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Abstract

Linear attention enhances inference efficiency001
of Transformer and has attracted research in-002
terests as an efficient backbone of language003
models. Existing linear attention based models004
usually exploit decay factor based positional005
encoding (PE), where attention scores decay006
exponentially with increasing relative distance.007
However, most work manually designs a non-008
trainable base of exponential calculation (decay009
factor), which limits further optimization. Our010
analysis reveals that direct training decay fac-011
tor is unstable. To address this problem, we012
propose a novel PE for linear attention named013
Disentangle to Decay (D2D). D2D disentangles014
decay factor into two parts to achieve further op-015
timization and stable training. Moreover, D2D016
can be transformed into recurrent form for effi-017
cient inference. Experiments demonstrate that018
D2D achieves stable training of decay factor,019
and enhances performance of linear attention020
in both normal context length and length ex-021
trapolation scenarios 1.022

1 Introduction023

Linear attention, by substituting the softmax func-024

tion in vanilla Transformers with a dot-product025

of kernel feature maps, achieves linear complex-026

ity during inference and is particularly advanta-027

geous for processing long sequences (Katharopou-028

los et al., 2020). However, challenges such as029

cumulative regularity errors over long sequences030

necessitate specialized mechanisms for effective031

information filtering (Qin et al., 2022a). For ex-032

isting language models based on linear attention,033

such as RetNet (Sun et al., 2023) and TransNormer-034

LLM (Qin et al., 2024), their PEs include decay035

terms γ(i−j), where γ is the decay factor and i− j036

represents the relative position between two tokens.037

Decay factor provides a mechanism for information038

1Our code implementation is available at:
https://anonymous.4open.science/r/D2D-0CF7/

forgetting, which can alleviate the aforementioned 039

issue and enhance the capability of linear attention 040

in handling long sequences. 041

However, decay factors used in these mod- 042

els are manually designed and non-trainable, as 043

a limit to further optimization with model and 044

dataset (Moreno-Cartagena et al., 2023). We reveal 045

that directly training decay factor might generate 046

significantly large gradients, due to exponential cal- 047

culation with a trainable base. Consequently, large 048

gradients integrate numeric instability and leads 049

trainings to collapse. Models fail to yield satisfac- 050

tory outcomes from a trainable decay factor. 051

To enhance stability of training and performance 052

of models, our work proposes an innovative train- 053

able decay factor based PE named Disentangle to 054

Decay (D2D). D2D disentangles decay factor into 055

two parts. Global decay factor is fixed and pro- 056

vides base value. With an effective initialization, 057

it provides numeric foundation for trainable decay 058

factor. Moreover, it is initialized to certain range 059

to generate an item mitigate large gradients into an 060

acceptable range. Local tuning factor is trainable 061

for further optimization of performance, which is 062

stable with integration of fixed global decay fac- 063

tor. In implementation, we separate two parts of 064

decay factor in calculation. Consequently, D2D is 065

represented as a combination of absolute positional 066

encoding (APE) and relative positional encoding 067

(RPE). This form can also avoid unnecessary cal- 068

culation and address overflow problem for large 069

positional indices. 070

We pretrain language models using D2D and 071

other types of decay factors, with a similar scale 072

to GPT-2 (Radford et al., 2019). Then we conduct 073

various experiments on language modeling, length 074

extrapolation and downstream tasks. The results 075

show that D2D enables linear attention to achieve 076

better performance compared with both directly 077

trained decay factors and fixed decay factors. Ad- 078

ditionally, D2D shows greater numerical stability 079
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during training. D2D outperforms existing PE, in-080

cluding RoPE (Su et al., 2024) and ALiBi (Press081

et al., 2022). We also provide an implementation082

of the transformation for recurrent inference and083

conduct experiments on inference speed, indicating084

that D2D is both spatially and temporally efficient.085

Our main contributions are as follows:086

1. We analyze existing decay based PE meth-087

ods for linear attention from the perspective088

of gradients, investigating how numerical in-089

stability during the training process leads to090

either training failure or suboptimal results.091

2. We propose D2D, a novel trainable PE method092

for linear attention. D2D maintains stabil-093

ity in training and enhances representational094

capability of decay based PE. Moreover, we095

provide implementation of D2D for efficient096

training and inference.097

3. We conduct experiments of language mod-098

eling, length extrapolation and downstream099

tasks for D2D based language models. Re-100

sults show that D2D is more stable and out-101

performs other types of decay factors as well102

as existing PE on the aforementioned tasks.103

2 Preliminary104

2.1 Computational Form of Linear Attention105

For two tokens with positions i and j, let Qi106

and Kj represent query and key respectively.107

According to Katharopoulos et al. (2020), uni-108

fied formulation of linear and vanilla attention is109

given by Eq. 1, where the similarity calculation110

Sim(Qi,Kj) quantifies relationship between the111

query of the i-th token and the key of the j-th token:112

Atti,j =
Sim(Qi,Kj)∑i
k=1 Sim(Qi,Kk)

