora et al., 2019b;a; Ji &
Telgarsky, 2019; Chen et al., 2021). Most of them are in the neural tangent kernel (NTK) regime
(Jacot et al., 2018) or lazy training regime (Chizat et al., 2019). More recently, more works start
to study the learning properties of neural networks outside of NTK regime (Allen-Zhu & Li, 2019;
Bai & Lee, 2019; Shen et al., 2022). We note that our work also makes analysis beyond the NTK
regime, following the line of works that applies tensor power method for analysis (Allen-Zhu & Li,
2020; Zou et al., 2021; Kou et al., 2022; Chen et al., 2022b).

3 PRELIMINARIES

In this section, we outline our problem setup that serves as the foundation for our theoretical devel-
opment.

Problem Setup. We consider a scenario involvingK(K ≥ 2) distinct classification tasks. Our ap-
proach involves training a Convolutional Neural Network (CNN) using gradient descent on training
examples (x, y) generated from a data model D. For each of the K tasks, we possess a collection of
n training samples, denoted as {(xi,k, yi,k)}ni=1.
Within this data model, the input data is composed of both feature and noise patches. Specifically,
we represent x as a vector consisting of H patches, i.e., x = (x1,x2, ...,xH) ∈ RHd. Among these
patches, one represents the feature patch generated according to Definition 3.1, while the others
represent noise patches generated as per Definition 3.2.

Definition 3.1 (Feature Patch Generation). For data (x, y) which belongs to the k-th task, the feature
patch is generated as one of the following case randomly:
• Case 1: task-shared feature. This patch is given by αy · v, where 0 < α < 1, v = (1, 0, ..., 0)

denotes the task-shared feature and it is all the same for different tasks.
• Case 2: task-specific feature. This patch is given by y · vk, where vk denotes the task-specific

feature for the k-th task and vk, which is 1 on its k-th coordinate and 0 on others, is orthogonal to
v.

With probability p, the feature patch is taken as the task-shared feature αy · v, and with probability
q = 1− p, the feature patch is taken as the task-specific feature y · vk.

Definition 3.2 (Noise Patch Generation). For data (x, y) which belongs to the k-th task, after the
generation of feature patch v, the noise patch xh is generated according to the following process:

• Randomly select s coordinates from [d]\[K + 1] uniformly, denoted as a vector sh ∈ {0, 1}d.
• Generate ζh from distribution N

(
0, σ2

pId
)
, and then mask off the first K + 1 coordinates and

other d− s−K − 1 coordinates, i.e., ζh = ζh � sh.
• Add feature noise to ζh to form the final noise patch ξh, i.e., ξh = ζh− βhyv, where 0 < βh < 1

is the strength of the feature noise.

This data model is motivated by multitask representation learning, where data samples originate
from various learning tasks. It accounts for the presence of task-shared features common across
all tasks and task-specific features unique to individual tasks, often perturbed by noise. Such data
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models are prevalent in various applications, especially in classification problems. For instance,
when dealing with multiple similar image classification tasks, the labels may depend on general
information shared among all tasks (e.g., animals/vehicles) or more specific information limited to
one task (e.g., dogs/cats), while being influenced by noise.
Our data model can be thought of as representing the output of an intermediate layer of a CNN,
assuming entry-wise independent noise and sparsity. These assumptions draw inspiration from prior
works such as Yang (2019), which discussed scenarios where hidden nodes in an intermediate layer
are independently sampled, and Papyan et al. (2017), which demonstrated the sparsity of outputs in
such layers. Importantly, our proof techniques can be extended to settings where features and noise
exhibit higher density, as long as a sparsity gap between features and noise is maintained.
Given our data model, our objective is to optimize the CNN model defined as follows:

Fj (W,x) =

m∑
r=1

H∑
h=1

σ (〈wj,r,xh〉) , j ∈ {±1}. (1)

Specifically, we employ the same smoothed ReLU activation function as described in Allen-Zhu &
Li (2020), and its definition can be found in Definition 3.3.
Definition 3.3. For an integer q ≥ 3 and a threshold ρ = 1

polylog(n) , we define the following
smoothed ReLU function:

R̃eLU (z) =


0 if z ≤ 0;
zq

qρq−1 if z ∈ [0, ρ] ;

z − (1− 1
q )ρ if z ≥ ρ

Our goal is to minimize the regularized logistic loss function. Therefore, for single-task learning
trained on k-th task, the target function is

Lk (W) =
1

n

n∑
i=1

Li,k (W) +
λ

2
‖W‖2F . (2)

and for multi-task learning, the target function is

L (W) =
1

nK

K∑
k=1

n∑
i=1

Li,k (W) +
λ

2
‖W‖2F . (3)

Here, Li,k(W) = − log e
Fyi,k

(W,xi,k)∑
j∈{−1,1} e

Fj(W,xi,k) represents the individual loss for data (xi,k, yi,k),

which is the i-th data point from the k-th task. We use gradient descent to optimize the loss:

w
(0)
j,r ∼ N (0, σ2

0Id),

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,rL(W(t)), j ∈ {±1}, r ∈ [m], (4)

where η is the learning rate.

Other requirements. We also have certain requirements for parameter magnitude, which are
listed here. Based on n, we have s = Θ(nc), K = Ω(n

c
8q ), d = Ω(n2c+4K), σ0 = Θ(n−

c
6q ),

σp = Θ(n−
c
2 + 1

4q ), α = Θ(n
− c

10q2 ), βh = Θ(n−
c

18q ), ∀h ∈ [2, H], λ = O(n−
c
6 + 3c

10q ) and
m = polylog (n). Other parameters not listed are absolute constants with some logarithmic terms.

4 MAIN RESULTS

In this section we will introduce our main results. We will give optimization and generalization
guarantees of gradient descent for both training a two-layer CNN model on multiple tasks and a
single task in the following theorems. There are two parts in our main theorems: single-task learning
and multi-task learning.

4.1 SINGLE-TASK LEARNING

In this part, we consider the analysis for the learning problem of the k-th task.
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Theorem 4.1. (Single-task Setting) Consider a two-layer CNN defined in (1) and regularized train-
ing objective (2) with a regularization parameter λ > 0, with the data distribution following Defini-
tion 3.1 and 3.2, then we have the following guarantees on the training and test errors for the models
trained by Gradient descent. Suppose we run gradient descent for T = poly(n,λ−1)

η iterations with
learning rate η, then with probability at least 1 − O(n−1), we can find a NN model W∗

single such
that ‖∇L(W∗

single)‖2F ≤ 1
Tη . Moreover, the model W∗

single also satisfies:

• Training error is zero: 1
n

∑n
i=1 1[Fyi,k(W∗

single,xi,k) ≤ F−yi,k(W∗
single,xi,k)] = 0;

• Test error is high: P(x,y)∼D[Fy(W∗
single,x) ≤ F−y(W∗

single,x)] ≥ p
4 − poly

(
n−1

)
.

From Theorem 4.1, we can see that the optimization on training data of one single task via gradient
descent with a two-layer convolution neural network will converge to a global solution which has
both a zero classification error and a small gradient. However, this solution does not generalize well,
as it has a constant lower bound for test error.

4.2 MULTI-TASK LEARNING

In this part, we consider the analysis for the learning problem of all K tasks.

Theorem 4.2. (Multi-task Setting) Consider a two-layer CNN defined in (1) with and regularized
training objective (3) with a regularization parameter λ > 0, with the data distribution following
Definition 3.1 and 3.2, then we have the following guarantees on the training and test errors for
the models trained by Gradient descent. Suppose we run gradient descent for T = poly(n,λ−1)

η

iterations with learning rate η, then with probability at least 1 − O(n−1), we can find a NN model
W∗

multi such that ‖∇L (W∗
multi)‖

2
F ≤

1
Tη . Moreover, the model W∗

multi also satisfies:

• Training error is zero: 1
nK

∑K
k=1

∑n
i=1 1

[
Fyi,k (W∗

multi,xi,k) ≤ F−yi,k (W∗
multi,xi,k)

]
= 0;

• Test error is nearly zero: P(x,y)∼D [Fy (W∗
multi,x) ≤ F−y (W∗

multi,x)] = poly(n−1).

From Theorem 4.2, we observe that when using gradient descent with the same neural network
but trained on samples from all tasks, it achieves optimal training optimization performance char-
acterized by a small gradient and perfect accuracy. Importantly, this solution also exhibits strong
generalization capabilities on unseen test data.

4.3 DISCUSSION

Comparing Theorem 4.1 and Theorem 4.2, we observe similar optimization performance in both
cases. However, there is a significant disparity in terms of generalization to test data, even when
utilizing weight decay regularization. Models trained on multiple tasks exhibit remarkable general-
ization capabilities and achieve nearly zero test error. In contrast, models trained on a single task
cannot attain a test error lower than a constant. This gap is formed during the training process, as
outlined in the following section.

5 PROOF SKETCH OF MAIN RESULTS

In this section, we provide an outline of our proof and introduce critical techniques employed in
proving Theorem 4.1 and Theorem 4.2. Subsequently, we present a fundamental stage separation
in the learning processes of single-task learning and multi-task learning. Both learning scenarios
are structured similarly, with two main stages: the pattern learning stage and the regularization
stage. Therefore, we present an overview of each stage for both scenarios concurrently. Our focus
centers on several key quantities: 〈w(t)

j,r, j · v〉, 〈w
(t)
j,r, j · vk〉, 〈w

(t)
j,r, ζi,k,h〉. A larger value of

〈w(t)
j,r, j · v〉 signifies improved task-shared feature learning, while a larger 〈w(t)

j,r, j · vk〉 indicates

better task-specific feature learning. Furthermore, a greater 〈w(t)
j,r, ζi,k,h〉 represents enhanced noise

memorization.

5.1 IMPORTANT LEMMA: TENSOR-POWER METHOD

In this section, we present an important result regarding the depiction and comparison of the growth
rates of two non-linear sequences, which have different parameter magnitudes. This can be viewed
as a weaker version of Lemma D.19 in Allen-Zhu & Li (2020).
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Lemma 5.1. Let {xt, yt}t=1,.. be two positive sequences that satisfy the following conditions:

xt+1 ≥ xt + η ·Axq−1
t ,

yt+1 ≤ yt + η ·Byq−1
t ,

for some A and B such that Axq−2
0 ≥ Byq−2

0 log (1/x0) and η = o(1), Axq−2
0 = o(1) and

Byq−2
0 = o(1). Then, for any q ≥ 3, for some C ∈ (x0, O (1)), let Tx be the first iteration such that

xt ≥ C, then we have

Txη ≤ Θ̃(A−1x2−q
0 ) and yTx ≤ O (y0) .

Owing to the characteristics of the pattern learning stage and our activation function, we will observe
that some of the updating rules for the target inner products in this stage exhibit similarities with this
type of non-linear growth. Consequently, we can apply the tensor-power method to establish bounds
on the time and magnitude of each inner product.

Assumptions and notations. Without loss of generality, we consider the first task for single-
task learning and assume the first patch of data is the feature path and the other patches are noise
patches. Denote D1 as the index set of training data whose feature patch is taken as the task-
shared feature, and D2 as the index of the rest of the training data whose feature patch is taken as
the task-specific feature. For the simplicity of proof, we define Λ

(t)
j = maxr∈[m][〈w

(t)
j,r, j · v〉]+,

Ψ
(t)
j = maxr∈[m][〈w

(t)
j,r, j · v1〉]+, and Φ

(t)
j,i = maxr∈[m],h∈[2,H][〈w

(t)
j,r, ζi,k,h〉]+ for single-task

learning, Φ
(t)
j,i = maxk∈[K] maxr∈[m],h∈[2,H][〈w

(t)
j,r, ζi,k,h〉]+ for multi-task learning to quantify

task-shared feature learning, task-specific feature learning and noise memorization respectively. Let
Pj be the iteration number that Ψ

(t)
j reaches Θ(1/m) for j ∈ {±1}, Ti be the iteration number that

Φ
(t)
yi,1,i

reaches Θ(1/m) for i ∈ D1, and Qj be the iteration number that Λ
(t)
j reaches Θ(1/m) for

j ∈ {±1}.

5.2 PATTERN LEARNING STAGE

In this initial learning phase, weight decay has minimal impact, and gradient descent guides the
model to learn from training samples. Notably, single-task and multi-task learning exhibit different
behaviors in this stage. Based on our data distribution definition, the task-shared feature is “weak-
ened” by a factor α. Consequently, in single-task learning, for data with task-shared feature (in D2),
the noise patches will have a greater “impact” than the task-shared feature patch. As a result, the
model focuses on learning the noise patches. Conversely, in multi-task learning, the “impact” of
the task-shared feature from data across all tasks is combined, surpassing that of the noise patches.
Therefore, the model prioritizes learning the task-shared patch. For data with task-specific feature
patches (in D1), in both single-task and multi-task learning, the task-specific feature consistently
carries a greater “impact” than the noises. Therefore, the model concentrates on learning the task-
specific feature.
For single-task learning during the pattern learning stage, we observe the following inequalities
regarding the increasing patterns of various metrics:

Ψ
(t)
j ≥ Ψ

(t−1)
j +

η

2ρq−1
Θ((Ψ

(t−1)
j )q−1), ∀j ∈ {±1}, t ≤ Pj ;

Φ
(t)
j,i ≤ Φ

(t−1)
j,i +

η

ρq−1
Θ(sσ2

p/n)Θ((Φ
(t−1)
j,i + Θ̃(σ

2
3
0 ))q−1), ∀j ∈ {±1}, i ∈ D2, t ≤ max

j∈{±1}
Pj ;

Φ
(t)
yi,1,i

≥ Φ
(t−1)
yi,1,i

+
η

2ρq−1
Θ(sσ2

p/n)Θ((Φ
(t−1)
yi,1,i

− Θ̃ (σ0))q−1), ∀i ∈ D1, t ≤ Ti;

Λ
(t)
j ≤ max{Λ(t−1)

j +
ηαq

ρq−1
Θ((Λ

(t−1)
j )q−1), Θ̃(αqσ

2
3
0 )}, ∀j ∈ {±1}, t ≤ max

i∈D1

Ti.

Considering {Ψ(t)
j }, {Φ

(t)
yi,1,i
}(j ∈ {±1}, i ∈ D1) as {xt}, and {Λ(t)

j }, {Φ
(t)
j,i}(j ∈ {±1}, i ∈ D2)

as {yt}, we can leverage Lemma 5.1 in conjunction with specific techniques to yield the subsequent
results:
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Lemma 5.2. For single-task learning, the iteration numbers Pj for task-specific feature learning
metric Ψ

(t)
j to reach Θ(1/m) and Ti for noise memorization metric Φ

(t)
yi,1,i

to reach Θ(1/m) follow
these orders:

Pj = Õ(σ2−q
0 /η), ∀j ∈ {±1}, Ti = Õ(n(

√
sσpσ0)2−q/ηsσ2

p), ∀i ∈ D1.

The orders of Φ
(t)
j,i and Λ

(t)
j are as follows:

Φ
(t)
j,i = Õ(

√
sσpσ0), ∀j ∈ {±1}, i ∈ D2, t ≤ max

j∈{±1}
Pj , Λ

(t)
j = Õ(σ0), ∀j ∈ {±1}, t ≤ max

i∈D1

Ti.

This implies that at the end of the feature learning stage in single-task learning: For data with task-
shared feature patches (in D1), the inner products of neurons with noises will reach a constant level,
while the inner products with task-shared features remain small. For data with task-specific feature
patches (in D2), the inner products of neurons with task-specific features will reach a constant level,
while the inner products with noises remain small.
For multi-task learning during the pattern learning stage, we have these inequalities:

Ψ
(t)
j,k ≥ Ψ

(t−1)
j,k +

η

2Kρq−1
Θ((Ψ

(t−1)
j,k )q−1),∀j ∈ {±1}, k ∈ [K], t ≤ Pj ;

Φ
(t)
j,i ≤ Φ

(t−1)
j +

η

Kρq−1
Θ(sσ2

p/n)Θ((Φ
(t−1)
j + Θ̃(σ

2
3
0 ))q−1),∀j ∈ {±1}, i ∈ D2, t ≤ max

j∈{−1,1}
Pj ;

Φ
(t)
j,i ≤ Φ

(t−1)
j +

η

Kρq−1
Θ(sσ2

p/n)Θ((Φ
(t−1)
j + Θ̃(σ

2
3
0 ))q−1),∀j ∈ {±1}, i ∈ D1, t ≤ max

j∈{−1,1}
Qj ;

Λ
(t)
j ≥ Λ

(t−1)
j +

ηαq

ρq−1
Θ((Λ

(t−1)
j )q−1)− Θ̃(

(√
sσpσ0

)q−1
),∀j ∈ {±1},∀t ≤ Qj ;

Taking {Ψ(t)
j,k}, {Λ

(t)
j }(j ∈ {±1}, k ∈ [K]) as {xt}, and {Φ(t)

j,i}(j ∈ {±1}) as {yt}, we can once
more apply Lemma 5.1 with specific techniques to derive the following results:
Lemma 5.3. For multi-task learning, the following orders of iteration numbers Pj for task-specific
feature learning metric Ψ

(t)
j reaching Θ(1/m) and of iteration number Qj for task-shared feature

learning metric Λ
(t)
j reaching Θ(1/m) hold:

Pj = Õ(Kσ2−q
0 /η), Qj = Õ(α−qσ2−q

0 /η), ∀j ∈ {±1}.

And following order of Φ
(t)
j,i holds:

Φ
(t)
j,i = Õ(

√
sσpσ0), ∀j ∈ {±1}, ∀(i ∈ D2, t ≤ max

j∈{±1}
Pj), ∀(i ∈ D1, t ≤ max

j∈{±1}
Qj).

This implies that at the end of the feature learning stage in multi-task learning: For data with task-
shared feature patches (in D1), the inner products of neurons with task-shared features will reach a
constant level, while the inner products with noises are still small. For data with task-specific feature
patches (in D2), the inner products of neurons with task-specific features will reach a constant level,
while the inner products with noises stay small.

5.3 REGULARIZATION STAGE

In the regularization stage, which follows the acquisition of basic data directions, weight decay plays
a crucial role in retaining learned knowledge and driving the model towards convergence. Conse-
quently, a single-task learning model converges while retaining some noise and loses information
related to shared features. This ultimately results in a constant lower bound for generalization loss.
In contrast, a multi-task learning model accommodates all features and achieves nearly perfect test
error.
Lemma 5.4 (Maintain the pattern). In the regularization stage, for single-task learning, it holds that

Φ
(t)
yi,1,i

= Θ̃(1), ∀i ∈ D1, Ψ
(t)
j = Θ̃(1), ∀j ∈ {±1},

Φ
(t)
j,i ≤ Θ̃(

√
sσpσ0), ∀i ∈ D2, j ∈ {±1}, Λ

(t)
j ≤ Θ̃(σ0), ∀j ∈ {±1}.

For multi-task learning, it holds that

Ψ
(t)
j = Θ̃(1),Λ

(t)
j = Θ̃(1), ∀j ∈ {±1}, Φ

(t)
j,i ≤ Θ̃

(√
sσpσ0

)
, ∀j ∈ {±1}, i ∈ [n].
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The first part of this lemma implies that, during the regularization stage in single-task learning, for
data with task-shared feature patches, the inner products of neurons with noise will remain constant,
while the inner products with task-shared features will remain at a small magnitude. For data with
task-specific feature patches, the inner products of neurons with task-specific features will continue
at a constant level, while the inner products with noise remain small.
The second part of this lemma implies that, during the regularization stage in multi-task learning,
for data with task-shared feature patches, the inner products of neurons with task-shared features
will remain constant, while the inner products with noises will remain at a small magnitude. For
data with task-specific feature patches, the inner products of neurons with task-specific features will
continue at a constant level, while the inner products with noise remain small.

6 EXPERIMENTS

In this section, we present experiment results on both synthetic and real data in verification of our
theory.

6.1 SYNTHETIC EXPERIMENTS

We consider a two-layer CNN model as outlined in (1) with m = 10 and q = 3. We present the
results of the experiment under the following two data settings that strictly follows Definition 3.2. In
Appendix A, we additionally present a generalized setting to demonstrate that our theoretical results
can be extended to more general cases.
• Setting 1: we let the number of tasks K = 3, number of data N = 45, patch dimension d = 100,

and number of patches H = 2. Moreover, we set the parameters α = 0.8, p = 0.2 and s = 1.
• Setting 2: keeping all other parameters the same as setting 1, we let d = 200 and s = 2.
Adhering to Definition 3.2, all three tasks have a shared feature v and respectively has a specific
feature vk. Both test and training data are generated under identical settings and share the same
size. The models are trained to loss convergence as per (2) for single-task learning and (3) for
multi-task learning, using gradient descent as in (4), with parameters set at λ = 0.01 and η =
0.1. For single-task training, the model is trained on the same data of task k in our generated
multi-task training data. As we show in Figure 2, we train the models until the loss converged for
both single-task learning and multi-task learning. The comparison results in setting 1 and 2 for
models under multi-task and single-task training are presented in Table 1, using identical test data
from task k. In alignment with our theoretical results of Theorems 4.1 and 4.2, we can observe a
distinct gap in test accuracy between the two learning schemes across the all tasks in both settings.
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Figure 2: Change of training loss in setting 1
for single-task and multi-task learning with regard
to training epochs. As shown, we train until all
losses converged.

Table 1: Synthetic experiment results on setting 1
and 2. We report the test accuracy (%) of task k.

Setting 1 Single-task Multi-task

Task 1 92.31 100
Task 2 81.25 100
Task 3 87.50 100

Setting 2 Single-task Multi-task

Task 1 88.24 100
Task 2 64.29 100
Task 3 78.57 100

6.2 REAL DATA EXPERIMENTS

We further support our theoretical findings with the following real-data experiments. Recall our
theory finds that (1) multi-task learning reaches better generalization result, due to (2) its better
learning of the shared feature. We use real data to confirm both points.
Dataset. We consider CIFAR10-C (Hendrycks & Dietterich, 2018) for our real data experiments.
In specifics, CIFAR10-C is a corrupted CIFAR10 benchmark dataset, with 19 different corruptions
applied to the original testset of CIFAR10. In appendix, we also present experiments on MNIST-
C (Mu & Gilmer, 2019), similar corruption datasets used in previous literature (Chen et al., 2022a)
investigating multi-task learning for different theoretical perspectives. Due to the nature of having
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the same original dataset but differing significantly in the applied corruptions, the classification
problem within each corruption well fits our data model containing both task-specific feature and
shared feature. Therefore, we consider learning on each specific corruption as the single-task setting
and learning on a union of corruptions as the multi-task setting. We make the same split on each
corruption data, letting the first 8, 000 images as the training data and the last 2, 000 as the test data.
Lastly, we let the severity value of corruptions to be 5.
Model. For the model architecture, we consider ResNet18 as our network. Models for single-task
and multi-task learning are all trained to convergence on training loss using SGD optimizer with a
learning rate of 0.1, momentum of 0.9 and weight decay of 5e-4.
Multi-task learning outperforms single-task learning. Each corruption type in the classification
problem is treated as a distinct task. We begin with considering single-task training on the 9 tasks
specified in Table 5. Moreover, we consider multi-task learning on the union of the training data
of the 9 tasks. Again, we note that the train-test splits are the same for all tasks. Lastly, multi-task
learning are evaluated on the test data for each single task to compare with single-task learning. Ta-
ble 5 shows that multi-task learning indeed outperforms single-task learning on each of the specific
task.
Multi-task learning better learns the shared feature. We further present the following experiment
to confirm our theoretical reasoning on why multi-task learning outperforms single-task learning.
That is, we demonstrate that multi-task learning can better learn the shared feature. Table 3 presents
the test accuracy of both single-task and multi-task training across various test data on unseen tasks.
We make the following two observations. Firstly, while single-task learning manages to maintain
a decent accuracy on unseen tasks, there remains a distinguished gap in performance compared to
that on the test data of its own task. This indicates the existence of both shared feature and distinct
specific features. Secondly, multi-task learning consistently outperforms single-task learning across
different new tasks. Such an observation provides evidence that multi-task learning can better learn
the shared feature that enhances its performance on the other tasks.

Table 2: We report the model’s accuracy (%) on the test data with regard to each task (corruption).
For single-task learning, we report the model trained on the specific task. For multi-task learning,
we report the model trained on the union of the 9 considered tasks.

Bright Contrast Defocus Elastic Fog Frost Gauss blur Gauss noise Glass

Single 83.95 78.55 82.45 78.70 82.95 81.50 84.20 76.80 75.25
Multi 84.75 85.90 84.70 81.15 84.05 84.15 84.70 82.15 80.35

Table 3: We report the model’s accuracy (%) on the test data with regard to each unseen task (cor-
ruption). For single-task learning, we report the model trained on the listed task. For multi-task
learning, we report the model trained on the union of the 9 considered tasks.

Impulse Jpeg Motion Pixelate Saturate Shot Snow Spatter Speckle Zoom

Bright 17.00 61.10 34.15 51.20 65.15 24.95 67.05 58.50 24.75 38.85
Contrast 13.35 34.95 39.20 37.45 23.85 18.45 27.85 28.45 18.20 41.90
Defocus 23.40 59.30 67.95 62.05 56.80 35.15 51.70 45.00 36.05 73.40
Elastic 43.30 74.80 64.80 77.85 66.35 56.00 67.25 71.30 55.45 71.20

Fog 26.35 62.20 62.80 46.70 50.40 24.25 60.45 60.70 26.65 62.35
Frost 38.40 69.25 54.85 69.50 61.60 58.20 74.65 71.95 57.15 57.80

Gauss blur 14.45 44.90 60.15 48.45 49.55 15.55 34.35 36.05 15.55 67.95
Gauss noise 67.55 71.65 43.00 67.05 66.65 77.05 65.70 67.55 75.25 48.50

Glass 43.85 73.20 66.35 77.10 62.30 57.30 66.30 69.35 56.30 68.25

Multi 77.50 78.80 78.00 82.20 78.75 82.15 79.55 77.40 82.20 82.55

7 CONCLUSION AND FUTURE WORK

In this paper, we theoretically studied how multi-task learning reaches better generalization results
than single-task learning. Our theoretical results showed that, when both single-task learning and
multi-task learning reach zero training error, multi-task learning has a much better generalization
performance than single-task learning on the test data. We explain the mechanism of the improve-
ment by separating the learning process into different stages appropriately and analyzing the dif-
ferent situations of feature learning and noise memorization in each stage. Our proof reveals how
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learning on multiple tasks can help raise the impact of features in data, resulting in stronger gener-
alization capabilities. Experiments on both synthetic data and real data verify our theory.
Our findings suggest several interesting future research directions. An important direction is to
extend our analysis to a broader range of conditions. This may include extending two-layer neural
networks to deeper neural networks, exploring different data types, and extending related learning
schemes such as meta-learning. A comprehensive exploration of generalization capabilities across
diverse scenarios promises to furnish deeper insights into the underlying landscape.
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A ADDITIONAL EXPERIMENTS

A.1 SYNTHETIC DATA

Inner product. To corroborate our theoretical analysis, which delineates the two-stage training
process described in Subsection 5.2 and 5.3, we have plotted the inner products between the model
weight vectors and both the key feature vectors and noises identified in our study, i.e., Λ

(t)
j , Ψ

(t)
j and

Φ
(t)
j,i defined in 5.1.

We consider setting 1 for these experiments, and took the average of all noise vectors in training
data to show the overall trend of noise learning. In the case of single-task learning, our observations
confirm that the model primarily learns the task-specific feature, while the learning of noise sur-
passed the learning of the shared feature. Conversely, multi-task learning demonstrates a successful
learning of the shared feature, surpassing the learning of the noise feature.
Furthermore, the learning trends observed in our synthetic experiments are consistent with our two-
stage training analysis. In single-task learning, the learning processes of the task-specific feature
and noise are going through the pattern learning stage before approximate 50th and 350th epoch
respectively, in which the inner products are growing rapidly; and they both keep steady and enter
the regularization stage after the turning points. And the inner product with the task-shared feature
remains near initialization. In multi-task learning, the inner products with all features are increasing
fast in the pattern learning stage before around 250th epoch, until each of them reach a certain level
and keep the same magnitude after that in the regularization stage. And the learning level of noises
stays at a low level.
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(b) Multi-task training
Figure 3: We demonstrate the maximum inner product over the model weight vectors with the
feature vector. We compare the growth of these quantities when training with weight decay or
training without weight decay. It can be observed that training without weight decay will result in
the inner product continuously growing, while training with weight decay will not.

Weight decay. We also investigate the training process with or without weight decay on the synthetic
data. The results are illustrated in Figure 4. From both figures, we can see that although there are
turning points in the dynamics of inner products between weight node vectors and features both with
and without weight decay, the curves after the turning points are obviously different between these
two settings.
With weight decay, which is the setting considered in our original model, the learning processes of
features enter the regularization stage after the turning points, and the inner products with features
basically stay still, and even decrease a little. Without weight decay, however, the inner products
with features keep increasing at lower speeds, so there are not very significant regularization stages
in these situations.
Setting 3. We consider a more realistic setting without restricting orthogonality on the noise patches
across data points. Keeping the same parameters as in Setting 1, we letK = 5,N = 75, and s = 94.
In other words, the noise patches are random noise vectors only orthogonal to the feature vectors.
The results are shown in Table 4. Although the noise patches in this setting do not enforce sparsity
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(b) Multi-task training
Figure 4: We demonstrate the maximum inner product over the model weight vectors with the
feature vector. We compare the growth of these quantities when training with weight decay or
training without weight decay. It can be observed that training without weight decay will result in
the inner product continuously growing, while training with weight decay will not.

and orthogonality, a clear difference in test accuracy is evident across all tasks. Multi-task learning
consistently yields better performance compared to single-task learning.

Table 4: Synthetic experiment results on setting 3. We report the test accuracy (%) of task k.

Single-task Multi-task

Task 1 81.25 100
Task 2 31.25 100
Task 3 75.00 100
Task 4 75.00 100
Task 5 73.33 100

A.2 CIFAR10-C

We conduct additional experiments to confirm the analysis of our theory, especially the different
capabilities of learning the task-shared feature between single-task learning and multi-task learning
and different performances between two stages during the learning process on both task-shared
feature and task-specific feature. Since in the CIFAR10-C dataset, one can not explicitly separate
task-shared feature and task-specific feature, so we try to use the test errors under various training
and testing situations to represent the learning process and the learning results of task-shared feature
and task-specific features.
In Figure 5, we present a comparison of test accuracy for models trained on a single task (brightness)
and a multi-task framework (encompassing the nine datasets discussed previously). The test data
includes impulse noise, an element not present in the training data for either the single-task or multi-
task models. The performance on impulse noise serves as an indicator of the model’s proficiency
in learning shared features. Additionally, we examine test data related to brightness, a corruption
encountered in both single-task and multi-task training. This assessment is used to indicate the
model’s effectiveness in learning task-specific data.
As shown in Figure 5, multi-task learning successfully learned the shared feature while single-task
learning failed to do so. Moreover, the trend in the figure aligns with our two-stage analysis. For
single-task learning, before around 80th step, the task-specific feature is learned relatively rapidly,
which corresponds to our pattern learning stage; after around 80th step, it basically remains at the
same level, which corresponds to our regularization stage. And the learning level of the task-shared
feature stays low. For multi-task learning, before around 50th step, both the task-specific feature and
the task-shared feature are gained rapidly by the neural network, which matches our pattern learning
stage; after around 50th stage, they both keep at a consistent level, which matches our regularization
stage.
Less Training Data. Previously we considered a train-test split of 80% and 20%. Here, we addi-
tionally consider the train-test split of 60% and 40%. The other setting follow our previous settings.
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single-task shared multi-task shared single-task specific multi-task specific

Figure 5: Change of test accuracy with regard to training epochs. We consider single-task training
on brightness and multi-task training on the 9 tasks we discussed previously. For the test data, we
consider the test data from impulse noise (as an indicator for shared feature learning) and brightness
(as an indicator for specific feature learning). We note that both models are not trained on impulse
noise.

When training data are less, we can observe that the improvement gain of multi-task learning is more
significant.

Table 5: We report the model’s accuracy (%) on the test data with regard to each task (corruption).
For single-task learning, we report the model trained on the specific task. For multi-task learning,
we report the model trained on the union of the 9 considered tasks.

Bright Contrast Defocus Elastic Fog Frost Gauss blur Gauss noise Glass

Single 71.66 61.42 70.34 65.16 49.68 66.16 55.80 43.10 44.76
Multi 80.60 80.75 80.24 77.28 79.30 79.60 79.82 77.78 75.74

A.3 MNIST-C

Datasets. We additionally present the real-data experiments on MNIST-C. Similarly, MNIST-C is a
corrupted MNIST benchmark dataset with 15 different corruptions applied to MNIST. We similarly
consider learning on each corruption as the single-task setting and learning on a union of corruptions
as the multi-task setting. As MNIST-C has train and test split, we do not make our own splits.
Models. For experiments on MNIST-C (Mu & Gilmer, 2019), we consider a CNN architecture with
two layers of convolution and two layers of fully connected layers. Specifically, both convolutional
layers have kernel size of 3 and stride of 1, each with 32 and 64 output channels. The two linear
layers have the dimension of (9216, 128) and (128, 10).

