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A Descriptive Basketball Highlight Dataset for Automatic
Commentary Generation

ABSTRACT
The emergence of video captioning makes it possible to automat-
ically generate natural language description for a given video.
However, generating detailed video descriptions that incorporate
domain-specific information remains an unsolved challenge, hold-
ing significant research and application value, particularly in do-
mains such as sports commentary generation. Moreover, sports
event commentary goes beyond being a mere game report, it in-
volves entertaining, metaphorical, and emotional descriptions. To
promote the field of sports commentary automatic generation, in
this paper, we introduce a novel dataset, the Basketball Highlight
Commentary (BH-Commentary), comprising approximately 4K
basketball highlight videos with groundtruth commentaries from
professional commentators. In addition, we propose an end-to-end
framework as a benchmark for basketball highlight commentary
generation task, in which a lightweight and effective prompt strat-
egy is designed to enhance alignment fusion among visual and
textual features. Extensive experiments on the BH-Commentary
dataset demonstrate the validity of the dataset and the effectiveness
of the proposed benchmark for sports highlight commentary gener-
ation. (The dataset is available at https://anonymous.4open.science/r
/dataset-DC8E)

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
Dataset, Video Captioning, Basketball Commentary Generation,
Vision-Language
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1 INTRODUCTION
Video captioning [48, 63] stands as a challenging and essential
task in both the computer vision and natural language process-
ing communities. Aimed at automatically generate the description
about the visual content of a given video in natural language, this
task has gained significant attention in recent years due to its im-
portance across various applications. One good example is sports
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commentary generation (especially for team sports such as football,
basketball, and volleyball etc). Figure 1 illustrates the distinction
between the conventional video captioning task and our sports
commentary generation. We can notice that the conventional video
captioning can solely provide amacroscopic perspective description
of the video (e.g., a scene featuring players are playing basketball).
In contrast, the commentary generation is capable of offering more
vivid description of individual technical movements and the coor-
dination between team members (e.g., Player A launches a long
pass from the backcourt, setting up Player B for a one-handed slam
dunk, showcasing flawless teamwork.).

Figure 1: Comparison between previous work and ours. Our
commentary generation presents a more realistic and vivid
scene

For a sports highlight video that showcases exquisite individual
move and teamwork, the key of commentary generation lies in
capturing the the visual characteristics of athletes’ technical move-
ments and map them into statements that contain technical terms
and descriptive words. However, for basketball highlight video, this
presents several challenges. Firstly, the basketball highlights usu-
ally contain players’ gorgeous technical movements and exquisite
teamwork, which provides a visual basis for downstream generative
model. Accurately and effectively capturing and representing these
visual features from video can offer more informative cues for com-
mentary generation. Several recent studies [50, 64, 70, 73] focused
to leverage the action information contained in videos to enhance
the downstream task. However, such studies usually employ multi-
ple feature extractors that trained for visual understanding tasks
to extract 2D and 3D visual features. Although these approaches
have shown promising results, there raises problems about the ex-
tent to which these extracted features from off-line extractors can
be effectively adapted to suit the requirements of the captioning
task. Secondly, the generated commentaries should highlight the
player’s gorgeous moves and coordination, that is the model should
be able to generate commentaries containing the player’s technical
movements based on visual information. Most of the existing re-
search [3, 19, 47, 55] tends to emphasize the effective exploitation
of visual features, with few taking into account the significance
of cross-modal interactive fusion and explicitly leveraging such
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interaction to enhance the downstream generation. Moreover, as
for basketball highlight video, the commentary on it must not be
a simple description of the player’s actions. While it is difficult to
train a model that can generate commentary that is descriptive and
professional in content on the basis of existing video captioning
datasets. In this context, there is a significant need for a readily
accessible sports commentary dataset, annotated by professional
sports analysts, to facilitate research in this area.