(1)113

In vanilla attention, the similarity is calculated114

using the exponent of the dot product of query and115

key, expressed as Sim(Qi,Kj) = exp (QiK
⊺
j ).116

Conversely, in linear attention, the similarity is117

computed directly through a kernel function ϕ,118

leading to a similarity measure Sim(Qi,Kj) =119

ϕ(Qi)ϕ(Kj)
⊺.120

2.2 Constraints of PE in Linear Attention121

Compared with vanilla attention, PE used in lin-122

ear attention must satisfy certain constraints. To123

enhance computational efficiency during inference,124

it is necessary to transform linear attention into 125

RNN (Katharopoulos et al., 2020). This transfor- 126

mation is contingent upon a specific positional en- 127

coding format, as detailed in Eq. 2: 128

Sim(Qi,Kj) = fq(Qi, i) · fk(Kj , j) (2) 129

where fq and fk are functions applied to Qi and 130

Kj , respectively, to incorporate absolute positional 131

information. To be more detailed, by this equa- 132

tion, the similarity calculation between queries and 133

keys is decomposed into independent functions that 134

are completely dependent on the queries and keys. 135

The detailed proof process for this constraint is 136

provided in Appendix. A.4. 137

3 Instability of Training Decay Factor 138

Numerical Instability For most decay factor 139

based PEs, decay factors are set as fixed number 140

instead of a trainable parameter, since they do not 141

achieve better performance (Press et al., 2022; Sun 142

et al., 2023). In this section, we analyze training of 143

decay factor exhibits numerical instability, lead- 144

ing to training collapse and limited optimization. 145

More specifically, the value of decay factor ex- 146

hibits significant fluctuations throughout the train- 147

ing process and fails to converge rapidly to a stable 148

value. When the decay factor reaches a certain 149

threshold, it tends to trigger gradient explosion, 150

causing the training to collapse. 151

Large Gradients Brought By Exponential Calcu- 152

lation The attention calculation involves higher- 153

order terms of decay factor, which can generate 154

large gradients and lead to unstable gradient de- 155

scent. For two tokens separated by a relative dis- 156

tance of δ, a higher-order term γδ is adopted in cal- 157

culation (Qin et al., 2024; Sun et al., 2023), where 158

γ is the decay factor. When γ becomes trainable, 159

it generates gradient of d(γδ)
dδ = δγδ−1. This will 160

cause instability while training as analyzed below. 161

When the range of δ increases, the gradient pro- 162

duced by the global decay factor can potentially 163

reach a very large value. For instance, GPT-2 2 164

has a context length of 1024. Taking γ = 0.999 as 165

an example, the gradient of decay factor reaches 166

a summit value of 376. This gradient acts as a co- 167

efficient while calculating attention score, which 168

enlarges the overall training gradients significantly. 169

Large gradients result in instability during training. 170

2https://huggingface.co/openai-
community/gpt2/blob/main/config.json
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Figure 1: An overview of D2D and vanilla decay factor based PE during training. Firstly, D2D disentangles decay
factor to global decay factor and local tuning factor to implement PE design. Then, D2D provides fixed global
decay factor for rough range, and trains local tuning factor for detailed optimization. By exploiting sum of them, a
well-optimized decay factor can be exploited for stable training and good performance. Additionally, we preprocess
value of global decay factor for every position in training length, in order to enhance training efficiency.