Training task Test Motion blur Rotate Scale Shear Stripe Translate

Brightness 98.98 84.50 89.53 91.83 96.34 94.17 42.46
Canny edges 98.69 33.64 45.61 51.56 49.68 82.63 30.02
Dotted line 98.94 92.79 91.24 93.65 97.29 96.05 46.03

Fog 99.03 93.35 87.77 92.44 96.13 95.26 41.35
Glass blur 98.22 76.48 88.30 72.47 93.77 83.02 36.19

Impulse noise 98.53 92.11 89.22 93.17 96.85 95.26 42.37
Shot noise 98.79 93.40 90.89 92.92 96.47 95.61 44.27

Spatter 98.74 94.47 90.98 92.63 97.22 96.95 45.68
Zigzag 98.66 92.18 90.99 94.13 96.69 95.95 43.02

Multi-task 98.65 95.72 92.40 94.72 97.46 97.19 48.02
Table 6: Test accuracy (%) of single-task training and multi-task training on different unseen tasks in
MNIST-C. Test denotes the test data that corresponds to each training task. For multi-task learning,
we report its performance on the combined test data of its tasks.
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B PREPARATION FOR THE PROOFS

In this section, we will get some preparations for our proof of main results.

B.1 GRADIENT CALCULATIONS

By following data assumptions, we can calculate the gradient update rules on single-task learning
and multi-task learning respectively.
We consider a two-layer CNN model F using the smoothed ReLU activation function σ(z) =

R̃eLU (z), where q ≥ 2. From 1, given the data (x, y) which belongs to the k-th task, the j-th
output of the neural network can be formulated as

Fj (W,x) =

m∑
r=1

H∑
h=1

σ (〈wj,r,xh〉)

So if (x, y) is the first part of the data, then we have

Fj(W,x) =

m∑
r=1

[
σ(〈wj,r, αy · v〉) +

H∑
h=2

σ(〈wj,r, ξx,h〉)
]

=

m∑
r=1

[
σ (〈wj,r, αy · v〉) +

H∑
h=2

σ (〈wj,r, ζx,h − βhyv〉)

]
where m is the width of the network, wj,r ∈ Rd denotes the weight at the r-th neuron, and W is
the collection of model weights.
If (x, y) is the second part of the data which belongs to the k-th task, then we have

Fj (W,x) =

m∑
r=1

[
σ (〈wj,r, αy · vk〉) +

H∑
h=2

σ (〈wj,r, ξx,h〉)

]

=

m∑
r=1

[
σ (〈wj,r, y · vk〉) +

H∑
h=2

σ (〈wj,r, ζx,h − βhyv〉)

]
Combining with optimization objective function 2 for single-task learning, 3 for multi-task learning,
and the gradient descent algorithm 4, we can obtain the following formulas.
Lemma B.1. According to the update rule of gradient descent, the feature learning and noise mem-
orization of gradient descent for (xi,k, yi,k) which belongs to the k-th task for single-task learning
can be formulated by〈

w
(t+1)
j,r , j · v

〉
= (1− ηλ)

〈
w

(t)
j,r, j · v

〉
+
η

n
· j ·

( ∑
i∈D1

αyi,kl
(t)
j,i,kσ

′
(〈

w
(t)
j,r, αyi,k · v

〉)

−
H∑
h=2

n∑
i=1

βhyi,kl
(t)
j,i,kσ

′
(〈

w
(t)
j,r, ζi,k,h − βhyi,kv

〉))

= (1− ηλ)
〈
w

(t)
j,r, j · v

〉
+
η

n
· j ·

( ∑
i∈D1

αyi,kl
(t)
j,i,kσ

′
(〈

w
(t)
j,r, αyi,k · v

〉)

−
H∑
h=2

n∑
i=1

βhyi,kl
(t)
j,i,kσ

′
(〈

w
(t)
j,r, ξi,k,h

〉))
〈
w

(t+1)
j,r , j · vk

〉
= (1− ηλ)

〈
w

(t)
j,r, j · vk

〉
+
η

n
· j ·

(∑
i∈D2

yi,kl
(t)
j,i,kσ

′
(〈

w
(t)
j,r, yi,k · vk

〉))
〈
w(t+1)
yi,k,r

, ζi,k,h

〉
= (1− ηλ)

〈
w(t)
yi,k,r

, ζi,k,h

〉
+
η

n

H∑
g=2

n∑
s=1

l
(t)
yi,k,s,k

σ′
(〈

w(t)
yi,k,r

, ξs,k,g

〉)
〈ζs,k,g, ζi,k,h〉
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〈
w(t+1)
yi,k,r

, ξi,k,h

〉
= (1− ηλ)

〈
w(t)
yi,k,r

, ξi,k,h

〉
− η

n

∑
s∈D1

αβhyi,kys,kl
(t)
yi,k,s,k

σ′
(〈

w(t)
yi,k,r

, αys,kv
〉)

+
η

n

H∑
g=2

n∑
s=1

l
(t)
yi,k,s,k

σ′
(〈
wyi,k,r, ξs,k,g

〉)
〈ξs,k,g, ξi,k,h〉

Proof. According to our model, the training objective for single task learning given training data
{(xi,k, yi,k)}ni=1 is the empirical loss function with weight decay,

Lk (W) =
1

n

n∑
i=1

Li,k (W) +
λ

2
‖W‖2F

where Li,k (W) = − log
eFi,k (W,xi,k)∑

j∈{−1,1} e
Fj (W,xi,k)

denotes the individual loss for the data (wi,k, yi,k).

Since we are using gradient descent, the update rule of parameters is

w
(t+1)
j,r = w

(t)
j,r − η · ∇w

(t)
j,r
Lk

(
W(t)

)
Combining these two parts, we can obtain that

w
(t+1)
j,r = w

(t)
j,r − η∇w

(t)
j,r
Lk

(
W(t)

)
= w

(t)
j,r − η∇w

(t)
j,r

(
1

n

n∑
i=1

Li,k

(
W(t)

)
+
λ

2
‖W‖2F

)

= w
(t)
j,r −

η

n

n∑
i=1

∇wj,rLi,k

(
W(t)

)
− ηλ

2
∇

w
(t)
j,r

∥∥∥W(t)
∥∥∥2

F

= w
(t)
j,r +

η

n

n∑
i=1

∇
w

(t)
j,r

log
eFyi,k(W(t),xi,k)∑

l∈{−1,1} e
Fl(W(t),xi,k)

− ηλ

2
∇

w
(t)
j,r

∥∥∥W(t)
∥∥∥2

F

= w
(t)
j,r +

η

n

∑
i:yi,k=j

eF−j(W
(t),xi,k)∑

l∈{−1,1} e
Fl(W(t),xi,k)

∇
w

(t)
j,r
Fj

(
W(t),xi,k

)

+
η

n

∑
i:yi,k=−j

−eFj(W
(t),xi,k)∑

l∈{−1,1} e
Fl(W(t),xi,k)

∇
w

(t)
j,r
Fj

(
W(t),xi,k

)
− ηλw(t)

j,r

= (1− ηλ)w
(t)
j,r +

η

n

n∑
i=1

l
(t)
j,i,k∇

(t)
wj,rF

(W(t),xi,k)
j

= (1− ηλ)w
(t)
j,r +

η

n

∑
i∈D1

l
(t)
j,i,k∇w

(t)
j,r

(
σ
(〈

w
(t)
j,r, αyi,kv

〉)
+

H∑
h=2

σ
(〈

w
(t)
j,r, ξi,k,h

〉))

+
η

n

∑
i∈D2

l
(t)
j,i,k∇w

(t)
j,r

(
σ
(〈

w
(t)
j,r, yi,kvk

〉)
+

H∑
h=2

σ
(〈

w
(t)
j,r, ξi,k,h

〉))

= (1− ηλ)w
(t)
j,r +

η

n

∑
i∈D1

αyi,k

(
σ′
(〈

w
(t)
j,r, αyi,kv

〉)
v +

H∑
h=2

σ′
(〈

w
(t)
j,r, ξi,k,h

〉)
ξi,k,h

)

+
η

n

∑
i∈D2

yi,k

(
σ′
(〈

w
(t)
j,r, yi,kvk

〉)
vk +

H∑
h=2

σ′
(〈

w
(t)
j,r, ξi,k,h

〉)
ξi,k,h

)

Since 〈v,v〉 = 1, 〈v,vk〉 = 0, 〈v, ξi,k,h〉 = −βhyi,k, 〈vk,vk〉 = 1, 〈vk, ξi,k,h〉 = 0, 〈ζi,k,h,v〉 =
0, 〈ζi,k,h, ξs,k,g〉 = 〈ζi,k,h, ζs,l,g〉 according to our data assumption, so by multiplying with task-
shared feature, task-specific feature and random noise respectively, we can get the above update
rules of each inner product.
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Lemma B.2. According to the update rule of gradient descent, the feature learning and noise mem-
orization of gradient descent for (xi,k, yi,k) which belongs to the k-th task for multi-task learning
can be formulated by〈

w
(t+1)
j,r , j · v

〉
= (1− ηλ)

〈
w

(t)
j,r, j · v

〉
+

η

nK
· j ·

(
K∑
k=1

∑
i∈D1

αyi,kl
(t)
j,i,kσ

′
(〈

w
(t)
j,r, αyi,k · v

〉)

−
K∑
k=1

H∑
h=2

n∑
i=1

βhyi,kl
(t)
j,i,kσ

′
(〈

w
(t)
j,r, ζi,k,h − βhyi,kv

〉))

= (1− ηλ)
〈
w

(t)
j,r, j · v

〉
+

η

nK
· j ·

(
K∑
k=1

∑
i∈D1

αyi,kl
(t)
j,i,kσ

′
(〈

w
(t)
j,r, αyi,k · v

〉)

−
K∑
k=1

H∑
h=2

n∑
i=1

βhyi,kl
(t)
j,i,kσ

′
(〈

w
(t)
j,r, ξi,k,h

〉))
〈
w

(t+1)
j,r , j · vk

〉
= (1− ηλ)

〈
w

(t)
j,r, j · vk

〉
+

η

nK
· j ·

(∑
i∈D2

yi,kl
(t)
j,i,kσ

′
(〈

w
(t)
j,r, yi,k · vk

〉))
〈
w

(t+1)
j,r , ζi,k,h

〉
= (1− ηλ)

〈
w

(t)
j,r, ζi,k,h

〉
+

η

nK

K∑
l=1

H∑
g=2

n∑
s=1

l
(t)
yi,k,s,l

σ′
(〈
wyi,k,r, ξs,l,g

〉)
〈ζs,l,g, ζi,k,h〉〈

w(t+1)
yi,k,r

, ξi,k,h

〉
= (1− ηλ)

〈
w(t)
yi,k,r

, ξi,k,h

〉
− η

nK

K∑
l=1

∑
s∈D1

αβhys,lyi,kl
(t)
yi,k,s,l

σ′
(〈

w(t)
yi,k,r

, αys,l · v
〉)

+
η

nK

K∑
l=1

H∑
g=2

n∑
s=1

l
(t)
yi,k,s,l

σ′
(〈
wyi,k,r, ξs,l,g

〉)
〈ξs,l,g, ξi,k,h〉

Proof. According to our model, the training objective for single task learning given training data
{(xi,k, yi,k)}ni=1 is the empirical loss function with weight decay,

L (W) =
1

nK

K∑
k=1

n∑
i=1

Li,k (W) +
λ

2
‖W‖2F

where Li,k (W) == − log
eFi,k (W,xi,k)∑

j∈{−1,1} e
Fj (W,xi,k)

denotes the individual loss for the data

(wi,k, yi,k). Since we are using gradient descent, the update rule of parameters is

w
(t+1)
j,r = w

(t)
j,r − η · ∇w

(t)
j,r
L
(
W(t)

)
Combining these two parts, we can obtain that

w
(t+1)
j,r = w

(t)
j,r − η∇w

(t)
j,r
L
(
W(t)

)
= w

(t)
j,r − η∇w

(t)
j,r

(
1

nK

K∑
k=1

n∑
i=1

Li,k

(
W(t)

)
+
λ

2
‖W‖2F

)

= w
(t)
j,r −

η

nK

K∑
k=1

n∑
i=1

∇wj,rLi,k

(
W(t)

)
− ηλ

2
∇

w
(t)
j,r

∥∥∥W(t)
∥∥∥2

F

= w
(t)
j,r +

η

nK

K∑
k=1

n∑
i=1

∇
w

(t)
j,r

log
eFyi,k(W(t),xi,k)∑

l∈{−1,1} e
Fl(W(t),xi,k)

− ηλ

2
∇

w
(t)
j,r

∥∥∥W(t)
∥∥∥2

F
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= w
(t)
j,r +

η

nK

K∑
k=1

∑
i:yi,k=j

eF−j(W
(t),xi,k)∑

l∈{−1,1} e
Fl(W(t),xi,k)

∇
w

(t)
j,r
Fj

(
W(t),xi,k

)

+
η

nK

K∑
k=1

∑
i:yi,k=−j

−eFj(W
(t),xi,k)∑

l∈{−1,1} e
Fl(W(t),xi,k)

∇
w

(t)
j,r
Fj

(
W(t),xi,k

)
− ηλw(t)

j,r

= (1− ηλ)w
(t)
j,r +

η

nK

K∑
k=1

n∑
i=1

l
(t)
j,i,k∇

(t)
wj,rF

(W(t),xi,k)
j

= (1− ηλ)w
(t)
j,r +

η

nK

K∑
k=1

∑
i∈D1

l
(t)
j,i,k∇w

(t)
j,r

(
σ
(〈

w
(t)
j,r, αyi,kv

〉)
+

H∑
h=2

σ
(〈

w
(t)
j,r, ξi,k,h

〉))

+
η

nK

K∑
k=1

∑
i∈D2

l
(t)
j,i,k∇w

(t)
j,r

(
σ
(〈

w
(t)
j,r, yi,kvk

〉)
+

H∑
h=2

σ
(〈

w
(t)
j,r, ξi,k,h

〉))

= (1− ηλ)w
(t)
j,r +

η

nK

K∑
k=1

∑
i∈D1

αyi,k

(
σ′
(〈

w
(t)
j,r, αyi,kv

〉)
v +

H∑
h=2

σ′
(〈

w
(t)
j,r, ξi,k,h

〉)
ξi,k,h

)

+
η

nK

K∑
k=1

∑
i∈D2

yi,k

(
σ′
(〈

w
(t)
j,r, yi,kvk

〉)
vk +

H∑
h=2

σ′
(〈

w
(t)
j,r, ξi,k,h

〉)
ξi,k,h

)
Since 〈v,v〉 = 1, 〈v,vk〉 = 0, 〈v, ξi,k,h〉 = −βhyi,k, 〈vk,vl〉 = 1k=l, 〈vk, ξi,l,h〉 = 0,
〈ζi,l,h,v〉 = 0, 〈ζi,k,h, ξs,l,g〉 = 〈ζi,k,h, ζs,l,g〉 according to our data assumption, so by multi-
plying with task-shared feature, task-specific features, and random noises respectively, we can get
the above update rules of each inner product.

B.2 DATA STRUCTURE

Now we highlight an essential property of our data distribution D. As previously mentioned, spar-
sity is a distinctive characteristic of our model. The following lemma from Zou et al. (2021) demon-
strates that according to Definition 3.2, all random noise vectors in training samples will have dis-
joint support sets with high probability.
Lemma B.3. Let {(xi,k, yi,k)}(i,k)∈[n]×[K] be the training dataset generated by Definition 1.1, and

{ζi,k,h}Hh=2 be the corresponding random noises of xi,k. Then with probability at least 1 − n−2,
〈ζi,k,h, ζs,l,g〉 = 0 for all (i, k, h) 6= (s, l, g).

Proof. For any vector a, denote au its u-th coordinate, and let Bi,k,h = supp (ζi,k,h) be the support
of ζi,k,h. Then according to the definition of inner product, we have that for any (i, k, h) 6= (s, l, g),

〈ζi,k,h, ζs,l,g〉 =

d∑
u=1

ζui,k,hζ
u
s,l,g

=
∑

u∈[d]\(Bi,k,h∪Bs,l,g)

ζui,k,hζ
u
s,l,g +

∑
u∈Bi,k,h\Bs,l,g

ζui,k,hζ
u
s,l,g

+
∑

u∈Bs,l,g\Bi,k,h

ζui,k,hζ
u
s,l,g +

∑
u∈Bi,k,h∩\Bs,l,g

ζui,k,hζ
u
s,l,g

=
∑

u∈Bi,k,h∩Bs,l,g

ζui,k,hζ
u
s,l,g

so if Bi,k,h ∩ Bs,l,g = ∅, then 〈ζi,k,h, ζs,l,g〉 =
∑d
u=1 ζ

u
i,k,hζ

u
s,l,g =

∑
u∈Bi,k,h∩Bs,l,g ζ

u
i,k,hζ

u
s,l,g =

0. Therefore,

P {∀ (i, k, h) , (s, l, g) ∈ [n]× [K]× [2, H], (i, k, h) 6= (s, l, g) : 〈ζi,k,h, ζs,l,g〉 = 0}
≥ P {∀ (i, k, h) , (s, l, g) ∈ [n]× [K]× [2, H], (i, k, h) 6= (s, l, g) : Bs,l,g ∩ Bi,k,h = ∅}
= 1− P {∃ (i, k, h) , (s, l, g) ∈ [n]× [K]× [2, H], (i, k, h) 6= (s, l, g) : Bs,l,g ∩ Bi,k,h 6= ∅}
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From definition, we can get that

P {∃ (i, k, h) , (s, l, g) ∈ [n]× [K]× [2, H], , (i, k, h) 6= (s, l, g) : Bs,l,g ∩ Bi,k,h 6= ∅}
= P {∃ (i, k, h) ∈ [n]× [K]× [2, H], (s, l, g) ∈ [n]× [K]× [2, H]\ {(i, k, h)} : Bs,l,g ∩ Bi,k,h 6= ∅}

= P
{
∃ (i, k, h) ∈ [n]× [K]× [2, H], j ∈ Bi,k,h, (s, l, g) ∈ [n]× [K]× [2, H]\ {(i, k, h)} : ξjs,l,g 6= 0

}
For any fixed (i, k, h) ∈ [n]× [K]× [2, H] and j ∈ Bi,k,h, then by the model assumption we have

P
{
ξjs,l,g 6= 0

}
=

s

d−K − 1

for all (s, l, g) ∈ [n]× [K]× [2, H], since the first K+ 1 coordinates of the random noises are equal
to 0 according to the definition. Therefore, by the fact that all the noises are independent with each
other, we have

P
{
∃ (s, l, g) ∈ [n]× [K]× [2, H]\ {(i, k, h)} : ξjs,l,g 6= 0

}
= 1−

[
1− s

d−K − 1

](H−1)nK−1

Applying a union bound over all (i, k, h) ∈ [n]× [K]× [2, H] and j ∈ Bi,k,h, we obtain

P
{
∃ (i, k, h) ∈ [n]× [K]× [2, H], j ∈ Bi,k,h, (s, l, g) ∈ [n]× [K]× [2, H]\ {(i, k, h)} : ξjs,l,g 6= 0

}
≤ (H − 1)nKs ·

{
1−

[
1− s

d−K − 1

](H−1)nK−1
}

By the data distribution assumption we have s ≤
√
d

2HKn2 , which clearly implies that s
d−K−1 ≤

1
2 .

Therefore, we have

(H − 1)nKs ·

{
1−

[
1− s

d−K − 1

](H−1)nK−1
}

= (H − 1)nKs ·
{

1− exp

{
[(H − 1)nK − 1] log

(
1− s

d−K − 1

)}}
≤ (H − 1)nKs ·

{
1− exp

{
[(H − 1)nK − 1] · 2s

d−K − 1

}}
≤ (H − 1)nKs ·

{
1− exp

{
[(H − 1)nK − 1] · 4s

d

}}
≤ (H − 1)nKs · [(H − 1)nK − 1] · 4s

d

≤ HnKs · HnK · 4s
d

=
4H2n2K2s2

d
≤ n−2

where the first inequality follows by the inequality log (1− z) ≥ −2z for z ∈
[
0, 1

2

]
, the second

inequality follows by s
d−1 ≥

2s
d , the third inequality follows by the inequality 1− exp (−z) ≤ z for

z ∈ R, and the last inequality follows by our model assumption. Combining all the previous results,
we have

P {∀ (i, k, h) , (s, l, g) ∈ [n]× [K]× [2, H], (i, k, h) 6= (s, l, g) : 〈ζi,k,h, ζs,l,g〉 = 0}
≥ 1− P {∃ (i, k, h) ∈ [n]× [K]× [2, H], (i, k, h) 6= (s, l, g) : Bs,l,g ∩ Bi,k,h 6= ∅}

= 1− P
{
∃ (i, k, h) , (s, l, g) ∈ [n]× [K]× [2, H], (s, l, g) ∈ [n]× [K]× [2, H]\ {(i, k, h)} , j ∈ Bi,k,h : ξjs,l,g 6= 0

}
≥ 1− (H − 1)nK ·

{
1−

[
1− s

d−K − 1

](H−1)nK−1
}

≥ 1− n−2

Then we finish the proof.
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This lemma provides insight into the optimization of the model parameter W for coordinates with-
out features. Since the support sets do not overlap, each coordinate will be influenced by only
one sample. This implies that the update for each coordinate will be primarily determined by the
corresponding data. Consequently, the optimization process simplifies to a coordinate-wise land-
scape, facilitating the analysis of the learning and generalization behavior of gradient descent in
both single-task and multi-task learning settings.

B.3 PROOF OF LEMMA 5.1

Proof of Lemma 5.1. Since xt is positive for each t ≥ 0, obviously xt is monotonically increasing,
so xt ≥ x0. Then we have

xt+1 ≥ xt + ηAxq−1
t ≥

(
1 + ηAxq−2

0

)
xt

≥
(

1 + ηAxq−2
0

)t
x0

Since log (1 + x) ≥ x log 2 for all x ∈ (0, 1), then we have

Tx ≤
log (1/x0)

log
(

1 + ηAxq−2
0

) ≤ log (1/x0)

ηAxq−2
0 log 2

Therefore, we can get that for those t satisfies yt ≤ 2y0, we have that

yt+1 ≤ yt + ηByq−1
t ≤

(
1 + η2q−2Byq−2

0

)t
y0

≤ exp
(

2q−2ηByq−2
0 t

)
y0

≤ exp

(
2q−2ηByq−2

0 log (1/x0)

ηAxq−2
0

)
y0 ≤ 2y0

due to our assumptions. So we finish the proof.

C SINGLE-TASK LEARNING

For single-task learning, our analysis primarily focuses on the k-th task, where we assume without
loss of generality that k = 1. To prove Theorem 4.1, we rely on the following crucial technical
lemmas:
Lemma C.1 (Convergence Guarantee). If the step size satisfies η ≤ O (σ0), then for any t ≥ 0, it
holds that

L1(W(t+1))− L1(W(t)) ≤ −η
2
‖∇L1(W(t))‖2F

This lemma demonstrates that optimization on the training data using gradient descent with a two-
layer convolutional neural network will converge to a solution with a small gradient.
Lemma C.2 (Generalization Performance of GD). Let

W∗ = arg min
{W(1),...,W(T )}

‖∇L1(W(t))‖F.

Then by selecting T =
poly(n,λ−1)

η , for all training data, we have

1

n

n∑
i=1

1
[
F−yi,1 (W∗,xi,1) ≤ Fyi,1 (W∗,xi,1)

]
= 0

Moreover, in terms of the test data (x, y) ∼ D, we have

P(x,y)∼D [Fy (W∗,x) < F−y (W∗,x)] ≥ p

4
− poly

(
n−1

)
.

This lemma reveals that even though the neural network can achieve zero training error, it cannot
perform well on generalization and has a constant lower bound for test error.
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D PROOF OF LEMMAS IN APPENDIX C

In order to prove Lemma C.1 and Lemma C.2, we need the following technical lemmas.
Lemma D.1 (Off-diagonal Correlations for Task-specific Feature). For any j ∈ {−1, 1} and any t,
it holds that [〈w(t)

−j,r, j · v1〉]+ ≤ Θ̃(σ0).

Lemma D.2 (Off-diagonal correlations for Random Noises). For any data (xi,1, yi,1), any h ∈
[2, H] and any t, it holds that [〈w(t)

−yi,1,r, ζi,1,h〉]+ ≤ Θ̃(
√
sσpσ0).

Lemma D.3. Suppose the training data is generated according to Definition 3.1 and Defini-
tion 3.2. Let Λ

(t)
j = maxr∈[m][〈w

(t)
j,r, j · v〉]+, Ψ

(t)
j = maxr∈[m][〈w

(t)
j,r, j · v1〉]+, Φ

(t)
j,i,h =

maxr∈[m][〈w
(t)
j,r, ζi,1,h〉]+, Φ

(t)
j,i = maxh∈[2,H] Φ

(t)
j,i,h, and Φ

(t)
j = maxi∈[n] Φ

(t)
j,i . Then let Pj

be the iteration number that Ψ
(t)
j reaches Θ (1/m) for j ∈ {−1, 1}, Ti be the iteration num-

ber that Φ
(t)
yi,1,i

reaches Θ(1/m) for i ∈ D1, we have Pj ≤ Θ̃(σ2−q
0 /η) for all j ∈ {−1, 1}

and Ti ≤ Θ̃(n(
√
sσpσ0)2−q/ηdσ2

p) for all i ∈ D1. Moreover, let P0 = maxj{−1,1} Pj and

T0 = maxi∈D1
Ti. For all t ≥ 0 and r ∈ [m] it holds that Λ

(t)
j = Õ (σ0) for all j ∈ {−1, 1},

Φ
(t)
j,i = Õ (

√
sσpσ0) for all j ∈ {−1, 1} and i ∈ D2, and [〈w(t)

−j,r, j · v〉]+ ≤ Θ̃(σ
1
3
0 ) for all

j ∈ {−1, 1}.

Now we are ready to prove Lemma C.1 and Lemma C.2.

D.1 PROOF OF LEMMA C.1

Proof of Lemma C.1. The proof is basically relying the smoothness property of the loss function
L1 (W) given certain constraints on the inner products with each patch.
Let ∆Fj,i = Fj

(
W(t+1),xi,1

)
− Fj

(
W(t),xi,1

)
, we can get that following Taylor expansion on

the loss function Li,1
(
W(t+1)

)
,

Li,1

(
W(t+1)

)
− Li,1

(
W(t)

)
≤
∑
j

∂Li,1
(
W(t)

)
∂Fj

(
W(t),xi,1

) ·∆Fj,i +
∑
j

(∆Fj,i)
2

In particular, by Lemma D.1 to Lemma D.3, we know that
[〈

w
(t)
j,r, yi,1 · v

〉]
+
≤ Θ̃ (σ0),[〈

w
(t)
j,r, yi,1 · v1

〉]
+
≤ Θ̃ (1) and

[〈
w

(t)
j,r, ξi,1,h

〉]
+
≤ Θ̃ (1). Then we can apply first order Taylor

expansion to Fj
(
W(t+1),xi,1

)
, which requires to characterize the second-order error of the Tay-

lor expansion on σ
(〈

w
(t+1)
j,r , yi,1 · v

〉)
, σ
(〈

w
(t+1)
j,r , yi,1 · v1

〉)
and σ

(〈
w

(t+1)
j,r , ξi,1,h

〉)
as the

following:∣∣∣σ (〈w(t+1)
j,r , yi,1 · v

〉)
− σ

(〈
w

(t)
j,r, yi,1 · v

〉)
−
〈
∇wj,rσ

(〈
w

(t)
j,r, yi,1 · v

〉)
,w

(t+1)
j,r −w

(t)
j,r

〉∣∣∣
≤ Θ̃

(∥∥∥w(t+1)
j,r −w

(t)
j,r

∥∥∥2

2

)
= Θ̃

(
η2
∥∥∥∇wj,rL1

(
W(t)

)∥∥∥2

2

)
;∣∣∣σ (〈w(t+1)

j,r , yi,1 · v1

〉)
− σ

(〈
w

(t)
j,r, yi,1 · v1

〉)
−
〈
∇wj,rσ

(〈
w

(t)
j,r, yi,1 · v1

〉)
,w

(t+1)
j,r −w

(t)
j,r

〉∣∣∣
≤ Θ̃

(∥∥∥w(t+1)
j,r −w

(t)
j,r

∥∥∥2

2

)
= Θ̃

(
η2
∥∥∥∇wj,rL

(
W(t)

)∥∥∥2

2

)
;∣∣∣σ (〈w(t+1)

j,r , ξi,1

〉)
− σ

(〈
w

(t)
j,r, ξi,1,h

〉)
−
〈
∇wj,rσ

(〈
w

(t)
j,r, ξi,1,h

〉)
,w

(t+1)
j,r −w

(t)
j,r

〉∣∣∣
≤ Θ̃

(∥∥∥w(t+1)
j,r −w

(t)
j,r

∥∥∥2

2

)
= Θ̃

(
η2
∥∥∥∇wj,rL

(
W(t)

)∥∥∥2

2

)
;

Then combining the above bounds for every r ∈ [m], we can get the following bound for ∆Fj,i∣∣∣∆Fj,i − 〈∇WFj

(
W(t),xi,1

)
,W(t+1) −W(t)

〉∣∣∣ ≤ Θ̃

η2
∑
r∈[m]

∥∥∥∇wj,rL1

(
W(t)

)∥∥∥2

2


22



Under review as a conference paper at ICLR 2024

≤ Θ̃

(
η2
∥∥∥∇L1

(
W(t)

)∥∥∥2

F

)
Moreover, since

〈
w

(t)
j,r, yi,1 · v

〉
≤ Θ̃ (1),

〈
w

(t)
j,r, yi,1 · v1

〉
≤ Θ̃ (1),

〈
w

(t)
j,r, ξi,1,h

〉
≤ Θ̃ (1) and

σ (·) is convex, then we have∣∣∣σ (〈w(t+1)
j,r , αyi,1v

〉)
− σ

(〈
w

(t+1)
j,r , αyi,1v

〉)∣∣∣
≤ max

{∣∣∣σ′ (〈w(t+1)
j,r , αyi,1v

〉)∣∣∣ , ∣∣∣σ′ (〈w(t)
j,r, αyi,1v

〉)∣∣∣} · ∣∣∣〈v,w(t+1)
j,r −w

(t)
j,r

〉∣∣∣
≤ Θ̃

(∥∥∥w(t+1)
j,r −w

(t)
j,r

∥∥∥
2

)
.

Similarly we also have∣∣∣σ (〈w(t+1)
j,r , yi,1v1

〉)
− σ

(〈
w

(t+1)
j,r , yi,1v1

〉)∣∣∣ ≤ Θ̃
(∥∥∥w(t+1)

j,r −w
(t)
j,r

∥∥∥
2

)
.

and ∣∣∣σ (〈w(t+1)
j,r , ξi,1,h

〉)
− σ

(〈
w

(t+1)
j,r , ξi,1,h

〉)∣∣∣ ≤ Θ̃
(∥∥∥w(t+1)

j,r −w
(t)
j,r

∥∥∥
2

)
.

Combining the above inequalities for every r ∈ [m], we have

|∆Fj,i|2 ≤ Θ̃


 ∑
r∈[m]

∥∥∥w(t+1)
j,r −w

(t)
j,r

∥∥∥
2

2
 ≤ Θ̃

(
mη2

∥∥∥∇L1

(
W(t)

)∥∥∥2

F

)

= Θ̃

(
η2
∥∥∥∇L1

(
W(t)

)∥∥∥2

F

)
Now we can combine all the above inequalities, which gives

Li,1

(
W(t+1)

)
− Li,1

(
W(t)

)
≤
∑
j

∂Li,1
(
W(t)

)
∂Fj

(
W(t),xi,1

) ·∆Fj,i +
∑
j

(∆Fj,i)
2

=
〈
∇Li,1

(
W(t)

)
,W(t+1) −W(t)

〉
+ Θ̃

(
η2
∥∥∥∇L1

(
W(t)

)∥∥∥2

F

)
Taking sum over i ∈ [n] and applying the smoothness property of the regularization function
λ ‖W‖2F, we can get

L1

(
W(t+1)

)
− L1

(
W(t)

)
=

1

n

n∑
i=1

{[
Li,1

(
W(t+1)

)
− Li,1

(
W(t)

)]
+ λ

(∥∥∥W(t+1)
∥∥∥2

F
−
∥∥∥W(t)

∥∥∥2

F

)}
≤
〈
∇L1

(
W(t)

)
,W(t+1) −W(t)

〉
+ Θ̃

(
η2
∥∥∥∇L1

(
W(t)

)∥∥∥2

F

)
= −

(
η − Θ̃

(
η2
))
·
∥∥∥∇L1

(
W(t)

)∥∥∥2

F

≤ −η
2

∥∥∥∇L1

(
W(t)

)∥∥∥2

F

where the last inequality is due to our choice of step size η = o (1). This completes the proof.