To explicitly tackle these challenges and develop a practical
sports highlight commentary generation system, particularly in the
context of basketball highlight video, in this paper, we propose an
end-to-end framework for basketball highlight commentary gener-
ation. Specifically, for visual feature extraction, taking inspiration
from the recent works of transformer-based models in video un-
derstanding [2, 13, 14], we utilize a video transformer to extract
features with the original video as input. In contrast to employing
separate offline 2D and 3D visual extractors, our model integrates
visual extraction within a unified framework, along with subse-
quent multi-modal feature encoding and commentary generation
modules. This integration enhances the suitability of the extracted
visual features for downstream tasks. As for multi-modal feature
encoding, a lightweight but effective prompt strategy is designed to
promote the interaction fusion between visual and textual features,
which prompts the model to focus on the visual representations
that are most relevant to the text. It is worth noting that in our
proposed model, each component is integrated into the unified
framework, which makes the components of the model compatible
and mutually reinforcing. Moreover, to initiate shareable research
in this emerging field, we are introducing a new dataset, called
Basketball Highlight Commentary (BH-Commentary). This dataset
comprises 4,396 high-definition NBA basketball highlight videos
from the Tencent Video website, each of which is annotated with
detailed descriptive commentary.

In summary, the main contributions of this work are summarized
as follows:

• We collect a novel high-quality dataset for sports highlight
commentary generation, which contains 4K basketball high-
light videos from websites and corresponding commentaries
from professional commentators.

• We propose an end-to-end benchmark model for sports high-
light commentary generation, which integrates visual fea-
ture extraction, multi-modal feature encoding and commen-
tary generation task into a unified framework.

• A lightweight and effective prompt strategy is designed to
promote multi-modal feature interactive fusion.

• Extensive experiments on the collected dataset demonstrate
the proposed benchmark model’s effectiveness and the va-
lidity of the dataset.

2 RELATEDWORKS
2.1 Video Captioning
Video captioning aims to generate a condensed natural linguis-
tic sentence that describes the main event of a video. Early re-
searches adopt the template-based strategy to generate video cap-
tions [24, 60], this sort of methods usually align the sentence com-
ponents to the detected visual content, and generate the description

based on the pre-defined templates, which are typically limited by
the fixed templates. Recent works usually adopt encoder-decoder
structure for this task [17, 48, 68], where the encoder translates
the input video to visual features, and the decoder integrates the
encoded visual features and generate a natural sentence. Since
without bounded by the pre-defined template, such methods can
generate captions with more flexible sentence patterns. Specifically,
based on the extracted visual or visual-linguistic feature, [47, 66, 69]
utilize the LSTM/GRU-based architecture for caption generation
task, [50, 63, 72] use transformer-based model for video caption-
ing generation. Unlike the above models that adopt offline feature
extraction, we take an end-to-end approach to integrating feature
extraction with downstream task.

2.2 Visual Extractor
Transformer [53], adopting an attention-based encoder-decoder
structure, has demonstrated promising performance on the NLP
tasks. Inspired by the outstanding ability on sequence modeling,
some recent researches explore transformer-based structure in the
field of computer vision, achieving remarkable results on basic CV
tasks [13, 18, 58, 65]. Since the competitive modeling capabilities,
the visual transformers have achieved impressive performance im-
provement compared with the traditional methods. The application
of visual transformer to video field is also gaining increasing at-
tention. In order to cope with the characteristics of videos with
long sequences, Neimark 𝑒𝑡 𝑎𝑙 . [40] adopt temporal attention-based
encoder, which could attend to all tokens in the input sequence,
making the model capable of handling long sequences. Arnab 𝑒𝑡 𝑎𝑙 .
[2] introduce a transformer-basedmodel to employ spatial-temporal
attention for better video representation. Zhang 𝑒𝑡 𝑎𝑙 . [67] propose
stacked attention to aggregate spatio-temporal information con-
tained in the video for improving representation learning. Moreover,
inspired by the success of Swin Transformer in image domain [35],
Liu 𝑒𝑡 𝑎𝑙 . [36] further propose Video Swin Transformer, which in-
troduces an inductive bias of locality in spatiotemporal domain into
transformer structure, obtaining promising video representation.

