Disentangle to Decay: Linear Attention with Trainable Decay Factor

Anonymous ACL submission

Abstract

Linear attention enhances inference efficiency
of Transformer and has attracted research in-
terests as an efficient backbone of language
models. Existing linear attention based models
usually exploit decay factor based positional
encoding (PE), where attention scores decay
exponentially with increasing relative distance.
However, most work manually designs a non-
trainable base of exponential calculation (decay
factor), which limits further optimization. Our
analysis reveals that direct training decay fac-
tor is unstable. To address this problem, we
propose a novel PE for linear attention named
Disentangle to Decay (D2D). D2D disentangles
decay factor into two parts to achieve further op-
timization and stable training. Moreover, D2D
can be transformed into recurrent form for effi-
cient inference. Experiments demonstrate that
D2D achieves stable training of decay factor,
and enhances performance of linear attention
in both normal context length and length ex-

trapolation scenarios .

1 Introduction

Linear attention, by substituting the softmax func-
tion in vanilla Transformers with a dot-product
of kernel feature maps, achieves linear complex-
ity during inference and is particularly advanta-
geous for processing long sequences (Katharopou-
los et al., 2020). However, challenges such as
cumulative regularity errors over long sequences
necessitate specialized mechanisms for effective
information filtering (Qin et al., 2022a). For ex-
isting language models based on linear attention,
such as RetNet (Sun et al., 2023) and TransNormer-
LLM (Qin et al., 2024), their PEs include decay
terms (*=7), where ~ is the decay factor and i — j
represents the relative position between two tokens.
Decay factor provides a mechanism for information

'Our code implementation is available at:
https://anonymous.4open.science/t/D2D-0CF7/

forgetting, which can alleviate the aforementioned
issue and enhance the capability of linear attention
in handling long sequences.

However, decay factors used in these mod-
els are manually designed and non-trainable, as
a limit to further optimization with model and
dataset (Moreno-Cartagena et al., 2023). We reveal
that directly training decay factor might generate
significantly large gradients, due to exponential cal-
culation with a trainable base. Consequently, large
gradients integrate numeric instability and leads
trainings to collapse. Models fail to yield satisfac-
tory outcomes from a trainable decay factor.

To enhance stability of training and performance
of models, our work proposes an innovative train-
able decay factor based PE named Disentangle to
Decay (D2D). D2D disentangles decay factor into
two parts. Global decay factor is fixed and pro-
vides base value. With an effective initialization,
it provides numeric foundation for trainable decay
factor. Moreover, it is initialized to certain range
to generate an item mitigate large gradients into an
acceptable range. Local tuning factor is trainable
for further optimization of performance, which is
stable with integration of fixed global decay fac-
tor. In implementation, we separate two parts of
decay factor in calculation. Consequently, D2D is
represented as a combination of absolute positional
encoding (APE) and relative positional encoding
(RPE). This form can also avoid unnecessary cal-
culation and address overflow problem for large
positional indices.

We pretrain language models using D2D and
other types of decay factors, with a similar scale
to GPT-2 (Radford et al., 2019). Then we conduct
various experiments on language modeling, length
extrapolation and downstream tasks. The results
show that D2D enables linear attention to achieve
better performance compared with both directly
trained decay factors and fixed decay factors. Ad-
ditionally, D2D shows greater numerical stability

https://anonymous.4open.science/r/D2D-0CF7/

during training. D2D outperforms existing PE, in-

cluding RoPE (Su et al., 2024) and ALiBi (Press

et al., 2022). We also provide an implementation

of the transformation for recurrent inference and

conduct experiments on inference speed, indicating

that D2D is both spatially and temporally efficient.
Our main contributions are as follows:

1. We analyze existing decay based PE meth-
ods for linear attention from the perspective
of gradients, investigating how numerical in-
stability during the training process leads to
either training failure or suboptimal results.

2. We propose D2D, a novel trainable PE method
for linear attention. D2D maintains stabil-
ity in training and enhances representational
capability of decay based PE. Moreover, we
provide implementation of D2D for efficient
training and inference.

3. We conduct experiments of language mod-
eling, length extrapolation and downstream
tasks for D2D based language models. Re-
sults show that D2D is more stable and out-
performs other types of decay factors as well
as existing PE on the aforementioned tasks.