D.2 PROOF OF LEMMA C.2

Proof of Lemma C.2. From Lemma D.2 and Lemma D.3, we can get that

Fyi,1 (W∗,xi,1) =

m∑
r=1

[
σ
(〈

w∗yi,1,r, αyi,1v
〉)

+

H∑
h=2

σ
(〈

w∗yi,1,r, ξi,1,h

〉)]
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≥ max
h∈[2,H]

max
r∈[m]

σ
(〈

w∗yi,1,r, ξi,1,h

〉)
= Θ̃ (1)

F−yi,1 (W∗,xi,1) =

m∑
r=1

[
σ
(〈

w∗−yi,1,r, αyi,1v
〉)

+

H∑
h=2

σ
(〈

w∗−yi,1,r, ξi,1,h

〉)]
≤ m max

r∈[m]
σ
(
w∗−yi,1,r, αyi,1v

〉
+m (H − 1)σ

(〈
max
r∈[m]

max
h∈[2,H]

〈
w∗−yi,1,r, ζi,1,h

〉)
+ max
h∈[2,H]

βh max
r∈[m]

〈
w∗−yi,1,r,−yi,1v

〉)
≤ mΘ̃

(
αqσ

q
3
0

)
+m (H − 1) Θ̃

((√
sσpσ0

)q)
= o (1) .

so Fyi,1 (W∗,xi,1) ≥ F−yi,1 (W∗,xi,1) holds for i ∈ D1. Similarly, from Lemma D.1 to Lemma
D.3, we also have

Fyi,1 (W∗,xi,1) =

m∑
r=1

[
σ
(〈

w∗yi,1,r, yi,1v1

〉)
+

H∑
h=2

σ
(〈

w∗yi,1,r, ξi,1,h

〉)]
≥ max
r∈[m]

σ
(〈

w∗yi,1,r, yi,1v1

〉)
= Θ̃ (1)

F−yi,1 (W∗,xi,1) =

m∑
r=1

[
σ
(〈

w∗−yi,1,r, yi,1v1

〉)
+

H∑
h=2

σ
(〈

w∗−yi,1,r, ξi,1,h

〉)]
≤ m max

r∈[m]
σ
(〈

w∗−yi,1,r, yi,1v1

〉)
+m (H − 1)σ

(
max
r∈[m]

max
h∈[2,H]

〈
w∗−yi,1,r, ζi,1,h

〉
+ max
h∈[2,H]

βh max
r∈[m]

〈
w∗−yi,1,r,−yi,1v

〉)
≤ mΘ̃ (σq0) +m (H − 1) Θ̃

((√
sσpσ0

)q)
= o (1) .

so Fyi,1 (W∗,xi,1) ≥ F−yi,1 (W∗,xi,1) holds for i ∈ D2. Combining these two parts, we have that
for i ∈ [n], Fyi,1 (W∗,xi,1) ≥ F−yi,1 (W∗,xi,1) holds, which directly implies that

1

n

n∑
i=1

1
[
F−yi,1 (W∗,xi,1) ≤ Fyi,1 (W∗,xi,1)

]
= 0

Therefore, W∗ can correctly classify all training data and thus achieve zero training error.
In terms of the test data (x, y) which is generated according to our assumptions, then with probability
p, it will have the patch of task-shared feature and the patches of noise, like the training data for
i ∈ D1, then x = [αyv, ξ2, ..., ξH ]. For each i ∈ [n], denote (r∗i , h

∗
i ) = arg max(r,h)∈[2,H]×[m]〈

w∗yi,1,r, ξi,1,h

〉
, then we have〈

w∗yi,1,r∗i , ζi,1,h
∗
i

)
=
〈
w∗yi,1,r∗i , ξi,1,h

∗
i

〉
−
〈
w∗yi,1,r∗i , βh

∗
i
· (−yi,1)v

〉
=
〈
w∗yi,1,r∗i , ξi,1,h

∗
i

〉
− βh∗

〈
w∗yi,1,r∗i , (−yi,1)v

〉
≥ Θ̃ (1)− βh∗i ·

ρ

α
≥ Θ̃ (1)

Then according to the gradient calculations, for i ∈ [n], we have

∇wyi,1,r∗i
L1

(
W(t)

)
= λw

(t)
yi,1,r∗i

− 1

n

∑
s∈D1

l
(t)
yi,1,s,1

[
σ′
(〈

w
(t)
yi,1,r∗i

, αys,1v
〉)
· αys,1v +

H∑
g=2

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
· ξs,1,h

]

− 1

n

∑
s∈D2

l
(t)
yi,1,s,1

[
σ′
(〈

w
(t)
yi,1,r∗i

, ys,1v1

〉)
· ys,1v1 +

H∑
g=2

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
· ξs,1,g

]
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By taking inner product with ζi,1,h∗i , and notice that v and v1 are orthogonal to ζi,1,h∗i , we can get
that〈
∇wyi,1,r∗i

L1

(
W(t)

)
, ζi,1,h∗i

〉
= λ

〈
w

(t)
yi,1,r∗i

, ζi,1,h∗i

〉
− 1

n

∑
s∈D1

l
(t)
yi,1,s,1

H∑
g=2

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
·
〈
ξs,1,g, ζi,1,h∗i

〉
− 1

n

∑
s∈D2

l
(t)
yi,1,s,1

H∑
g=2

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
·
〈
ξs,1,g, ζi,1,h∗i

〉
= λ

〈
w

(t)
yi,1,r∗i

, ζi,1,h∗i

〉
− 1

n

n∑
s=1

l
(t)
yi,1,s,1

H∑
g=2

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
·
〈
ζs,1,g − βgys,1v, ζi,1,h∗i

〉
= λ

〈
w

(t)
yi,1,r∗i

, ζi,1,h∗i

〉
− 1

n

n∑
s=1

l
(t)
yi,1,s,1

H∑
g=2

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
·
〈
ζs,1,g, ζi,1,h∗i

〉
= λ

〈
w

(t)
yi,1,r∗i

, ζi,1,h∗i

〉
− 1

n
l
(t)
yi,1,i,1

σ′
(〈

w
(t)
yi,1,r∗i

, ξi,1,h∗i

〉) 〈
ζi,1,h∗i , ζi,1,h∗i

〉
− 1

n

∑
(s,g)6=(i,h∗i )

l
(t)
yi,1,s,1

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
·
〈
ζs,1,g, ζi,1,h∗i

〉
(i)
≥ λ

〈
w

(t)
yi,1,r∗i

, ζi,1,h∗i

〉
− 1

n

∣∣∣l(t)yi,1,i,1∣∣∣σ′ (〈w(t)
yi,1,r∗i

, ξi,1,h∗i

〉) 〈
ζi,1,h∗i , ζi,1,h∗i

〉
− 1

n

∑
(s,g)6=(i,h∗i )

∣∣∣l(t)yi,1,s,1∣∣∣σ′ (〈w(t)
yi,1,r∗i

, ξs,1,g

〉)
·
∣∣〈ζs,1,g, ζi,1,h∗i 〉∣∣

(ii)
≥ λ

〈
w

(t)
yi,1,r∗i

, ζi,1,h∗i

〉
− 1

n

∣∣∣l(t)yi,1,i,1∣∣∣σ′ (〈w(t)
yi,1,r∗i

, ξi,1,h∗i

〉) 〈
ζi,1,h∗i , ζi,1,h∗i

〉
− 1

n

∑
(s,g)6=(i,h∗i )

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
·
∣∣〈ζs,1,g, ζi,1,h∗i 〉∣∣

in which (i) holds since l
(t)
yi,1,i,1

≥ 0 according to the definition, and (ii) holds since∣∣∣l(t)yi,1,s,1∣∣∣ ≤ 1. For ys,1 = yi,1, from Lemma D.3,
〈
w

(t)
ys,1,r∗i

, ξs,1,g

〉
≤ Θ̃ (1), so〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉
=
〈
w

(t)
ys,1,r∗i

, ξs,1,g

〉
≤ Θ̃ (1). For ys,1 6= yi,1, from Lemma D.2 and Lemma

D.3,
〈
w

(t)
−ys,1,r∗i

, ξs,1,g

〉
≤ Θ̃

(√
σ0

)
≤ Θ̃ (1), so

〈
w

(t)
yi,1,r∗i

, ξs,1,g

〉
=
〈
w

(t)
−ys,1,r, ξs,1,g

〉
≤

Θ̃ (1). Then
〈
w

(t)
yi,1,r∗i

, ξs,1,g

〉
≤ Θ̃ (1) holds for (s, g) 6= (i, h∗i ), which implies that

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
≤ σ′

(
Θ̃ (1)

)
= Θ̃ (1). Since

〈
w

(t)
yi,1,r∗i

, ξi,1,h∗i

〉
= Θ̃ (1), then

σ′
(〈

w
(t)
yi,1,r∗i

, ξi,1,h∗i

〉)
= σ′

(
Θ̃ (1)

)
= Θ̃ (1). Besides, using the same calculations as in Lemma

D.3, with probability exceeding 1− 2n−1,〈
ζi,1,h∗i , ζi,1,h∗i

〉
=

d∑
u=1

ζui,1,h∗i
2 = Θ̃

(
sσ2
p

)
and for (s, g) 6= (i, h∗i ),

∣∣〈ζs,1,g, ζi,1,h∗i 〉∣∣ = 0 according to Lemma B.3. Combining all these
results, we can get that〈

∇wyi,1,r∗i
L1

(
W(t)

)
, ζi,1,h∗i

〉
≥ λ

〈
w

(t)
yi,1,r∗i

, ζi,1,h∗i

〉
− 1

n

∣∣∣l(t)yi,1,i,1∣∣∣σ′ (〈w(t)
yi,1,r∗i

, ξi,1,h∗i

〉) 〈
ζi,1,h∗i , ζi,1,h∗i

〉
− 1

n

∑
(s,g) 6=(i,h∗i )

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
·
∣∣〈ζs,1,g, ζi,1,h∗i 〉∣∣
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≥ λ · Θ̃ (1)− 1

n

∣∣∣l(t)yi,1,i,1∣∣∣ · Θ̃ (1) · Θ̃
(
sσ2
p

)
= Θ̃ (λ)− Θ̃

(
sσ2
p

n

)∣∣∣l(t)yi,1,i,1∣∣∣
Since 〈

∇wyi,1,r∗i
L1

(
W(t)

)
, ζi,1,h∗i

〉
≤
∥∥∥∇wyi,1,r∗i

L1

(
W(t)

)∥∥∥
2

∥∥ζi,1,h∗i ∥∥2

≤
∥∥∥∇L1

(
W(t)

)∥∥∥
F

∥∥ζi,1,h∗i ∥∥2

≤ Θ̃

(
λ

n

)
,

so we can get that∣∣∣l(t)yi,1,i,1∣∣∣ ≥ Θ̃

(
n

sσ2
p

)(
Θ̃ (λ)−

〈
∇wyi,1,r∗i

L1

(
W(t)

)
, ζi,1,h∗i

〉)
≥ Θ̃

(
sσ2
p

n

)(
Θ̃ (λ)− Θ̃

(
λ

n

))
≥ Θ̃

(
nλ

sσ2
p

)
According to the definition of l(t)j,i,1, we can get that

∣∣∣l(t)−yi,1,i,1∣∣∣ =
∣∣∣l(t)yi,1,i,1∣∣∣ = Θ̃

(
nλ
sσ2
p

)
, so for

j ∈ {−1, 1} and i ∈ [n],
∣∣∣l(t)j,i,1∣∣∣ ≥ Θ̃

(
nλ
sσ2
p

)
. By taking inner product of ∇wyi,1,r∗i

L1

(
W(t)

)
with

−yi,1v, and notice that v1 and ζs,1,g are orthogonal to v, we can get that〈
∇

w
(t)

yi,1,r
∗
i

L1

(
W(t)

)
,−yi,1v

〉
= λ

〈
w

(t)
yi,1,r∗i

,−yi,1v
〉
− 1

n

∑
s∈D1

l
(t)
yi,1,s,1

σ′
(〈
wyi,1,r∗i

, αys,1v
〉)
· 〈αys,1v,−yi,1v〉

− 1

n

∑
s∈D1

l
(t)
yi,1,s,1

H∑
g=2

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
〈ξs,1,g,−yi,1v〉

− 1

n

∑
s∈D2

l
(t)
yi,1,s,1

H∑
g=2

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
〈ξs,1,g,−yi,1v〉

= λ
〈
wyi,1,r∗i

,−yi,1v
〉
− 1

n

∑
s∈D1

∣∣∣l(t)yi,1,s,1∣∣∣σ′ (〈w(t)
yi,1,r∗i

, αys,1v
〉)
· 〈αys,1v,−yi,1v〉

− 1

n

n∑
s=1

l
(t)
yi,1,s,1

H∑
g=2

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
〈ζs,1,g − βgys,1v,−yi,1v〉

= λ
〈
w

(t)
yi,1,r∗i

,−yi,1v
〉
− 1

n

∑
s∈D1

l
(t)
yi,1,s,1

σ′
(〈

w
(t)
yi,1,r∗i

, αys,1v
〉)
· 〈αys,1v,−yi,1v〉

− 1

n

n∑
s=1

l
(t)
yi,1,s,1

H∑
g=2

σ′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
〈−βgys,1v,−yi,1v〉

(i)
= λ

〈
w

(t)
yi,1,r∗i

,−yi,1v
〉

+
α

n

∑
s∈D1

∣∣∣l(t)yi,1,s,1∣∣∣σ′ (〈w(t)
yi,1,r∗i

, αys,1v
〉)

− 1

n

n∑
s=1

∣∣∣l(t)yi,1,s,1∣∣∣ H∑
g=2

βgσ
′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
= λ

〈
w

(t)
yi,1,r∗i

,−yi,1v
〉

+
α

n

∑
s:s∈D1,ys,1=yi,1

∣∣∣l(t)yi,1,s,1∣∣∣σ′ (〈w(t)
yi,1,r∗i

, αys,1v
〉)
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+
α

n

∑
s:s∈D1,ys,1 6=yi,1

∣∣∣l(t)yi,1,s,1∣∣∣σ′ (〈w(t)
yi,1,r∗i

, αys,1v
〉)

− 1

n

n∑
s=1

∣∣∣l(t)yi,1,s,1∣∣∣ H∑
g=2

βgσ
′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
in which (i) holds since sgn

(
ys,1yi,1l

(t)
yi,1,s,1

)
= 1. For ys,1 = yi,1, from Lemma D.3,〈

w
(t)
ys,1,r∗i

, ys,1v
〉
≤ Õ (σ0), so

〈
wyi,1,r∗i

, αys,1v
〉

= α
〈
wys,1,r∗i

, ys,1v
〉
≤
〈
wys,1,r∗i

, ys,1v
〉
≤

Õ (σ0) ≤ ρ, which implies that the activation function for
〈
wyi,1,r∗i

, αys,1v
〉

is zq

qρq−1 , then

σ′
(〈
wyi,1,r∗i

, αys,1v
〉)

=

(〈
wyi,1,r∗i

,αys,1v
〉)q−1

ρq−1 ≤ Θ̃
(
Õ (σ0)

)q−1

= Õ
(
σq−1

0

)
. For ys,1 6=

yi,1,
〈
w

(t)
yi,1,r∗i

, αys,1v
〉

= α
〈
w

(t)
−ys,1,r∗i

, ys,1v
〉
≤ αmaxj∈{−1,1}maxr∈[m]

〈
w

(t)
−j,r, j · v

〉
≤

α · ρ
α = ρ, which implies that the activation function for

〈
w

(t)
yi,1,r∗i

, αys,1v
〉

is zq

qρq−1 ,

so σ′
(〈

w
(t)
yi,1,r∗i

, αys,1v
〉)

=

(
α

〈
w

(t)

yi,1,r
∗
i
,ys,1v

〉)q−1

ρq−1 ≤ Θ̃ (α)
〈
w

(t)
yi,1,r∗i

, ys,1v
〉
≤

Θ̃ (α) maxj∈{−1,1}maxr∈[m]

〈
w

(t)
−j,r, j · v

〉
. From Lemma D.3 and the definition of (r∗i , h

∗
i ),〈

w
(t)
yi,1,r∗i

, ξi,1,h∗i

〉
= Θ̃ (1), so σ′

(〈
w

(t)
yi,1,r∗i

, ξi,1,h∗i

〉)
= σ′

(
Θ̃ (1)

)
= Θ̃ (1). Combining all

these results, we can get that〈
∇

w
(t)

yi,1,r
∗
i

L1

(
W(t)

)
,−yi,1v

〉
= λ

〈
w

(t)
yi,1,r∗i

,−yi,1v
〉

+
α

n

∑
s:s∈D1,ys,1=yi,1

∣∣∣l(t)yi,1,s,1∣∣∣σ′ (〈wyi,1,r∗i
, αys,1v

〉)
+
α

n

∑
s:s∈D1,ys,1 6=yi,1

∣∣∣l(t)yi,1,s,1∣∣∣σ′ (〈wyi,1,r∗i
, αys,1v

〉)
− 1

n

n∑
s=1

∣∣∣l(t)yi,1,s,1∣∣∣ H∑
g=2

βgσ
′
(〈

w
(t)
yi,1,r∗i

, ξs,1,g

〉)
≤ λ max

j∈{−1,1}
max
r∈[m]

〈
w

(t)
−j,r, j · v

〉
+
α

n
· max
s∈D1

∣∣∣l(t)yi,1,s,1∣∣∣ · ∑
s:s∈D1,yi,1=ys,1

σ′
(〈
wyi,1,r∗i

, αys,1v
〉)

+
α

n
· max
s∈D1

∣∣∣l(t)yi,1,s,1∣∣∣ · ∑
s:s∈D1,ys,1 6=yi,1

σ′
(〈

w
(t)
yi,1,r∗i

, αys,1v
〉)

− 1

n

∣∣∣l(t)yi,1,i,1∣∣∣βh∗i σ′ (〈w(t)
yi,1,r∗i

, ξi,1,h∗i

〉)
≤ λ max

j∈{−1,1}
max
r∈[m]

〈
w

(t)
−j,r, j · v

〉
+ α · max

s∈D1

∣∣∣l(t)yi,1,s,1∣∣∣ · Θ̃( max
h∈[2,H]

β4
h

)
+ α · max

s∈D1

∣∣∣l(t)yi,1,s,1∣∣∣ · Θ̃ (α) max
j∈{−1,1}

max
r∈[m]

〈
w

(t)
−j,r, j · v

〉
− 1

n

∣∣∣l(t)yi,1,i,1∣∣∣βh∗i · Θ̃ (1)

Since 〈
∇

w
(t)

yi,1,r
∗
i

L1

(
W(t)

)
,−yi,1v

〉
≥ −

∥∥∥∥∇w
(t)

yi,1,r
∗
i

L1

(
W(t)

)∥∥∥∥
2

‖−yi,1v‖2

≥ −
∥∥∥∇L(W(t)

)∥∥∥
F
‖−yi,1v‖2

≥ −Θ̃

(
λ

n

)
then we can solve that maxj∈{−1,1}maxr∈[m]

〈
w

(t)
−j,r, j · v

〉
≥ Θ̃

(
βhi∗
n

)
. Without loss of gener-

ality, we can assume that maxr∈[m]

〈
w

(t)
−1,r,v

〉
≥ Θ̃

(
βhi∗
n

)
. Then according to our data model,

27



Under review as a conference paper at ICLR 2024

with probability p
4 , we will get data with y = 1 and its feature patch is task-shared feature. Simi-

lar to Lemma B.3, the support set of the random noise of this data will have no interpolation with
the support sets of random noises in training samples with probability larger than 1 − n−2, which
implies that

〈
w∗1,r, ζx,h

〉
= 0. For this kind of data, we have

F1 (W∗,x) =

m∑
r=1

[
σ
(〈
w∗1,r, αv

〉)
+

H∑
h=2

σ
(〈
w∗1,r, ζx,h − βhv

〉)]

=

m∑
r=1

[
σ
(〈
w∗1,r, αv

〉)
+

H∑
h=2

σ
(〈
w∗1,r,−βhv

〉)]

≤ m
[
σ

(
max
r∈[m]

〈
w∗1,r, αv

〉)
+ (H − 1)σ

(
βh max

r∈[m]

〈
w∗1,r,−v

〉)]
≤ mHσ

(
max
h∈[2,H]

βhσ
1
3
0

)
= Θ̃

(
mH

(
max
h∈[2,H]

βhσ
1
3
0

)q)
and

F−1 (W∗,x) =

m∑
r=1

[
σ
(〈
w∗−1,r, αv

〉)
+

H∑
h=2

σ
(〈
w∗−1,r, ζx,h − βhv

〉)]

≥ σ
(

max
r∈[m]

〈
w∗−1,r, αv

〉)
≥ σ

(
Θ̃

(
αβh∗

n

))
= Θ̃

((
αβhi∗
n

)q)
then F−1 (W∗,x) > F1 (W∗,x) holds, so for this kind of data, it will fail in classification. There-
fore, the test error will be at least p4 − poly

(
n−1

)
.

E PROOF OF LEMMAS IN APPENDIX D

E.1 PROOF OF LEMMA D.1

Proof of Lemma D.1. Note that at the initialization, since w
(0)
j,r ∼ N

(
0, σ2

0Id
)
, then denote w

(0)
j,r

u

the u-th coordinate of w(0)
j,r , denote vu1 the u-th coordinate of v1,

then using Hoeffding’s inequality, we can get that

P
{∣∣∣〈w(0)

j,r ,v1

〉∣∣∣ ≥ a} = P

{∣∣∣∣∣
d∑

u=1

w
(0)
j,r

uvu1

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− ca2

σ2
0 ‖v1‖2

)
= 2 exp

(
−ca

2

σ2
0

)
so one can conclude that with probability exceeding 1− 2n−2,∣∣∣〈w(0)

j,r ,v1

〉∣∣∣ =

∣∣∣∣∣
d∑

u=1

w
(0)
j,r

uvu1

∣∣∣∣∣ ≤ Θ̃ (σ0)

then with probability exceeding 1 − 4mn−2 ≥ 1 − 4n−1,
∣∣∣〈w(0)

j,r ,v1

〉∣∣∣ ≤ Θ̃ (σ0) holds for all

r ∈ [m] and all j ∈ {−1, 1}. Similarly, we can get that with probability exceeding 1 − 4n−1,∣∣∣〈w(0)
j,r ,v

〉∣∣∣ ≤ Θ̃ (σ0) holds for all r ∈ [m] and j ∈ {−1, 1}. Then we have[〈
w

(0)
−j,r, j · v1

〉]
+
≤
∣∣∣〈w(0)

−j,r,v1

〉∣∣∣ ≤ Θ̃ (σ0)

According to our calculations of update, we can get that[〈
w

(t+1)
−j,r , j · v1

〉]
+

=

[
(1− ηλ) ·

〈
w

(t)
−j,r, j · v1

〉
+
η

n
· j ·

(∑
s∈D2

ys,1l
(t)
−j,s,1σ

′
(〈

w
(t)
−j,r, ys,1 · v1

〉))]
+
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(i)
=

[
(1− ηλ) ·

〈
w

(t)
−j,r, j · v1

〉
− η

n

∑
s∈D2

∣∣∣l(t)−j,s,1∣∣∣σ′ (〈w(t)
−j,r, ys,1 · v1

〉)]
+

(ii)
≤ (1− ηλ)

[〈
w

(t)
−j,r, j · v1

〉]
+
≤
[〈

w
(t)
−j,r, j · v1

〉]
+

where (i) holds since sgn
(
jys,1l

(t)
−j,s,1

)
= −1, (ii) holds since [·]+ is a monotone function. By

applying the above inequality recursively, we can get that[〈
w

(t+1)
−j,r , j · v1

〉]
+
≤
[〈

w
(t)
−j,r, j · v1

〉]
+
≤
[〈

w
(0)
−j,r, j · v1

〉]
+
≤ Θ̃(σ0)

E.2 PROOF OF LEMMA D.2

Proof of Lemma D.2. Note that at the initialization, according to the definition, ζi,1,h is s random
vector which selects s coordinates from a random vector which follows N

(
0, σ2

pId
)
, then denote

Bi,1,h = supp (ζi,1,h) be the support of ζi,1,h, then |ζi,1,h| = s. Denote ζui,1,h the u-th coordinate

of ζi,1,h. Since w
(0)
j,r ∼ N

(
0, σ2

0Is
)
, then denote w

(0)
j,r

u the u-th coordinate of w(0)
j,r , and using

Bernstein’s inequality, we can get that

P
{∣∣∣〈w(0)

j,r , ζi,1,h

〉∣∣∣ ≥ a} = P

{∣∣∣∣∣
d∑

u=1

w
(0)
j,r

uζui,1,h

∣∣∣∣∣ ≥ a
}

= P


∣∣∣∣∣∣
∑

u∈Bi,1,h

w
(0)
j,r

uζui,1,h

∣∣∣∣∣∣ ≥ a
 ≤ 2 exp

(
−cmin

(
a2

sσ2
pσ

2
0

,
t

σpσ0

))
so one can conclude that with probability exceeding 1− 2n−2,∣∣∣〈w(0)

j,r , ζi,1,h

〉∣∣∣ =

∣∣∣∣∣
d∑

u=1

w
(0)
j,r

uζui,1,h

∣∣∣∣∣ ≤ Θ̃
(√
sσpσ0

)
then with probability exceeding 1− 4mHn−2 ≥ 1− 4n−1,

∣∣∣〈w(0)
j,r , ζi,1,h

〉∣∣∣ ≤ Θ̃ (
√
sσpσ0) holds

for all r ∈ [m], h ∈ [2, H] and j ∈ {−1, 1} Then we have[〈
w

(0)
−yi,1,r, ζi,1,h

〉]
+
≤
∣∣∣〈w(0)

−yi,1,r, ζi,1,h

〉∣∣∣ ≤ Θ̃
(√
sσpσ0

)
According to our calculations of update, we can get that[〈

w
(t+1)
−yi,1,r, ζi,1,h

〉]
+

=

[
(1− ηλ) ·

〈
w(t)
yi,1,r, ζi,1,h

〉
+
η

n

H∑
g=2

n∑
s=1

l
(t)
−yi,1,s,1σ

′
(〈

w
(t)
−yi,1,r, ξs,1,g

〉)
〈ζs,1,g, ζi,1,h〉

]
+

According to Lemma B.3, with probability exceeding 1 − n−2, for all (s, g) 6= (i, h),
〈ζs,1,g, ζi,1,h〉 = 0, then we have[〈

w
(t+1)
−yi,1,r, ζi,1,h

〉]
+

=
[
(1− ηλ) ·

〈
w(t)
yi,1,r, ζi,1,h

〉
+
η

n
l
(t)
−yi,1,i,1σ

′
(〈

w
(t)
−yi,1,r, ξi,1,h

〉)
〈ζi,1,h, ζi,1,h〉

]
+

(i)
=
[
(1− ηλ) ·

〈
w

(t)
−yi,1,r, ζi,1,h

〉
− η

n

∣∣∣l(t)−yi,1,i,1∣∣∣σ′ (〈w(t)
−yi,1,r, ξi,1,h

〉)
‖ζi,1,h‖2

]
+

(ii)
≤ (1− ηλ)

[〈
w

(t)
−yi,1,r, ζi,1,h

〉]
+
≤
[〈

w
(t)
−yi,1,r, ζi,1,h

〉]
+

where (i) holds since sgn
(
l
(t)
−yi,1,i,1

)
= −1, (ii) holds since [·]+ is a monotone functions. By

applying the above inequality recursively, we can get that[〈
w

(t+1)
−yi,1,r, ζi,1,h

〉]
+
≤
[〈

w
(t)
−yi,1,r, ζi,1,h

〉]
+
≤
[〈

w
(0)
−yi,1,r, ζi,1,h

〉]
+
≤ Θ̃

(√
sσpσ0

)
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E.3 PROOF OF LEMMA D.3

Proof of Lemma D.3. From the calculations of initialization in Lemma D.1 and Lemma D.2, we
have that with probability exceeding 1−12n−1,

∣∣∣〈w(0)
j,r ,v1

〉∣∣∣ ≤ Θ̃ (σ0),
∣∣∣〈w(0)

j,r ,v
〉∣∣∣ ≤ Θ̃ (σ0), and∣∣∣〈w(0)

j,r , ζi,1,h

〉∣∣∣ ≤ Θ̃ (
√
sσpσ0) holds simultaneously for all j ∈ {−1, 1}, r ∈ [m] and h ∈ [2, H].

Therefore,

Ψ
(0)
j = max

r∈[m]

[〈
w

(0)
j,r , j · v1

〉]
+
≤ max
r∈[m]

∣∣∣〈w(0)
j,r , j · v1

〉∣∣∣ = max
r∈[m]

∣∣∣〈w(0)
j,r ,v1

〉∣∣∣ ≤ Θ̃ (σ0) ≤ ρ

Λ
(0)
j = max

r∈[m]

[〈
w

(0)
j,r , j · v

〉]
+
≤ max
r∈[m]

∣∣∣〈w(0)
j,r , j · v

〉∣∣∣ = max
r∈[m]

∣∣∣〈w(0)
j,r ,v

〉∣∣∣ ≤ Θ̃ (σ0) ≤ ρ

Φ
(0)
j,i,h ≤ Φ

(0)
j,i ≤ Φ

(0)
j = max

i∈[n]
max
h∈[2,H]

max
r∈[m]

[〈
w

(0)
j,r , ζi,1,h

〉]
+

≤ max
i∈[n]

max
h∈[2,H]

max
r∈[m]

∣∣∣〈w(0)
j,r , ζi,1,h

〉∣∣∣ ≤ Θ̃
(√
sσpσ0

)
≤ ρ

holds simultaneously, which also implies that

max
i∈[n]

max
h∈[2,H]

max
r∈[m]

[〈
w

(0)
j,r , ξi,1,h

〉]
+

= max
i∈[n]

max
h∈[2,H]

max
r∈[m]

[〈
w

(0)
j,r , ζi,1,h − βhyi,1v

〉]
+

≤ max
i∈[n]

max
r∈[2,H]

max
r∈[m]

[〈
w

(0)
j,r , ζi,1,h

〉]
+

+ max
r∈[m]

∣∣∣〈w(0)
j,r ,v

〉∣∣∣
≤ Θ̃

(√
sσpσ0

)
+ Θ̃ (σ0) ≤ ρ

so that the activation function for all of them are zq

qρq−1 .