2.3 Vision Language Model
Joint vision language understanding associates the computer vi-
sion and natural language processing together, and has attracted
increasing attention from the two fields. Recent researches [27, 50]
have shown the success in the field of multi-modal representa-
tion learning for vision-language understanding and generation,
including downstream tasks like video-language retrieval [6, 16],
video question answering [26, 32], and video captioning [56, 62].
In order to get better performance, most language models tend to
adopt large scale training data, causing the loss of computation
and memory. With the success of the language pre-training and
video-text pre-training strategy, recent works attempt to employ
the pre-trained language models to the vision language task. For
example, by freezing the weights of a pre-trained language model,
[1, 52, 57] show promising results in vision language tasks. More-
over, masked language models also show success in language works
[12, 25, 31], which pre-trains a transformer-based structure to learn
language representations, achieving competitive performance in
downstream tasks after being fine-tuned. The success of masked
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Figure 2: Illustrations of BH-Commentary dataset statistics. (a-c) Distribution of frequentwords, video duration and commentary
length of the dataset in English version.

languagemodels also drives the exploration the works of applying it
to the multi-modal representation model with paired visual-textual
data [15, 29, 37], which show competitive performance on vision
language tasks.

Dataset Domain #Video #Sentence Total Dur(h)

MSVD [9] Open 1970 70k 5.3
MSR-VTT [59] Open 10k 200k 41.2
MPII-MD [46] Movie 68.3k 68.3k 73
TACoS [45] Cooking 127 11.8k -
YouCook [11] Cooking 88 2.7k 2.3
YouCook2 [71] Cooking 2k 15.4k 176
ActivityNet-Caption [7] Open 20k 100k 840
SoccerNet-caption [39] Soccer Game 0.9k 36k 715.9
SVCDV [44] Volleyball 4.8k 44k -
FSN [64] Basketball 2k 6.5k -

BH-Commentary Basketball 4.3k 4.3k 10.1

Table 1: Comparison existing video captioning datasets.

3 BASKETBALL HIGHLIGHT COMMENTARY
DATASET

Basketball Highlight Commentary (BH-Commentary) is a basket-
ball highlight video commentary generation dataset. Each highlight
clip is annotated with an description of its content. Unlike previ-
ous video captioning datasets that describe motions from a macro
perspective, this dataset focuses on providing a lively language of
commentary on the technical movements of players in basketball
videos, where each comment corresponds to one event highlight.
In the following, we introduce the dataset collection process and
provide a comprehensive statistical analysis on this dataset.

3.1 Dataset Collection
We collect 4,800 highlight videos from the NBA’s 2020-2023 season
from websites. And we filter out videos that are too short and had
poor visual quality, ultimately choosing 4,396 videos with diverse
and detailed motions for the final annotation process. Basketball
highlights videos in our dataset involve six categories of basketball
actions, including pass, dunk, block, shot, steal and layup, as shown
in Figure 3(a). All videos are available at 25fps in two resolutions:

480p and 720p. The commentaries from professional commentators
are initially presented in Chinese version in audio form, which we
transcribe into English text through transcription and proofreading.
Moreover, in line with conventional captioning datasets, we offer
the anonymized version of the captions in which specific players’
names are replaced with generic tokens. In fact, most of existing
captioning models are not capable to accurately identify the indi-
viduals featured in the videos. Since generating accurate names
would be nearly impossible without the inclusion of specifically
designed modules for identity classification and identification.

Dataset verb per sent noun per sent adj per sent adv per sent

MSR-VTT [59] 1.84 3.20 0.60 0.15
BH-Commentary 1.42 6.31 1.30 0.55

Table 2: Comparison of the average number of verbs, nouns,
adjectives and adverbs per sentence of the our dataset and
MSR-VTT dataset.