2 Preliminary

2.1 Computational Form of Linear Attention

For two tokens with positions ¢ and j, let Q);
and K; represent query and key respectively.
According to Katharopoulos et al. (2020), uni-
fied formulation of linear and vanilla attention is
given by Eq. 1, where the similarity calculation
Sim(Q;, K;) quantifies relationship between the
query of the ¢-th token and the key of the j-th token:

o Szm(Q,,KJ)
Y Sim(Qi, Ky)

In vanilla attention, the similarity is calculated
using the exponent of the dot product of query and
key, expressed as Sim(Q;, K;) = exp (Q:K]).
Conversely, in linear attention, the similarity is
computed directly through a kernel function ¢,
leading to a similarity measure Sim(Q;, K;) =

A(Qi)p(K;)T.

2.2 Constraints of PE in Linear Attention

Att (D

Compared with vanilla attention, PE used in lin-
ear attention must satisfy certain constraints. To
enhance computational efficiency during inference,

it is necessary to transform linear attention into
RNN (Katharopoulos et al., 2020). This transfor-
mation is contingent upon a specific positional en-
coding format, as detailed in Eq. 2:

Sim(Qi, Kj) = fo(Qi,1) - fu(Kj,75) ()

where f, and fj, are functions applied to (); and
K, respectively, to incorporate absolute positional
information. To be more detailed, by this equa-
tion, the similarity calculation between queries and
keys is decomposed into independent functions that
are completely dependent on the queries and keys.
The detailed proof process for this constraint is
provided in Appendix. A .4.

3 Instability of Training Decay Factor

Numerical Instability For most decay factor
based PEs, decay factors are set as fixed number
instead of a trainable parameter, since they do not
achieve better performance (Press et al., 2022; Sun
et al., 2023). In this section, we analyze training of
decay factor exhibits numerical instability, lead-
ing to training collapse and limited optimization.

More specifically, the value of decay factor ex-
hibits significant fluctuations throughout the train-
ing process and fails to converge rapidly to a stable
value. When the decay factor reaches a certain
threshold, it tends to trigger gradient explosion,
causing the training to collapse.

Large Gradients Brought By Exponential Calcu-
lation The attention calculation involves higher-
order terms of decay factor, which can generate
large gradients and lead to unstable gradient de-
scent. For two tokens separated by a relative dis-
tance of d, a higher-order term ~° is adopted in cal-
culation (Qin et al., 2024; Sun et al., 2023), where
v is the decay factor. When -y becomes trainable,
it generates gradient of %;) = 0~7°~1. This will
cause instability while training as analyzed below.

When the range of J increases, the gradient pro-
duced by the global decay factor can potentially
reach a very large value. For instance, GPT-2 2
has a context length of 1024. Taking v = 0.999 as
an example, the gradient of decay factor reaches
a summit value of 376. This gradient acts as a co-
efficient while calculating attention score, which
enlarges the overall training gradients significantly.
Large gradients result in instability during training.

“https://huggingface.co/openai-
community/gpt2/blob/main/config.json

https://huggingface.co/openai-community/gpt2/blob/main/config.json
https://huggingface.co/openai-community/gpt2/blob/main/config.json

Directly Trained Decay Factor
(Numerical Instable)

| Local Tuning Factor P* D2D PE :
: (Trainable) S |
I N |:| Further Optimization :
| Disentanglement

| > > |
i L] |
I [g Optimized Decay I
I) - HE Rough Range Factor Output |
| [| [] (Numerical Stable) I
: Global Decay Factor P> Global Mask For P :
I (Fixed) (Preprocessed) |
L Stabilized Training Good Performance))I

[] Decay Factor P
(—f"F~"~~"~F~F~~~"~~"~~"~"~~~~"~"~"~"~"&~"~"~"~®"&~\"~®"«>~"«*"&®""&®""®™"«=™"=®"="==~"=®>"=""="=®""=®"=="=="=>="®"""™">=)

Vanilla Decay Factor Based PE

Collapsing Training X Poor Performancets

Figure 1: An overview of D2D and vanilla decay factor based PE during training. Firstly, D2D disentangles decay
factor to global decay factor and local tuning factor to implement PE design. Then, D2D provides fixed global
decay factor for rough range, and trains local tuning factor for detailed optimization. By exploiting sum of them, a
well-optimized decay factor can be exploited for stable training and good performance. Additionally, we preprocess
value of global decay factor for every position in training length, in order to enhance training efficiency.