Moreover, linear attention has limited perfor-171

mance compared with vanilla attention due to large172

gradients (Qin et al., 2022a). Large gradients pro-173

duced by decay factor will further amplify unstable174

gradients produced by linear attention. In subse-175

quent experiments, we observe collapse of training176

and poor performance via directly trained decay177

factor, which valids our analysis.178

In summary, such unexpected gradients empha-179

size the sensitivity of the attention mechanism. It is180

necessary to stabilize training of decay factor and181

develop a more efficient decay factor based PE.182

4 Method183

Here, we propose D2D, an effective solution to ad-184

dress the instability of decay factor during training.185

Main process of D2D compared with vanilla decay186

factor based PE is shown in Fig. 1.187

4.1 Disentanglement based Positional188

Encoding189

Disentanglement of Decay Factor Firstly, we190

provide detailed assignment within attention191

head for decay factor. For l-th attention head, de-192

cay factor is described as a vector Pl ∈ R1×dh ,193

where dh is dimension of each attention head. For194

comparison, existing method exploit a constant195

scalar γl within the attention head.196

Secondly, we disentangle value of decay factor 197

into two parts, global decay factor and local tun- 198

ing factor to achieve value of decay factor more 199

detailed. Global decay factor P b is applied to 200

each attention head, providing a rough range for 201

decay factor. For the l-th attention head, global 202

decay factor has a value of P b
l ∈ R1×dh , where 203

P b
l = (pbl , . . . , p

b
l ) is composed of a series of fixed 204

scalars pbl . Local tuning factor P s
l ∈ R1×dh is ap- 205

plied to each dimension of the attention head to 206

achieve fine-grained optimization of decay factor. 207

For the l-th attention head, vector Pl is disentan- 208

gled, that is Pl = P b
l + P s

l . As shown in Fig. 2, 209

possible sum of two factors takes up a wider range 210

of distribution, which is benefit for optimization. 211

Positional Encoding Design On the basis of 212

aforementioned disentanglement of decay factor 213

Pl, we rewrite the form of decay factor as Eq. 3, 214

where Sim(Qi,Kj)[l] represents the similarity cal- 215

culation for the l-th attention head, with all divi- 216

sions performed element-wise. In Eq. 3, undivided 217

calculation (first line of Eq. 3) and Θs use APE 218

form, while Θb uses the RPE form. 219

For training, calculation of D2D is transformed 220

into Θb · Θs. This transformation is key to im- 221

proving training stability and provides foundation 222

for the discussion on stable training methods in 223

Sec. 4.2. We implement an efficient training ap- 224
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proach in Sec. 4.3 for detailed discussion.225

Sim(Qi,Kj)[l] =
ϕ(Qi)

exp(iPl)
(

ϕ(Kj)

exp(−jPl)
)⊺

= Θb ·Θs

Θb = exp (−pbl )
i−j

Θs =
ϕ(Qi)

exp(iP s
l )

(
ϕ(Kj)

exp(−jP s
l )

)⊺

(3)226

For inference, numeric instability does not need to227

be concerned since all parameters of D2D are fixed228

during inference. We exploit first line of Eq. 3 for229

effective recurrent inference, where value of Pl is230

derived from P b
l +P s

l . It satisfies the constraints of231

converting linear attention into RNN as described232

in Sec. 2.2, so D2D is available for recurrent in-233

ference. More specifically, we can transform the234

linear attention calculation using D2D into the fol-235

lowing expression as described in Katharopoulos236

et al. (2020):237

V ′
i =

∑i
j=1(ϕ(Qi) exp(−iPl))(ϕ(Kj) exp(jPl))

⊺Vj∑i
j=1(ϕ(Qi) exp(−iPl))(ϕ(Kj) exp(jPl))⊺

=
ϕ(Qi)(Si−1 exp(−Pl) + ϕ(Ki)

⊺Vi)

ϕ(Qi)(Zi−1 exp(−Pl) + ϕ(Ki)⊺)

Si = Si−1 exp(−Pl) + ϕ(Ki)
⊺Vi

Zi = Zi−1 exp(−Pl) + ϕ(Kj)
⊺

(4)238

Eq. 4 is derived from Eq. 3 and is used in the239

inference process. In Eq. 4, V ′
i is the output of240

the attention, S0 ∈ Rdh×dh , Z0 ∈ R1×dh . All241

elements in S0 and Z0 are zero. More details of242

converting linear attention into RNN are shown in243

Appendix A.3.
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Figure 2: Illustration of disentanglement. Green circle
stands for each index of P is sum of fixed P b and train-
able P s. To visualize the value of P , we approximate it
with a smooth red curve on the Figure. Possible sum of
them could cover a wide range during optimization. In
the legend, Pl,d represents the value of P at dimension
d in the l-th head.
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4.2 Stabilizing Training 245