3.2 Dataset Statistics
Our dataset includes 4,396 videos, each of which corresponds to one
annotated statements from professional commentators. Each video
has an average of 15.3 words. On average, each word describes 0.5s
in video and 4.8% of the entire video, which demonstrates that our
annotations are informative and detailed, comprehensively encom-
passing the contents in the video. Table 1 provides a comparison
of major statistics between our dataset and other existing popular
video captioning datasets. Unlike other datasets collect videos from
common domain or generate them virtually that stand out with
longer total video duration, our dataset mainly focuses on highlight
from real basketball game scenes. Based on a limited number of
basketball game highlight and the corresponding commentaries
from professional commentators, our dataset contains 4,396 high-
light videos with a total of 10.1 hours and the same number of
annotations. As shown in Figure 2(a), in our dataset, the most fre-
quently occurring words are the names of the players, followed
by words that are semantically related to basketball and associ-
ated elements. In addition, the distribution of video duration of our
dataset is shown in Figure 2(b), the longest video lasts 27.8s and
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Figure 3: Illustrations of BH-Commentary dataset statistics. (a) Distribution of basketball action categories.(b-c) Distribution of
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Figure 4: The parts of speech distribution of BH-Commentary
and MSR-VTT dataset. All the values in the figure are the
percentage of parts of speech ratio. There aremore adjectives
and adverbs in BH-Commentary, as this is commentary gen-
eration dataset focusing on providing descriptive language
for players’ motions.

the shortest one lasts 3.1s, and the average video duration is 10.5s.
And the distribution of commentary length of our dataset is shown
in Figure 2(c), the length of the commentaries in our dataset varies,
with the longest being 36 words and the shortest being 6 words.

As for the Chinese version of our dataset, Figure 3(b-c) illus-
trate the distribution of frequent words and commentary length
in Chinese version. As shown in Figure 3(b), the length of the Chi-
nese commentaries in our dataset varies, with the longest being
43 words and the shortest being 7 words. In addition, similar to
the English version, in Chinese version of our dataset, the most
frequently occurring words are the names of the players, followed
by terms that are semantically related to basketball and associated
elements, as shown in Figure 3(c).

Moreover, we conduct a parts of speech analysis on our dataset
in comparison with MSR-VTT [59]. As depicted in Figure 4, our
dataset exhibits a higher proportion of nouns, adverbs, and adjec-
tives, which underscores our dataset’s increased focus on players,

their technical movements, and the accompanying descriptive ele-
ments. In Table 2, the comparison of the average number of verbs,
nouns, adjectives, and adverbs per sentence further demonstrate
the descriptive advantage of our annotations. In each highlights
video, our annotations feature a higher count of descriptive words
per sentence, this is in line with our objective: delivering vivid
commentaries for sports highlights. And for dataset splitting, we
take the same settings as MSR-VTT dataset that we randomly di-
vided the dataset into training, validation, and testing sets with
proportions of 65%, 5%, and 30%, respectively.

3.3 Novelty
Committed to advancing the researches about video captioning/
description generation, multiple datasets covering various domains
have been introduced. In general, video captioning tasks can be
primarily categorized into two families: single event caption gener-
ation [9, 59] and multiple events caption generation [39, 64, 71]. As
shown in Table 1, due to the objective reasons such as the difficulty
of video collection and annotation, previous studies rarely focus on
sports video description generation. Some studies, such as [39], uti-
lize virtual methods such as games to create sports game videos for
building dataset. [44] and [64] built datasets of video descriptions
generation based on volleyball and basketball games. However, all
the previous works on sports video description generation focus
on the relaying of players’ movements during a game. In this work,
based on the basketball games, we propose the fist dataset focusing
on sports highlight commentary generation, which provides more
descriptive language than mere statements of action. Compared
with the existing basketball video description dataset FSN [71], our
dataset tends to provide emotional and descriptive commentary
for basketball highlights, which makes it easier for the audience to
empathize with the excitement of the game.