Moreover, linear attention has limited perfor-
mance compared with vanilla attention due to large
gradients (Qin et al., 2022a). Large gradients pro-
duced by decay factor will further amplify unstable
gradients produced by linear attention. In subse-
quent experiments, we observe collapse of training
and poor performance via directly trained decay
factor, which valids our analysis.

In summary, such unexpected gradients empha-
size the sensitivity of the attention mechanism. It is
necessary to stabilize training of decay factor and
develop a more efficient decay factor based PE.

4 Method

Here, we propose D2D, an effective solution to ad-
dress the instability of decay factor during training.
Main process of D2D compared with vanilla decay
factor based PE is shown in Fig. 1.

4.1 Disentanglement based Positional
Encoding

Disentanglement of Decay Factor Firstly, we
provide detailed assignment within attention
head for decay factor. For [-th attention head, de-
cay factor is described as a vector P, € R1*,
where d;, is dimension of each attention head. For
comparison, existing method exploit a constant
scalar +; within the attention head.

Secondly, we disentangle value of decay factor
into two parts, global decay factor and local tun-
ing factor to achieve value of decay factor more
detailed. Global decay factor PP is applied to
each attention head, providing a rough range for
decay factor. For the [-th attention head, global
decay factor has a value of Plb € R'¥% where
PP = (pb,...,p}) is composed of a series of fixed
scalars p?. Local tuning factor P? € R is ap-
plied to each dimension of the attention head to
achieve fine-grained optimization of decay factor.
For the [-th attention head, vector P is disentan-
gled, thatis P, = PP + P§#. As shown in Fig. 2,
possible sum of two factors takes up a wider range
of distribution, which is benefit for optimization.

Positional Encoding Design On the basis of
aforementioned disentanglement of decay factor
P,, we rewrite the form of decay factor as Eq. 3,
where Sim(Q;, K;)[l] represents the similarity cal-
culation for the [-th attention head, with all divi-
sions performed element-wise. In Eq. 3, undivided
calculation (first line of Eq. 3) and @, use APE
form, while @ uses the RPE form.

For training, calculation of D2D is transformed
into @y - ©,. This transformation is key to im-
proving training stability and provides foundation
for the discussion on stable training methods in
Sec. 4.2. We implement an efficient training ap-

proach in Sec. 4.3 for detailed discussion.

Sim(Qi, K;)[I] = e:if(?gl) exz((i(;';)z))T
=600,

» 3
Oy = exp (—p;)" @
— ¢(Q1) ¢(KJ))T
* 7 exp(iPy?) “exp(—jPy)

For inference, numeric instability does not need to
be concerned since all parameters of D2D are fixed
during inference. We exploit first line of Eq. 3 for
effective recurrent inference, where value of P is
derived from Plb +P?. It satisfies the constraints of
converting linear attention into RNN as described
in Sec. 2.2, so D2D is available for recurrent in-
ference. More specifically, we can transform the
linear attention calculation using D2D into the fol-
lowing expression as described in Katharopoulos
et al. (2020):

v 325-1(6(Qi) exp(—iP)) ($(K;) exp(iP2)) TV
b (6(Qi) exp(—iPy)) ($(K;) exp(j P))T
$(Qi)(Si—1 exp(=P1) + ¢(K:)TV5)
H(Qi)(Zi—1 exp(—Pr) + ¢(Ki)T)
Si = Si—1exp(—P) + ¢(K:)™V;
Zi = Zi—vexp(—P1) + ¢(K;)T

(C))

Eq. 4 is derived from Eq. 3 and is used in the

inference process. In Eq. 4, V/ is the output of

the attention, Sy € R%>dn Z, ¢ RI*dn Al

elements in Sy and Zj are zero. More details of

converting linear attention into RNN are shown in
Appendix A.3.