Besides, for any r ∈ [m], since w
(0)
j,r ∼ N

(
0, σ2

0Id
)
, we can get that

〈
w

(0)
j,r , j · v1

〉
∼

N
(

0, σ2
0 ‖v1‖2

)
= N

(
0, σ2

0

)
, so P

(〈
w

(0)
j,r , j · v1

〉
< σ0

2

)
is an absolute constant, then we can

get that

P
(

max
r∈[m]

〈
w

(0)
j,r , j · v1

〉
≥ σ0

2

)
= 1− P

(
max
r∈[m]

〈
w

(0)
j,r , j · v1

〉
<
σ0

2

)
= 1− P

(〈
w

(0)
j,r , j · v1

〉
<
σ0

2
,∀r ∈ [m]

)
= 1− P

(〈
w

(0)
j,r , j · v1

〉
<
σ0

2

)m
≥ 1− n−1

so with probability exceeding 1 − n−1, Ψ
(0)
j = maxr∈[m]

[〈
w

(0)
j,r , j · v1

〉]
+

=

maxr∈[m]

〈
w

(0)
j,r , j · v1

〉
≥ σ0

2 . Similarly, we can get that with probability exceeding 1 − n−1,

Λ
(0)
j = maxr∈[m]

[〈
w

(0)
j,r , j · v

〉]
+

= maxr∈[m]

〈
w

(0)
j,r , j · v

〉
≥ σ0

2 . And conditioning on ζi,1,h,

we can get that
〈
w

(0)
j,r , ζi,1,h

〉
∼ N

(
0, σ2

0 ‖ζi,1,h‖
2
)

, so P
(〈

w
(0)
j,r , ζi,1,h

〉
<

σ0‖ζi,1,h‖
2

)
is an

absolute constant, then we can get that

P
(

max
r∈[m]

〈
w

(0)
j,r , ζi,1,h

〉
≥ σ0 ‖ζi,1,h‖

2

)
= 1− P

(
max
r∈[m]

〈
w

(0)
j,r , ζi,1,h

〉
<
σ0 ‖ζi,1,h‖

2

)
= 1− P

(〈
w

(0)
j,r , ζi,1,h

〉
<
σ0 ‖ζi,1,h‖

2
,∀r ∈ [m]

)
= 1− P

(〈
w

(0)
j,r , ζi,1,h

〉
<
σ0 ‖ζi,1,h‖

2

)m
≥ 1− n−1

so conditioning on ζi,1,h, with probability exceeding 1−n−1, maxr∈[m]

〈
w

(0)
j,r , ζi,1,h

〉
≥ σ0‖ζi,1,h‖

2 .
According to the definition, ζi,1,h is s random vector which selects s coordinates from a random
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vector which follows N
(
0, σ2

pId
)
, then denote Bi,1,h = supp (ζi,1,h) be the support of ζi,1,h, then

|ζi,1,h| = s, ‖ζi,1,h‖2 =
∑
u∈Bi,1,h ζ

u
i,1,h

2 and for each u ∈ Bi,1,h, ζui,1,h ∼ N
(
0, σ2

p

)
. Then we

have that

E ‖ζi,1,h‖2 = E
∑

u∈Bi,1,h

ζui,1,h
2 =

∑
u∈Bi,1,h

Eζui,1,h2 = sσ2
p

By using Bernstein’s inequality, we can get that

P
{∣∣∣‖ζi,1,h‖2 − E ‖ζi,1,h‖2

∣∣∣ ≥ a} = P


∣∣∣∣∣∣
∑

u∈Bi,1,h

ζui,1,h
2 − E

∑
u∈Bi,1,h

ζui,1,h
2

∣∣∣∣∣∣ ≥ a


= P


∣∣∣∣∣∣
∑

u∈Bi,1,h

ζ2
i,1,h − sσ2

p

∣∣∣∣∣∣ ≥ a


≤ 2 exp

(
−cmin

(
a2

sσ2
p

,
t

σp

))
so one conclude that with probability exceeding 1− 2n−2,∣∣∣‖ζi,1,h‖2 − sσ2

p

∣∣∣ ≤ Θ̃
(√
sσ2
p

)
which implies that which probability exceeding 1− 2n−2,

‖ζi,1,h‖ ≥ O
(√
sσp
)

Combining these two parts, we have that with probability exceeding 1− n−1 − 2n−2 ≥ 1− 2n−1,

max
r∈[m]

〈
w

(0)
j,r , ζi,1,h

〉
≥ σ0 ‖ζi,1,h‖

2
≥ O

(√
sσpσ0

)
So we have that with probability exceeding 1− 2n−1,

Φ
(0)
j ≥ Φ

(0)
j,i ≥ Φ

(0)
j,i,h = max

r∈[m]

[〈
w

(0)
j,r , ζi,1,h

〉]
+

= max
r∈[m]

〈
w

(0)
j,r , ζi,1,h

〉
≥ O

(√
sσpσ0

)
Therefore, with probability exceeding 1− 8n−1,

Ψ
(0)
j = max

r∈[m]

[〈
w

(0)
j,r , j · v1

〉]
+
≥ σ0

2

Λ
(0)
j = max

r∈[m]

[〈
w

(0)
j,r , j · v

〉]
+
≥ σ0

2

Φ
(0)
j ≥ Φ

(0)
j,i ≥ Φ

(0)
j,i,h = max

r∈[m]

[〈
w

(0)
j,r , ζi,1,h

〉]
+
≥ O

(√
sσpσ0

)
holds simultaneously for all j ∈ {−1, 1}. Combining these two parts, we have that with probability
exceeding 1− 20n−1,

Ψ
(0)
j = Θ̃ (σ0) ,Λ

(0)
j = Θ̃ (σ0) ,Φ

(0)
j = Θ̃

(√
sσpσ0

)
,Φ

(0)
j,i = Θ̃

(√
sσpσ0

)
,Φ

(0)
j,i,h = Θ̃

(√
sσpσ0

)
Then according to our definition, it can be shown that for i ∈ D1,

Fj

(
W(0),xi,1

)
=

m∑
r=1

[
σ
(〈

w
(0)
j,r , αyi,1 · v

〉)
+

H∑
h=2

σ
(〈

w
(0)
j,r , ξi,1,h

〉)]

=

m∑
r=1


[〈

w
(0)
j,r , αyi,1 · v

〉]q
+

qρq−1
+

H∑
h=2

[〈
w

(0)
j,r , ξi,1,h

〉]q
+

qρq−1


≤ m

(
ρq

qρq−1
+

H∑
h=2

ρq

qρq−1

)
=
mHρ

q
= o(1)
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for all j ∈ {−1, 1}, and similarly for i ∈ D2,

Fj

(
W(0),xi,1

)
=

m∑
r=1

[
σ
(〈

w
(0)
j,r , yi,1 · v1

〉)
+

H∑
h=2

σ
(〈

w
(0)
j,r , ξi,1,h

〉)]

=

m∑
r=1


[〈

w
(0)
j,r , yi,1 · v1

〉]q
+

qρq−1
+

H∑
h=2

[〈
w

(0)
j,r , ξi,1,h

〉]q
+

qρq−1


≤ m

(
ρq

qρq−1
+

H∑
h=2

ρq

qρq−1

)
=
mHρ

q
= o(1)

for all j ∈ {−1, 1}. Then we have

eFj(W
(0),xi,1)∑

s e
Fs(W(0),xi,1)

= Θ(1).

so that ∣∣∣l(0)
j,i,1

∣∣∣ = Θ(1).

According to the definition of l(t)j,i,1, we have sgn
(
l
(t)
j,i,1

)
= jyi,1, so sgn

(
jyi,1l

(t)
j,i,1

)
= 1. We will

prove the desired argument based on the following induction hypothesis:

Ψ
(t)
j ≥ Ψ

(t−1)
j +

η

2ρq−1
Θ

((
Ψ

(t−1)
j

)q−1
)
,

Ψ
(t)
j = max

r∈[m]

〈
w

(t)
j,r, j · v1

〉
,

Ψ
(t)
j is monotonically non-decreasing,∀j ∈ {−1, 1} , t ≤ Pj (1)

Φ
(t)
yi,1,i

≥ Φ
(t−1)
yi,1,i

+
η

2ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)
,

Φ
(t)
yi,1,i

= max
h∈[2,H]

max
r∈[m]

〈
w(t)
yi,1,r, ζi,1,h

〉
,

Φ
(t)
yi,1,i

is monotonically non-decreasing,∀i ∈ D1, t ≤ Ti (2)

Φ
(t)
yi,1,i

≤ Φ
(t−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

+ Θ̃
(
σ

2
3
0

))q−1
)
,∀i ∈ D2, t ≤ P0 (3)

Λ
(t)
j ≤ max

{
Λ

(t−1)
j +

ηαq

ρq−1
Θ

((
Λ

(t−1)
j

)q−1
)
, Θ̃
(
αqσ

2
3
0

)}
,∀j ∈ {−1, 1} , t ≤ T0

(4)

Ψ
(t)
j ≤ Θ̃ (1) ,∀j ∈ {−1, 1} , t ≤ Pj ,

Ψ
(t)
j = Θ̃ (1) ,Ψ

(t)
j = max

r∈[m]

〈
w

(t)
j,r, j · v1

〉
,∀j ∈ {−1, 1} , Pj ≤ t ≤ T (5)

Φ
(t)
yi,1,i

≤ Θ̃ (1) ,∀i ∈ D1, t ≤ Ti,

Φ
(t)
yi,1,i

= Θ̃ (1) ,Φ
(t)
yi,1,i

= max
h∈[2,H]

max
r∈[m]

〈
w(t)
yi,1,r, ζi,1,h

〉
,∀i ∈ D1, Ti ≤ t ≤ T ; (6)

Φ
(t)
j,i ≤ Θ̃

(√
sσpσ0

)
,∀j ∈ {−1, 1} ,∀i ∈ D2, t ≤ T (7)

Λ
(t)
j ≤ Θ̃ (σ0) ,∀j ∈ {−1, 1} , t ≤ T (8)〈

w
(t)
−j,r, j · v

〉
≤ Θ̃

(
σ

1
3
0

)
,∀j ∈ {−1, 1} , t ≤ T (9)

and for t = −1, we set Ψ
(−1)
j = 0 for all j ∈ {−1, 1}, Φ

(−1)
j,i = 0 for all j ∈ {−1, 1} and i ∈ D1,

Φ
(−1)
j,i = 1 for all j ∈ {−1, 1} and i ∈ D2, and Λ

(−1)
j = 1 for all j ∈ {−1, 1}. Now we consider
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the situation at t = 0.
(i) In terms of Hypothesis 1 and 5, since the distribution of w(0)

j,r is symmetric, then for each r ∈ [m]

and j ∈ {−1, 1}, with probability 1
2 ,
〈
w

(0)
j,r , j · v1

〉
< 0. So with probability 1

2m ,
〈
w

(0)
j,r , j · v1

〉
<

0 holds for all r ∈ [m]. Denote r∗ = arg maxr∈[m]

〈
w

(0)
j,r , j · v1

〉
, then

P
{〈

w
(0)
j,r∗ , j · v1

〉
≥ 0,∀j ∈ {−1, 1}

}
≥ 1− P

{〈
w

(0)
1,r∗ , 1 · v1

〉
< 0
}
− P

{〈
w

(0)
−1,r∗ ,−1 · v1

〉
< 0
}

= 1− P
{〈

w
(0)
1,r, 1 · v1

〉
< 0,∀r ∈ [m]

}
− P

{〈
w

(0)
−1,r,−1 · v1

〉
< 0,∀r ∈ [m]

}
= 1− 1

2m−1
≥ 1− n−1

so with probability exceeding 1 − n−1, Ψ
(0)
j =

〈
w

(0)
j,r∗ , j · v1

〉
≥ 0 holds for both j ∈ {−1, 1}.

Since Ψ
(−1)
j = 0, then the inequality

Ψ
(0)
j ≥ Ψ

(−1)
j +

η

2ρq−1
Θ

((
Ψ

(−1)
j

)q−1
)

holds, so we verify Hypothesis 1 at t = 0. According to previous calculations, we have that
Ψ

(0)
j = Θ̃ (σ0) ≤ Θ̃ (1) for all j ∈ {−1, 1}, so we verify Hypothesis 5 at t = 0.

(ii) In terms of Hypothesis 2 and 6, since both the distribution of w
(0)
j,r and the distribution of

ζi,1,h are symmetric, then for each i ∈ [n], h ∈ [2, H] and r ∈ [m], with probability 1
2 ,〈

w
(0)
j,r , ζi,1,h

〉
< 0. So with probability 1

2m ,
〈
w

(0)
j,r , ζi,1,h

〉
< 0 holds for all r ∈ [m]. Denote

r∗i,h = arg maxr∈[m]

〈
w

(0)
j,r , ζi,1,h

〉
, then

P
{〈

w
(0)
yi,1,r∗i,h

, ζi,1,h

〉
≥ 0,∀i ∈ [n], h ∈ [2, H]

}
≥ 1−

n∑
i=1

H∑
h=2

P
{〈

w
(0)
yi,1,r∗i,h

, ζi,1,h

〉
< 0
}

= 1−
n∑
i=1

H∑
h=2

P
{〈

w(0)
yi,1,r, ζi,1,h

〉
< 0,∀r ∈ [m]

}
= 1− n (H − 1)

2m
≥ 1− n−1

so with probability exceeding 1− n−1,

Φ
(0)
yi,1,i

= max
h∈[2,H]

max
r∈[m]

[〈
w(0)
yi,1,r, ζi,1,h

〉]
+

= max
h∈[2,H]

〈
w

(0)
yi,1,r∗i,h

, ζi,1,h

〉
= max
h∈[2,H]

max
r∈[m]

〈
w(0)
yi,1,r, ζi,1,h

〉
≥ 0

holds for all i ∈ D1. Since Φ
(−1)
yi,1,i

= 0 for all i ∈ D1, then the inequality

Φ
(0)
yi,1,i

≥ Φ
(−1)
yi,1,i

+
η

2ρq−1
Θ̃

(
sσ2
p

n

)
Θ

((
Φ

(−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)
holds, so we verify Hypothesis 2 at t = 0. According to previous calculations, we have that Φ

(0)
yi,1,i

=

Θ̃ (
√
sσpσ0) ≤ Θ̃ (1) for all i ∈ D1, so we verify Hypothesis 6 at t = 0.
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(iii) In terms of Hypothesis 3 and 7, from the calculations of initialization in Lemma D.2, we have
that for any i ∈ D2, Φ

(0)
yi,1,i

≤ Φ
(0)
yi,1 ≤ Θ̃ (

√
sσpσ0). Since Φ

(−1)
yi,1,i

= 1, then

Φ
(0)
yi,1,i

≤ Θ̃
(√
sσpσ0

)
≤ 1 ≤ Φ

(−1)
yi,1,i

+
η

ρq−1
Θ̃

(
dσ2

p

n

)
Θ

((
Φ

(−1)
yi,1,i

+ Θ̃
(
σ

2
3
0

))q−1
)

so we verify the hypothesis at t = 0.
(iv) In terms of Hypothesis 4 and 8, from the calculations of initialization in
Lemma D.1, we have that for any j ∈ {−1, 1}, Λ

(0)
j ≤ Θ̃ (σ0) ≤ 1 ≤

max

{
Λ

(−1)
j + ηαq

ρq−1 Θ

((
Λ

(−1)
j

)q−1
)
, Θ̃
(
αqσ

2
3
0

)}
, so we verify the hypothesis at t = 0.

(v) In terms of Hypothesis 9, from the calculations of initialization in Lemma D.1, we have that
for any j ∈ {−1, 1},

〈
w

(0)
−j,r, j · v

〉
≤
∣∣∣〈w(0)

−j,r,v
〉∣∣∣ ≤ Θ̃ (σ0) ≤ Θ̃

(
σ

1
3
0

)
, so we verify the

hypothesis at t = 0.
By induction, we assume that all these hypotheses holds for all τ ∈ [0, t− 1]. Then we consider the
case at t.
(i) In terms of Hypothesis 1, denote r∗ = arg maxr∈[m]

〈
w

(t−1)
j,r , j · v1

〉
, then we can apply

Hypothesis 1 at time t − 1 and get that Ψ
(t−1)
j =

〈
w

(t−1)
j,r∗ , j · v1

〉
≥ 0, and apparently

Ψ
(t)
j ≥

〈
w

(t)
j,r∗ , j · v1

〉
, then the gradient calculation implies that

〈
w

(t)
j,r∗ , j · v1

〉
= (1− ηλ) ·

〈
w

(t−1)
j,r∗ , j · v1

〉
+
η

n
· j ·

(∑
i∈D2

yi,1l
(t−1)
j,i,1 σ′

(〈
w

(t−1)
j,r∗ , yi,1 · v1

〉))
(i)
= (1− ηλ) ·

〈
w

(t−1)
j,r∗ , j · v1

〉
+
η

n
·

(∑
i∈D2

∣∣∣l(t−1)
j,i,1

∣∣∣σ′ (〈w(t−1)
j,r∗ , yi,1 · v1

〉))
(ii)
≥ (1− ηλ) ·

〈
w

(t−1)
j,r∗ , j · v1

〉
+ Θ (η) (1− p) · σ′

(〈
w

(t−1)
j,r∗ , j · v1

〉)
(iii)
= (1− ηλ) ·Ψ(t−1)

j +
η(1− p)
ρq−1

Θ

((
Ψ

(t−1)
j

)q−1
)

(iv)
≥ (1− ηλ) ·Ψ(t−1)

j +
η

ρq−1
Θ

((
Ψ

(t−1)
j

)q−1
)
≥ 0

where (i) holds since sgn
(
jyi,1l

(t−1)
j,i,1

)
= 1, (ii) holds since yi,1 = j with probability 1

2 and i ∈ D2

with probability 1−p according to our data generation method, as well as
∣∣∣l(t−1)
j,i,1

∣∣∣ = Θ (1) according

to our assumption, (iii) holds since Ψ
(t−1)
j =

〈
w

(t−1)
j,r∗ , j · v1

〉
≥ 0 according to Hypothesis 1

at t − 1, and the activation function for
〈
w

(t−1)
j,r∗ , j · v1

〉
is zq

qρq−1 according to our assumption,

which implies that σ′
(〈

w
(t−1)
j,r∗ , j · v1

〉)
=

〈
w

(t−1)

j,r∗ ,j·v1

〉q−1

ρq−1 =

(
Ψ

(t−1)
j

)q−1

ρq−1 , and (iv) holds since
p = O(1). So we have

max
r

〈
w

(t)
j,r, j · v1

〉
≥
〈
w

(t)
j,r∗ , j · v1

〉
≥ 0

which implies that Ψ
(t)
j = maxr

〈
w

(t)
j,r, j · v1

〉
≥ 0. Then

Ψ
(t)
j ≥ (1− ηλ) Ψ

(t−1)
j +

η

ρq−1
Θ

((
Ψ

(t−1)
j

)q−1
)

Furthermore, according to Hypothesis 1 at [0, t − 1], we can get that Ψ
(τ)
j is monotonically non-

decreasing for τ ∈ [0, t − 1], which implies that Ψ
(t−1)
j ≥ Ψ

(0)
j . Then λ < Θ̃

(
σq−2
0

ρq−1

)
≤
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Θ

((
Ψ

(0)
j

)q−2

ρq−1

)
≤ Θ

((
Ψ

(t)
j

)q−2

ρq−1

)
, which implies that

Ψ
(t)
j ≥ (1− ηλ) ·Ψ(t−1)

j +
η

ρq−1
Θ

((
Ψ

(t−1)
j

)q−1
)

= Ψ
(t−1)
j +

η

2ρq−1
Θ

((
Θ

(t−1)
j

)q−1
)

+
η

2ρq−1
Θ

((
Ψ

(t−1)
j

)q−1
)
− ηλΨ

(t−1)
j

= Ψ
(t−1)
j +

η

2ρq−1
Θ

((
Ψ

(t−1)
j

)q−1
)

+ ηΨ
(t−1)
j

Θ

((
Ψ

(t−1)
j

)q−2
)

2ρq−1
− λ


≥ Ψ

(t−1)
j +

η

2ρq−1
Θ

((
Ψ

(t−1)
j

)q−1
)
.

so the hypothesis holds at t. Using Lemma 5.1 with our initialization, we can conclude that for each

j ∈ {−1, 1}, Pj = Θ̃

((
Ψ

(0)
j

)2−q (
η

2ρq−1

)−1
)

= Θ̃
(
σ2−q

0 /η
)

.

(ii) In terms of Hypothesis 2, denote r∗h = arg maxr∈[m]

〈
w

(t−1)
yi,1,r , ζi,1,h

〉
, then we can apply

Hypothesis 2 at time t − 1 and get that Φ
(t−1)
yi,1,i

= maxh∈[2,H] maxr∈[m]

〈
w

(t−1)
yi,1,r , ζi,1,h

〉
=

maxh∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
≥ 0, and apparently Φ

(t)
yi,1,i,h

≥
〈
w

(t)
yi,1,r∗h

, ζi,1,h

〉
, then the gradi-

ent calculation implies that〈
w

(t)
yi,1,r∗h

, ζi,1,h

〉
= (1− ηλ) ·

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n

H∑
g=2

n∑
s=1

l
(t−1)
yi,1,s,1

σ′
(〈

w
(t−1)
yi,1,r∗h

, ξs,1,g

〉)
〈ζs,1,g, ζi,1,h〉

According to Lemma B.3, with probability exceeding 1 − n−2, for all (s, g) 6= (i, h),
〈ζs,1,g, ζi,1,h〉 = 0. By using the calculations above, we can get that with probability exceeding

1− 2n−2,
∣∣∣‖ζi,1,h‖2 − sσ2

p

∣∣∣ ≤ Θ̃
(√
sσ2
p

)
, which implies that ‖ζi,1,h‖ ≥ Θ (

√
sσp), then we have〈

w
(t)
yi,1,r∗h

, ζi,1,h

〉
≥ (1− ηλ) ·

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

)
l
(t−1)
yi,1,i,1

σ′
(〈

w
(t−1)
yi,1,r∗h

, ξi,1,h

〉)
According to Hypothesis 2 at [0, t − 1], we have Φ

(t−1)
yi,1,i

= maxh∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
≥ 0

and Φ
(τ)
yi,1,i

is monotonically non-decreasing for τ ∈ [0, t − 1], which implies that Φ
(t−1)
yi,1,i

≥
Φ

(0)
yi,1,i

≥ Θ̃ (
√
sσpσ0) ≥ Θ̃ (σ0). According to Hypothesis 8 at time t − 1, we have

maxr∈[m]

〈
w

(t−1)
yi,1,r , yi,1v

〉
≤ Λ

(t−1)
yi,1 ≤ Θ̃ (σ0). Then taking maximum according to h ∈ [2, H]

on the both side of the inequality, we further get that

max
h∈[2,H]

〈
w

(t)
yi,1,r∗h

, ζi,1,h

〉
(i)
≥ (1− ηλ) · max

h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

) ∣∣∣l(t−1)
yi,1,i,1

∣∣∣ max
h∈[2,H]

σ′
(〈

w
(t−1)
yi,1,r∗h

, ξi,1,h

〉)
(ii)
≥ (1− ηλ) · max

h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

)
σ′
(

max
h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ξi,1,h

〉)
= (1− ηλ) · max

h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

)
σ′
(

max
h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h − βhyi,1v
〉)

≥ (1− ηλ) · max
h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

)
σ′
(

max
h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
− βh max

h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, yi,1v
〉)
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≥ (1− ηλ) · max
h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

)
σ′
(

max
h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
− max
r∈[m]

〈
w

(t−1)
yi,1,r∗h

, yi,1v
〉)

≥ (1− ηλ) · max
h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

)
σ′
(

max
h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
− Θ̃ (σ0)

)
= (1− ηλ) Φ

(t−1)
yi,1,i

+
η

n
Θ
(
sσ2
p

)
σ′
(

Φ
(t−1)
yi,1,i

− Θ̃ (σ0)
)

(iii)
= (1− ηλ) Φ

(t−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)
≥ 0

in which (i) holds since sgn
(
l
(t−1)
yi,1,i,1

)
= 1, (ii) holds since σ′ (·) is a monotonic function and∣∣∣l(t−1)

yi,1,i,1

∣∣∣ = Θ (1) according to our assumption, and (iii) holds since 0 ≤ Φ
(t−1)
yi,1,i

− Θ̃ (σ0) ≤

Φ
(t−1)
yi,1,i

≤ ρ according to our assumption, then the activation function for Φ
(t−1)
yi,1,i

is zq

qρq−1 , which

implies that σ′
(

Φ
(t−1)
yi,1,i

− Θ̃ (σ0)
)

=

(
Φ

(t−1)
yi,1,i

−Θ̃(σ0)
)q−1

ρq−1 . So we have

max
h∈[2,H]

〈
w

(t)
yi,1,r∗h

, ζi,1,h

〉
= max
h∈[2,H]

max
r∈[m]

〈
w(t)
yi,1,r, ζi,1,h

〉
≥ 0

which implies that Φ
(t)
yi,1,i

= maxh∈[2,H] maxr∈[m]

〈
w

(t)
yi,1,r, ζi,1,h

〉
≥ 0. Then

Φ
(t)
yi,1,i

≥ (1− ηλ) Φ
(t−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)

Furthermore, according Hypothesis 2 at [0, t − 1], we can get that Φ
(τ)
yi,1,i

is monotonically non-

decreasing for τ ∈ [0, t − 1], which implies that Φ
(t−1)
yi,1,i

≥ Φ
(0)
yi,1,i

≥ Θ̃ (
√
sσpσ0), so Φ

(t−1)
yi,1,i

−

Θ̃ (σ0) ≥ Θ̃ (
√
sσpσ0) − Θ̃ (σ0) ≥ Θ̃ (σ0) and Φ

(t−1)
yi,1,i

− Θ̃ (σ0) =
Φ

(t−1)
yi,1,i

2 +
Φ

(t−1)
yi,1,i

2 − Θ̃ (σ0) ≥
Φ

(t−1)
yi,1,i

2 +
Θ̃(
√
sσpσ0)
2 −Θ̃ (σ0) ≥

Φ
(t−1)
yi,1,i

2 . Then λ < Θ

(
sσ2
pσ
q−2
0

2nρq−1

)
≤ Θ

(
sσ2
p

(
Φ

(0)
yi,1,i

−Θ̃(σ0)
)q−2

nρq−1

)
≤

Θ

(
sσ2
p

(
Φ

(t−1)
yi,1,i

−Θ̃(σ0)
)q−2

nρq−1

)
, which implies that

Φ
(t)
yi,1,i

≥ (1− ηλ) Φ
(t−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)

= Φ
(t−1)
yi,1,i

+
η

2ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)

+
η

2ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)
− ηλΦ

(t−1)
yi,1,i

≥ Φ
(t−1)
yi,1,i

+
η

2ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)

+
η

2ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)
− 2ηλ

(
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)

= Φ
(t−1)
yi,1,i

+
η

2ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)
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+ η
(

Φ
(t−1)
yi,1,i

− Θ̃ (σ0)
)Θ

sσ2
p

(
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)q−2

2nρq−1

− λ


≥ Φ
(t−1)
yi,1,i

+
η

2ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)
so the hypothesis holds at t.
(iii) In terms of Hypothesis 3, denote r∗h = arg maxr∈[m]

〈
w

(t)
yi,1,r, ζi,1,h

〉
, then apparently

Φ
(t)
yi,1,i,h

=
[〈

w
(t)
yi,1,r∗h

, ζi,1,h

〉]
+

and Φ
(t−1)
yi,1,i,h

≥
[〈

w
(t−1)
yi,1,r∗h

, ζi,1,h

〉]
+

. Then the gradient cal-

culation implies that

Φ
(t)
yi,1,i,h

=
[〈

w
(t)
yi,1,r∗h

, ζi,1,h

〉]
+

=

[
(1− ηλ) ·

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n

H∑
g=2

n∑
s=1

l
(t−1)
yi,1,s,1

σ′
(〈

w
(t−1)
yi,1,r∗h

, ξs,1,g

〉)
〈ζs,1,g, ζi,1,h〉

]
+

According to Lemma B.3, with probability exceeding 1 − n−2, for all (s, g) 6= (i, h),
〈ζs,1,g, ζi,1,h〉 = 0. By using the calculations above, we can get that with probability exceeding

1− 2n−2,
∣∣∣‖ζi,1,h‖2 − sσ2

p

∣∣∣ ≤ Θ̃
(√
sσ2
p

)
, which implies that ‖ζi,1,h‖ ≤ Θ (

√
sσp), then we have

Φ
(t)
yi,1,i,h

=
[
(1− ηλ) ·

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
l
(t−1)
yi,1,i,1

σ′
(〈

w
(t−1)
yi,1,r∗h

, ξi,1,h

〉)
‖ζi,1,h‖2

]
+

(i)
≤ (1− ηλ) ·

[〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉]
+

+
η

n

∣∣∣l(t−1)
yi,1,i,1

∣∣∣σ′ (〈w(t−1)
yi,1,r∗h

, ξi,1,h

〉)
‖ζi,1,h‖2

(ii)
≤
[〈

w
(t−1)
yi,1,r∗h

, ζi,1,h

〉]
+

+
η

n
Θ
(
sσ2
p

)
σ′
(〈

w
(t−1)
yi,1,r∗h

, ξi,1,h

〉)
(iii)
=
[〈

w
(t−1)
yi,1,r∗h

, ζi,1,h

〉]
+

+
η

ρq−1
Θ

(
sσ2
p

n

)
Θ

([〈
w

(t−1)
yi,1,r∗h

, ξi,1,h

〉]
+

)q−1

(iv)
≤
[〈

w
(t−1)
yi,1,r∗h

, ζi,1,h

〉]
+

+
η

ρq−1
Θ

(
sσ2
p

n

)
Θ

([〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉]
+

+ βh

[〈
w

(t−1)
yi,1,r∗h

, yi,1v
〉]

+

)q−1

≤ Φ
(t−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

+ βh

〈
w

(t−1)
yi,1,r∗h

,−yi,1v
〉)q−1

)
(v)
≤ Φ

(t−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

+ Θ̃
(
σ

2
3
0

))q−1
)

where (i) holds according to the definition of [·]+ and the triangle inequality, (ii) holds since∣∣∣l(t−1)
yi,1,i,1

∣∣∣ ≤ 1, (iii) holds since the activation function for
〈
w

(t−1)
yi,1,r∗h

, ξi,1,h

〉
is zq

qρq−1 according to

our assumption, which implies that σ′
(〈

w
(t−1)
yi,1,r∗h

, ξi,1,h

〉)
=

([〈
w

(t−1)

yi,1,r
∗
h
,ξi,1,h

〉]
+

)q−1

ρq−1 , (iv) holds

according to the triangle inequality, and (v) holds since
〈
w

(t−1)
yi,1,r∗h

,−yi,1v
〉
≤ Θ̃

(
σ

1
3
0

)
according

to Hypothesis 9 at t − 1. Taking maximum according to h ∈ [2, H] on the left hand side of the
inequality, we further get that

Φ
(t)
yi,1,i

≤ Φ
(t−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,1,i

+ Θ̃
(
σ

2
3
0

))q−1
)
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so the hypothesis holds at t.
(iv) In terms of Hypothesis 4, denote r∗ = arg maxr∈[m]

〈
w

(t)
j,r, j · v

〉
, then apparently Λ

(t)
j =[〈

w
(t)
j,r∗ , j · v

〉]
+

and Λ
(t−1)
j ≥

[〈
w

(t−1)
j,r∗ , j · v

〉]
+

. So we can get from the gradient calculation

that

Λ
(t)
j =

[〈
w

(t)
j,r∗ , j · v

〉]
+

=

[
(1− ηλ) ·

〈
w

(t−1)
j,r∗ , j · v

〉
+
η

n
· j′ ·

( ∑
i∈D1

αyi,1l
(t−1)
j,i,1 σ′

(〈
w

(t−1)
j,r∗ , αyi,1 · v

〉)

−
H∑
h=2

n∑
i=1

βhyi,1l
(t−1)
j′,i,1 σ

′
(〈

w
(t−1)
j,r∗ , ξi,1,h

〉))]
+

(i)
=

[
(1− ηλ) ·

〈
w

(t−1)
j,r∗ , j · v

〉
+
η

n
·
∑
i∈D1

α
∣∣∣l(t−1)
j,i,1

∣∣∣σ′ (〈w(t−1)
j,r∗ , αyi,1 · v

〉)

− η

n

H∑
h=2

n∑
i=1

βh

∣∣∣l(t−1)
j,i,1

∣∣∣σ′ (〈w(t−1)
j,r∗ , ξi,1,h

〉)]
+

(ii)
≤

[
(1− ηλ)

〈
w

(t−1)
j,r∗ , j · v

〉
+
η

n
·
∑
i∈D1

α
∣∣∣l(t−1)
j,i,1

∣∣∣σ′ (〈w(t−1)
j,r∗ , αyi,1 · v

〉)]
+

(iii)
≤ (1− ηλ)

[〈
w

(t−1)
j,r∗ , j · v

〉]
+

+

[
η

n
·
∑
i∈D1

α
∣∣∣l(t−1)
j,i,1

∣∣∣σ′ (〈w(t−1)
j,r∗ , αyi,1 · v

〉)]
+

= (1− ηλ) ·
[〈

w
(t−1)
j,r∗ , j · v

〉]
+

+
η

n
·

(∑
i∈D1

α
∣∣∣l(t−1)
j,i,1

∣∣∣σ′ (〈w(t−1)
j,r∗ , αyi,1 · v

〉))

≤
[〈

w
(t−1)
j,r∗ , j · v

〉]
+

+
η

n
·

(
n∑
i=1

α
∣∣∣l(t−1)
j,i,1

∣∣∣σ′ (〈w(t−1)
j,r∗ , αyi,1 · v

〉))

=
[〈

w
(t−1)
j,r∗ , j · v

〉]
+

+
η

n
·

( ∑
i:yi,1=j

α
∣∣∣l(t−1)
j,i,1

∣∣∣σ′ (〈w(t−1)
j,r∗ , αyi,1 · v

〉)

+
∑

i:yi,1=−j
α
∣∣∣l(t−1)
j,i,1

∣∣∣σ′ (〈w(t−1)
j,r∗ , αyi,1 · v

〉))

=
[〈

w
(t−1)
j,r∗ , j · v

〉]
+

+
η

n
·

( ∑
i:yi,1=j

α
∣∣∣l(t−1)
j,i,1

∣∣∣σ′ (〈w(t−1)
j,r∗ , αj · v

〉)

+
∑

i:yi,1=−j
α
∣∣∣l(t−1)
j,i,1

∣∣∣σ′ (〈w(t−1)
j,r∗ , α · (−j) · v

〉))
(iv)
≤
[〈

w
(t−1)
j,r∗ , j · v

〉]
+

+ Θ (η) · ασ′
(〈

w
(t−1)
j,r∗ , αj · v

〉)
+ Θ (η) · ασ′

(〈
w

(t−1)
j,r∗ , α · (−j)v

〉)
where (i) holds since sgn

(
jyi,1l

(t−1)
j,i,1

)
= 1, (ii) holds since [·]+ is a monotone function, (iii) holds

because of the triangle inequality, and (iv) holds since
∣∣∣l(t−1)
j,i,1

∣∣∣ ≤ 1 and yi,1 = j with probability 1
2

according to our data generation methodThen there are two situations:
1. If

〈
w

(t−1)
j,r∗ , j · v

〉
≥ 0, then

〈
w

(t−1)
j,r , α · (−j) · v

〉
≤ 0, which implies that
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σ′
(〈

w
(t−1)
j,r∗ , α · (−j) · v

〉)
= 0, then we have

Λ
(t)
j ≤ Λ

(t−1)
j + Θ (η) · ασ′

(
αΛ

(t−1)
j

)
(i)
≤ Λ

(t−1)
j +

ηαq

ρq−1
Θ

((
Λ

(t−1)
j

)q−1
)

≤ max

{
Λ

(t−1)
j +

ηαq

ρq−1
Θ

((
Λ

(t−1)
j

)q−1
)
, Θ̃ (σ0)

}
where (i) holds since the activation function for αΛ

(t−1)
j is zq

qρq−1 according to our assumption,

which implies that σ′
(
αΛ

(t−1)
j

)
=

αq−1
(

Λ
(t−1)
j

)q−1

ρq−1 .