4 COMMENTARY GENERATION MODEL
The goal of sports highlight commentary generation is to auto-
matically generate eloquent and descriptive sentence to paint a
vivid picture of the technical movements executed by the players in
the video. This challenge raises the question of how to enable the
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Figure 5: The overall architecture of the proposed model. We formulate the commentary generation as a sequence-to-sequence
task, the raw video frames and the text are first encoded by the visual and textual encoder, respectively. The prompt embedding
that utilized to facilitate the multi-modal feature fusion is aggregated with the input and the previous state, and is concatenated
with the multi-modal embeddings, which are further input to the multi-modal encoder. Then the language decoder head
autoregressively generates the output commentary based on the multi-modal representaions.

efficient mapping of visual input to commentary output. Further-
more, the well-extracted visual features could serve as crucial visual
cues for commentary generation. To tackle these problems, we first
introduce a unified end-to-end multi-modal encoding framework,
treating the automatic generation of sports highlights commentary
as a sequence-to-sequence task, as explained in Section 4.1. Then,
an effective prompt strategy is devised to enhance the alignment
of multi-modal representations in Section 4.2. And the strategy of
training and inference are introduced in Section 4.3.

4.1 Model Architecture
We wish to design an architecture that can effectively map the
sports highlight video to corresponding descriptive commentary.
To achieve this goal, we introduce an end-to-end framework that
takes raw sports highlight video frames as input and generates
natural language commentary for input content description. Figure
5 shows the overview of our proposed benchmark model. In detail,
given a pair of video {𝑓𝑡 }|𝑇𝑡=1 and text sequence {𝑠𝑛}|𝐿𝑛=1, where 𝑇
represents the number of sampled frames from the input video, and
𝐿 denotes the length of the sentence. We first separately encode
them using individual encoders to obtain unimodal features, the
visual encoder extracts visual features from the raw sports highlight
video frames, while the text encoder embeds the textual represen-
tation. Subsequently, the multi-modal encoder further encodes the
multi-modal representation based on both the visual and textual
features. And the commentary is generated in an auto-regressive
manner. The detailed description of each module are given as fol-
lows.

Visual Encoder. Drawing inspiration from the success of vari-
ous transformer-based model for video representation learning
in long-range temporal relationship modeling [5, 36, 61], recent
advancements in video-language research [31, 51] have begun to
leverage the success of video transformers, showcasing improved
performance in downstream tasks. In this paper, we employ the
Video Swin Transformer [36] (VST) as visual backbone for visual
feature extraction, based on the frames from raw input video.

The visual encoder takes a sequence of 𝑇 frames 𝑓 ∈ R𝐻×𝑊 ×3

sampled from raw video as input, where 𝐻 and 𝑊 refer to the
height and width of each frame. Then the grid features are extracted
from the last encoder block of VST, resulting in grid features with
dimension of 𝑇

2 × 𝐻
32 × 𝑊

32 × 8𝐶 , where 𝐶 represents the channel
dimension. These grid features are then tokenized along the channel
dimension, yielding a total of 𝑇2 × 𝐻

32 × 𝑊
32 video tokens, with each

token being an 8𝐶-dimensional feature vector. For more in-depth
information, please refer to [36]. These extracted visual features
are then utilized as input for the multi-modal fusion encoder to
facilitate the learning of cross-modal representation.
Textual Encoder. For text encoding, the input text sentence is
first tokenized into a sequence of 𝑁 tokens {𝑡𝑛}|𝑁𝑛=1. And two
special tokens, [CLS] and [SEP], are inserted at the start and the
end of the token sequence. Then, like previous works [27, 37], we
utilize a lightweight word embedding layer [21] to obtain textual
embeddings, which are concatenated with the visual features and
then input to the multi-modal encoder.
Multi-modal Encoder.We utilize a transformer-basedmulti-modal
encoder for multi-modal features encoding. Specifically, the multi-
modal encoder takes two modal inputs, which correspond to the