Effective Initialization for D2D An effective ini- 246

tialization strategy can provide optimal foundation 247

for PE (Press et al., 2022). Compared with ran- 248

dom initialization or zero initialization, it provides 249

a more structured initialization, facilitating faster 250

convergence and better overall model performance. 251

Following (Press et al., 2022), we initialize 252

global decay factor pbl as 2−
h
l for l-th attention 253

head, where h is the total amount of attention head. 254

This ensures an increasing density of values as they 255

approach zero, facilitating a more nuanced repre- 256

sentation of positional information. And we apply 257

zero initialization for local tuning factor, aims at 258

optimizing global decay factor in fine-granularity. 259

In D2D, global decay factor provides a founda- 260

tion for the training of local tuning factor. Once 261

global decay factor in each attention head is pre- 262

set to an appropriate value, range of P s
l during 263

gradient descent is narrowed and simultaneously 264

enhances stability during training. Subsequent ex- 265

periments in Sec. 5.4 validate the above analysis. 266

Stabilizing Gradients of Decay Factor As 267

shown in Sec. 3, training of decay factor gener- 268

ates large gradients, which is the main reason for 269

training instability. The global decay factor in D2D 270

can reduce the gradients during training to an ac- 271

ceptable range. 272

After adding the global decay factor, the abso- 273

lute value of gradient produced by the local tuning 274

factor is δexp(−pbl )
δ
exp(−P s

l )
δ. Compared with 275

the gradient produced by directly trained decay 276

factor, gradient of D2D has an extra coefficient 277

exp(−pbl )δ, where exp(−pbl ) < 1. This item de- 278

creases with the growth of δ, mitigating large gra- 279

dients brought by δ. In practical training in first 280

attention head of 8, global decay factor can gener- 281

ate a coefficient of 0.018 and reduce the gradient 282

in Sec. 3 from 376 to 6.87. 283

4.3 Mask-based Efficient Training 284

Implementation 285

Extra Time Cost on Calculating Θb As shown 286

in Eq. 3, Θb needs to be calculated every time in 287

similarity calculation of Sim(Qi,Kj). But Θb is 288

only determined by positional indices i, j, resulting 289

unnecessary exponential calculations. This prob- 290

lem also exists when directly training decay factor. 291

Precision Problems In Calculation During 292

training phrase, calculation in the first line of Eq. 3 293
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encounters preicision problems of floating numbers.294

For decay factor based PE, exp(γi) · exp(−γj) =295

exp(γ(i− j)) should hold for all position indices.296

However, the exponential calculation overflows297

when i is very large and approaches zero when298

j is very large. As a result, the product does not299

match the theoretical value during training. This300

causes the value of D2D, which is only related to301

relative positions, to be affected by absolute po-302

sitions of tokens. Consequently, optimization of303

decay factor might be truncated to certain value.304

Moreover, precision problems limit application for305

longer sequences as a result of larger positional in-306

dices. Therefore, it is necessary to avoid direct com-307

putation of exp(γi) and exp(−γj) in APE form.308

Instead, computing exp(γ(i− j)) in RPE form can309

help mitigate the impact of precision issues.310

Masked-based Transformation For Eq. 3, P b
l311

consists of identical scalars pbl . Therefore, the312

global decay factor can be factored out as Θb. It313

is constant across all computations within a head.314

Consequently, when context length is given, all315

possible results of relative positions can be pre-316

processed before training. We implement this by317

presetting a mask M as shown in Fig. 3. The ele-318

ment in the i-th row and j-th column of the matrix319

corresponds Mi,j . The part where j > i is assigned320

a value of 0 to ensure attention is unidirectional in321

autoregressive language modeling. During train-322

ing, positional information for i-th query and j-th323

key should multiply Mi,j to integrate global decay324

factor. For different attention heads, we preprocess325

matrices respectively, since number of attention326

heads is usually limited. Regarding the precision327

problem, we convert the global decay factor with328

larger values into a preprocessed mask, and the329

calculation of this mask only involves RPE. The330

remaining local tuning factor has smaller values331

and does not cause significant precision problems.332

To integrate this mask, we apply element-wise333

1 0 0
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Figure 3: An instance of decay mask (length n = 4).

product of mask and attention scores. In implemen- 334

tation, we replace causal mask 3 with M to save 335

time and space cost. 336

Overall Training And Inference Implementa- 337

tion During the training and inference phases, 338

the key difference lies in the introduction of the 339

computation process for the D2D attention output, 340

while the remaining steps follow those described 341

in Katharopoulos et al. (2020). Algorithm 1 and 342

Algorithm 2 respectively illustrate the process of 343

incorporating the D2D attention output in training 344

and inference. ÷ stands for element-wise division, 345

and ⊙ stands for element-wise multiply. In the al- 346

gorithm, the operations splithead and mergehead 347

refer to the processes used in the multi-head atten- 348

tion mechanism (Vaswani et al., 2017). 349

Algorithm 1 Attention Output During Training

1: procedure ATTN(Q,K, V,M,P s, n)
2: K ← K⊺

3: Q,K ← ϕ(Q), ϕ(K)
4: a← (0, 1, . . . , n− 1)
5: C ← exp (a · P s)
6: Q← Q÷ C
7: K ← K ⊙ C
8: Q,K, V ← splithead (Q,K, V )
9: Att← Q ·K ⊙M

10: for i← 0, to n− 1 do

11: Atti ← Atti/
n−1∑
j=0

(Atti,j)

12: end for
13: O ← Att · V
14: O ← mergehead (O)
15: return O
16: end procedure

5 Experiments 350

In this section, we apply D2D and linear attention 351

into vanilla Transformer. We conduct experiments 352

on language modeling, length extrapolation and 353

several downstream tasks after finetuning. Ex- 354

periment result validates effectiveness of D2D for 355

encoding positional information. Moreover, we 356

provide an implementation to transform linear at- 357

tention based on D2D to RNN in Appendix. A.7. 358

Result shows that D2D is efficient during inference. 359

360

3For autoregressive language models, causal mask is a
lower triangular matrix to ensure attention is unidirectional.
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Language Modeling Length Extrapolation Downstream Tasks

Datasets enwiki8
(PPL↓)

LAMBADA
(PPL↓)

WikiText2
(PPL↓)

GovReport
(PPL↓)

PG19
(PPL↓)

ARC-e
(ACC↑)

ARC-c
(ACC↑)