2. If
〈
w

(t−1)
j,r∗ , j · v

〉
< 0, then

〈
w

(t−1)
j,r∗ , αj′ · v

〉
< 0, which implies that

[〈
w

(t−1)
j,r∗ , j · v

〉]
+

=

σ′
(〈

w
(t−1)
j,r∗ , αj · v

〉)
= 0, then we have

Λ
(t)
j ≤ Θ (η) · ασ′

(〈
w

(t−1)
j,r∗ , α · (−j) · v

〉)
(i)
≤ Θ (η) · ασ′

(
αΘ̃

(
σ

1
3
0

))
(ii)
≤ η

ρq−1
αqΘ̃

(
σ
q−1
3

0

)
≤ η

ρq−1
αqΘ̃

(
σ

2
3
0

)
≤ max

{
Λ

(t−1)
j +

ηαq

ρq−1
Θ

((
Λ

(t−1)
j

)q−1
)
, Θ̃
(
αqσ

2
3
0

)}
where (i) holds since

[〈
w

(t−1)
j,r∗ , j · v

〉]
+
≤ Θ̃

(
σ

1
3
0

)
according to Hypothesis 9 at t − 1, and (ii)

holds since the activation function for αΘ̃
(
σ

1
3
0

)
is zq

qρq−1 , which implies that σ′
(
αΘ̃

(
σ

1
3
0

))
=(

αΘ̃

(
σ

1
3
0

))q−1

ρq−1 =
αq−1Θ̃

(
σ
q−1
3

0

)
ρq−1 .

Combining these two situations, the hypothesis holds at t.
(v) In terms of Hypothesis 5, there are two different stages:
1. If t ≤ Pj , then according to our definition of Pj , Ψ

(Pj)
j is the first time in the sequence that

reaches Θ (1/m), which implies that Ψ
(t)
j ≤ Θ (1/m) = Θ̃ (1);

2. If t ≥ Pj , without loss of generality, we will prove the case when j = 1. Now we want to prove
the following inequality by induction. For τ ∈ [0, t],

Ψ
(τ)
1 ≥ (1− ηλ) Ψ

(τ−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ)
1,i,1

∣∣∣σ′ (Ψ
(τ−1)
1

) , and Ψ
(τ)
1 = max

r∈[m]

〈
w

(τ)
1,r ,v1

〉
and we set Ψ

(−1)
1 = 0.

For τ = 0, according to previous calculations, we have Ψ
(0)
1 = Θ̃ (σ0). Since Ψ

(−1)
1 = 0,

then the inequality holds at τ = 0, so we verify the hypothesis at τ = 0. By induction, we
assume that for any τ0 ∈ [0, τ − 1], Ψ

(τ0)
1 = maxr∈[m]

〈
w

(τ0)
1,r ,v1

〉
≥ 0, then for τ , denote

r∗ = arg maxr∈[m]

〈
w

(τ−1)
1,r , j · v1

〉
. Then we can apply the hypothesis at time τ − 1 and get

Ψ
(τ−1)
1 =

〈
w

(τ−1)
1,r∗ ,v1

〉
≥ 0 and apparently Ψ

(τ)
1 ≥

〈
w

(τ)
1,r∗ , j · v1

〉
. From the gradient calcula-

tions on
〈
w

(t+1)
1,r∗ ,v1

〉
, we can get that〈

w
(τ)
1,r∗ ,v1

〉
= (1− ηλ) ·

〈
w

(τ−1)
1,r∗ ,v1

〉
+
η

n
·

(∑
i∈D2

yi,1l
(τ)
1,i,1σ

′
(〈

w
(τ−1)
1,r∗ , yi,1 · v1

〉))
(i)
= (1− ηλ) ·

〈
w

(τ−1)
1,r∗ ,v1

〉
+
η

n
·

(∑
i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ , yi,1 · v1

〉))

39



Under review as a conference paper at ICLR 2024

≥ (1− ηλ) Ψ
(τ−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ , yi,1 · v1

〉)
= (1− ηλ) Ψ

(τ−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ ,v1

〉)
= (1− ηλ) Ψ

(τ−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (Ψ
(τ)
1

)
where (i) holds since sgn

(
1 · yi,1l(τ−1)

1,i,1

)
= 1. Then maxr∈[m]

〈
w

(τ)
1,r ,v1

〉
≥
〈
w

(τ)
1,r∗ ,v1

〉
≥ 0,

which implies that Ψ
(τ)
1 = maxr∈[m]

〈
w

(τ)
1,r ,v1

〉
≥ 0. So we have

Ψ
(τ)
1 ≥ (1− ηλ) Ψ

(τ−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(t−1)
1,i,1

∣∣∣σ′ (Ψ
(t−1)
1

)
So we have the hypothesis and the inequality hold at τ . Therefore, by induction, they holds for all
τ ∈ [0, t].
Then we will prove the following inequality. For τ ∈ [1, t],

Ψ
(τ)
1 ≤ max

(1− ηλ) Ψ
(τ−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (Ψ
(τ)
1

) , Θ̃
(
σq−1

0

) .

Denote r∗ = arg maxr∈[m]

〈
w

(τ)
1,r ,v1

〉
, then from the above results we can get that Ψ

(τ)
1 =〈

w
(τ)
1,r∗ ,v1

〉
and Ψ

(τ−1)
1 ≥

〈
w

(τ−1)
1,r∗ ,v1

〉
. From Lemma D.1 we can get that

〈
w

(τ−1)
1,r∗ ,−1 · v1

〉
≤

Θ̃ (σ0) ≤ ρ, so the activation function for
〈
w

(τ−1)
1,r∗ ,−1 · v1

〉
and Θ̃ (σ0) is zq

qρq−1 , which implies

that σ′
(

Θ̃ (σ0)
)

=
(Θ̃(σ0))

q−1

ρq−1 = Θ̃
(
σq−1

0

)
. Then from the gradient calculations on Ψ

(τ)
1 , we have

Ψ
(τ)
1 =

〈
w

(τ)
1,r∗ ,v1

〉
= (1− ηλ) ·

〈
w

(τ−1)
1,r∗ ,v1

〉
+
η

n
·

(∑
i∈D2

yi,1l
(τ−1)
1,i,1 σ′

(〈
w

(t−1)
1,r∗ , yi,1 · v1

〉))
(i)
= (1− ηλ) ·

〈
w

(τ−1)
1,r∗ ,v1

〉
+
η

n

(∑
i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ , yi,1 · v1

〉))

= (1− ηλ) ·
〈
w

(τ−1)
1,r∗ ,v1

〉
+
η

n

( ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ , yi,1 · v1

〉)

+
∑

i:yi,1=−1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ , yi,1 · v1

〉))

= (1− ηλ) ·
〈
w

(τ−1)
1,r∗ ,v1

〉
+
η

n

( ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ ,v1

〉)

+
∑

i:yi,1=−1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ ,−1 · v1

〉))

where (i) holds since sgn
(

1 · yi,1l(t−1)
1,i,1

)
= 1.Then there are two situations:

1. If
〈
w

(τ−1)
1,r∗ ,v1

〉
≥ 0, then

〈
w

(τ−1)
1,r∗ ,−1 · v1

〉
≤ 0, which implies that
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σ′
(〈

w
(τ−1)
1,r∗ ,−1 · v1

〉)
= 0, then we have

Ψ
(τ)
1 = (1− ηλ) ·

〈
w

(τ−1)
1,r∗ ,v1

〉
+
η

n

( ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ ,v1

〉)

+
∑

i:yi,1=−1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ ,−1 · v1

〉))

= (1− ηλ) ·
〈
w

(τ−1)
1,r∗ ,v1

〉
+
η

n

( ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ ,v1

〉)

≤ (1− ηλ) Ψ
(τ−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (Ψ
(t−1)
1

)
≤ max

(1− ηλ) Ψ
(τ−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (Ψ
(t−1)
1

) , Θ̃
(
σq−1

0

) .

Therefore, by induction, this inequality holds for all τ ∈ [1, t].
2. If

〈
w

(τ−1)
1,r∗ ,v1

〉
< 0, which implies that σ′

(〈
w

(τ−1)
1,r∗ ,v1

〉)
= 0. From Lemma D.1 we can

get that
〈
w

(τ−1)
1,r∗ ,−1 · v1

〉
≤ Θ̃ (σ0) ≤ ρ, so the activation function for

〈
w

(τ−1)
1,r∗ ,−1 · v1

〉
and

Θ̃ (σ0) is zq

qρq−1 , which implies that σ′
(

Θ̃ (σ0)
)

=
(Θ̃(σ0))

q−1

ρq−1 = Θ̃
(
σq−1

0

)
. Then we have

Ψ
(τ)
1 = (1− ηλ) ·

〈
w

(τ−1)
1,r∗ ,v1

〉
+
η

n

( ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ ,v1

〉)

+
∑

i:yi,1=−1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ ,−1 · v1

〉))

≤ η

n

∑
i:yi,1=−1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (〈w(τ−1)
1,r∗ ,−1 · v1

〉)
(i)
≤ η

n

∑
i:yi,1=−1,i∈D2

σ′
(

Θ̃ (σ0)
)

= Θ̃
(
σq−1

0

)

≤ max

(1− ηλ) Ψ
(τ−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ−1)
1,i,1

∣∣∣σ′ (Ψ
(t−1)
1

) , Θ̃
(
σq−1

0

) .

where (i) holds since
∣∣∣l(τ−1)

1,i,1

∣∣∣ ≤ 1. So this inequality holds for τ ∈ [1, t]. Therefore, by induction,
they holds for all τ ∈ [1, t].
(i) First we prove the lower bound. Since t ≥ P1, then according to our definition of P1, Ψ

(P1)
1 ≥

Θ (1/m), so we only need to consider t > P1. If Ψ
(t−1)
1 ≥ (log (1/σ0)) /m, then according to the

above results and σ′ (z) ≥ 0, we have

Ψ
(t)
1 ≥ (1− ηλ) Ψ

(t−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(t−1)
1,i,1

∣∣∣σ′ (Ψ
(t−1)
1

)
≥ (1− ηλ) Ψ

(t−1)
1 ≥ Ψ

(t−1)
1

2
≥ (log (1/σ0)) /2m

then the lower bound holds. Now we consider the case that Ψ
(t−1)
1 ≤ (log (1/σ0)) /m, so without

loss of generality, we can assume that τ0 is the smallest index in [P1, t − 1] when the inequality
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Ψ
(τ)
1 ≤ (log (1/σ0)) /m holds for all τ ∈ [τ0, t − 1]. From our definition of P1, we can get that

Ψ
(P1)
1 ≥ Θ (1/m), so if τ0 = P1, then we have Ψ

(τ0)
1 = Ψ

(P1)
1 ≥ Θ (1/m). If τ0 > P1, then since

τ0 is the smallest index in [P1, t− 1] when the inequality Ψ
(τ)
1 ≤ (log (1/σ0)) /m holds for all τ ∈

[τ0, t− 1], so the inequality does not hold at τ0− 1, which implies that Ψ
(τ0−1)
1 ≥ (log (1/σ0)) /m.

According to the above results and σ′ (z) ≥ 0, we have

Ψ
(τ0)
1 ≥ (1− ηλ) Ψ

(τ0−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ0−1)
1,i,1

∣∣∣σ′ (Ψ
(τ0−1)
1

)
≥ (1− ηλ) Ψ

(τ0−1)
1 ≥ Ψ

(τ0−1)
1

2
≥ (log (1/σ0)) /2m

So Ψ
(τ0)
1 ≥ min {Θ (1/m) , (log (1/σ0)) /2m} ≥ Θ̃ (1). Now we consider any τ ∈ [τ0, t− 1]

such that Ψ
(τ)
1 ≤ (log (1/σ0)) /m. From Hypothesis 7 and Hypothesis 9, we can get that for

τ ≥ P1 and l ∈ {−1, 1},
[〈

w
(τ)
l,r , ξi,1,h′

〉]
+
≤
[〈

w
(τ)
l,r , ζi,1,h′

〉]
+

+ βh

[〈
w

(τ)
l,r ,−yi,1v

〉]
+
≤

Θ̃ (
√
sσpσ0) + βh′Θ̃

(
σ

1
3
0

)
≤ ρ, which implies that the activation function for

〈
w

(τ)
l,r , ξi,1,h′

〉
is

zq

qρq−1 , so σ
(〈

w
(τ)
l,r , ξi,1,h′

〉)
≤ ρq

qρq−1 = ρ
q , then we have

m∑
r=1

H∑
h′=2

σ
(〈

w
(τ)
l,r , ξi,1,h′

〉)
≤ mHρ

q
≤ 1.

From Lemma D.1, we can get that for τ ≥ P1,
[〈

w
(τ)
−1,r,v1

〉]
+
≤ Θ̃ (σ0) ≤ ρ, which implies that

the activation function for
〈
w

(τ)
−1,r,v1

〉
is zq

qρq−1 , so σ
(〈

w
(τ)
−1,r,v1

〉)
≤ ρq

qρq−1 = ρ
q , then we have

m∑
r=1

σ
(〈

w
(τ)
−1,r,v1

〉)
≤ mρ

q
≤ 1.

Apparently
[〈

w
(τ)
1,r ,v1

〉]
+
≤ Ψ

(τ)
1 . Combining all the results above, through calculations on l(τ)

1,i,1,

we have that for yi,1 = 1,∣∣∣l(τ)
1,i,1

∣∣∣ =
exp

(∑m
r=1

[
σ
(〈

w
(τ)
−1,r, yi,1 · v1

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
−1,r, ξi,1,h′

〉)])
∑
l∈{−1,1} exp

(∑m
r=1

[
σ
(〈

w
(τ)
l,r , yi,1 · v1

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
l,r , ξi,1,h′

〉)])
(i)
≥ 1∑

l∈{−1,1} exp
(∑m

r=1

[
σ
(〈

w
(τ)
l,r ,v1

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
l,r , ξi,1,h′

〉)])
≥ 1∑

l∈{−1,1} exp
(∑m

r=1 σ
(〈

w
(τ)
l,r ,v1

〉)
+ 1
)

≥ Θ

 1∑
l∈{−1,1} exp

(∑m
r=1 σ

(〈
w

(τ)
l,r ,v1

〉))


= Θ

 1

exp
(∑m

r=1 σ
(〈

w
(τ)
1,r ,v1

〉))
+ exp

(∑m
r=1 σ

(〈
w

(τ)
−1,r,v1

〉))


≥ Θ

 1

exp
(
mσ

(
Ψ

(τ)
1

))
+ e


(ii)
≥ Θ

 1

exp
(
mσ

(
Ψ

(τ)
1

))
+ e exp

(
mσ

(
Ψ

(τ)
1

))
 = Θ

(
exp

(
−mσ

(
Ψ

(τ)
1

)))
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where (i) holds since σ (·) ≥ 0, and (ii) holds since exp (σ (·)) ≥ e0 ≥ 1. Then if Ψ
(τ)
1 ≤ ρ

which means that the activation function for Ψ
(τ)
1 is zq

qρq−1 , then σ
(
Ψτ
j

)
=

(
Ψ

(τ)
j

)q
qρq−1 , σ′

(
Ψ

(τ)
1

)
=(

Ψ
(τ)
1

)q−1

ρq−1 , so we have

∣∣∣l(τ)
1,i,1

∣∣∣ σ′
(

Ψ
(τ)
1

)
Ψ

(τ)
1

=
∣∣∣l(τ)

1,i,1

∣∣∣
(

Ψ
(τ)
1

)q−2

ρq−1
≥ Θ

(
exp

(
−mσ

(
Ψ

(τ)
1

))) (Ψ
(τ)
1

)q−2

ρq−1

≥ Θ

(
exp

(
− m

qρq−1

(
Ψ

(t)
1

)q)) (Ψ
(τ)
1

)q−2

ρq−1

≥ Θ

(
exp

(
−mΨ

(τ)
1

q

)) (
Ψ

(τ)
1

)q−2

ρq−1

≥ Θ̃ (exp (− log (1/σ0))) = Θ̃ (σ0) .

if Ψ
(τ)
1 ≥ ρ which means that the activation function for Ψ

(τ)
1 is z −

(
1− 1

q

)
ρ, then σ

(
Ψ

(τ)
1

)
≤

Ψ
(τ)
1 , σ′

(
Ψ

(τ)
1

)
= 1, so we have

∣∣∣l(τ)
1,i,1

∣∣∣ σ′
(

Ψ
(τ)
1

)
Ψ

(τ)
1

=
∣∣∣l(τ)

1,i,1

∣∣∣ (Ψ
(τ)
1

)−1

≥ Θ
(

exp
(
−mσ

(
Ψ

(τ)
1

)))(
Ψ

(τ)
1

)−1

≥ Θ
(

exp
(
−mΨ

(τ)
1

))(
Ψ

(τ)
1

)−1

≥ Θ̃ (exp (− log (1/σ0))) = Θ̃ (σ0)

So combining both parts, we have that for i ∈ D2,∣∣∣l(τ)
1,i,1

∣∣∣ σ′
(

Ψ
(τ)
1

)
Ψ

(τ)
1

≥ Θ̃ (σ0)

Applying the above inequalities, and notice that λ ≤ Θ̃ (σ0), so we further can get that

Ψ
(τ+1)
1 ≥ (1− ηλ) Ψ

(τ)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ)
1,i,1

∣∣∣σ′ (Ψ
(τ)
1

)
= (1− ηλ) Ψ

(τ)
1 +

ηΨ
(τ)
1

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ)
1,i,1

∣∣∣ σ′
(

Ψ
(τ)
1

)
Ψ

(τ)
1


(i)
≥ (1− ηλ) Ψ

(τ)
1 +

ηΨ
(τ)
1

n
Θ (n) Θ̃ (σ0)

= (1− ηλ) Ψ
(τ)
1 + ηΘ̃ (σ0) Ψ

(τ)
1

= Ψ
(τ)
1 + η

(
Θ̃ (σ0)− λ

)
Ψ

(τ)
1 ≥ Ψ

(τ)
1 .

in which (i) holds since yi,1 = 1 with probability 1
2 according to our data generation method. This

implies that Ψ
(τ)
1 will keep increasing in the case, so we have that

Ψ
(t)
1 ≥ Ψ

(τ0)
1 ≥ Θ̃ (1)

which completes the proof of the first part.
(ii) Then we will prove the upper bound. Since t ≥ P1, then according to our definition of P1,
Ψ

(P1−1)
1 ≤ Θ (1/m), then according to the above results, we have

Ψ
(P1)
1 ≤ max

(1− ηλ) Ψ
(P1−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(P1−1)
1,i,1

∣∣∣σ′ (Ψ
(P1−1)
1

) , Θ̃
(
σq−1

0

)
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(i)
≤ Ψ

(P1−1)
1 +

η

n

∑
i∈D2

(
Θ
(∣∣∣l(P1−1)

1,i,1

∣∣∣)+ Θ̃
(
σq−1

0

))
≤ Θ (1/m) + ηΘ (1) + ηΘ̃

(
σq−1

0

)
≤ Θ

(
log
(
1/λ2

))
where (i) holds since σ′ (·) ≤ 1. So we only need to consider t > P1. If Ψ

(t−1)
1 ≤ Θ (log (1/λ)),

then according to the above results, we have

Ψ
(t)
1 ≤ max

(1− ηλ) Ψ
(t−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(t−1)
1,i,1

∣∣∣σ′ (Ψ
(t−1)
1

) , Θ̃
(
σq−1

0

)
(i)
≤ Ψ

(t−1)
1 +

η

n

∑
i∈D2

(
Θ
(∣∣∣l(t−1)

1,i,1

∣∣∣)+ Θ̃
(
σq−1

0

))
≤ Θ (log (1/λ)) + ηΘ (1) + ηΘ̃

(
σq−1

0

)
≤ Θ

(
log
(
1/λ2

))
where (i) holds since σ′ (·) ≤ 1. Then the upper bound holds. Now we consider the case that
Ψ

(t−1)
1 ≥ Θ (log (1/λ)) ≥ ρ, so without loss of generality, we can assume that τ1 is the smallest

index in [P1, t − 1] when the inequality Ψ
(τ)
1 ≥ Θ (log (1/λ)) ≥ ρ holds for all τ ∈ [τ1, t − 1].

From our definition of P1, we can get that Ψ
(P1−1)
1 ≤ Θ (1/m), so if τ1 = P1, then Ψ

(τ1−1)
1 =

Ψ
(P1−1)
1 ≤ Θ (1/m), then we have

Ψ
(τ1)
1 ≤ max

(1− ηλ) Ψ
(τ1−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ1−1)
1,i,1

∣∣∣σ′ (Ψ
(τ1−1)
1

) Θ̃
(
σq−1

0

)
≤ Ψ

(τ1−1)
1 +

η

n

∑
i∈D2

(
Θ
(∣∣∣l(τ1−1)

1,i,1

∣∣∣)+ Θ̃
(
σq−1

0

))
≤ Θ (1/m) + ηΘ (1) + ηΘ̃

(
σq−1

0

)
≤ Θ̃ (1)

If τ1 > P1, then since τ1 is the smallest index in [P1, t − 1] when the inequality Ψ
(τ)
1 ≥

Θ (log (1/λ)) ≥ ρ holds for all τ ∈ [τ1, t − 1], so the inequality does not hold at τ1 − 1, which
implies that Ψ

(τ1−1)
1 ≤ Θ (log (1/λ)). According to the above results and σ′ (z) ≤ 1, we have that

Ψ
(τ1)
1 ≤ max

(1− ηλ) Ψ
(τ1−1)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ1−1)
1,i,1

∣∣∣σ′ (Ψ
(τ1−1)
1

) , Θ̃
(
σq−1

0

)
≤ Ψ

(τ1−1)
1 +

η

n

∑
i∈D2

(
Θ
(∣∣∣l(τ1−1)

1,i,1

∣∣∣)+ Θ̃
(
σq−1

0

))
≤ Θ (log (1/λ)) + ηΘ (1) + ηΘ̃

(
σq−1

0

)
≤ Θ

(
log
(
1/λ2

))
So Ψ

(τ1)
1 ≤ max

{
Θ̃ (1) ,Θ

(
log
(
1/λ2

))}
≤ Θ̃

(
log
(
1/λ2

))
. Now we consider any τ ∈ [τ1, t−1]

such that Ψ
(τ)
1 ≥ Θ (log (1/λ)). From Hypothesis 7 and Hypothesis 9, we can get that for τ ≥ P1,

yi,1 = 1 and h′ ∈ [2, H],
[〈

w
(τ)
−1,r, ξi,1,h′

〉]
+
≤
[〈

w
(τ)
1,r , ζi,1,h′

〉]
+

+ βh

[〈
w

(τ)
1,r ,−yi,1v

〉]
+
≤

Θ̃ (
√
sσpσ0)+βh′Θ̃

(
σ

1
3
0

)
≤ ρ and from Lemma D.1 we can get that

[〈
w

(τ)
−1,r,v1

〉]
+
≤ Θ̃ (σ0) ≤

ρ, which implies that the activation function for both of them is zq

qρq−1 , so σ
(〈

w
(τ)
−1,r, ξi,1,h′

〉)
≤

ρq

qρq−1 = q
ρ and similarly σ

(〈
w

(τ)
−1,r,v1

〉)
≤ ρ

q . Then we have

m∑
r=1

[
σ
(〈

w
(τ)
−1,r,v1

〉)
+

H∑
h′=2

σ
(〈

w
(τ)
−1,r, ξi,1,h′

〉)]
≤ mHρ

q
≤ 1
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From the above results we have that Ψ
(τ)
1 = maxr∈[m]

〈
w

(τ)
1,r ,v1

〉
. Combining all the results above,

through calculations on l(τ)
1,i,1, we have that for yi,1 = 1,

∣∣∣l(τ)
1,i,1

∣∣∣ =
exp

(∑m
r=1

[
σ
(〈

w
(τ)
−1,r, yi,1 · v1

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
−1,r, ξi,1,h′

〉)])
∑
l∈{−1,1} exp

(∑m
r=1

[
σ
(〈

w
(τ)
l,r , yi,1 · v1

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
l,r , ξi,1,h′

〉)])
(i)
≤

exp
(∑m

r=1

[
σ
(〈

w
(τ)
−1,r,v1

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
−1,r, ξi,1,h′

〉)])
exp

(∑m
r=1

[
σ
(〈

w
(τ)
1,r ,v1

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
1,r , ξi,1,h′

〉)])
(ii)
≤ e

exp
(∑m

r=1 σ
(〈

w
(τ)
1,r ,v1

〉)) ≤ e

exp
(

maxr∈[m] σ
(〈

w
(τ)
1,r ,v1

〉))
(iii)
≤ Θ

(
exp

(
−σ
(

Ψ
(τ)
1

)))
where (i) and (ii) hold since σ (·) ≥ 0 and (iii) holds since σ is monotonously increasing. Then since
Ψ

(τ)
1 ≥ Θ (log (1/λ)) ≥ ρ which means that the activation function for Ψ

(τ)
1 is z−

(
1− 1

q

)
ρ, then

σ
(

Ψ
(τ)
1

)
≥ Ψ

(τ)
1

q , σ′
(

Ψ
(τ)
1

)
= 1, so we have

∣∣∣l(τ)
1,i,1

∣∣∣ σ′
(

Ψ
(τ)
1

)
Ψ

(τ)
1

=
∣∣∣l(τ)

1,i,1

∣∣∣ (Ψ
(τ)
1

)−1

≤ Θ
(

exp
(
−σ
(

Ψ
(τ)
1

)))(
Ψ

(τ)
1

)−1

≤ Θ
(

exp
(
−Θ

(
Ψ

(τ)
1

)))(
Ψ

(τ)
1

)−1

≤ Θ̃ (exp (−Θ (log (1/λ)))) = Θ̃ (poly (λ))

So we have that for i ∈ D2,

∣∣∣l(τ)
1,i,1

∣∣∣ σ′
(

Ψ
(τ)
1

)
Ψ

(τ)
1

≤ Θ̃ (poly (λ))

Applying the above inequalities, and notice that λ2 ≥ Θ̃ (poly (λ)),

Ψ
(τ+1)
1 ≤ max

(1− ηλ) Ψ
(τ)
1 +

η

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ)
1,i,1

∣∣∣σ′ (Ψ
(τ)
1

) , Θ̃
(
σq−1

0

)
= max

(1− ηλ) Ψ
(τ)
1 +

ηΨ
(τ)
1

n

 ∑
i:yi,1=1,i∈D2

∣∣∣l(τ)
1,i,1

∣∣∣ σ′
(

Ψ
(τ)
1

)
Ψ

(τ)
1

 , Θ̃
(
σq−1

0

)
(i)
≤ max

{
(1− ηλ) Ψ

(τ)
1 +

ηΨ
(τ)
1

n
Θ (n) Θ̃ (poly (λ)) , Θ̃

(
σq−1

0

)}
= max

{
(1− ηλ) Ψ

(t)
1 + ηΘ̃ (poly (λ)) Ψ

(τ)
1 , Θ̃

(
σq−1

0

)}
≤ max

{
Ψ

(τ)
1 − η

(
λ− Θ̃ (poly (λ))

)
Ψ

(τ)
1 , Θ̃

(
σq−1

0

)}
≤ max

{
Ψ

(τ)
1 , Θ̃

(
σq−1

0

)}
≤ Ψ

(τ)
1

in which (i) holds since yi,1 = 1 with probability 1
2 according to our data generation method. This

implies that Ψ
(τ)
1 will keep decreasing in the case, so we have that

Ψ
(t)
1 ≤ Ψ

(τ1)
1 ≤ Θ̃

(
log
(
1/λ2

))
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which completes the proof of the second part.
Therefore, we can get an upper bound and a lower bound which are both Θ̃ (1), so we verify Hy-
pothesis 5.
(vi) In terms of Hypothesis 6, there are two different stages:
1. If t ≤ Ti, then according to our definition of Ti, Φ

((Ti)
yi,1,i

is the first time in the sequence that

reaches Θ (1/m), which implies that Φ
(t)
yi,1,i

≤ Θ (1/m) = Θ̃ (1); 2. If t ≥ Ti, now we want to
prove the following inequality by induction. For τ ∈ [0, t],

Φ
(τ)
yi,1,i

≥ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

2ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

− Θ̃ (σ0)
)
,

and Φ
(τ)
yi,1,i

= max
r∈[m]

max
h∈[2,H]

〈
w(τ)
yi,1,r, ζi,1,h

〉
,

and we set Φ
(−1)
yi,1,i

= 0.

For τ = 0, according to previous calculations, we have Φ
(0)
yi,1,i

= Θ̃ (
√
sσpσ0). Since Φ

(−1)
yi,1,i

= 0,
then the inequality holds at τ = 0., so we verify the hypothesis at τ = 0. By induction, we assume
that for any τ0 ∈ [0, τ − 1], Φ

(τ0)
yi,1,i

= maxr∈[m] maxh∈[2,H]

〈
w

(τ0)
yi,1,r, ζi,1,h

〉
≥ 0, then for τ ,

denote r∗h = arg maxr∈[m]

〈
w

(τ−1)
yi,1,r , ζi,1,h

〉
, then we can apply Hypothesis 2 at time τ − 1 and get

that Φ
(τ−1)
yi,1,i

= maxh∈[2,H] maxr∈[m]

〈
w

(t−1)
yi,1,r , ζi,1,h

〉
= maxh∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
≥ 0, and

apparently Φ
(τ)
yi,1,i,h

≥
〈
w

(τ)
yi,1,r∗h

, ζi,1,h

〉
, then the gradient calculation implies that〈

w
(τ)
yi,1,r∗h

, ζi,1,h

〉
= (1− ηλ) ·

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n

H∑
g=2

n∑
s=1

l
(τ−1)
yi,1,s,1

σ′
(〈

w
(τ−1)
yi,1,r∗h

, ξs,1,g

〉)
〈ζs,1,g, ζi,1,h〉

According to Lemma B.3, with probability exceeding 1 − n−2, for all (s, g) 6= (i, h),
〈ζs,1,g, ζi,1,h〉 = 0. By using the calculations above, we can get that with probability exceeding

1− 2n−2,
∣∣∣‖ζi,1,h‖2 − sσ2

p

∣∣∣ ≤ Θ̃
(√
sσ2
p

)
, which implies that ‖ζi,1,h‖ ≥ Θ (

√
sσp), then we have〈

w
(τ)
yi,1,r∗h

, ζi,1,h

〉
≥ (1− ηλ) ·

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

)
l
(τ−1)
yi,1,i,1

σ′
(〈

w
(τ−1)
yi,1,r∗h

, ξi,1,h

〉)
According to Hypothesis 2 at [0, τ − 1], we have Φ

(τ−1)
yi,1,i

= maxh∈[2,H]

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
≥ 0

and Φ
(τ)
yi,1,i

is monotonically non-decreasing for τ0 ∈ [0, τ − 1], which implies that Φ
(τ−1)
yi,1,i

≥
Φ

(0)
yi,1,i

≥ Θ̃ (
√
sσpσ0) ≥ Θ̃ (σ0). According to Hypothesis 8 at time τ − 1, we have

maxr∈[m]

〈
w

(τ−1)
yi,1,r , yi,1v

〉
≤ Λ

(t−1)
yi,1 ≤ Θ̃ (σ0). Then taking maximum according to h ∈ [2, H] on

the both side of the inequality, we further get that

max
h∈[2,H]

〈
w

(τ)
yi,1,r∗h

, ζi,1,h

〉
(i)
≥ (1− ηλ) · max

h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

) ∣∣∣l(τ−1)
yi,1,i,1

∣∣∣ max
h∈[2,H]

σ′
(〈

w
(t−1)
yi,1,r∗h

, ξi,1,h

〉)
(ii)
≥ (1− ηλ) · max

h∈[2,H]

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

) ∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′( max
h∈[2,H]

〈
w

(τ−1)
yi,1,r∗h

, ξi,1,h

〉)
= (1− ηλ) · max

h∈[2,H]

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

) ∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′( max
h∈[2,H]

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h − βhyi,1v
〉)

≥ (1− ηλ) · max
h∈[2,H]

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
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+
η

n
Θ
(
sσ2
p

) ∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′( max
h∈[2,H]

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
− βh max

h∈[2,H]

〈
w

(τ−1)
yi,1,r∗h

, yi,1v
〉)

≥ (1− ηλ) · max
h∈[2,H]

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

) ∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′( max
h∈[2,H]

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
− max
r∈[m]

〈
w

(τ−1)
yi,1,r∗h

, yi,1v
〉)

≥ (1− ηλ) · max
h∈[2,H]

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
Θ
(
sσ2
p

) ∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′( max
h∈[2,H]

〈
w

(t−1)
yi,1,r∗h

, ζi,1,h

〉
− Θ̃ (σ0)

)
= (1− ηλ) Φ

(τ−1)
yi,1,i

+
η

n
Θ
(
sσ2
p

) ∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

− Θ̃ (σ0)
)
≥ 0

in which (i) holds since sgn
(
l
(τ−1)
yi,1,i,1

)
= 1, (ii) holds since σ′ (·) is a monotonic function, and (iii)

holds since 0 ≤ Φ
(τ−1)
yi,1,i

− Θ̃ (σ0) ≤ Φ
(τ−1)
yi,1,i

≤ ρ according to our assumption, then the activation

function for Φ
(τ−1)
yi,1,i

is zq

qρq−1 , which implies that σ′
(

Φ
(τ−1)
yi,1,i

− Θ̃ (σ0)
)

=

(
Φ

(τ−1)
yi,1,i

−Θ̃(σ0)
)q−1

ρq−1 . So
we have

max
h∈[2,H]

〈
w

(τ)
yi,1,r∗h

, ζi,1,h

〉
= max
h∈[2,H]

max
r∈[m]

〈
w(t)
yi,1,r, ζi,1,h

〉
≥ 0

which implies that Φ
(τ)
yi,1,i

= maxh∈[2,H] maxr∈[m]

〈
w

(t)
yi,1,r, ζi,1,h

〉
≥ 0. Then

Φ
(τ)
yi,1,i

≥ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

− Θ̃ (σ0)
)
.