2024-04-13 01:41. Page 5 of 1–10.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

visual and textual features extracted from the two unimodal en-
coders. Denoting the encoded visual and textual embeddings as
𝐸𝑣 ∈ R𝑇×𝑘 and 𝐸𝑡 ∈ R𝑁×𝑘 , we then concatenate these two em-
beddings as input to the multi-modal encoder, denoted as 𝐸𝑚 =

[𝐸𝑣 ;𝐸𝑡 ] ∈ R(𝑇+𝑁 )×𝑘 , where [; ] denotes concatenation and 𝑘 de-
notes the dimension of hidden state. To obtain the cross-modal
representations, the visual and textual embeddings are combined
through cross-attention operations. Then we conduct sequence to
sequence generation process to implement commentary genera-
tion, where we employ a causal self-attention mask, ensuring that
a caption token can only attend to the previously generated output
tokens.

Through our generic design, we enable end-to-end training for
commentary generation using the raw video frames. Furthermore,
by leveraging the versatility of the transformer architecture, our
model can handle video sequences with variable lengths.

Multi-Head 

  Attention

Add

tanh

Linear

EP m

Concat

Linear

Add

sigmoid

Gated Combination

Figure 6: The illustration of prompt embedding updating
scheme. The prompt embedding is selectively updated ac-
cording to the input using the multi-head attention with a
residual connection.

4.2 Multi-modal Fusion via Prompt
Recently, a line of works show promising performance in obtain-
ing the desired output through prompt designing [20, 28, 30, 41].
Instead of designing manually, soft prompt is proposed as a series
of continuous embeddings that are prepended to the input and
updated throughout training. In this work, we propose to utilize
a lightweight soft prompt strategy using the attention network
with a residual connection for promoting multi-modal features in-
teraction and fusion. Instead of using the original prompt setting
[28], we pass the soft prompt embedding and multi-modal embed-
dings through the attention network with a residual connection.
Subsequently, we reparameterize the prompt and prepend it to the
multi-modal embeddings before feeding it into the multi-modal
encoder. In specific, as shown in Figure 6, we set a sequence of soft
prompt embedding 𝑃 = [𝑝1, . . . , 𝑝𝑛] ∈ R𝑛×𝑘 , here 𝑛 and 𝑘 denote
the number of and the dimension of prompt vectors respectively.

With multi-head attention, we can aggregate the feature from both
the multi-modal embeddings 𝐸𝑚 and the prompt embedding 𝑃 , and
the prompt embedding can then be selectively updated according to
both the current input and the previous state with residual connec-
tion. Then the prompt-concatenated multi-modal representations
are further encoded through the multi-modal encoder. The entire
process above is denoted as below:

𝐴 = FFN(𝑀𝐻𝐴𝑡𝑡 ( [𝑃, 𝐸𝑚])),
𝑆 = tanh(𝑊𝑠𝑝 𝑃 +𝑊𝑠𝑎 𝐴 + 𝑏𝑠 ),
𝑍 = sigmoid(𝑊𝑧𝑝 𝑃 +𝑊𝑧𝑎 𝐴 + 𝑏𝑧),

𝑃
′
= (1 − 𝑍 ) ⊙ 𝑆 + 𝑍 ⊙ 𝑃,

(1)

where FFN denotes feed-forward network, 𝑀𝐻𝐴𝑡𝑡 denotes multi-
head attention in transformer network [53], tanh and sigmoid de-
note activation functions, ⊙ denotes Hadamard product,𝑊𝑠𝑝 ,𝑊𝑠𝑎 ,
𝑊𝑧𝑝 and𝑊𝑧𝑎 are trainable weights, 𝑏𝑠 and 𝑏𝑧 are trainable bias.