Value

N
|
~=

e [P

e

head, head, head,

Figure 2: Illustration of disentanglement. Green circle
stands for each index of P is sum of fixed P? and train-
able P*. To visualize the value of P, we approximate it
with a smooth red curve on the Figure. Possible sum of
them could cover a wide range during optimization. In
the legend, P g represents the value of P at dimension
d in the [-th head.

4.2 Stabilizing Training

Effective Initialization for D2D An effective ini-
tialization strategy can provide optimal foundation
for PE (Press et al., 2022). Compared with ran-
dom initialization or zero initialization, it provides
a more structured initialization, facilitating faster
convergence and better overall model performance.
Following (Press et al., 2022), we initialize
global decay factor pé’ as 271 for I-th attention
head, where h is the total amount of attention head.
This ensures an increasing density of values as they
approach zero, facilitating a more nuanced repre-
sentation of positional information. And we apply
zero initialization for local tuning factor, aims at
optimizing global decay factor in fine-granularity.
In D2D, global decay factor provides a founda-
tion for the training of local tuning factor. Once
global decay factor in each attention head is pre-
set to an appropriate value, range of P during
gradient descent is narrowed and simultaneously
enhances stability during training. Subsequent ex-
periments in Sec. 5.4 validate the above analysis.

Stabilizing Gradients of Decay Factor As
shown in Sec. 3, training of decay factor gener-
ates large gradients, which is the main reason for
training instability. The global decay factor in D2D
can reduce the gradients during training to an ac-
ceptable range.

After adding the global decay factor, the abso-
lute value of gradient produced by the local tuning
factor is 6exp(—p§’)6 exp(—P;)?. Compared with
the gradient produced by directly trained decay
factor, gradient of D2D has an extra coefficient
exp(—p?)°, where exp(—pf) < 1. This item de-
creases with the growth of §, mitigating large gra-
dients brought by . In practical training in first
attention head of 8, global decay factor can gener-
ate a coefficient of 0.018 and reduce the gradient
in Sec. 3 from 376 to 6.87.

4.3 Mask-based Efficient Training
Implementation

Extra Time Cost on Calculating ©; As shown
in Eq. 3, ©; needs to be calculated every time in
similarity calculation of Sim(Q;, K;). But O is
only determined by positional indices i, j, resulting
unnecessary exponential calculations. This prob-
lem also exists when directly training decay factor.

Precision Problems In Calculation During
training phrase, calculation in the first line of Eq. 3

encounters preicision problems of floating numbers.
For decay factor based PE, exp(~i) - exp(—7j) =
exp(y(i — 7)) should hold for all position indices.
However, the exponential calculation overflows
when 7 is very large and approaches zero when
j is very large. As a result, the product does not
match the theoretical value during training. This
causes the value of D2D, which is only related to
relative positions, to be affected by absolute po-
sitions of tokens. Consequently, optimization of
decay factor might be truncated to certain value.
Moreover, precision problems limit application for
longer sequences as a result of larger positional in-
dices. Therefore, it is necessary to avoid direct com-
putation of exp(~i) and exp(—+j) in APE form.
Instead, computing exp(v(i — j)) in RPE form can
help mitigate the impact of precision issues.

Masked-based Transformation For Eq. 3, Plb
consists of identical scalars p?. Therefore, the
global decay factor can be factored out as @y It
is constant across all computations within a head.
Consequently, when context length is given, all
possible results of relative positions can be pre-
processed before training. We implement this by
presetting a mask M as shown in Fig. 3. The ele-
ment in the ¢-th row and j-th column of the matrix
corresponds M; ;. The part where j > i is assigned
a value of 0 to ensure attention is unidirectional in
autoregressive language modeling. During train-
ing, positional information for ¢-th query and j-th
key should multiply M; ; to integrate global decay
factor. For different attention heads, we preprocess
matrices respectively, since number of attention
heads is usually limited. Regarding the precision
problem, we convert the global decay factor with
larger values into a preprocessed mask, and the
calculation of this mask only involves RPE. The
remaining local tuning factor has smaller values
and does not cause significant precision problems.

To integrate this mask, we apply element-wise

150100
P 100

gy Ppb 10

3

S s P 1

Figure 3: An instance of decay mask (length n = 4).

product of mask and attention scores. In implemen-
tation, we replace causal mask 3 with M to save
time and space cost.