Finetune w/o w/o w/ w/o w/ w/o w/ w/o w/ w/ w/

Methods
Fixed. 94.91 95.06 31.53 96.29 18.57 24.14 16.78 198.53 40.52 0.250 0.218

Trained. 92.27 89.01 29.65 85.07 18.40 22.77 16.69 174.81 34.38 0.251 0.234

D2D 86.36 90.63 25.83 72.48 18.29 21.25 15.97 169.99 29.76 0.262 0.256

Table 1: The results of testing D2D, fixed decay factor, and directly factor on various tasks. Fixed. represents linear
attention using fixed decay factor, Trained. represents linear attention using directly trained decay factor and D2D
represents linear attention using D2D. w/o represents direct testing on the dataset, while w indicates testing after
finetuning on the corresponding training set. The best results for each task are bold.

Algorithm 2 Attention Output During Inference

1: procedure ATTN(Q,K, V,P b,P s, n)
2: K ← K⊺

3: P ← P b + P s

4: P ← exp (P )
5: S,Z ← 0dh×dh ,0dh×1

6: Q,K, V ← splithead (Q,K, V )
7: for i← 0 to n− 1 do
8: Qi,Ki ← ϕ(Qi), ϕ(Ki)
9: S ← S ⊙ P +Ki · Vi

10: Z ← Z ⊙ P +Ki

11: Oi ← (Qi · S)/(Qi ·Z)
12: end for
13: O ← concat(O1, . . . , On)
14: O ← mergehead (O)
15: return O
16: end procedure

5.1 Experiment Settings361

We select GPT-2 (Brown et al., 2020) as back-362

bone of autoregressive language models. We select363

elu(x) + 1 (Clevert et al., 2016) as kernel function364

and pretrain models on OpenWebText (Gokaslan365

and Cohen, 2019) datasets. Likewise, we use a366

dataset and number of training steps similar to367

(Radford et al., 2019). Dataset statistics and more368

details can be found in Appendix A.5.369

For comparison, we pretrain two models with370

fixed decay factor and directly trained decay factor371

respectively. For downstream tasks, we involve 1372

epochs of finetuning after pretrain.373

5.2 Experiment Results374

5.2.1 Language Modelling375

Following (Radford et al., 2019), we evaluate the376

capabilities of D2D in language modeling on en-377

wiki8 4, LAMBADA (Paperno et al., 2016) and 378

WikiText2 (Merity et al., 2016). As shown in Ta- 379

ble 1, the model exhibits good language modeling 380

performance with D2D, resulting from improved 381

positional information. On LAMBADA dataset, 382

D2D and the directly trained decay factor yield 383

similar results before finetuning. After finetuning, 384

D2D achieves better performance. 385

5.2.2 Length Extrapolation 386

It is crucial that the PE we design has sufficient 387

length extrapolation capability to fully leverage 388

the benefits of linear attention. Following (Press 389

et al., 2022), we conduct experiments in pretrained 390

domain and outside pretrained domain. 391

In-domain Length Extrapolation We conduct 392

language modeling task in training set of OpenWeb- 393

Text for longer context length than trained. D2D 394

achieves better results compared with both the fixed 395

decay factor and the directly trained decay factor. 396

Figure 4: The figure illustrates the model’s ability to
extrapolate the length within the domain. As the length
increases, the model using the decay factor initially
shows a decreasing trend in PPL, followed by an in-
crease, and eventually stabilizes.

4http://mattmahoney.net/dc/text.html
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PE Vanilla APE
Linear Attention

Vanilla APE
and Attention RoPE ALiBi D2D

PPL(Train) 49.40 45.74 44.59 44.88 43.82
PPL(Valid) 50.86 47.66 47.8 47.85 46.9

Table 2: PPL on training and validation dataset, lower PPL shows better performance. Values bold are denoted as
optimal results.

Out-of-domain Length Extrapolation Follow-397

ing (Rae et al., 2020; Dong et al., 2024), we test398

length extrapolation on GovReport (Huang et al.,399

2021) and PG19 (Rae et al., 2019). Firstly, we fine-400

tune models in normal context length and then con-401

duct language modeling on longer context length.402

Results are shown in Table. 1, D2D performs better403

compared to both the fixed decay factor and the404

directly trained decay factor.405

5.2.3 Downstream Task406

To verify the impact of D2D on linear attention in407

terms of reasoning capabilities and language un-408

derstanding capabilities, we conduct downstream409

task tests on ARC-e and ARC-c (Clark et al., 2018).410

As shown in Table. 1, linear attention using D2D411

outperforms those that use a fixed decay factor or a412

directly trained decay factor.413

5.3 Comparing with Other Positional414

Encoding415

To compare the performance of D2D with other416

commonly used PE in linear attention, we train417

combinations of various PEs with linear attention418

as well as vanilla Transformers on the first 10%419

of OpenWebtext dataset. We selected RoPE (Su420

et al., 2024), ALiBi (Press et al., 2022), Vanilla421

APE (Vaswani et al., 2017), and vanilla attention422

as baselines to compare with D2D. Detailed infor-423

mation of other PE is shown in Appendix. A.6. As424

Figure 5: The value of decay factor in the first layer of
D2D based linear attention model. To enhance image
clarity, we use vertical gray dashed lines to split heads
and sort P s within each head.