4.3 Training
Train Setting. The visual encoder is pre-trained on the Kinetics
action recognition task [8]. During training, the model takes video
and text input, which are further input to the visual and textual
encoder for feature extraction. The prompt embedding is jointly
updated with the model during training. Furthermore, all textual
tokens have complete attention not only to the visual tokens but
also to the prompt, ensuring that the prompt can enhance the
comprehensive interaction of multi-modal features, which allows
the model to effectively utilize both visual and textual modalities
to generation accurate and descriptive commentary.
Inference. During inference, the model solely takes the video as
input, and the commentary is generated in an auto-regressive man-
ner. The model generates one textual token at a time, using the
tokens generated thus far as inputs for the multi-modal transformer
encoder. And the prompt is no longer updated, instead, it serves
the purpose of facilitating the commentary generation.

5 EXPERIMENT
In this section, we demonstrate the effectiveness of our benchmark
model on its ability of generating sports highlight commentary.
We conduct experiments on BH-Commentary dataset, which is
specifically built for this task, andwe compare ourmodel to the state
of the art. We first introduce the experimental setting in Section
5.1, and the ablation study is conducted in Section 5.2. Finally, we
present the experimental results and analysis in Section 5.3.

5.1 Experimental Setting
Metrics.We adopt several widely-used evaluation metrics, includ-
ing BLEU@4 [42], METEOR [4], Rouge-L [33], and CIDEr [54] to
measure the performance of the benchmark model. We calculate
these metrics using the standard COCO evaluation tools 1 [10].
Implementation Details. Our model is implemented in PyTorch
[43], the visual encoder is initialized with Kinetics-600 pre-trained
weights, the textual encoder is initialized from pre-trained BERT-
Base [12], and the multi-modal encoder is initialized randomly. The
number of prompt vectors is set to 8, which is equal to 1% of the

1https://github.com/tylin/coco-caption
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Figure 7: Qualitative examples generated by our benchmark model.

number of multi-modal representation vectors, meeting the need for
lightweight. For multi-modal encoding, we adopt the transformer-
based structure with 12 layers and 768 dimensional hidden states.
The whole model is trained in end-to-end manner. In addition, we
adopt the AdamW [22] optimizer with an initial learning rate of
3e-5 and use a learning rate warm-up during the early 10% training
steps followed by linear decay.

5.2 Ablation Study
To verify the effectiveness of the designed prompt, we show the
performance changes in the last block of Table 3 by removing the
prompt and simply input the concatenated multi-modal embed-
dings to the multi-modal encoder for the following commentary
generation, which obviously results in a decline in model perfor-
mance across all evaluation metrics. The results suggest that the
performance of commentary generation can be greatly lifted by
using prompt for promoting multi-modal feature fusion. Moreover,
the model without prompt setting is selected as the baseline model
for comparison in experiment analysis, which is discussed in the
following section.

5.3 Results and Analysis
Compare to the State of the Art. We consider four up-to-date
baselines for comparison. Table 3 lists the main results on the com-
mentary generation task. According to Table 3, our benchmark
model demonstrates the capability to generate more accurate and
higher-quality commentaries when compared with the baselines.
We attribute the superior performance of our benchmark model
to two main factors. Firstly, the end-to-end setting enables the
modules to be iteratively updated within a unified framework, en-
hancing the compatibility between each module. Additionally, the

Model Bleu@4 METEOR Rouge-L CIDEr

Swinbert [34] 3.2 12.5 27.6 11.7
UniVL [38] 2.9 11.3 18.2 6.3
UniVL+MELTR [23] 3.6 12.4 27.8 11.4
CoCap [49] 3.8 12.6 27.7 11.8

w/o prompt 3.2 12.4 27.3 10.9
ours 4.1 12.9 28.7 12.2

Table 3: Comparison of the proposed benchmark model with
the state of the art works for commentary generation task
on BH-Commentary dataset.