Overall Training And Inference Implementa-
tion During the training and inference phases,
the key difference lies in the introduction of the
computation process for the D2D attention output,
while the remaining steps follow those described
in Katharopoulos et al. (2020). Algorithm 1 and
Algorithm 2 respectively illustrate the process of
incorporating the D2D attention output in training
and inference. =+ stands for element-wise division,
and © stands for element-wise multiply. In the al-
gorithm, the operations splithead and mergehead
refer to the processes used in the multi-head atten-
tion mechanism (Vaswani et al., 2017).

Algorithm 1 Attention Output During Training
1: procedure ATTN(Q, K, V, M, P* n)
2: K+ KT

3 QK + (Q),d(K)

4: a<+ (0,1,...,n—1)

5: C < exp (a- P?)
6
7
8
9

Q+—Q+-C
K+«Kod
Q, K,V <« splithead (Q, K, V)
. A+ Q-KoM
10: fori+ 0,ton —1do

n—1

1 Att; + Att;) > (Att;)
=0

12 end for

13: O+ Att-V

14: O <« mergehead (O)
15: return O

16: end procedure

S Experiments

In this section, we apply D2D and linear attention
into vanilla Transformer. We conduct experiments
on language modeling, length extrapolation and
several downstream tasks after finetuning. Ex-
periment result validates effectiveness of D2D for
encoding positional information. Moreover, we
provide an implementation to transform linear at-
tention based on D2D to RNN in Appendix. A.7.
Result shows that D2D is efficient during inference.

3For autoregressive language models, causal mask is a
lower triangular matrix to ensure attention is unidirectional.

Language Modeling

Length Extrapolation Downstream Tasks

Dataset enwiki8 =~ LAMBADA WikiText2 GovReport PG19 ARC-e ARC-c
AES - pPLY) (PPL) (PPL) (PPL]) (PPL]) (ACCT) (ACCY)
Finetune w/o w/o w/ w/o w/ w/o w/ w/o w/ w/ w/
Methods
Fixed. 9491 95.06 31.53 9629 1857 24.14 16.78 198.53 40.52 0.250 0.218
Trained. 92.27 89.01 29.65 85.07 1840 2277 16.69 17481 34.38 0.251 0.234
D2D 86.36 90.63 25.83 7248 18.29 21.25 1597 169.99 29.76 0.262 0.256

Table 1: The results of testing D2D, fixed decay factor, and directly factor on various tasks. Fixed. represents linear
attention using fixed decay factor, Trained. represents linear attention using directly trained decay factor and D2D
represents linear attention using D2D. w/o represents direct testing on the dataset, while w indicates testing after
finetuning on the corresponding training set. The best results for each task are bold.

Algorithm 2 Attention Output During Inference

1: procedure ATTN(Q, K, V, P®, P* n)
2: K+ KT

33 P+« P4+ P?

4: P + exp(P)

5: S,Z(—Odhxdh,ﬂdhxl

6 Q, K,V <« splithead (Q, K, V)
7 fori < 0Oton —1do

8 Qi, Ki = ¢(Qi), p(K;)

9: S+« SoOP+K,;-V;
10: Z+—ZOP+ Kz
12: end for
13: O « concat(Oy,...,0y)
14: O + mergehead (O)
15: return O

16: end procedure

5.1 Experiment Settings

We select GPT-2 (Brown et al., 2020) as back-
bone of autoregressive language models. We select
elu(z) 4+ 1 (Clevert et al., 2016) as kernel function
and pretrain models on OpenWebText (Gokaslan
and Cohen, 2019) datasets. Likewise, we use a
dataset and number of training steps similar to
(Radford et al., 2019). Dataset statistics and more
details can be found in Appendix A.5.

For comparison, we pretrain two models with
fixed decay factor and directly trained decay factor
respectively. For downstream tasks, we involve 1
epochs of finetuning after pretrain.

5.2 Experiment Results

5.2.1 Language Modelling

Following (Radford et al., 2019), we evaluate the
capabilities of D2D in language modeling on en-

wiki8 4, LAMBADA (Paperno et al., 2016) and
WikiText2 (Merity et al., 2016). As shown in Ta-
ble 1, the model exhibits good language modeling
performance with D2D, resulting from improved
positional information. On LAMBADA dataset,
D2D and the directly trained decay factor yield
similar results before finetuning. After finetuning,
D2D achieves better performance.