shown in Table. 2, D2D achieves the best results 425

on both the training and validation datasets. 426

5.4 Numerical Stability During Training 427

To verify the numerical stability of D2D, we train 428

both a linear attention with D2D and directly 429

trained decay factor. We compare their stability 430

by observing the numerical changes in the train- 431

able parts of the PE and the final training outcomes. 432

As shown in Fig. 5, the values of P s in D2D 433

are smaller compared to P b, primarily serving to 434

adjust the decay factor within each head. Fig. 6 435

provides a more intuitive illustration of the value 436

changes in the decay factor for both D2D and di- 437

rectly trained methods during the training process. 438

Compared with directly trained decay factor, the 439

stability of D2D during training is significantly 440

higher. 441

In Sec. 4.3, we discuss the issue of not convert- 442

ing Θb into a mask. To address this, we directly 443

Figure 6: The numerical fluctuations of the D2D and
directly trained decay factor from the first layer of linear
attention model during training process.
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Figure 7: The results of directly training D2D without
converting P b into mask. The image displays the values
of P in the first layer of the model.
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train a linear attention model using D2D without444

any transformations. As shown in Fig. 7, the value445

of P gets truncated near a certain threshold, mak-446

ing it difficult for the D2D to further change after447

reaching this value. This indicates that the prob-448

lem mentioned in Sec. 4.3 significantly impacts449

training, limiting the range of values for the D2D.450

6 Analysis451

In this section, we analyze improvements of D2D452

in three aspects of experiments. Improvements in453

language modeling can be attributed to the stable454

training of decay factor and appropriate range of455

global decay factor. They provide a more reason-456

able decay factor to represent more information.457

Regarding length extrapolation, we believe that458

the decay factor inherently possesses significant459

length extrapolation capabilities (Press et al., 2022).460

D2D enlarges such advantages with its stronger461

representation capabilities. For downstream tasks,462

the primary advantage of D2D lies in the optimiza-463

tion of local tuning factor. Fig. 5 illustrates that in464

the first head, the P b + P s values are negative in465

certain dimensions, indicating these dimensions fo-466

cus on tokens that are farther apart. This capability467

is not present in models with fixed decay factors or468

models with directly trained decay.469

7 Related Work470

7.1 Linear Attention471

Linear attention enhances computational efficiency472

by reducing the space-time complexity from473

quadratic to linear. It can be roughly categorized474

into kernel-based methods and random-based meth-475

ods. Kernel-based linear attentions (Qin et al.,476

2022b; Katharopoulos et al., 2020; Qin et al.,477

2022a) process query and key with kernel func-478

tions. Random-based linear attentions (Peng et al.,479

2021; Choromanski et al., 2021) fit expected value480

through random sampling methods.481

A notable advancement is the transformation482

of linear attention into a recurrent neural network483

form, as explored by Katharopoulos et al. (2020)484

and further applied in large-scale models by (Yang485

et al., 2023; Sun et al., 2023). These approaches486

allow for both parallel and serial processing, im-487

proving scalability and efficiency.488

7.2 Positional Encoding489

Positional encoding integrates positional informa-490

tion into the Transformer model, which is essential491

for sequence recognition and computational effi- 492

ciency, especially with long sequences and large 493

models (Kazemnejad et al., 2023). 494

Types of Positional Encoding PE can be catego- 495

rized into APE, RPE, and convertible positional en- 496

coding, each serving distinct roles within model’s 497

architecture. APE uses absolute positions, utiliz- 498

ing trigonometric functions or trainable parame- 499

ters (Vaswani et al., 2017; Brown et al., 2020; 500

Zhang et al., 2022). RPE accounts for relative dis- 501

tances between tokens with approaches like RoPE 502

or ALiBi (Su et al., 2024; Press et al., 2022), which 503

are common in large language models (Raffel et al., 504

2020; Chowdhery et al., 2023; Scao et al., 2022). 505

Convertible Positional Encoding allows switching 506

between APE and RPE, facilitating flexible compu- 507

tational strategies (Su et al., 2024). 508

Decay Factor Commonly used RPEs such as 509

RoPE (Su et al., 2024), ALiBi (Press et al., 2022), 510

and XPos (Sun et al., 2022) exhibit certain decay 511

properties. Specifically, during the computation of 512

attention scores, these PEs cause the model to focus 513

more on tokens that are closer in proximity. This 514

enhances the model’s focus during the calculation 515