well-designed prompt plays a crucial role in facilitating the fusion of
multi-modal features, thereby promoting the downstream commen-
tary generation task. However, from an intuitive perspective, the
models’ performance metrics on our dataset seem comparatively
lower than on other datasets. This can be attributed to the inherent
complexity of generating commentary for sports highlight videos.
The intricate sentence structures and highly descriptive content in
our dataset pose significant challenges to the learning process of the
model. Despite this, our model serves as an inspiration for future
efforts to address the challenges in sports highlight commentary
generation.
Qualitative Analysis. To further qualitatively assess the perfor-
mance of our benchmark model in the commentary generation task,
Figure 7 shows several examples about the highlight videos and
corresponding commentaries obtained from groundtruth, baseline
model and benchmark model. These examples indicate that out
benchmark model can recognize the visual contents, and generate
accurate terms and descriptive sentences. In both examples, the

2024-04-13 01:41. Page 7 of 1–10.
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Figure 8: Qualitative examples generated by our benchmark model in Chinese version.

generated commentaries can cover the key technical moves of the
players. In specific, for the first example, the video showcases the
clever pass and powerful dunk executed by players. As shown in
Figure 7(a), our model can accurately generate commentary that
encompasses detailed actions and matches the groundtruth. In con-
trast, the baseline model is not able to generate the appropriate
vocabulary to link the two actions, thereby failing to depict the
coordination between the players. For the second example shown
in Figure 7(b), we can observe that our model accurately gener-
ates the basketball skill action "two-handed dunk," which aligns
with the groundtruth. In contrast, the baseline model fails to do
so. As shown in Figure 7(c), in the third example, the commentary
produced by our model accurately describes the actions "dribbles
past the defense" and "one-handed slam dunk," which correspond
to "drives straight in" and "sky-high slam dunk" in the groundtruth,
respectively. While the baseline model, though correctly generating
the term "one-handed slam dunk," provides inaccurate information
with "clever pass." In the fourth example, as shown in Figure 7(d),
our model delivers precise commentary, stating that the player
successfully nails a long-range three-pointer, followed by a concise
summary description. While the baseline model just repeats the
given information.
Chinese Version. We also conducted a qualitative analysis on the
Chinese version of the dataset, as illustrated in Figure 8. Our model
accurately provides descriptions in the commentary, enriched with
the suitable idioms. Specifically, in the first example, the highlight
video showcases the player’s dynamic and powerful dunk as he
breaks through the defense. As shown in Figure 8(a), our model
excels in generating accurate commentary that matches with the
groundtruth and provides a summary description. In the second
example, shown in Figure 8(b), we can observe that our model ac-
curately generates the basketball skill actions based on precise pass
and dunk, which is consistent with the groundtruth. In contrast,

the baseline model produces inaccurate information with“three-
pointer.” As shown in Figure 8(c), in the third example, the com-
mentary generated by our model accurately provides the term
"three-pointer" and corresponding description. While the baseline
model just repeats the given information. In the fourth example
shown in Figure 8(d), our model outperforms the baseline by offer-
ing additional detailed information about Player A before executing
the pass, which is not mentioned but actually true in the video.
Shortcoming. During experiments, we also find some shortcom-
ings in our benchmark model. Our model may sometimes fail to
recognize similar movements, such as layups and dunks. Moreover,
as shown in Figure 7 and Figure 8, compared with the groundtruth,
out generated commentary may lack some background information
description like “fast break”, and does not have the ability to gener-
ate such statements like “showcasing what "unstoppable" means
with a sky-high slam dunk”. Our benchmark model serves as in-
spiration here. Addressing the challenge of enabling the model to
understand these statements and generate them in the appropriate
context remains a task that needs further exploration in subsequent
research.

6 CONCLUSION
In this work, we create a descriptive basketball highlight video
dataset for sports highlight commentary generation task. We pro-
pose a benchmark model for this task and outperform the state of
the art models. Extensive experiments demonstrate the effective-
ness of the proposed benchmark model and validity of the collected
dataset. Due to the rich content of descriptive commentary, it is ap-
parent that there is room for improvement in the performance of the
model for the sports highlight commentary generation task, which
remains research direction for subsequent studies. Our benchmark
model serves as an inspiration here for the further research.
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