5.2.2 Length Extrapolation

It is crucial that the PE we design has sufficient
length extrapolation capability to fully leverage
the benefits of linear attention. Following (Press
et al., 2022), we conduct experiments in pretrained
domain and outside pretrained domain.

In-domain Length Extrapolation We conduct
language modeling task in training set of OpenWeb-
Text for longer context length than trained. D2D
achieves better results compared with both the fixed
decay factor and the directly trained decay factor.

704 —— Fixed
Trained
- | —— D2D

Value
2

30

200 400 600 300 1000
Input Length

Figure 4: The figure illustrates the model’s ability to
extrapolate the length within the domain. As the length
increases, the model using the decay factor initially
shows a decreasing trend in PPL, followed by an in-
crease, and eventually stabilizes.

*http://mattmahoney.net/dc/text.html

Vanilla APE Vanilla APE iy
PE Linear Attention and Attention RoPE ALiBi ~ D2D
PPL(Train) 49.40 45.74 4459 4488 43.82
PPL(Valid) 50.86 47.66 47.8 47.85 46.9

Table 2: PPL on training and validation dataset, lower PPL shows better performance. Values bold are denoted as

optimal results.

Out-of-domain Length Extrapolation Follow-
ing (Rae et al., 2020; Dong et al., 2024), we test
length extrapolation on GovReport (Huang et al.,
2021) and PG19 (Rae et al., 2019). Firstly, we fine-
tune models in normal context length and then con-
duct language modeling on longer context length.
Results are shown in Table. 1, D2D performs better
compared to both the fixed decay factor and the
directly trained decay factor.

5.2.3 Downstream Task

To verify the impact of D2D on linear attention in
terms of reasoning capabilities and language un-
derstanding capabilities, we conduct downstream
task tests on ARC-e and ARC-c (Clark et al., 2018).
As shown in Table. 1, linear attention using D2D
outperforms those that use a fixed decay factor or a
directly trained decay factor.

5.3 Comparing with Other Positional
Encoding

To compare the performance of D2D with other
commonly used PE in linear attention, we train
combinations of various PEs with linear attention
as well as vanilla Transformers on the first 10%
of OpenWebtext dataset. We selected RoPE (Su
et al., 2024), ALiBi (Press et al., 2022), Vanilla
APE (Vaswani et al., 2017), and vanilla attention
as baselines to compare with D2D. Detailed infor-
mation of other PE is shown in Appendix. A.6. As

4
{

g

g

4 .

| |
s |

s B z N -
H H H H

Value of Decay Factor
&

H

Figure 5: The value of decay factor in the first layer of
D2D based linear attention model. To enhance image
clarity, we use vertical gray dashed lines to split heads
and sort P?® within each head.

shown in Table. 2, D2D achieves the best results
on both the training and validation datasets.

5.4 Numerical Stability During Training

To verify the numerical stability of D2D, we train
both a linear attention with D2D and directly
trained decay factor. We compare their stability
by observing the numerical changes in the train-
able parts of the PE and the final training outcomes.

As shown in Fig. 5, the values of P?® in D2D
are smaller compared to P?, primarily serving to
adjust the decay factor within each head. Fig. 6
provides a more intuitive illustration of the value
changes in the decay factor for both D2D and di-
rectly trained methods during the training process.
Compared with directly trained decay factor, the
stability of D2D during training is significantly
higher.

In Sec. 4.3, we discuss the issue of not convert-
ing @y into a mask. To address this, we directly

Value
S

—
S —
—
E—
L ——
—

BEEE
_35{ 1 Dircctly Training

I o

Head | Head2 Head3 Head4 Head 5 Head6 Head7 Head 8 Head 9 Head 10Head 11 Head 12
Head Number

Figure 6: The numerical fluctuations of the D2D and
directly trained decay factor from the first layer of linear
attention model during training process.

e
)

OO0 (DI IOONDE ODOmOGTa
Q@

o]
&

e
=

e
1=
>

e
=3
=

Value of Decay Factor
=1
=3
(=3

e
o
0

&
&
P

e
=3
S

Figure 7: The results of directly training D2D without
converting PP into mask. The image displays the values
of P in the first layer of the model.

train a linear attention model using D2D without
any transformations. As shown in Fig. 7, the value
of P gets truncated near a certain threshold, mak-
ing it difficult for the D2D to further change after
reaching this value. This indicates that the prob-
lem mentioned in Sec. 4.3 significantly impacts
training, limiting the range of values for the D2D.