Therefore, by induction, this inequality holds for all τ ∈ [0, t].
Then we will prove the following inequality. For all τ ∈ [1, t],

Φ
(τ)
yi,1,i

≤ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

− Θ̃
(
σ

2
3
0

))
Denote r∗h = arg maxr∈[m]

〈
w

(τ)
yi,1,r, ζi,1,h

〉
, then apparently Φ

(τ)
yi,1,i,h

=
[〈

w
(τ)
yi,1,r∗h

, ζi,1,h

〉]
+

and

Φ
(τ−1)
yi,1,i,h

≥
[〈

w
(τ−1)
yi,1,r∗h

, ζi,1,h

〉]
+

. Then the gradient calculation implies that

Φ
(τ)
yi,1,i,h

=
[〈

w
(τ)
yi,1,r∗h

, ζi,1,h

〉]
+

=

[
(1− ηλ) ·

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n

H∑
g=2

n∑
s=1

l
(τ−1)
yi,1,s,1

σ′
(〈

w
(τ−1)
yi,1,r∗h

, ξs,1,g

〉)
〈ζs,1,g, ζi,1,h〉

]
+

According to Lemma B.3, with probability exceeding 1 − n−2, for all (s, g) 6= (i, h),
〈ζs,1,g, ζi,1,h〉 = 0. By using the calculations above, we can get that with probability exceeding

1− 2n−2,
∣∣∣‖ζi,1,h‖2 − sσ2

p

∣∣∣ ≤ Θ̃
(√
sσ2
p

)
, which implies that ‖ζi,1,h‖ ≤ Θ (

√
sσp), then we have

Φ
(τ)
yi,1,i,h

=
[
(1− ηλ) ·

〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉
+
η

n
l
(τ−1)
yi,1,i,1

σ′
(〈

w
(τ−1)
yi,1,r∗h

, ξi,1,h

〉)
‖ζi,1,h‖2

]
+

(i)
≤ (1− ηλ) ·

[〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉]
+

+
η

n

∣∣∣l(t−1)
yi,1,i,1

∣∣∣σ′ (〈w(τ−1)
yi,1,r∗h

, ξi,1,h

〉)
‖ζi,1,h‖2

= (1− ηλ)
[〈

w
(τ−1)
yi,1,r∗h

, ζi,1,h

〉]
+

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i

∣∣∣σ′([〈w(τ−1)
yi,1,r∗h

, ξi,1,h

〉]
+

)
(ii)
≤ (1− ηλ)

[〈
w

(τ−1)
yi,1,r∗h

, ζi,1,h

〉]
+
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+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i

∣∣∣σ′([〈w(τ−1)
yi,1,r∗h

, ζi,1,h

〉]
+

+ βh

[〈
w

(τ−1)
yi,1,r∗h

,−yi,1v
〉]

+

)

≤ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

+ βh

〈
w

(τ−1)
yi,1,r∗h

,−yi,1v
〉)

(iii)
≤ (1− ηλ) Φ

(τ−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

+ Θ̃
(
σ

2
3
0

))
where (i) holds according to the definition of [·]+ and the triangle inequality, (ii) holds according to

the triangle inequality, and (iii) holds since
〈
w

(τ−1)
yi,1,r∗h

,−yi,1v
〉
≤ Θ̃

(
σ

1
3
0

)
according to Hypothesis

9 at t − 1. Taking maximum according to h ∈ [2, H] on the left hand side of the inequality, we
further get that

Φ
(τ)
yi,1,i

≤ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

+ Θ̃
(
σ

2
3
0

))
so the hypothesis holds at τ . Therefore, by induction, these two inequalities hold for all τ ∈ [1, t].
(i) First we prove the lower bound. Since t ≥ Ti, then according to our definition of Ti, Φ

(Ti)
yi,1,i

≥
Θ (1/m), so we only need to consider t > Ti. If Φ

(t−1)
yi,1,i

≥ (log (1/σ0)) /m, then according to the
above results and σ′ (z) ≥ 0, we have

Φ
(τ)
yi,1,i

≥ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

2ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

− Θ̃ (σ0)
)

≥ (1− ηλ) Φ
(t−1)
yi,1,i

≥
Φ

(t−1)
yi,1,i

2
≥ (log (1/σ0)) /2m

then the lower bound holds. Now we consider the case that Φ
(t−1)
yi,1,i

≤ (log (1/σ0)) /m, so without
loss of generality, we can assume that τ0 is the smallest index in [Ti, t − 1] when the inequality
Φ

(τ)
yi,1,i

≤ (log (1/σ0)) /m holds for all τ ∈ [τ0, t − 1]. From our definition of Ti, we can get that

Φ
(Ti)
yi,1,i

≥ Θ (1/m), so if τ0 = Ti, then we have Φ
(τ0)
yi,1,i

= Φ
(Ti)
yi,1,i

≥ Θ (1/m). If τ0 > Ti, then since

τ0 is the smallest index in [Ti, t−1] when the inequality Φ
(τ)
yi,1,i

≤ (log (1/σ0)) /m holds for all τ ∈
[τ0, t− 1], so the inequality does not hold at τ0− 1, which implies that Φ

(τ0−1)
yi,1,i

≥ (log (1/σ0)) /m.
According to the above results and σ′ (z) ≥ 0, we have

Φ
(τ)
yi,1,i

≥ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

2ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

− Θ̃ (σ0)
)

≥ (1− ηλ) Φ
(τ0−1)
yi,1,i

≥
Φ

(τ0−1)
yi,1,i

2
≥ (log (1/σ0)) /2m

So Φ
(τ0)
yi,1,i

≥ min {Θ (1/m) , (log (1/σ0)) /2m} ≥ Θ̃ (1). Now we consider any τ ∈ [τ0, t− 1]

such that Φ
(τ)
yi,1,i

≤ (log (1/σ0)) /m. From Hypothesis 8 and Lemma D.2, we can get that for τ ≥

Ti, h′ ∈ [2, H],
[〈

w
(τ)
−yi,1,r, ξi,1,h′

〉]
+
≤
[〈

w
(τ)
−yi,1,r, ζi,1,h′

〉]
+

+ βh

[〈
w

(τ)
−yi,1,r,−yi,1v

〉]
+
≤

Θ̃ (
√
sσpσ0) + βh′Θ̃ (σ0) ≤ ρ, which implies that the activation function for

〈
w

(τ)
−yi,1,r, ξi,1,h′

〉
is

zq

qρq−1 , so σ
(〈

w
(τ)
−yi,1,r, ξi,1,h′

〉)
≤ ρq

qρq−1 = ρ
q , then we have

m∑
r=1

H∑
h′=2

σ
(〈

w
(τ)
−yi,1,r, ξi,1,h′

〉)
≤ mHρ

q
≤ 1.
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From Hypothesis 9, we can get that for τ ≥ Ti,
[〈

w
(τ)
−yi,1,r, yi,1 · v

〉]
+
≤ Θ̃

(
σ

1
3
0

)
≤ ρ, which

implies that the activation function for
〈
w

(τ)
−yi,1,r, yi,1 · v

〉
is zq

qρq−1 , so σ
(〈

w
(τ)
−yi,1,r, yi,1 · v

〉)
≤

ρq

qρq−1 = ρ
q , then we have

m∑
r=1

σ
(〈

w
(τ)
−yi,1,r, yi,1 · v

〉)
≤ mρ

q
≤ 1.

From Hypothesis 8, we can get that for τ ≥ Ti,
[〈

w
(τ)
yi,1,r, yi,1 · v

〉]
+
≤ Θ̃ (σ0) ≤ ρ, which implies

that the activation function for
〈
w

(τ)
yi,1,r, yi,1 · v

〉
is zq

qρq−1 , so σ
(〈

w
(τ)
yi,1,r, yi,1 · v

〉)
≤ ρq

qρq−1 = ρ
q ,

then we have
m∑
r=1

σ
(〈

w(τ)
yi,1,r, yi,1 · v

〉)
≤ mρ

q
≤ 1.

Apparently from Hypothesis 6 at τ , Φ
(τ)
yi,1,i

≥ Θ̃ (1) ≥ Θ̃
(
σ

1
3
0

)
, then we have[〈

w
(τ)
yi,1,r, ξi,1,h

〉]
+
≤
[〈

w
(τ)
yi,1,r, ζi,1,h

〉]
+

+ βh

[〈
w

(τ)
yi,1,r,−yi,1v

〉]
+
≤ Φ

(τ)
yi,1,i

+ Θ̃
(
σ

1
3
0

)
≤

2Φ
(τ)
yi,1,i

. Combining all the results above, through calculations on l(τ)
yi,1,i,1

, we have that

∣∣∣l(τ)
yi,1,i,1

∣∣∣ =
exp

(∑m
r=1

[
σ
(〈

w
(τ)
−yi,1,r, yi,1 · v

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
−yi,1,r, ξi,1,h′

〉)])
∑
l∈{−1,1} exp

(∑m
r=1

[
σ
(〈

w
(τ)
l,r , yi,1 · v

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
l,r , ξi,1,h′

〉)])
(i)
≥ 1∑

l∈{−1,1} exp
(∑m

r=1

[
σ
(〈

w
(τ)
l,r ,v

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
l,r , ξi,1,h′

〉)])
≥ Θ

 1∑
l∈{−1,1} exp

(∑m
r=1

∑H
h=2 σ

(〈
w

(τ)
yi,1,r, ξi,1,h

〉)
+ 1
)


≥ Θ

 1∑
l∈{−1,1} exp

(∑m
r=1

∑H
h=2 σ

(〈
w

(τ)
yi,1,r, ξi,1,h

〉))


≥ Θ
(

exp
(
−2mHσ

(
Φ

(τ)
yi,1,i

)))
where (i) holds since σ (·) ≥ 0, Then if Φ

(τ)
yi,1,i

≤ ρ which means that the activation function for

Φ
(τ)
yi,1,i

is zq

qρq−1 , then σ
(

Φ
(τ)
yi,1,i

)
=

(
Φ

(τ)
yi,1,i

)q
qρq−1 , σ′

(
Ψ

(τ)
1

)
=

(
Φ

(τ)
yi,1,i

)q−1

ρq−1 , and Φ
(τ)
yi,1,i

− Θ̃ (σ0) ≥
Φ

(τ)
yi,1,i

2 , so we have

∣∣∣l(τ)
1,i,1

∣∣∣ σ′
(

Φ
(τ)
yi,1,i

)
Φ

(τ)
yi,1,i

≥
∣∣∣l(τ)
yi,1,i,1

∣∣∣Θ
σ′

(
Φ

(τ)
yi,1

)
Φ

(τ)
yi,1,i

 =
∣∣∣l(τ)
yi,1,i,1

∣∣∣Θ

(

Φ
(τ)
yi,1,i

)q−2

ρq−1


≥ Θ

(
exp

(
−2mσ

(
Φ

(τ)
yi,1,i

)))
·Θ


(

Φ
(τ)
yi,1,i

)q−2

ρq−1


≥ Θ

(
exp

(
− 2m

qρq−1

(
Φ

(t)
yi,1,i

)q)) (Φ
(τ)
yi,1,i

)q−2

ρq−1

≥ Θ

(
exp

(
−

2mΦ
(τ)
yi,1,i

q

)) (
Φ

(τ)
yi,1,i

)q−2

ρq−1
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≥ Θ̃ (exp (− log (1/σ0))) = Θ̃ (σ0) .

if Φ
(τ)
yi,1,i

≥ ρ which means that the activation function for Φ
(τ)
yi,1,i

is z −
(

1− 1
q

)
ρ, then

σ
(

Φ
(τ)
yi,1,i

− Θ̃ (σ0)
)
≤ Φ

(τ)
yi,1,i

− Θ̃ (σ0), σ′
(

Φ
(τ)
yi,1,1

− Θ̃ (σ0)
)

= 1, so we have

∣∣∣l(τ)
yi,1,i,1

∣∣∣ σ′
(

Φ
(τ)
yi,1 − Θ̃ (σ0)

)
Φ

(τ)
yi,1,i

≥
∣∣∣l(τ)
yi,1,i,1

∣∣∣Θ
σ′

(
Φ

(τ)
yi,1

)
Φ

(τ)
yi,1,i


=
∣∣∣l(τ)

1,i,1

∣∣∣Θ((Φ
(τ)
yi,1,i

)−1
)

≥ Θ
(

exp
(
−2mσ

(
Φ

(τ)
yi,1,i

)))
Θ

((
Φ

(τ)
yi,1,i

)−1
)

≥ Θ
(

exp
(
−2mΦ

(τ)
yi,1,i

))
Θ

((
Φ

(τ)
yi,1,i

)−1
)

≥ Θ̃ (exp (− log (1/σ0))) = Θ̃ (σ0)

So combining both parts, we have that for i ∈ D1,

∣∣∣l(τ)
yi,1,i,1

∣∣∣ σ′
(

Φ
(τ)
yi,1,i

− Θ̃ (σ0)
)

Φ
(τ)
yi,1,i

≥ Θ̃ (σ0)

Applying the above inequalities, and notice that λ ≤ Θ̃ (σ0), so we further can get that

Φ
(τ)
yi,1,i

≥ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

− Θ̃ (σ0)
)

= (1− ηλ) Φ
(τ)
yi,1,i

+ Θ

(
ηsσ2

pΦ
(τ)
yi,1,i

nρq−1

)∣∣∣l(τ)
yi,1,i,1

∣∣∣ σ′
(

Φ
(τ)
yi,1,i

− Θ̃ (σ0)
)

Φ
(τ)
yi,1,i

≥ (1− ηλ) Φ
(τ)
yi,1,i

+ Θ

(
ηsσ2

pΦ
(τ)
yi,1,i

nρq−1

)
Θ̃ (σ0)

= (1− ηλ) Φ
(τ)
yi,1,i

+ ηΘ̃

(
sσ0σ

2
p

nρq−1

)
Φ

(τ)
yi,1,i

= Φ
(τ)
yi,1,i

+ η

(
Θ̃

(
sσ0σ

2
p

nρq−1

)
− λ

)
Φ

(τ)
yi,1,i

≥ Φ
(τ)
yi,1,i

.

This implies that Phi(τ)
yi,1,i

will keep increasing in the case, so we have that

Φ
(t)
yi,1,i

≥ Ψ
(τ0)
1 ≥ Θ̃ (1)

which completes the proof of the first part.
(ii) Then we will prove the upper bound. Since t ≥ Ti, then according to our definition of Ti,
Φ

(Ti−1)
yi,1,i

≤ Θ (1/m), then according to the above results, we have

Φ(P1)
yi,1 ≤ Φ

(Ti)
yi,1,i

≤ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

+ Θ̃
(
σ

2
3
0

))
(i)
≤ Φ

(Ti−1)
yi,1,i

+ Θ

(
ηsσ2

p

nρq−1

)
Θ
(∣∣∣l(Ti−1)

yi,1,i,1

∣∣∣)
≤ Θ (1/m) + Θ

(
ηsσ2

p

nρq−1

)
≤ Θ

(
log
(
1/λ2

))
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where (i) holds since σ′ (·) ≤ 1. So we only need to consider t > Ti. If Φ
(t−1)
yi,1,i

≤ Θ (log (1/λ)),
then according to the above results, we have

Φ
(τ)
yi,1,i

≤ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

+ Θ̃
(
σ

2
3
0

))
(i)
≤ Φ

(Ti−1)
yi,1,i

+ Θ

(
ηsσ2

p

nρq−1

)
Θ
(∣∣∣l(Ti−1)

yi,1,i,1

∣∣∣)
≤ Θ (1/m) + Θ

(
ηsσ2

p

nρq−1

)
≤ Θ

(
log
(
1/λ2

))
where (i) holds since σ′ (·) ≤ 1. Then the upper bound holds. Now we consider the case that
Φ

(t−1)
yi,1,i

≥ Θ (log (1/λ)) ≥ ρ, so without loss of generality, we can assume that τ1 is the smallest

index in [Ti, t − 1] when the inequality Φ
(τ)
yi,1,i

≥ Θ (log (1/λ)) ≥ ρ holds for all τ ∈ [τ1, t − 1].

From our definition of Ti, we can get that Φ
(Ti−1)
yi,1,i

≤ Θ (1/m), so if τ1 = Ti, then Φ
(τ1−1)
yi,1,i

=

Φ
(Ti−1)
yi,1,i

≤ Θ (1/m), then we have

Φ
(τ1)
yi,1,i

≤ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

+ Θ̃
(
σ

2
3
0

))
≤ Φ

(Ti−1)
yi,1,i

+ Θ

(
ηsσ2

p

nρq−1

)
Θ
(∣∣∣l(Ti−1)

yi,1,i,1

∣∣∣)
≤ Θ (1/m) + Θ

(
ηsσ2

p

nρq−1

)
≤ Θ

(
log
(
1/λ2

))
If τ1 > Ti, then since τ1 is the smallest index in [Ti, t − 1] when the inequality Φ

(τ)
yi,1,i

≥
Θ (log (1/λ)) ≥ ρ holds for all τ ∈ [τ1, t − 1], so the inequality does not hold at τ1 − 1, which
implies that Φ

(τ1−1)
yi,1,i

≤ Θ (log (1/λ)). According to the above results and σ′ (z) ≤ 1, we have that

Φ
(τ1)
yi,1,i

≤ (1− ηλ) Φ
(τ1−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ1−1)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

+ Θ̃
(
σ

2
3
0

))
≤ Φ

(τ1)
yi,1,i

+ Θ

(
ηsσ2

p

nρq−1

)∣∣∣l(τ1−1)
yi,1,i,1

∣∣∣
≤ Θ (log (1/λ)) + Θ

(
ηsσ2

p

nρq−1

)
≤ Θ

(
log
(
1/λ2

))
So Φ

(τ1)
yi,1,i

≤ max
{

Θ̃ (1) ,Θ
(
log
(
1/λ2

))}
≤ Θ̃

(
log
(
1/λ2

))
. Now we consider any τ ∈ [τ1, t−1]

such that Φ
(τ)
yi,1,i

≥ Θ (log (1/λ)). From Hypothesis 8 and Lemma D.2, we can get that for τ ≥ Ti,

and h′ ∈ [2, H],
[〈

w
(τ)
−yi,1,r, ξi,1,h′

〉]
+
≤
[〈

w
(τ)
−yi,1,r, ζi,1,h′

〉]
+

+ βh

[〈
w

(τ)
−yi,1,r,−yi,1v

〉]
+
≤

Θ̃ (
√
sσpσ0) + βh′Θ̃ (σ0) ≤ ρ, which implies that the activation function for

〈
w

(τ)
−yi,1,r, ξi,1,h′

〉
is

zq

qρq−1 , so σ
(〈

w
(τ)
−yi,1,r, ξi,1,h′

〉)
≤ ρq

qρq−1 = ρ
q , then we have

m∑
r=1

H∑
h′=2

σ
(〈

w
(τ)
−yi,1,r, ξi,1,h′

〉)
≤ mHρ

q
≤ 1.

From Hypothesis 9, we can get that for τ ≥ Ti,
[〈

w
(τ)
−yi,1,r, yi,1 · v

〉]
+
≤ Θ̃

(
σ

1
3
0

)
≤ ρ, which

implies that the activation function for
〈
w

(τ)
−yi,1,r, yi,1 · v

〉
is zq

qρq−1 , so σ
(〈

w
(τ)
−yi,1,r, yi,1 · v

〉)
≤
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ρq

qρq−1 = ρ
q , then we have

m∑
r=1

σ
(〈

w
(τ)
−yi,1,r, yi,1 · v

〉)
≤ mρ

q
≤ 1.

From Hypothesis 8, we can get that for τ ≥ Ti,
[〈

w
(τ)
yi,1,r, yi,1 · v

〉]
+
≤ Θ̃ (σ0) ≤ ρ, which implies

that the activation function for
〈
w

(τ)
yi,1,r, yi,1 · v

〉
is zq

qρq−1 , so σ
(〈

w
(τ)
yi,1,r, yi,1 · v

〉)
≤ ρq

qρq−1 = ρ
q ,

then we have
m∑
r=1

σ
(〈

w(τ)
yi,1,r, yi,1 · v

〉)
≤ mρ

q
≤ 1.

Apparently from Hypothesis 6 at τ , Φ
(τ)
yi,1,i

≥ Θ̃ (1) ≥ Θ̃ (σ0), then we have Φ
(τ)
yi,1,i

− Θ̃ (σ0) ≥
Φ

(τ)
yi,1,i

2 .Combining all the results above, through calculations on l(τ)
yi,1,i,1

, we have that

∣∣∣l(τ)
yi,1,i,1

∣∣∣ =
exp

(∑m
r=1

[
σ
(〈

w
(τ)
−yi,1,r, yi,1 · v

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
−yi,1,r, ξi,1,h′

〉)])
∑
l∈{−1,1} exp

(∑m
r=1

[
σ
(〈

w
(τ)
l,r , yi,1 · v

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
l,r , ξi,1,h′

〉)])
(i)
≤

exp
(∑m

r=1

[
σ
(〈

w
(τ)
−yi,1,r, yi,1 · v

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
−yi,1,r, ξi,1,h′

〉)])
exp

(∑m
r=1

[
σ
(〈

w
(τ)
yi,1,r, yi,1 · v

〉)
+
∑H
h′=2 σ

(〈
w

(τ)
yi,1,r, ξi,1,h′

〉)])
(ii)
≤ e

exp
(∑m

r=1

∑H
h′=2 σ

(〈
w

(τ)
yi,1,r, ξi,1,h′

〉))
≤ e

exp
(
σ
(

maxr∈[m] maxh′∈[2,H] σ
(〈

w
(τ)
yi,1,r, ζi,1,h′

〉
− βh

〈
w

(τ)
yi,1,r, yi,1v

〉)))
≤ e

exp
(

Φ
(τ)
yi,1,i

− βhΘ̃ (σ0)
) ≤ e

exp
(
σ
(

Φyi,1,i

2

)) = Θ

(
exp

(
−σ

(
Ψ

(τ)
1

2

)))

where (i) and (ii) hold since σ (·) ≥ 0. Then since Φ
(τ)
yi,1,i

≥ Θ (log (1/λ)) ≥ ρ which means that

the activation function for Φ
(τ)
yi,1,i

and Φ
(τ)
yi,1,i

+Θ̃
(
σ

2
3
0

)
is z−

(
1− 1

q

)
ρ, then σ

(
Φ

(τ)
yi,1,i

)
≥

Φ
(τ)
yi,1,i

q ,

σ′
(

Φ
(τ)
yi,1,i

+ Θ̃
(
σ

2
3
0

))
= 1, so we have

∣∣∣l(τ)
yi,1,i,1

∣∣∣ σ′
(

Φ
(τ)
yi,1,i

+ Θ̃
(
σ

2
3
0

))
Φ

(τ)
yi,1,i

=
∣∣∣l(τ)
yi,1,i,1

∣∣∣ (Φ
(τ)
yi,1,i

)−1

≤ Θ

(
exp

(
−σ

(
Φ

(τ)
yi,1,i

2

)))(
Φ

(τ)
yi,1,i

)−1

≤ Θ

(
exp

(
−Θ

(
Φ

(τ)
yi,1,i

2

)))(
Φ

(τ)
yi,1,i

)−1

≤ Θ̃ (exp (−Θ (log (1/λ)))) = Θ̃ (poly (λ))

So we have that for i ∈ D1,

∣∣∣l(τ)
yi,1,i,1

∣∣∣ σ′
(

Φ
(τ)
yi,1,i

+ Θ̃
(
σ

2
3
0

))
Φ

(τ)
yi,1,i

≤ Θ̃ (poly (λ))
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Applying the above inequalities, and notice that λ2 ≥ Θ̃ (poly (λ)),

Φ
(τ+1)
yi,1,i

≤ (1− ηλ) Φ
(τ)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ)
yi,1,i,1

∣∣∣σ′ (Φ
(τ)
yi,1,i

+ Θ̃
(
σ

2
3
0

))

≤ (1− ηλ) Φ
(τ)
yi,1,i

+ Θ

(
ηsσ2

pΦ
(τ)
yi,1,i

nρq−1

)∣∣∣l(τ)
yi,1,i,1

∣∣∣ σ′
(

Φ
(τ)
yi,1,i

+ Θ̃
(
σ

2
3
0

))
Φ

(τ)
yi,1,i

≤ (1− ηλ) Φ
(τ)
yi,1,i

+ Θ

(
ηsσ2

pΦ
(τ)
yi,1,i

nρq−1

)
Θ̃ (poly (λ))

= (1− ηλ) Φ
(τ)
yi,1,i

+ ηΘ̃

(
sσ2
ppoly (λ)

nρq−1

)
Φ

(τ)
yi,1,i

= Φ
(τ)
yi,1,i

− η

(
λ− Θ̃

(
sσ2
ppoly (λ)

nρq−1

))
Φ

(τ)
yi,1,i

≤ Φ
(τ)
yi,1,i

This implies that Φ
(τ)
yi,1,i

will keep decreasing in the case, so we have that

Φ
(t)
yi,1,i

≤ Φ
(τ1)
yi,1,i

≤ Θ̃
(
log
(
1/λ2

))
which completes the proof of the second part.
Therefore, we can get an upper bound and a lower bound which are both Θ̃ (1), so we verify Hy-
pothesis 6.
(vii) In terms of Hypothesis 7, there are two stages:
1. If t ≤ P0, there are two situations:
(i). If yi,1 = −j, then according to Lemma D.2,

Φ
(t)
j,i = Φ

(t)
−yi,1,i = max

h∈[2,H]
max
r∈[m]

〈
w

(t)
−yi,1,r, ζi,1,h

〉
≤ Θ̃

(√
sσpσ0

)
(ii)). If yi,1 = j, then from Hypothesis 3 at τ ∈ [0, t], we can get that for any τ ∈ [0, t],

Φ
(τ)
j,i = Φ

(τ)
yi,1,i

≤ Φ
(τ−1)
yi,1,i

+
η

ρq−1
Θ̃

(
sσ2
p

n

)
Θ

((
Φ

(τ−1)
yi,1,i

+ Θ̃
(
σ

2
3
0

))q−1
)

Denote Φ̂
(τ)
yi,1,i

= Φ
(τ)
yi,1,i

+ Θ̃
(
σ

2
3
0

)
, then we have

Φ̂
(τ)
yi,1,i

≤ Φ̂
(τ)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ̂

(τ−1)
yi,1,i

)q−1
)

From Hypothesis 1 at τ ∈ [0, t], we can get that for any τ ∈ [0, t] and any j′ ∈ {−1, 1}

Ψ
(τ)
j′ ≥ Ψ

(τ−1)
j′ +

η

2ρq−1
Θ

((
Ψ

(τ−1)
j′

)q−1
)

Due to our assumptions, we have

η ·Θ
(

1

2ρq−1

)
· Θ̃
(
σq−2

0

)
≥ η ·Θ

(
sσ2
p

nρq−1

)
Θ̃
((√

sσpσ0

)q−2
)

So using Lemma 5.1 at [0, t] with our initialization, we can conclude that for each j′ ∈ {−1, 1}
and t ≤ Pj′ , Φ

(t)
yi,1,i

≤ Φ̂
(t)
yi,1,i

≤ Θ
(

Φ̂
(0)
j′

)
= Θ

(
Φ

(0)
j′ + Θ̃

(
σ

2
3
0

))
= Θ̃ (

√
sσpσ0). So Φ

(t)
j,i =

Φ
(t)
yi,1,i

≤ Θ̃ (
√
sσpσ0) for t ≤ maxj′∈{−1,1} Pj′ = P0.

Combining these two parts, we have that the hypothesis holds at t.
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2. If t ≥ P0, then from Hypothesis 5, we can get that for τ ∈ [P0, t], Ψ
(t)
j = Θ̃ (1). Using the same

inequality in proving Hypothesis 5, we have for τ ∈ [P0, t],

Ψ
(τ)
j ≥ (1− ηλ) Ψ

(τ−1)
j +

η

n

 ∑
i:yi,1=j,i∈D2

∣∣∣l(τ−1)
j,i,1

∣∣∣σ′ (Ψ
(τ−1)
j

)
= (1− ηλ) Ψ

(τ−1)
j + Θ̃

( η
n

) ∑
i:yi,1=j,i∈D2

∣∣∣l(τ−1)
j,i,1

∣∣∣


Recursively applying this inequality for τ ∈ [P0 + 1, t] gives that

Ψ
(t)
j ≥ (1− ηλ)

t−P0 Ψ
(P0)
j +

η

n

t−P0−1∑
τ=0

(1− ηλ)
τ

 ∑
i:yi,1=j,i∈D2

∣∣∣l(t−1−τ)
j,i,1

∣∣∣


Taking summation over j ∈ {−1, 1}, we have∑
j∈{−1,1}

Ψ
(t)
j ≥ (1− ηλ)

t−P0
∑

j∈{−1,1}

Ψ
(P0)
j

+ Θ̃
( η
n

) t−P0−1∑
τ=0

(1− ηλ)
τ

∑
j∈{−1,1}

∑
i:yi,1,i∈D2

∣∣∣l(t−1−τ)
j,i,1

∣∣∣
Again by Ψ

(t)
j = Θ̃ (1) and Ψ

(P0)
j = Θ̃ (1), we have

Θ̃
( η
n

) t−P0−1∑
τ=0

(1− ηλ)
τ

∑
j∈{−1,1}

∑
i:yi,1=j,i∈D2

∣∣∣l(t−1−τ)
j,i,1

∣∣∣
≤

∑
j∈{−1,1}

Ψ
(t)
j − (1− ηλ)

t−P0
∑

j∈{−1,1}

Ψ
(P0)
j

≤ Θ̃ (1) .

Since yi,1 = 1 or yi,1 = −1 always happens, and
∣∣∣l(τ)
j,i,1

∣∣∣ =
∣∣∣l(τ)
−j,i,1

∣∣∣, so we have

Θ̃
( η
n

) t−P0−1∑
τ=0

(1− ηλ)
τ
∑
i∈D2

∣∣∣l(t−1−τ)
j,i,1

∣∣∣ ≤ Θ̃ (1) .