of attention scores, thereby improving its language 516

modeling capabilities (Han et al., 2023). 517

For linear attention models (Sun et al., 2023; Qin 518

et al., 2024). They incorporate decay terms in form 519

of γ(i−j), where γ is the decay factor and i − j 520

denotes the relative positions. 521

8 Conclusion 522

In this paper, we design a positional encoding 523

method, D2D, for models based on linear attention. 524

By analyzing the conditions under which linear at- 525

tention can be transformed into RNN, we ascertain 526

that D2D needs to facilitate the conversion between 527

absolute and relative positional encoding. Leverag- 528

ing this characteristic, we disentangle D2D during 529

the training process, transforming it into a combina- 530

tion of APE and RPE to enhance training stability. 531

In the inference process, we fully convert D2D into 532

APE, enabling the transformation of linear atten- 533

tion into an RNN form. This fully leverages the 534

advantages of linear attention in terms of time com- 535

plexity and space complexity during the inference 536

process. Models utilizing D2D linear attention 537

have demonstrated commendable performance in 538

language modeling and length extrapolation. 539

8



9 Limitation540

Our positional encoding demonstrates effectiveness541

across various kernel functions, though the extent542

of the effect is somewhat dependent on the choice543

of kernel function. Based on our experiments, we544

find that elu(x) + 1 is a good choice for the kernel545

function, but we cannot provide a very systematic546

theoretical explanation for this choice. Addition-547

ally, although we have conducted some analysis548

on the instability of the decay factor both experi-549

mentally and theoretically, we have not provided550

a comprehensive mathematical proof. Moreover,551

application of D2D has not been extended to large552

language models.553
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A Appendix768

A.1 Notations Of Vanilla Transformer769

In the transformer architecture, X is transformed770

into three distinct sequences, namely query (Q),771

key (K), and value (V ), through separate linear772

projections. This projection is split into h atten-773

tion heads, known as Multi Head Attention. As774

shown in Eq. 5, l-th head transform Q,K, V into775

dh dimension, obtaining Ql,Kl, Vl.776

Ql = QWQ
l

Kl = KWK
l

Vl = VW V
l

WQ
l ,WK

l ,W V
l ∈ Rdmodel×dh

(5)777

Attention calculation is defined as Eq. 6, where778

Att is known as attention score.779

Att = softmax
(
QK⊺

√
dh

)
Attention(Q,K, V ) = Att · V

(6)780

And final output of attention needs to concatenate781

(notated as concat in equations) each head and782

apply a linear projection.783

MultiHead(Q,K, V )

= concat(head1, . . . , headh)WO,

headl = Attention(QWQ
l ,KWK

l , V W V
l )

WO ∈ Rdmodel×dmodel

(7)784

A.2 Classification of Positional Encodings785

Absolute Positional Encoding For queries Q786

and keys K with positional information a =787

[1, 2, . . . , n]. APE can be represented as functions788

to add positional information to input sequences,789

notated as Eq. 8.790

Q̃ = APE(Q,a), K̃ = APE(K,a) (8)791

Relative Positional Encoding RPE leverages the792

positional difference, i− j, between the i-th token793

in the query and the j-th token in the key. Con-794

sequently, the similarity calculation as depicted in795

Eq. 1 incorporates additional relative information,796

denoted as g(i − j), in Eq. 9. Here, f signifies a 797

novel function designed to integrate relative posi- 798

tional information into the similarity calculation, 799

where common approaches typically involve either 800

adding or multiplying g(i− j) to incorporate RPE, 801

as discussed in (Raffel et al., 2020; Press et al., 802

2022). 803

Sim(Qi,Kj) = f(Qi,Kj , g(i− j)) (9) 804

PE Convertible Between RPE and APE Some 805

positional encodings can freely convert between 806

RPE and APE. These encodings must satisfy Eq. 10 807

holds for ∀1 ≤ i, j ≤ n (Su et al., 2024). 808

Sim(APE(Q, i), APE(K, j)) = h(Q,K, i− j)
(10) 809

In Eq. 10, on the left side, this type of PE is applied 810

to query and key, fulfilling the requirements for 811

APE as specified in Eq. 8. On the right side of 812

Eq. 10, this PE is related to the difference (i− j) 813

and affects both query and key, meeting the criteria 814

for RPE outlined in Eq. 9. 815

A.3 Conversion of Kernel-Based Linear 816

Attention to RNN 817

The process of converting kernel-based linear at- 818

tention to an RNN framework hinges on the ability 819

to decompose the similarity calculation into inde- 820

pendent functions of queries and keys. Here, we 821

delve into the mathematical underpinnings of this 822

conversion, starting with the general form of linear 823

attention: 824

Atti,j =
ϕ(Qi)ϕ(Kj)

⊺∑i
j=1 ϕ(Qi)ϕ(Kj)

⊺ 825

The computation of the updated representation 826

V ′
i involves weighting by the attention scores: 827

V ′
i =

∑i
j=1 ϕ(Qi)ϕ(Kj)

⊺Vj∑i
j=1 ϕ(Qi)ϕ(Kj)