6 Analysis

In this section, we analyze improvements of D2D
in three aspects of experiments. Improvements in
language modeling can be attributed to the stable
training of decay factor and appropriate range of
global decay factor. They provide a more reason-
able decay factor to represent more information.
Regarding length extrapolation, we believe that
the decay factor inherently possesses significant
length extrapolation capabilities (Press et al., 2022).
D2D enlarges such advantages with its stronger
representation capabilities. For downstream tasks,
the primary advantage of D2D lies in the optimiza-
tion of local tuning factor. Fig. 5 illustrates that in
the first head, the P® + P* values are negative in
certain dimensions, indicating these dimensions fo-
cus on tokens that are farther apart. This capability
is not present in models with fixed decay factors or
models with directly trained decay.

7 Related Work

7.1 Linear Attention

Linear attention enhances computational efficiency
by reducing the space-time complexity from
quadratic to linear. It can be roughly categorized
into kernel-based methods and random-based meth-
ods. Kernel-based linear attentions (Qin et al.,
2022b; Katharopoulos et al., 2020; Qin et al.,
2022a) process query and key with kernel func-
tions. Random-based linear attentions (Peng et al.,
2021; Choromanski et al., 2021) fit expected value
through random sampling methods.

A notable advancement is the transformation
of linear attention into a recurrent neural network
form, as explored by Katharopoulos et al. (2020)
and further applied in large-scale models by (Yang
et al., 2023; Sun et al., 2023). These approaches
allow for both parallel and serial processing, im-
proving scalability and efficiency.

7.2 Positional Encoding

Positional encoding integrates positional informa-
tion into the Transformer model, which is essential

for sequence recognition and computational effi-
ciency, especially with long sequences and large
models (Kazemnejad et al., 2023).

Types of Positional Encoding PE can be catego-
rized into APE, RPE, and convertible positional en-
coding, each serving distinct roles within model’s
architecture. APE uses absolute positions, utiliz-
ing trigonometric functions or trainable parame-
ters (Vaswani et al., 2017; Brown et al., 2020;
Zhang et al., 2022). RPE accounts for relative dis-
tances between tokens with approaches like RoPE
or ALiBi (Su et al., 2024; Press et al., 2022), which
are common in large language models (Raffel et al.,
2020; Chowdhery et al., 2023; Scao et al., 2022).
Convertible Positional Encoding allows switching
between APE and RPE, facilitating flexible compu-
tational strategies (Su et al., 2024).

Decay Factor Commonly used RPEs such as
RoPE (Su et al., 2024), ALiBi (Press et al., 2022),
and XPos (Sun et al., 2022) exhibit certain decay
properties. Specifically, during the computation of
attention scores, these PEs cause the model to focus
more on tokens that are closer in proximity. This
enhances the model’s focus during the calculation
of attention scores, thereby improving its language
modeling capabilities (Han et al., 2023).

For linear attention models (Sun et al., 2023; Qin
et al., 2024). They incorporate decay terms in form
of v(=7), where ~ is the decay factor and i — j
denotes the relative positions.

8 Conclusion

In this paper, we design a positional encoding
method, D2D, for models based on linear attention.
By analyzing the conditions under which linear at-
tention can be transformed into RNN, we ascertain
that D2D needs to facilitate the conversion between
absolute and relative positional encoding. Leverag-
ing this characteristic, we disentangle D2D during
the training process, transforming it into a combina-
tion of APE and RPE to enhance training stability.
In the inference process, we fully convert D2D into
APE, enabling the transformation of linear atten-
tion into an RNN form. This fully leverages the
advantages of linear attention in terms of time com-
plexity and space complexity during the inference
process. Models utilizing D2D linear attention
have demonstrated commendable performance in
language modeling and length extrapolation.