According to Hypothesis 7, Φ
(τ−1)
j,i ≤ Θ̃ (

√
sσpσ0), which implies that the activation function for

Φ
(τ−1)
j,i +Θ̃

(
σ

2
3
0

)
is zq

qρq−1 , then σ′
(

Φ
(τ−1)
j,i + Θ̃

(
σ

2
3
0

))
=

(
Φ

(τ−1)
j,i +Θ̃

(
σ

2
3
0

))q−1

ρq−1 ≤ Θ̃

(
σ

2(q−1)
3

0

)
.

Using the same inequality as verifying Hypothesis 6, we have that

Φ
(τ)
j,i ≤ (1− ηλ) Φ

(τ−1)
j,i + Θ

(
ηsσ2

p

nρq−1

)∣∣∣l(τ)
j,i,1

∣∣∣σ′ (Φ
(τ−1)
j,i + Θ̃

(
σ

2
3
0

))

≤ (1− ηλ) Φ
(τ−1)
j,i + Θ̃

ηsσ2
pσ

2(q−1)
3

0

nρq−1

∣∣∣l(τ)
j,i,1

∣∣∣
Recursively applying this inequality for τ ∈ [P0 + 1, t], we have

Φ
(t)
j,i ≤ (1− ηλ)

t−P0 Φ
(P0)
j,i + Θ

(
ηsσ2

p

nρq−1

)
t−P0−1∑
τ=0

(1− ηλ)
τ
∣∣∣l(t−1−τ)
yi,1,i,1

∣∣∣
≤ (1− ηλ)

t−P0 Θ̃
(√
sσpσ0

)
+ Θ̃

ηsσ2
pσ

2(q−1)
3

0

nρq−1

 · Θ̃(n√sσpσ0

η

)
≤ Θ̃

(√
sσpσ0

)
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so we verify Hypothesis 7 at t.
(viii) In terms of Hypothesis 8, there are two stages:
1. If t ≤ T0, from Hypothesis 4 at t, we can get that

Λ
(t)
j ≤ max

{
Λ

(t−1)
j +

ηαq

ρq−1
Θ

((
Λ

(t−1)
j

)q−1
)
, Θ̃
(
αqσ

2
3
0

)}
then there are two situations:
1. If Λ

(t)
j ≤ Θ̃

(
αqσ

2
3
0

)
≤ Θ̃ (σ0) holds, then the hypothesis holds at t.

2. If Λ
(t)
j ≤ Θ̃

(
αqσ

2
3
0

)
does not hold, then from Hypothesis 4 at τ ∈ [0, t], we can get that for any

τ ∈ [0, t],

Λ
(τ)
j ≤ max

{
Λ

(t−1)
j +

ηαq

ρq−1
Θ

((
Λ

(τ−1)
j

)q−1
)
, Θ̃
(
αqσ

2
3
0

)}
Assume τ0 is the smallest index in [0, t] such that Λ

(τ)
j ≤ Θ̃

(
αqσ

2
3
0

)
does not hold for any τ ∈

[τ0, t], then we have that

Λ
(τ)
j ≤ Λ

(τ−1)
j +

ηαq

ρq−1
Θ

((
Λ

(τ−1)
j

)q−1
)

Specifically, if τ0 = 0, then Λ
(τ0)
j ≤ Θ̃ (σ0); if τ0 > 0, then according to the definition of τ0, we

must have Λ
(τ0−1)
j ≤ Θ̃

(
αqσ

2
3
0

)
, then we can get that

Λ
(τ0)
j ≤ Λ

(τ0−1)
j +

ηαq

ρq−1
Θ

((
Λ

(τ−1)
j

)q−1
)
≤ Θ̃

(
αqσ

2
3
0

)
+
ηαq

ρq−1

(
Θ̃
(
αqσ

2
3
0

))q−1

≤ Θ̃ (σ0)

so Λ
(τ0)
j ≤ Θ̃ (σ0) always holds. Again from Hypothesis 1 at τ ∈ [0, t], we can get that for any

τ ∈ [0, t] and any j′ ∈ {−1, 1},

Ψ
(τ)
j′ ≥ Ψ

(τ−1)
j′ +

η

2ρq−1
Θ

((
Ψ

(τ−1)
j′

)q−1
)

which also implies that Ψ
(τ)
j′ is increasing, specifically, Ψ

(τ0)
j′ ≥ Ψ

(0)
j′ = Θ̃ (σ0). Due to our assump-

tions,

η ·Θ
(

1

2ρq−1

)
· Θ̃
((

Ψ
(τ0)
j′

)q−2
)
≥ η ·Θ

(
1

2ρq−1

)
· Θ̃
(
σq−2

0

)
≥ η · αq

ρq−1
· Θ̃
(
σq−2

0

)
≥ η · αq

ρq−1
· Θ̃
((

Λ
(τ0)
j

)q−2
)

So using Lemma 5.1 at [τ0, t] with our initialization, we can conclude that for each j′ ∈ {−1, 1}
and t ≤ Pj′ , Λ

(t)
j ≤ Θ

(
Λ

(τ0)
j

)
≤ Θ̃ (σ0). So Λ

(t)
j ≤ Θ̃ (σ0) for t ≤ maxj′∈{−1,1} Pj′ = P0.

Similarly, from Hypothesis 2 at τ ∈ [0, t], we can get that for any τ ∈ [0, t] any i ∈ D1,

Φ
(τ)
yi,1,i

≥ Φ
(τ−1)
yi,1,i

+
η

2ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(τ−1)
yi,1,i

− Θ̃ (σ0)
)q−1

)
Denote Φ̃

(τ)
yi,1,i

= Φ
(t)
yi,1,i

− Θ̃ (σ0), then we have

Φ̃
(τ)
yi,1,i

≥ Φ̃
(τ−1)
yi,1,i

+
η

2ρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ̃

(τ−1)
yi,1,i

)q−1
)

and Φ
(τ)
yi,1,i

is non-decreasing, specifically, Φ
(τ0)
yi,1,i

≥ Φ
(0)
yi,1,i

= Θ̃ (
√
sσpσ0). Due to our assump-

tions, we have

η · 1

2ρq−1
Θ

(
sσ2
p

n

)
· Θ̃
((

Φτ0yi,1,i

)q−2
)
≥ η · 1

2ρq−1
Θ

(
sσ2
p

n

)
· Θ̃
((√

sσpσ0

)q−2
)
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≥ η · αq

ρq−1
· Θ̃
(
σq−2

0

)
≥ η · αq

ρq−1
· Θ̃
((

Λ
(τ0)
j

)q−2
)

So using Lemma 5.1 at [τ0, t] with our initialization, we can conclude that for each i ∈ D1 and
t ≤ Ti, Λ

(t)
j ≤ Θ

(
Λ

(0)
j

)
= Θ̃ (σ0). So Λ

(t)
j ≤ Θ̃ (σ0) for t ≤ maxi∈D1

Ti = T0.

Combining these two situations, we can get that Λ
(t)
j ≤ Θ̃ (σ0) holds at t ≤ T0. So the hypothesis

holds at t.
2. If t ≥ T0, then from Hypothesis 6, we can get that for τ ∈ [T0, t], Φ

(t)
yi,1,i

= Θ̃ (1). Using the
same inequality in proving Hypothesis 6, we have for τ ∈ [T0, t],

Φ
(τ)
yi,1,i

≥ (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i,1

∣∣∣σ′ (Φ
(τ−1)
yi,1,i

− Θ̃ (σ0)
)

= (1− ηλ) Φ
(τ−1)
yi,1,i

+
η

ρq−1
Θ

(
sσ2
p

n

)∣∣∣l(τ−1)
yi,1,i,1

∣∣∣
Recursively applying this inequality for τ ∈ [T0 + 1, t] gives that

Φ
(t)
yi,1,i

≥ (1− ηλ)
t−P0 Φ

(T0)
yi,1,i

+ Θ

(
ηsσ2

p

nρq−1

)∣∣∣l(t−1−τ)
yi,1,i,1

∣∣∣
Taking summation over i ∈ D1, we have

∑
i∈D1

Φ
(t)
yi,1,i

≥ (1− ηλ)
t−T0

∑
i∈D1

Φ
(Y0)
yi,1,i

+ Θ

(
ηsσ2

p

nρq−1

)
t−T0−1∑
τ=0

(1− ηλ)
τ
∑
i∈D1

∣∣∣l(t−1−τ)
yi,1,i

∣∣∣
Again by Φ

(t)
yi,1,i

= Θ̃ (1) and Φ
(T0

yi,1,i
= Θ̃ (1), we have

Θ

(
ηsσ2

p

nρq−1

)
t−T0−1∑
τ=0

(1− ηλ)
τ
∑
i∈D1

∣∣∣l(t−1−τ)
yi,1,i

∣∣∣ ≤ ∑
i∈D1

Φ
(t)
yi,1,i

− (1− ηλ)
t−T0

∑
i∈D1

Φ
(T0)
yi,1,i

≤ Θ̃ (n)

Since yi,1 = 1 or yi,1 = −1 always happens, and
∣∣∣l(τ)
j,i,1

∣∣∣ =
∣∣∣l(τ)
−j,i,1

∣∣∣, so we have

Θ

(
ηsσ2

p

nρq−1

)
t−T0−1∑
τ=0

(1− ηλ)
τ
∑
i∈D1

∣∣∣l(t−1−τ)
j,i,1

∣∣∣ ≤ Θ̃ (n)

According to Hypothesis 8, Λ
(τ−1)
j ≤ Θ̃ (σ0), which implies that the activation function for Λ

(τ−1)
j

is zq

qρq−1 , then σ′
(

Λ
(t)
j

)
=

(
Λ

(τ−1)
j

)q−1

ρq−1 ≤ Θ̃
(
σq−1

0

)
. Using similar calculations, we can get that

Λ
(τ)
j ≤ max

(1− ηλ) Λ
(τ−1)
j +

ηαq

n

∑
i:yi,1=j,i∈D1

∣∣∣l(τ−1)
j,i,1

∣∣∣σ′ (αΛ
(τ−1)
j

)
, Θ̃
(
αqσ

2
3
0

)
≤ max

(1− ηλ) Λ
(τ−1)
j + Θ̃

(
ηαqσq−1

0

n

) ∑
i:yi,1=j,i∈D1

∣∣∣l(τ−1)
j,i,1

∣∣∣ , Θ̃(αqσ 2
3
0

)
then assume τ1 is the smallest index that Λ

(τ ′)
j ≥ Θ̃

(
αqσ

2
3
0

)
holds for all τ ′ ∈ [τ1, t], then recur-

sively applying this inequality for τ ∈ [τ1, t], we have

Λ
(t)
j ≤ (1− ηλ)

t−τ1+1
Λτ1−1
j + Θ̃

(
ηαqσq−1

0

n

)
(t−τ1−1)∑
τ=0

(1− ηλ)
τ

∑
i:yi,1=j,i∈D1

∣∣∣l(t−1τ)
j,i,1

∣∣∣
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≤ Λτ1−1
j + Θ̃

(
ηαqσq−1

0

n

)
(t−T0−1)∑
τ=0

(1− ηλ)
τ
∑
i:i∈D1

∣∣∣l(t−1τ)
j,i,1

∣∣∣
≤ Θ̃

(
αqσ

2
3
0

)
+ Θ̃

(
ηαqσq−1

0

n

)
· Θ̃ (n) · Θ̃

(
n

ηsσ2
p

)
≤ Θ̃ (σ0) .

(vii) In terms of Hypothesis 9, according to our calculation of update, we have[〈
w

(t)
−j,r, j · v

〉]
+

=

[
(1− ηλ)

〈
w

(t−1)
−j,r , j · v

〉
+
η

n
· j ·

( ∑
s∈D1

αys,1l
(t−1)
−j,s,1σ

′
(〈

w
(t−1)
−j,r , αys,1 · v

〉)

−
H∑
h=2

n∑
s=1

βhys,1l
(t−1)
−j,s,1σ

′
(〈

w
(t−1)
−j,r , ξs,1,h

〉))]
+

(i)
=

[
(1− ηλ) ·

〈
w

(t−1)
−j,r , j · v

〉
− η

n

∑
s∈D1

α
∣∣∣l(t−1)
−j,s,1

∣∣∣σ′ (〈w(t−1)
−j,r , αys,1 · v

〉)

+
η

n

H∑
h=2

n∑
s=1

βh

∣∣∣l(t−1)
−j,s,1

∣∣∣σ′ (〈w(t−1)
−j,r , ξs,1,h

〉)]
+

(ii)
≤

[
(1− ηλ)

〈
w

(t−1)
−j,r , j · v

〉
+
η

n

H∑
h=2

n∑
s=1

βh

∣∣∣l(t−1)
−j,s,1

∣∣∣σ′ (〈w(t−1)
−j,r , ξs,1,h

〉)]
+

(iii)
≤ (1− ηλ)

[〈
w

(t−1)
−j,r , j · v

〉]
+

+
η

n

H∑
h=2

n∑
s=1

βh

∣∣∣l(t−1)
−j,s,1

∣∣∣σ′ (〈w(t−1)
−j,r , ξs,1,h

〉)
= (1− ηλ)

[〈
w

(t−1)
−j,r , j · v

〉]
+

+
η

n

H∑
h=2

∑
s:ys,1=j

βh

∣∣∣l(t−1)
−j,s,1

∣∣∣σ′ (〈w(t−1)
−j,r , ξs,1,h

〉)

+
η

n

H∑
h=2

∑
s:s∈D2,ys,1=−j

βh

∣∣∣l(t−1)
−j,s,1

∣∣∣σ′ (〈w(t−1)
−j,r , ξs,1,h

〉)

+
η

n

H∑
h=2

∑
s:s∈D1,ys,1=−j

βh

∣∣∣l(t−1)
−j,s,1

∣∣∣σ′ (〈w(t−1)
−j,r , ξs,1,h

〉)
where (i) holds since sgn

(
yi,1ys,1l

(t−1)
−yi,1,s,1

)
= −1, (ii) holds since [·]+ is a monotone function, and

(iii) holds according to the definition of [·]+ and the triangle inequality. Recursively applying this
inequality from 0 to t gives that[〈

w
(t)
−j,r, j · v

〉]
+
≤ (1− ηλ)

t
[〈

w
(0)
−j,r, j · v

〉]
+

+
η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:ys,1=j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣σ′ (〈w(τ)
−j,r, ξs,1,h

〉)

+
η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D2,ys,1=−j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣σ′ (〈w(τ)
−j,r, ξs,1,h

〉)

+
η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D1,ys,1=−j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣σ′ (〈w(τ)
−j,r, ξs,1,h

〉)
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For the first term, we can get from the initialization from Lemma D.1 that
∣∣∣〈w(0)

−j,r,v
〉∣∣∣ ≤ Θ̃ (σ0),

so we have

(1− ηλ)
t
[〈

w
(0)
−j,r, j · v

〉]
+
≤
[〈

w
(0)
−j,r, j · v

〉]
+
≤
∣∣∣〈w(0)

−j,r,v
〉∣∣∣ ≤ Θ̃ (σ0)

For the second term, from Lemma D.2 at τ ∈ [0, t− 1] we can get that〈
w

(τ)
−j,r, ζs,1,h

〉
=
〈
w

(τ)
−ys,1,r, ζs,1,h

〉
≤ Θ̃

(√
sσpσ0

)
From Hypothesis 8 at τ ∈ [0, t− 1] we can get that〈

w
(τ)
−j,r,−ys,1v

〉
=
〈
w

(τ)
−ys,1,r,−ys,1v

〉
≤ Λ

(τ)
−ys,1 ≤ Θ̃ (σ0)

so we have〈
w

(τ)
−j,r, ξs,1,h

〉
=
〈
w

(τ)
−j,r, ζs,1,h − βhys,1v

〉
=
〈
w

(τ)
−j,r, ζs,1,h

〉
+ βh

〈
w

(τ)
−j,r,−ys,1v

〉
≤ Θ̃

(√
sσpσ0

)
+ βhΘ̃ (σ0) ≤ Θ̃

(√
sσpσ0

)
then we can get that

η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:ys,1=j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣σ′ (〈w(τ)
−j,r, ξs,1,h

〉)

≤ η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:ys,1=j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣σ′ (Θ̃
(√
sσpσ0

))

≤ η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:ys,1=j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣ Θ̃((√sσpσ0

)q−1
)

where we use the fact that Θ̃ (
√
sσpσ0) ≤ ρ so that the activation function for Θ̃ (

√
sσpσ0) is zq

qρq−1 ,

which implies that σ′
(

Θ̃ (
√
sσpσ0)

)
=

(Θ̃(
√
sσpσ0))

q−1

ρq−1 = Θ̃
(

(
√
sσpσ0)

q−1
)

.
For the third term, from Hypothesis 7 at τ ∈ [0, t− 1] we can get that〈

w
(τ)
−j,r, ζs,1,h

〉
=
〈
w(τ)
ys,1,r, ζs,1,h

〉
≤ Φ(τ)

ys,1,s ≤ Θ̃
(√
sσpσ0

)
from Hypothesis 9 at τ ∈ [0, t− 1] we can get that〈

w
(τ)
−j,r,−ys,1v

〉
=
〈
w(τ)
ys,1,r,−ys,1v

〉
≤ Θ̃

(
σ

1
3
0

)
so we have〈

w
(τ)
−j,r, ξi,1,h

〉
=
〈
w

(τ)
−j,r, ζs,1,h − βhys,1v

〉
=
〈
w

(τ)
−j,r, ζs,1,h

〉
+ βh

〈
w

(τ)
−j,r,−ys,1v

〉
≤ Θ̃

(√
sσpσ0

)
+ σ

1
3
0 · Θ̃

(
σ

1
3
0

)
≤ Θ̃

(√
sσpσ0

)
then we can get that

η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D2,ys,1=−j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣σ′ (〈w(τ)
−j,r, ξs,1,h

〉)

≤ η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D2,ys,1=−j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣σ′ (Θ̃
(√
sσpσ0

))

≤ η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D2,ys,1=−j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣ Θ̃((√sσpσ0

)q−1
)
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where we use the fact that Θ̃ (
√
sσpσ0) ≤ ρ so that the activation function for Θ̃ (

√
sσpσ0) is zq

qρq−1 ,

which implies that σ′
(

Θ̃ (
√
sσpσ0)

)
=

(Θ̃(
√
sσpσ0))

q−1

ρq−1 = Θ̃
(

(
√
sσpσ0)

q−1
)

.
Using the same results as verifying Hypothesis 7 and Hypothesis 8, we have that

Θ̃
( η
n

) t−P0−1∑
τ=0

(1− ηλ)
τ
∑
i∈D2

∣∣∣l(t−1−τ)
j,i,1

∣∣∣ ≤ Θ̃ (1)

Θ

(
ηsσ2

p

nρq−1

)
t−T0−1∑
τ=0

(1− ηλ)
τ
∑
i∈D1

∣∣∣l(t−1−τ)
j,i,1

∣∣∣ ≤ Θ̃ (n)

Then the summation of the second term and third term will not exceed

η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:ys,1=j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣ Θ̃((√sσpσ0

)q−1
)

+
η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D2,ys,1=−j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣ Θ̃((√sσpσ0

)q−1
)

=
2η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D2,ys,1=−j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣ Θ̃((√sσpσ0

)q−1
)

+
η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D1,ys,1=−j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣ Θ̃((√sσpσ0

)q−1
)

≤ 2ηβh
n
· Θ̃
( η
n

)
· Θ̃
((√

sσpσ0

)q−1
)

+
ηβh
n
· Θ̃
(
n2ρq−1

ηsσ2
p

)
· Θ̃
((√

sσpσ0

)q−1
)
≤ Θ̃

(
σ

1
3
0

)
For the fourth term, the gradient calculation implies that for each s which satisfies that s ∈ D1 and
ys,1 = −j, and h ∈ [2, H],〈

w(t)
ys,1,r, ζs,1,h

〉
≥ (1− ηλ) ·

〈
w(t−1)
ys,1,r, ζs,1,h

〉
+
η

n

H∑
g=2

n∑
i=1

lys,1,i,1σ
′
(〈

w(t−1)
ys,1,r, ξi,1,g

〉)
〈ζi,1,g, ζs,1,h〉

According to Lemma B.3, with probability exceeding 1 − n−2, for all (i, g) 6= (s, h),
〈ζi,1,g, ζs,1,h〉 = 0. By using the calculations above, we can get that with probability exceed-

ing 1 − 2n−2,
∣∣∣‖ζs,1,h‖2 − sσ2

p

∣∣∣ ≤ Θ̃
(√
sσ2
p

)
, which implies that ‖ζs,1,h‖ ≥ Θ (

√
sσp). Since

sgn
(
l
(t−1)
ys,1,s,1

)
= 1, then we have〈

w(t)
ys,1,r, ζs,1,h

〉
≥ (1− ηλ) ·

〈
w(t−1)
ys,1,r, ζs,1,h

〉
+
η

n
Θ
(
sσ2
p

) ∣∣∣l(t−1)
ys,1,s,1

∣∣∣σ′ (〈w(t−1)
ys,1,r, ξs,1,h

〉)
Recursively applying this inequality from 0 to t gives that〈

w(t)
ys,1,r, ζs,1,h

〉
≥ (1− ηλ)

t
〈
w(0)
ys,1,r, ζs,1,h

〉
+
η

n
Θ
(
sσ2
p

) t−1∑
τ=0

(1− ηλ)
t−τ−1

∣∣∣l(τ)
ys,1,s,1

∣∣∣σ′ (〈w(τ)
ys,1,r, ξs,1,h

〉)
Since t ≤ min {P0, T0} ≤ mins∈D1

Ts, then we can get that Φ
(t)
ys,1,s ≤ Θ̃ (1). From the initialization

in Lemma D.2, we can get that
∣∣∣〈w(0)

ys,1,r, ζs,1,h

〉∣∣∣ ≤ Θ̃ (
√
sσpσ0). So we have

η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

∣∣∣l(τ)
ys,1,s,1

∣∣∣σ′ (〈w(τ)
ys,1,r, ξs,1,h

〉)
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≤ 1

Θ
(
sσ2
p

) (〈w(t)
ys,1,r, ζs,1,h

〉
+ (1− ηλ)

t
〈
w(0)
ys,1,r, ζs,1,h

〉)
≤ 1

Θ
(
sσ2
p

) (Φ(t)
ys,1,s +

∣∣∣〈w(0)
ys,1,r, ζs,1,h

〉∣∣∣)
≤ 1

Θ
(
sσ2
p

) (Θ̃ (1) + Θ̃
(√
sσpσ0

))
≤ Θ̃ (1)

Θ
(
sσ2
p

)
Adding up all the above inequalities for those s which satisfies s ∈ D1 and ys,1 = −j, and h ∈
[2, H], we can get that

η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D1,ys,1=−j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣σ′ (〈w(τ)
−j,r, ξs,1,h

〉)

= βh
η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D1,ys,1=−j

∣∣∣l(τ)
ys,1,s,1

∣∣∣σ′ (〈w(τ)
ys,1,r, ξs,1,h

〉)
≤ βh · n · (H − 1) · Θ̃ (1) ≤ Θ̃

(
σ

1
3
0

)
Combining these inequalities together, we have that[〈

w
(t)
−j,r, j · v

〉]
+
≤ (1− ηλ)

t
[〈

w
(0)
−j,r, j · v

〉]
+

+
η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:ys,1=j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣σ′ (〈w(τ)
−j,r, ξs,1,h

〉)

+
η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D2,ys,1=−j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣σ′ (〈w(τ)
−j,r, ξs,1,h

〉)

+
η

n

t−1∑
τ=0

(1− ηλ)
t−τ−1

H∑
h=2

∑
s:s∈D1,ys,1=−j

βh

∣∣∣l(τ)
−j,s,1

∣∣∣σ′ (〈w(τ)
−j,r, ξs,1,h

〉)
≤ Θ̃ (σ0) + Θ̃

(
σ

1
3
0

)
+ Θ̃

(
σ

1
3
0

)
≤ Θ̃

(
σ

1
3
0

)
so the hypothesis holds at t.
Therefore, by induction, we finish the proof of all hypotheses.

-

F MULTI-TASK LEARNING

Next, we will focus on the proof of multi-task part. The proof techniques and structures are basically
the same as the proofs in Section C. In order to prove Theorem 4.2, we need the following technical
lemmas.
Lemma F.1 (Convergence Guarantee of GD). If the step size satisfies η ≤ O (σ0), then for any
t ≥ P0, it holds that

L(W(t+1))− L(W(t)) ≤ −η
2
‖∇L(W(t))‖2F.

Lemma F.2 (Generalization Performance of GD). Let

W∗ = arg min
{W(1),...,W(T )}

∥∥∥∇L(W(t)
)∥∥∥

F
.

Then by selecting T = poly(n)
η , for all training data, we have

1

nK

n∑
i=1

K∑
k=1

1
[
Fyi,k (W∗,xi,k) ≤ F−yi,k (W∗,xi,k)

]
= 0.

Moreover, in terms of the test data (x, y) ∼ D, we have

P(x,y)∼D [Fy (W∗,x) ≤ F−y (W∗,x)] ≤ poly
(
n−1

)
.
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G PROOF OF LEMMAS IN APPENDIX F

In order to prove Lemma F.1 and Lemma F.2, we need the following technical lemmas.

Lemma G.1 (Off-diagonal Correlations for Task-specific Feature). For any j ∈ {−1, 1}, k ∈ [K],
and any t, it holds that [〈w(t)

−j,r, j · vk〉]+ ≤ Θ̃(σ0).

Lemma G.2 (Off-diagonal correlations for Random Noises). For any data (xi,k, yi,k), any h ∈
[2, H] and any t, it holds that

[〈
w

(t)
−yi,k,r, ζi,k,h

〉]
+
≤ Θ̃ (

√
sσpσ0).

Lemma G.3. Suppose the training data is generated according to Definition 3.1 and Defini-
tion 3.2. Let Λ

(t)
j = maxr∈[m]

[〈
w

(t)
j,r, j · v

〉]
+

, Ψ
(t)
j,k = maxr∈[m]

[〈
w

(t)
j,r, j · vk

〉]
+

, Φ
(t)
j,i,h =

maxr∈[m] maxk∈[K]

[〈
w

(t)
j,r, ξi,k,h

〉]
+

, and Φ
(t)
j,i = maxhΦ

(t)
j,i,h and Φ

(t)
j = maxi∈[n] Φ

(t)
j,i Then

let Pj,k be the iteration number that Ψ
(t)
j,k reaches Θ (1/m) for j ∈ {−1, 1}, Qj,k be the it-

eration number that Λ
(t)
j reaches Θ (1/m) for j ∈ {−1, 1}, we have Pj,k ≤ Θ̃

(
σ2−q

0 /η
)

for all j ∈ {−1, 1} and k ∈ [K], and Qj = Θ̃
(
σ2−q

0 /η
)

for all j ∈ {−1, 1}. More-
over, let P0 = maxj∈{−1,1},k∈[K] Pj and Q0 = maxj∈{−1,1}Qj . For all t ≥ 0, it holds that

Φ
(t)
j,i ≤ Θ̃ (

√
sσpσ0) for all j ∈ {−1, 1} and i ∈ [n], and

[〈
w

(t)
−j,r, j · v

〉]
+
≤ Θ̃

(
σ

1
3
0

)
for all

j ∈ {−1, 1}.

Given these three useful lemmas, we are ready to prove Lemma F.1 and Lemma F.2.

G.1 PROOF OF LEMMA F.1

Proof of Lemma F.1. The proof of this lemma is basically relying on the smoothness property of the
loss function L (W) given certain constraints on the inner products with each patch.
Let ∆Fj,i,k = Fj

(
W(t+1),xi,k

)
− Fj

(
W(t),xi,k

)
, we can get the following Taylor expansion on

the loss function Li,k
(
W(t+1)

)
,

Li,k

(
W(t+1)

)
− Li,k

(
W(t)

)
≤
∑
j

∂Li,k
(
W(t)

)
∂Fj

(
W(t),xi,k

) ·∆Fj,i,k +
∑
j

(∆Fj,i,k)
2
.

In particular, by Lemma G.1 to Lemma G.3, we know that
〈
w

(t)
j,r, αyi,k · v

〉
≤ Θ̃ (1),〈

w
(t)
j,r, yi,k · vk

〉
≤ Θ̃ (1) and

〈
w

(t)
j,r, ξi,k

〉
≤ Θ̃ (1). Then we can apply first-order Taylor ex-

pansion to Fj
(
W(t+1),xi,k

)
, which requires to characterize the second-order error of the Taylor

expansions on σ
(〈

w
(t+1)
j,r , αyi,kv

〉)
, σ
(〈

w
(t+1)
j,r , yi,kvk

〉)
and σ

(〈
w

(t+1)
j,r , ξi,k

〉)
,

∣∣∣σ (〈w(t+1)
j,r , αyi,kv

〉)
− σ

(〈
w

(t)
j,r, αyi,kv

〉)
−
〈
∇wj,rσ

(〈
w

(t+1)
j,r , αyi,kv

〉)
,w

(t+1)
j,r −w

(t)
j,r

〉∣∣∣
≤ Θ̃

(∥∥∥w(t+1)
j,r −w

(t)
j,r

∥∥∥2

2

)
= Θ̃

(
η2
∥∥∥∇wj,rL

(
W(t)

)∥∥∥2

2

)
,∣∣∣σ (〈w(t+1)

j,r , yi,kvk

〉)
− σ

(〈
w

(t)
j,r, yi,kvk

〉)
−
〈
∇wj,rσ

(〈
w

(t+1)
j,r , yi,kvk

〉)
,w

(t+1)
j,r −w

(t)
j,r

〉∣∣∣
≤ Θ̃

(∥∥∥w(t+1)
j,r −w

(t)
j,r

∥∥∥2

2

)
= Θ̃

(
η2
∥∥∥∇wj,rL

(
W(t)

)∥∥∥2

2

)
,∣∣∣σ (〈w(t+1)

j,r , ξi,k

〉)
− σ

(〈
w

(t)
j,r, ξi,k

〉)
−
〈
∇wj,rσ

(〈
w

(t+1)
j,r , ξi,k

〉)
,w

(t+1)
j,r −w

(t)
j,r

〉∣∣∣
≤ Θ̃

(∥∥∥w(t+1)
j,r −w

(t)
j,r

∥∥∥2

2

)
= Θ̃

(
η2
∥∥∥∇wj,rL

(
W(t)

)∥∥∥2

2

)
,
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Then combining the above bounds for every r ∈ [m], we can get the following bound for ∆Fj,i,k∣∣∣∆Fj,i,k − 〈∇WFj

(
W(t),xi,k

)
,W(t+1) −W(t)

〉∣∣∣ ≤ Θ̃

η2
∑
r∈[m]

∥∥∥∇wj,rL
(
W(t)

)∥∥∥2

2


= Θ̃

(
η2
∥∥∥∇L(W(t)

)∥∥∥2

F

)
.

Moreover, since 〈w(t)
j,r, αyi,k · v〉 ≤ Θ̃ (1),

〈
w

(t)
j,r, yi,k · vk

〉
≤ Θ̃ (1),

〈
w

(t)
j,r, ξi,k

〉
≤ Θ̃ (1) and

σ (·) is convex, then we have∣∣∣σ (〈w(t+1)
j,r , αyi,kv

〉)
− σ

(〈
w

(t+1)
j,r , αyi,kv

〉)∣∣∣
≤ max

{∣∣∣σ′ (〈w(t+1)
j,r , αyi,kv

〉)∣∣∣ , ∣∣∣σ′ (〈w(t)
j,r, αyi,kv

〉)∣∣∣} · ∣∣∣〈v,w(t+1)
j,r −w

(t)
j,r

〉∣∣∣
≤ Θ̃

(∥∥∥w(t+1)
j,r −w

(t)
j,r

∥∥∥
2

)
.

Similarly we also have∣∣∣σ (〈w(t+1)
j,r , yi,kvk

〉)
− σ

(〈
w

(t+1)
j,r , yi,kvk

〉)∣∣∣ ≤ Θ̃
(∥∥∥w(t+1)

j,r −w
(t)
j,r

∥∥∥
2

)
.

and ∣∣∣σ (〈w(t+1)
j,r , ξi,k

〉)
− σ

(〈
w

(t+1)
j,r , ξi,k

〉)∣∣∣ ≤ Θ̃
(∥∥∥w(t+1)

j,r −w
(t)
j,r

∥∥∥
2

)
.

Combining the above inequalities for every r ∈ [m], we have

|∆Fj,i,k|2 ≤ Θ̃


 ∑
r∈[m]

∥∥∥w(t+1)
j,r −w

(t)
j,r

∥∥∥
2

2


≤ Θ̃

(
mη2

∥∥∥∇L(W(t)
)∥∥∥2

F

)
= Θ̃

(
η2
∥∥∥∇L(W(t)

)∥∥∥2

F

)
.