⊺ 828

This equation can be simplified by recognizing 829

that ϕ(Qi) can be factored out, leading to a recur- 830

sive form that mirrors RNN computations: 831

V ′
i =

ϕ(Qi)(Si−1 + ϕ(Ki)
⊺Vi)

ϕ(Qi)(Zi−1 + ϕ(Ki)
⊺)

832

with Si−1 and Zi−1 representing cumulative sums 833

over j up to i− 1, allowing for an RNN-like itera- 834

tive update mechanism. 835
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A.4 Proof of Constraints on Converting836

Linear Attention to RNN837

The core operation of Linear Attention can be ex-838

pressed as follows:839

Atti,j =
ϕ(Qi)ϕ(Kj)

⊺∑i
j=1 ϕ(Qi)ϕ(Kj)⊺

(11)840

This formulation necessitates updating the rep-841

resentation V ′
i using attention scores weighted by842

the respective values:843

V ′
i =

∑i
j=1 ϕ(Qi)ϕ(Kj)

⊺Vj∑i
j=1 ϕ(Qi)ϕ(Kj)⊺

(12)844

The potential for simplification arises from the845

ability to factor out ϕ(Qi), thereby converting the846

attention computation into a recursive form remi-847

niscent of RNN computations:848

V ′
i =

ϕ(Qi)(Si−1 + ϕ(Ki)
⊺Vi)

ϕ(Qi)(Zi−1 + ϕ(Ki)⊺)
(13)849

where Si−1 and Zi−1 represent the cumulative850

sums over j up to i− 1, facilitating an RNN-like851

iterative update mechanism.852

For the transformation into RNN be viable, the853

positional encoding introduced must independently854

influence Q and K without involving cross terms855

of i and j. If such independence is not maintained,856

ϕ(Qi) cannot be isolated from the summation ex-857

pression, ultimately impeding the transformation858

of linear attention into RNN. This requirement un-859

derscores the necessity of adhering to the specified860

positional encoding format, ensuring that linear861

attention remains computationally efficient and the-862

oretically sound.863

A.5 Implementation Details of Experiments864

The specific model parameters and training settings865

are presented in Table. 3.866

A.6 Calculation and Initialization of Other867

Positional Encoding868

RoPE (Su et al., 2024) exploits APE to catch rela-869

tive Positional information. We select implementa-870

tion for linear attention as Eq. 14, where Ri stands871

for RoPE positional encoding for position i. RoPE872

cancels applications of APE in normalization of873

similarity calculation.874

Sim(Qi,Kj) = (Riϕ(Qi))(Rjϕ(Kj)
⊺)

Atti,j =
Sim(Qi,Kj)∑i
j=1 ϕ(Qi)ϕ(Kj)⊺

(14)875

Parameter Value
Number of Layers 12

Attention Heads 12 per layer

Hidden Dimension 64 per attention head

Batch Size 640

Training Text Length 512 tokens

Learning Rate 5e-4

Learning Rate Schedule Cosine

Warmup Rounds 3000

Epochs 1

Gradient Optimizer Adam (Kingma and Ba, 2015)

Total Parameters 137M

Table 3: Training Configuration and Model Parameters

Vanilla APE of Transformer (Vaswani et al., 876

2017) applies a trainable embedding 5 for absolute 877

positional information E(a),a = [1, 2, . . . , n]. 878

The embedding is initialized randomly. 879

Sim(Qi,Kj) = ϕ(Qi + E(a)i)ϕ(Kj + E(a)j)
⊺

(15) 880

For D2D, we initialize P s
l for each head l with 881

a zero vector 0 ∈ R1×dh . P b
l is initialized with 882

scalar P b
l in Eq. 16, where h indicates the number 883

of heads, and then fill the vector P b
l with the scalar. 884

P b
l = 2−

h
l (16) 885

A.7 Experiments For Effective Inference 886
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Figure 8: Average infercene time for sequence with dif-
ferent length. L.A. with D2D stands for linear attention
with D2D.

To ensure that D2D exhibits superiority in terms 887

of inference speed compared to the vanilla model, 888

5Trainable embedding is only added in the first layer of
GPT-2 in vanilla implementation.
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we conduct speed tests for language generation889

at the inference stage. We transform our method890

into RNN-form to achieve O(n) time complexity.891

We eliminate the "End of Sequence" (EOS) token892

from the vocabulary to guarantee the production of893

texts that conform to specified length criteria. We894

conducte ten experiments for each model at each895

length and took the average as the generation time.896

The weights of the model are subjected to random897

initialization, given that this has no impact on the898

assessment of generation speed.899

Results indicate that inference time complex-900

ity of our method is lower than that of the vanilla901

GPT, and as the inference length increases, the ad-902

vantages of our method become increasingly pro-903

nounced. When the sequence length is relatively904

short, the improvement in time is not very pro-905

nounced, as the fundamental computations and data906

copying still require a certain amount of time.907
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