Now we combine all the above inequalities, which gives

Li,k(W(t+1))− Li,k
(
W(t)

)
≤
∑
j

∂Li,k
(
W(t)

)
∂Fj

(
W(t),xi,k

) ·∆Fj,i,k +
∑
j

(∆Fj,i,k)
2

=
〈
∇Li,k

(
W(t)

)
,W(t+1) −W(t)

〉
+ Θ̃

(
η2
∥∥∥∇L(W(t)

)∥∥∥2

F

)
.

Taking sum over i ∈ [n] and k ∈ [K] and applying the smoothness property of the regularization
function λ ‖W‖2F, we can get

L
(
W(t+1)

)
− L

(
W(t)

)
=

1

nK

n∑
i=1

K∑
k=1

{[
Li,k

(
W(t+1)

)
− Li,k

(
W(t)

)]
+ λ

(∥∥∥W(t+1)
∥∥∥2

F
−
∥∥∥W(t)

∥∥∥2

F

)}
≤
〈
∇L

(
W(t)

)
,W(t+1) −W(t)

〉
+ Θ̃

(
η2
∥∥∥∇L(W(t)

)∥∥∥2

F

)
= −

(
η − Θ̃

(
η2
))
·
∥∥∥∇L(W(t)

)∥∥∥2

F

≤ −η
2

∥∥∥∇L(W(t)
)∥∥∥2

F
,

where the last inequality is due to our choice of step size η = o (1). This completes the proof.
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G.2 PROOF OF LEMMA F.2

Proof of Lemma F.2. From Lemma G.2 and Lemma G.3, we can get that

Fyi,k (W∗,xi,k) =

m∑
r=1

[
σ
(〈

w∗yi,k,r, αyi,kv
〉)

+

H∑
h=2

σ
(〈

w∗yi,k,r, ξi,k,h

〉)]
≥ max
r∈[m]

σ
(〈

w∗yi,k,r, αyi,kv
〉)

= Θ̃ (αq)

F−yi,k (W∗,xi,k) =

m∑
r=1

[
σ
(〈

w∗−yi,k,r, αyi,kv
〉)

+

H∑
h=2

σ
(〈

w∗−yi,k,r, ξi,k,h

〉)]
≤ m max

r∈[m]
σ
(〈

w∗−yi,k,r, αyi,kv
〉)

+m (H − 1)σ

(
max
r∈[m]

max
h∈[2,H]

〈
w∗−yi,k,r, ζi,k,h

〉
+ max
h∈[2,H]

βh max
r∈[m]

〈
w∗−yi,k,r,−yi,kv

〉)
≤ mΘ̃

(
αqσ

q
3
0

)
+m (H − 1) Θ̃

((
max
h∈[2,H]

βh

)q)
,

so Fyi,k (W∗,xi,k) ≥ F−yi,k (W∗,xi,k) holds for i ∈ D1. Similarly, from Lemma G.1 to Lemma
G.3, we also have

Fyi,k (W∗,xi,k) =

m∑
r=1

[
σ
(〈

w∗yi,k,r, yi,kvk

〉)
+

H∑
h=2

σ
(〈

w∗yi,k,r, ξi,k,h

〉)]
≥ max
r∈[m]

σ
(〈

w∗yi,k,r, yi,kvk

〉)
= Θ̃ (1)

F−yi,k (W∗,xi,k) =

m∑
r=1

[
σ
(〈

w∗−yi,k,r, yi,kvk

〉)
+

H∑
h=2

σ
(〈

w∗−yi,k,r, ξi,k,h

〉)]
≤ m max

r∈[m]
σ
(〈

w∗−yi,k,r, yi,kvk

〉)
+m (H − 1)σ

(
max
r∈[m]

max
h∈[2,H]

〈
w∗−yi,k,r, ζi,k,h

〉
+ max
h∈[2,H]

βh max
r∈[m]

〈
w∗−yi,k,r,−yi,kv

〉)
≤ mΘ̃ (σq0) +m (H − 1) Θ̃

((
max
h∈[2,H]

βh

)q)
= o (1) .

so Fyi,k (W∗,xi,k) ≥ F−yi,k (W∗,xi,k) holds for i ∈ D2. Combining these two parts, we have
that for i ∈ [n], Fyi,k (W∗,xi,k) ≥ F−yi,k (W∗,xi,k) holds, which directly implies that

1

n

n∑
i=1

1
[
F−yi,k (W∗,xi,k) ≤ Fyi,k (W∗,xi,k)

]
= 0

Therefore, W∗ can correctly classify all training data and thus achieve zero training error.
In terms of the test data (x, y) which is generated according to our assumptions, then with probability
p, it will have the patch of task-shared feature and the patches of noise, like the training data for
i ∈ D1, then x = [αyv, ξ2, ..., ξH ]. Similar to Lemma B.3, the support set of the random noise of
this data will have no interpolation with the support sets of random noises in training samples with
probability larger than 1− n2, which implies that

〈
w∗y,r, ζx,h

〉
= 0. For this kind of data, we have

Fy (W∗,x〉 =

m∑
r=1

[
σ
(〈
w∗y,r, αyv

〉)
+

H∑
h=2

(〈
w∗y,r, ζx,h − βhv

〉)]

=

m∑
r=1

[
σ
(〈
w∗y,r, αyv

〉)
+

H∑
h=2

(〈
w∗y,r,−βhv

〉)]
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≥ max
r∈[m]

σ
(〈
w∗y,r, αyv

〉)
≥ Θ̃ (αq)

and

F−y (W∗,x〉 =

m∑
r=1

[
σ
(〈
w∗−y,r, αyv

〉)
+

H∑
h=2

σ
(〈
w∗−y,r, ζx,h − βhyv

〉)]

=

m∑
r=1

[
σ
(〈
w∗−y,r, αyv

〉)
+

H∑
h=2

σ
(〈
w∗−y,r,−βhyv

〉)]

≤ m
[
σ

(
max
r∈[m]

〈
w∗−y,r, αyv

〉)
+ (H − 1)σ

(
max
h∈[2,H]

βh max
r∈[m]

〈
w∗−y,r,−yv

〉)]
≤ Θ̃

(
mH

(
max
h∈[2,H]

βh

)q)
then Fy (W∗,x) > F−y (W∗,x) holds for this kind of data. With probability 1 − p, the data will
have the patch of task-specific feature and the patches of noise, like the training data for i ∈ D2,
assume it belongs to the k-th task, then x = [yvk, ξ2, ..., ξH ]. Similar to Lemma B.3, the support
set of the random noise of this data will have no interpolation with the support sets of random noises
in training samples with probability larger than 1 − n2, which implies that 〈wy,r, ζx,h〉 = 0. For
this kind of data, we have

Fy (W∗,x〉 =

m∑
r=1

[
σ
(〈
w∗y,r, yvk

〉)
+

H∑
h=2

(〈
w∗y,r, ζx,h − βhv

〉)]

=

m∑
r=1

[
σ
(〈
w∗y,r, yvk

〉)
+

H∑
h=2

(〈
w∗y,r,−βhv

〉)]
≥ max
r∈[m]

σ
(〈
w∗y,r, yvk

〉)
≥ Θ̃ (1)

and

F−y (W∗,x) =

m∑
r=1

[
σ
(〈
w∗−y,r, yvk

〉)
+

H∑
h=2

σ
(〈
w∗−y,r, ζx,h − βhyv

〉)]

=

m∑
r=1

[
σ
(〈
w∗−y,r, yvk

〉)
+

H∑
h=2

σ
(〈
w∗−y,r,−βhyv

〉)]

≤ m
[
σ

(
max
r∈[m]

〈
w∗−y,r, yvk

〉)
+ (H − 1)σ

(
max
h∈[2,H]

βh max
r∈[m]

〈
w∗−y,r,−yv

〉)]
≤ mHΘ̃

((
max
h∈[2,H]

βh

)q)
then Fy (W∗,x) > F−y (W∗,x) holds for this kind of data. Combining two parts, we can get that

P(x,y)∼D [Fy (W∗,x) ≤ F−y (W∗,x)] = o (1) .

Then we complete the proof.

H PROOF OF LEMMAS USED IN APPENDIX G

H.1 PROOF OF LEMMA G.1

Proof of Lemma G.1. Note that at the initialization, since w
(0)
j,r ∼ N

(
0, σ2

0Id
)
, then denote w

(0)
j,r

u

the u-th coordinate of w(0)
j,r , denote vuk the u-th coordinate of v, then using Hoeffding’s inequality,
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we can get that

P
{∣∣∣〈w(0)

j,r ,vk

〉∣∣∣ ≥ a} = P

{∣∣∣∣∣
d∑

u=1

w
(0)
j,r

uvuk

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− ca2

σ2
0 ‖vk‖

2

)
= 2 exp

(
−ca

2

σ2
0

)
so one can conclude that with probability exceeding 1− 2n−2,∣∣∣〈w(0)

j,r ,vk

〉∣∣∣ =

∣∣∣∣∣
d∑

u=1

w
(0)
j,r

uvuk

∣∣∣∣∣ ≤ Θ̃ (σ0)

then with probability exceeding 1 − 4mn−2 ≥ 1 − 4n−1,
∣∣∣〈w(0)

j,r ,vk

〉∣∣∣ ≤ Θ̃ (σ0) holds for all

r ∈ [m] and all j ∈ {−1, 1}. Similarly, we can get that with probability exceeding 1 − 4n−1,∣∣∣〈w(0)
j,r ,v

〉∣∣∣ ≤ Θ̃ (σ0) holds for all r ∈ [m] and j ∈ {−1, 1}. Then we have[〈
w

(0)
−j,r, j · vk

〉]
+
≤
∣∣∣〈w(0)

−j,r,vk

〉∣∣∣ ≤ Θ̃ (σ0)

According to our calculations of update, we can get that[〈
w

(t+1)
−j,r , j · vk

〉]
+

=

[
(1− ηλ) ·

〈
w

(t)
−j,r, j · vk

〉
+

η

nK
· j ·

(∑
s∈D2

ys,kl
(t)
−j,s,kσ

′
(〈

w
(t)
−j,r, ys,k · v1

〉))]
+

(i)
=

[
(1− ηλ) ·

〈
w

(t)
−j,r, j · vk

〉
− η

n

∑
s∈D2

∣∣∣l(t)−j,s,k∣∣∣σ′ (〈w(t)
−j,r, ys,k · vk

〉)]
+

(ii)
≤ (1− ηλ)

[〈
w

(t)
−j,r, j · vk

〉]
+
≤
[〈

w
(t)
−j,r, j · vk

〉]
+

where (i) holds since sgn
(
jys,kl

(t)
−j,s,k

)
= −1, (ii) holds since [·]+ is a monotone function. By

applying the above inequality recursively, we can get that[〈
w

(t+1)
−j,r , j · vk

〉]
+
≤
[〈

w
(t)
−j,r, j · vk

〉]
+
≤
[〈

w
(0)
−j,r, j · vk

〉]
+
≤ Θ̃(σ0)

H.2 PROOF OF LEMMA G.2

Proof of Lemma G.2. Note that at the initialization, according to the definition, ζi,k,h is s random
vector which selects s coordinates from a random vector which follows N

(
0, σ2

pId
)
, then denote

Bi,1,h = supp (ζi,k,h) be the support of ζi,k,h, then |ζi,k,h| = s. Denote ζui,k,h the u-th coordinate

of ζi,k,h. Since w
(0)
j,r ∼ N

(
0, σ2

0Is
)
, then denote w

(0)
j,r

u the u-th coordinate of w(0)
j,r , and using

Bernstein’s inequality, we can get that

P
{∣∣∣〈w(0)

j,r , ζi,k,h

〉∣∣∣ ≥ a} = P

{∣∣∣∣∣
d∑

u=1

w
(0)
j,r

uζui,k,h

∣∣∣∣∣ ≥ a
}

= P


∣∣∣∣∣∣
∑

u∈Bi,k,h

w
(0)
j,r

uζui,k,h

∣∣∣∣∣∣ ≥ a
 ≤ 2 exp

(
−cmin

(
a2

sσ2
pσ

2
0

,
t

σpσ0

))
so one can conclude that with probability exceeding 1− 2n−2,∣∣∣〈w(0)

j,r , ζi,k,h

〉∣∣∣ =

∣∣∣∣∣
d∑

u=1

w
(0)
j,r

uζui,1,h

∣∣∣∣∣ ≤ Θ̃
(√
sσpσ0

)
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then with probability exceeding 1− 4mHn−2 ≥ 1− 4n−1,
∣∣∣〈w(0)

j,r , ζi,k,h

〉∣∣∣ ≤ Θ̃ (
√
sσpσ0) holds

for all r ∈ [m], h ∈ [2, H] and j ∈ {−1, 1} Then we have[〈
w

(0)
−yi,1,r, ζi,k,h

〉]
+
≤
∣∣∣〈w(0)

−yi,k,r, ζi,1,h

〉∣∣∣ ≤ Θ̃
(√
sσpσ0

)
According to our calculations of update, we can get that[〈

w
(t+1)
−yi,k,r, ζi,k,h

〉]
+

=

[
(1− ηλ) ·

〈
w(t)
yi,k,r

, ζi,k,h

〉
+

η

nK

K∑
l=1

H∑
g=2

n∑
s=1

l
(t)
−yi,k,s,lσ

′
(〈

w
(t)
−yi,k,r, ξs,l,g

〉)
〈ζs,l,g, ζi,k,h〉

]
+

According to Lemma B.3, with probability exceeding 1 − n−2, for all (s, l, g) 6= (i, k, h),
〈ζs,l,g, ζi,k,h〉 = 0, then we have[〈

w
(t+1)
−yi,k,r, ζi,k,h

〉]
+

=
[
(1− ηλ) ·

〈
w(t)
yi,k,r

, ζi,k,h

〉
+
η

n
l
(t)
−yi,k,i,kσ

′
(〈

w
(t)
−yi,k,r, ξi,k,h

〉)
〈ζi,k,h, ζi,k,h〉

]
+

(i)
=
[
(1− ηλ) ·

〈
w

(t)
−yi,k,r, ζi,k,h

〉
− η

n

∣∣∣l(t)−yi,k,i,k∣∣∣σ′ (〈w(t)
−yi,k,r, ξi,k,h

〉)
‖ζi,k,h‖2

]
+

(ii)
≤ (1− ηλ)

[〈
w

(t)
−yi,k,r, ζi,k,h

〉]
+
≤
[〈

w
(t)
−yi,k,r, ζi,k,h

〉]
+

where (i) holds since sgn
(
l
(t)
−yi,k,i,k

)
= −1, (ii) holds since [·]+ is a monotone functions. By

applying the above inequality recursively, we can get that[〈
w

(t+1)
−yi,k,r, ζi,k,h

〉]
+
≤
[〈

w
(t)
−yi,k,r, ζi,k,h

〉]
+
≤
[〈

w
(0)
−yi,k,r, ζi,k,h

〉]
+
≤ Θ̃

(√
sσpσ0

)

H.3 PROOF OF LEMMA G.3

Proof of Lemma G.3. From the calculations of initialization in Lemma G.1 and Lemma G.2, we
have that with probability exceeding 1−12n−1,

∣∣∣〈w(0)
j,r ,vk

〉∣∣∣ ≤ Θ̃ (σ0),
∣∣∣〈w(0)

j,r ,v
〉∣∣∣ ≤ Θ̃ (σ0), and∣∣∣〈w(0)

j,r , ζi,k,h

〉∣∣∣ ≤ Θ̃ (
√
sσpσ0) holds simultaneously for all j ∈ {−1, 1}, r ∈ [m] and h ∈ [2, H].

Therefore,

Ψ
(0)
j,k = max

r∈[m]

[〈
w

(0)
j,r , j · vk

〉]
+
≤ max
r∈[m]

∣∣∣〈w(0)
j,r , j · vk

〉∣∣∣ = max
r∈[m]

∣∣∣〈w(0)
j,r ,vk

〉∣∣∣ ≤ Θ̃ (σ0) ≤ ρ

Λ
(0)
j = max

r∈[m]

[〈
w

(0)
j,r , j · v

〉]
+
≤ max
r∈[m]

∣∣∣〈w(0)
j,r , j · v

〉∣∣∣ = max
r∈[m]

∣∣∣〈w(0)
j,r ,v

〉∣∣∣ ≤ Θ̃ (σ0) ≤ ρ

Φ
(0)
j,i,h ≤ Φ

(0)
j,i ≤ Φ

(0)
j = max

k∈[K]
max
i∈[n]

max
h∈[2,H]

max
r∈[m]

[〈
w

(0)
j,r , ζi,1,h

〉]
+

≤ max
k∈[K]

max
i∈[n]

max
h∈[2,H]

max
r∈[m]

∣∣∣〈w(0)
j,r , ζi,k,h

〉∣∣∣ ≤ Θ̃
(√
sσpσ0

)
≤ ρ

holds simultaneously, which also implies that

max
k∈[K]

max
i∈[n]

max
h∈[2,H]

max
r∈[m]

[〈
w

(0)
j,r , ξi,k,h

〉]
+

= max
k∈[K]

max
i∈[n]

max
h∈[2,H]

max
r∈[m]

[〈
w

(0)
j,r , ζi,k,h − βhyi,kv

〉]
+

≤ max
k∈[K]

max
i∈[n]

max
r∈[2,H]

max
r∈[m]

[〈
w

(0)
j,r , ζi,k,h

〉]
+

+ max
r∈[m]

∣∣∣〈w(0)
j,r ,v

〉∣∣∣
≤ Θ̃

(√
sσpσ0

)
+ Θ̃ (σ0) ≤ ρ

so that the activation function for all of them are zq

qρq−1 .

Besides, for any r ∈ [m], since w
(0)
j,r ∼ N

(
0, σ2

0Id
)
, we can get that

〈
w

(0)
j,r , j · vk

〉
∼
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N
(

0, σ2
0 ‖vk‖

2
)

= N
(
0, σ2

0

)
, so P

(〈
w

(0)
j,r , j · vk

〉
< σ0

2

)
is an absolute constant, then we can

get that

P
(

max
r∈[m]

〈
w

(0)
j,r , j · vk

〉
≥ σ0

2

)
= 1− P

(
max
r∈[m]

〈
w

(0)
j,r , j · vk

〉
<
σ0

2

)
= 1− P

(〈
w

(0)
j,r , j · vk

〉
<
σ0

2
,∀r ∈ [m]

)
= 1− P

(〈
w

(0)
j,r , j · vk

〉
<
σ0

2

)m
≥ 1− n−1

so with probability exceeding 1 − n−1, Ψ
(0)
j,k = maxr∈[m]

[〈
w

(0)
j,r , j · vk

〉]
+

=

maxr∈[m]

〈
w

(0)
j,r , j · vk

〉
≥ σ0

2 . Similarly, we can get that with probability exceeding 1 − n−1,

Λ
(0)
j = maxr∈[m]

[〈
w

(0)
j,r , j · v

〉]
+

= maxr∈[m]

〈
w

(0)
j,r , j · v

〉
≥ σ0

2 . And conditioning on ζi,k,h,

we can get that
〈
w

(0)
j,r , ζi,k,h

〉
∼ N

(
0, σ2

0 ‖ζi,k,h‖
2
)

, so P
(〈

w
(0)
j,r , ζi,k,h

〉
<

σ0‖ζi,k,h‖
2

)
is an

absolute constant, then we can get that

P
(

max
r∈[m]

〈
w

(0)
j,r , ζi,k,h

〉
≥ σ0 ‖ζi,k,h‖

2

)
= 1− P

(
max
r∈[m]

〈
w

(0)
j,r , ζi,k,h

〉
<
σ0 ‖ζi,k,h‖

2

)
= 1− P

(〈
w

(0)
j,r , ζi,k,h

〉
<
σ0 ‖ζi,k,h‖

2
,∀r ∈ [m]

)
= 1− P

(〈
w

(0)
j,r , ζi,k,h

〉
<
σ0 ‖ζi,k,h‖

2

)m
≥ 1− n−1

so conditioning on ζi,k,h, with probability exceeding 1 − n−1, maxr∈[m]

〈
w

(0)
j,r , ζi,k,h

〉
≥

σ0‖ζi,1,h‖
2 . According to the definition, ζi,k,h is s random vector which selects s coordinates from

a random vector which follows N
(
0, σ2

pId
)
, then denote Bi,k,h = supp (ζi,k,h) be the support of

ζi,k,h, then |ζi,k,h| = s, ‖ζi,k,h‖2 =
∑
u∈Bi,k,h ζ

u
i,k,h

2 and for each u ∈ Bi,k,h, ζui,k,h ∼ N
(
0, σ2

p

)
.

Then we have that

E ‖ζi,k,h‖2 = E
∑

u∈Bi,k,h

ζui,k,h
2 =

∑
u∈Bi,k,h

Eζui,k,h2 = sσ2
p

By using Bernstein’s inequality, we can get that

P
{∣∣∣‖ζi,k,h‖2 − E ‖ζi,k,h‖2

∣∣∣ ≥ a} = P


∣∣∣∣∣∣
∑

u∈Bi,k,h

ζui,k,h
2 − E

∑
u∈Bi,k,h

ζui,k,h
2

∣∣∣∣∣∣ ≥ a


= P


∣∣∣∣∣∣
∑

u∈Bi,k,h

ζ2
i,k,h − sσ2

p

∣∣∣∣∣∣ ≥ a


≤ 2 exp

(
−cmin

(
a2

sσ2
p

,
t

σp

))
so one conclude that with probability exceeding 1− 2n−2,∣∣∣‖ζi,k,h‖2 − sσ2

p

∣∣∣ ≤ Θ̃
(√
sσ2
p

)
which implies that which probability exceeding 1− 2n−2,

‖ζi,k,h‖ ≥ O
(√
sσp
)
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Combining these two parts, we have that with probability exceeding 1− n−1 − 2n−2 ≥ 1− 2n−1,

max
r∈[m]

〈
w

(0)
j,r , ζi,k,h

〉
≥ σ0 ‖ζi,k,h‖

2
≥ O

(√
sσpσ0

)
So we have that with probability exceeding 1− 2n−1,

Φ
(0)
j ≥ Φ

(0)
j,i ≥ Φ

(0)
j,i,h = max

k∈[K]
max
k∈[K]

max
r∈[m]

[〈
w

(0)
j,r , ζi,k,h

〉]
+

≥ max
r∈[m]

[〈
w

(0)
j,r , ζi,1,h

〉]
+

= max
r∈[m]

〈
w

(0)
j,r , ζi,k,h

〉
≥ O

(√
sσpσ0

)
Therefore, with probability exceeding 1− 8n−1,

Ψ
(0)
j,k = max

r∈[m]

[〈
w

(0)
j,r , j · vk

〉]
+
≥ σ0

2

Λ
(0)
j = max

r∈[m]

[〈
w

(0)
j,r , j · v

〉]
+
≥ σ0

2

Φ
(0)
j ≥ Φ

(0)
j,i ≥ Φ

(0)
j,i,h = max

k∈[K]
max
r∈[m]

[〈
w

(0)
j,r , ζi,k,h

〉]
+
≥ O

(√
sσpσ0

)
holds simultaneously for all j ∈ {−1, 1}. Combining these two parts, we have that with probability
exceeding 1− 20n−1,

Ψ
(0)
j,k = Θ̃ (σ0) ,Λ

(0)
j = Θ̃ (σ0) ,Φ

(0)
j = Θ̃

(√
sσpσ0

)
,Φ

(0)
j,i = Θ̃

(√
sσpσ0

)
,Φ

(0)
j,i,h = Θ̃

(√
sσpσ0

)
Then according to our definition, it can be shown that for i ∈ D1,

Fj

(
W(0),xi,k

)
=

m∑
r=1

[
σ
(〈

w
(0)
j,r , αyi,k · v

〉)
+

H∑
h=2

σ
(〈

w
(0)
j,r , ξi,k,h

〉)]

=

m∑
r=1


[〈

w
(0)
j,r , αyi,k · v

〉]q
+

qρq−1
+

H∑
h=2

[〈
w

(0)
j,r , ξi,k,h

〉]q
+

qρq−1


≤ m

(
ρq

qρq−1
+

H∑
h=2

ρq

qρq−1

)
=
mHρ

q
= o(1)

for all j ∈ {−1, 1}, and similarly for i ∈ D2,

Fj

(
W(0),xi,1

)
=

m∑
r=1

[
σ
(〈

w
(0)
j,r , yi,k · vk

〉)
+

H∑
h=2

σ
(〈

w
(0)
j,r , ξi,k,h

〉)]

=
m∑
r=1


[〈

w
(0)
j,r , yi,k · vk

〉]q
+

qρq−1
+

H∑
h=2

[〈
w

(0)
j,r , ξi,k,h

〉]q
+

qρq−1


≤ m

(
ρq

qρq−1
+

H∑
h=2

ρq

qρq−1

)
=
mHρ

q
= o(1)

for all j ∈ {−1, 1}. Then we have

eFj(W
(0),xi,k)∑

s e
Fs(W(0),xi,k)

= Θ(1).

so that ∣∣∣l(0)
j,i,k

∣∣∣ = Θ(1).

According to the definition of l(t)j,i,k, we have sgn
(
l
(t)
j,i,k

)
= jyi,k, so sgn

(
jyi,kl

(t)
j,i,k

)
= 1. We will

prove the desired argument based on the following induction hypothesis:

Ψ
(t)
j,k ≥ Ψ

(t−1)
j,k +

η

2Kρq−1
Θ

((
Ψ

(t−1)
j,k

)q−1
)
,
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Ψ
(t)
j,k = max

r∈[m]

〈
w

(t)
j,r, j · vk

〉
,

Ψ
(t)
j,k is monotonically non-decreasing,∀j ∈ {−1, 1} , k ∈ [K], t ≤ Pj (1)

Λ
(t)
j ≥ Λ

(t−1)
j +

ηαq

ρq−1
Θ

((
Λ

(t−1)
j

)q−1
)
− Θ̃

((√
sσpσ0

)q−1
)
,

Λ
(t)
j = max

r∈[m]

〈
w

(t)
j,r, j · v

〉
,

Λ
(t)
j is monotonically non-decreasing,∀j ∈ {−1, 1} , t ≤ Qj (2)

Φ
(t)
yi,k,i

≤ Φ
(t−1)
yi,k,i

+
η

Kρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,k,i

+ Θ̃
(
σ

2
3
0

))q−1
)
,∀i ∈ D2, t ≤ P0

(3)

Φ
(t)
yi,k,i

≤ Φ
(t−1)
yi,k,i

+
η

Kρq−1
Θ

(
sσ2
p

n

)
Θ

((
Φ

(t−1)
yi,k,i

+ Θ̃
(
σ

2
3
0

))q−1
)
,∀i ∈ D1, t ≤ Q0

(4)

Ψ
(t)
j,k ≤ Θ̃ (1) ,∀j ∈ {−1, 1} , k ∈ [K], t ≤ Pj,k,

Ψ
(t)
j,k = Θ̃ (1) ,Ψ

(t)
j,k = max

r∈[m]

〈
w

(t)
j,r, j · vk

〉
,∀j ∈ {−1, 1} , k ∈ [K], Pj,k ≤ t ≤ T (5)

Λ
(t)
j ≤ Θ̃ (1) ,∀j ∈ {±1} , t ≤ Qj ,

Λ
(t)
j = Θ̃ (1) ,Λ

(t)
j = max

r∈[m]

〈
w

(t)
j,r, j · v

〉
,∀j ∈ {−1, 1} , Qj ≤ t ≤ T (6)

Φ
(t)
j,i ≤ Θ̃

(√
sσpσ0

)
,∀j ∈ {−1, 1} ,∀i ∈ D2, t ≤ T (7)

Φ
(t)
j,i ≤ Θ̃

(√
sσpσ0

)
,∀j ∈ {−1, 1} ,∀i ∈ D2, t ≤ T (8)〈

w
(t)
−j,r, j · v

〉
≤ Θ̃

(
σ

1
3
0

)
,∀j ∈ {−1, 1} , t ≤ T (9)

and for t = −1, we set Ψ
(−1)
j,k = 0 for all j ∈ {−1, 1} and k ∈ [K], Λ

(−1)
j = 0 for all j ∈ {−1, 1},

and Φ
(−1)
j,i = 1 for all j ∈ {−1, 1} and i ∈ [n]. Now we consider the situation at t = 0.

(i) In terms of Hypothesis 1 and 5, since the distribution of w(0)
j,r is symmetric, then for each r ∈ [m]

and j ∈ {−1, 1}, with probability 1
2 ,
〈
w

(0)
j,r , j · vk

〉
< 0. So with probability 1

2m ,
〈
w

(0)
j,r , j · vk

〉
<

0 holds for all r ∈ [m]. Denote r∗ = arg maxr∈[m]

〈
w

(0)
j,r , j · vk

〉
, then

P
{〈

w
(0)
j,r∗ , j · vk

〉
≥ 0,∀j ∈ {−1, 1}

}
≥ 1− P

{〈
w

(0)
1,r∗ , 1 · vk

〉
< 0
}
− P

{〈
w

(0)
−1,r∗ ,−1 · vk

〉
< 0
}

= 1− P
{〈

w
(0)
1,r, 1 · vk

〉
< 0,∀r ∈ [m]

}
− P

{〈
w

(0)
−1,r,−1 · vk

〉
< 0,∀r ∈ [m]

}
= 1− 1

2m−1
≥ 1− n−1

so with probability exceeding 1 − n−1, Ψ
(0)
j,k =

〈
w

(0)
j,r∗ , j · vk

〉
≥ 0 holds for all j ∈ {−1, 1} and

j ∈ [K]. Since Ψ
(−1)
j,k = 0, then the inequality

Ψ
(0)
j,k ≥ Ψ

(−1)
j,k +

η

2ρq−1
Θ

((
Ψ

(−1)
j,k

)q−1
)

holds, so we verify Hypothesis 1 at t = 0. According to previous calculations, we have that Ψ
(0)
j,k =

Θ̃ (σ0) ≤ Θ̃ (1) for all j ∈ {−1, 1}, so we verify Hypothesis 5 at t = 0.
(ii) In terms of Hypothesis 2 and 6, since the distribution of w(0)

j,r is symmetric, then for each r ∈ [m]
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and j ∈ {−1, 1}, with probability 1
2 ,
〈
w

(0)
j,r , j · v

〉
< 0. So with probability 1

2m ,
〈
w

(0)
j,r , j · v

〉
< 0

holds for all r ∈ [m]. Denote r∗ = arg maxr∈[m]

〈
w

(0)
j,r , j · v

〉
, then

P
{〈

w
(0)
j,r∗ , j · v

〉
≥ 0,∀j ∈ {−1, 1}

}
≥ 1− P

{〈
w

(0)
1,r∗ , 1 · v

〉
< 0
}
− P

{〈
w

(0)
−1,r∗ ,−1 · v

〉
< 0
}

= 1− P
{〈

w
(0)
1,r, 1 · v

〉
< 0,∀r ∈ [m]

}
− P

{〈
w

(0)
−1,r,−1 · v

〉
< 0,∀r ∈ [m]

}
= 1− 1

2m−1
≥ 1− n−1

so with probability exceeding 1 − n−1, Λ
(0)
j =

〈
w

(0)
j,r∗ , j · v

〉
≥ 0 holds for both j ∈ {−1, 1}.

Since Λ
(−1)
j = 0, then the inequality

Λ
(t)
j ≥ Λ

(t−1)
j +

ηαq

2ρq−1
Θ

((
Λ

(t−1)
j

)q−1
)
− Θ̃

((√
sσpσ0

)q−1
)

holds, so we verify Hypothesis 2 at t = 0. According to previous calculations, we have that Λ
(0)
j =

Θ̃ (σ0) ≤ Θ̃ (1) for all j ∈ {−1, 1}, so we verify Hypothesis 6 at t = 0.
(iii) In terms of Hypothesis 3, 4, 7, and 8, from the calculations of initialization in Lemma G.2, we
have that for any i ∈ [n], Φ

(0)
yi,k,i

≤ Φ
(0)
yi,k ≤ Θ̃ (

√
sσpσ0). Since Φ

(−1)
yi,k,i

= 1, then

Φ
(0)
yi,k,i

≤ Θ̃
(√
sσpσ0

)
≤ 1 ≤ Φ

(−1)
yi,k,i

+
η

ρq−1
Θ̃

(
dσ2

p

n

)
Θ

((
Φ

(−1)
yi,k,i

+ Θ̃
(
σ

2
3
0

))q−1
)

so we verify the hypothesis at t = 0.
(iv) In terms of Hypothesis 9, from the calculations of initialization in Lemma G.1, we have that for
any j ∈ {−1, 1},

〈
w

(0)
−j,r, j · v

〉
≤
∣∣∣〈w(0)

−j,r,v
〉∣∣∣ ≤ Θ̃ (σ0) ≤ Θ̃

(
σ

1
3
0

)
, so we verify the hypothesis

at t = 0.
For the induction part, we will use similar steps as in Lemma D.3, so we will omit the proof of this
part here.
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