9 Limitation

Our positional encoding demonstrates effectiveness
across various kernel functions, though the extent
of the effect is somewhat dependent on the choice
of kernel function. Based on our experiments, we
find that elu(z) + 1 is a good choice for the kernel
function, but we cannot provide a very systematic
theoretical explanation for this choice. Addition-
ally, although we have conducted some analysis
on the instability of the decay factor both experi-
mentally and theoretically, we have not provided
a comprehensive mathematical proof. Moreover,
application of D2D has not been extended to large
language models.

References

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learning
Research, 6:1817-1853.

Galen Andrew and Jianfeng Gao. 2007. Scalable train-
ing of L1-regularized log-linear models. In Proceed-
ings of the 24th International Conference on Machine
Learning, pages 33-40.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamds
Sarl6s, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J. Colwell, and Adrian Weller. 2021.
Rethinking attention with performers. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben

Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. Journal of Machine Learning
Research, 24(240):1-113.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2016. Fast and accurate deep network
learning by exponential linear units (elus). In 4th In-
ternational Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Zican Dong, Junyi Li, Xin Men, Wayne Xin Zhao, Bing-
bing Wang, Zhen Tian, Weipeng Chen, and Ji-Rong
Wen. 2024. Exploring context window of large lan-
guage models via decomposed positional vectors.

Aaron Gokaslan and Vanya Cohen. 2019. Open-
webtext corpus. http://Skylion@@7.github.io/
OpenWebTextCorpus.

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song,
and Gao Huang. 2023. Flatten transformer: Vision
transformer using focused linear attention. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 5961-5971.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1419-1436, Online.
Association for Computational Linguistics.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Francois Fleuret. 2020. Transformers
are rnns: Fast autoregressive transformers with lin-
ear attention. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML’20.
JMLR.org.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan
Natesan, Payel Das, and Siva Reddy. 2023. The
impact of positional encoding on length generaliza-
tion in transformers. In Thirty-seventh Conference
on Neural Information Processing Systems.

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=Ua6zuk0WRH
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/2405.18009
http://arxiv.org/abs/2405.18009
http://arxiv.org/abs/2405.18009
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=Drrl2gcjzl

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Daniel Moreno-Cartagena, Guillermo Cabrera-Vives,
Pavlos Protopapas, Cristobal Donoso-Oliva, Manuel
Pérez-Carrasco, and Martina Cadiz-Leyton. 2023.
Positional encodings for light curve transformers:
Playing with positions and attention.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016. The lambada dataset: Word predic-
tion requiring a broad discourse context.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah A. Smith, and Lingpeng Kong. 2021.
Random feature attention. In 9th International Con-
ference on Learning Representations, ICLR 2021, Vir-
tual Event, Austria, May 3-7, 2021. OpenReview.net.

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li,
Lingpeng Kong, Nick Barnes, and Yiran Zhong.
2022a. The devil in linear transformer. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 7025-7041,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun,
Xuyang Shen, Xiaodong Han, Yunshen Wei, Bao-
hong Lv, Xiao Luo, Yu Qiao, and Yiran Zhong. 2024.
Transnormerllm: A faster and better large language
model with improved transnormer.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yun-
shen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong,
and Yiran Zhong. 2022b. cosformer: Rethinking
softmax in attention. In The Tenth International Con-
ference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning
Representations.

10

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, and Timothy P. Lillicrap. 2019. Compressive
transformers for long-range sequence modelling.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Mohammad Sadegh Rasooli and Joel R. Tetreault. 2015.
Yara parser: A fast and accurate dependency parser.
Computing Research Repository, arXiv:1503.06733.
Version 2.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Francois Yvon,
Matthias Gallé, Jonathan Tow, Alexander M. Rush,
Stella Biderman, Albert Webson, Pawan Sasanka Am-
manamanchi, Thomas Wang, Benoit Sagot, Niklas
Muennighoff, Albert Villanova del Moral, Olatunji
Ruwase, Rachel Bawden, Stas Bekman, Angelina
McMillan-Major, 1z Beltagy, Huu Nguyen, Lucile
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-
tor Sanh, Hugo Laurencon, Yacine Jernite, Julien
Launay, Margaret Mitchell, Colin Raffel, Aaron
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,
Christopher Klamm, Colin Leong, Daniel van Strien,
David Ifeoluwa Adelani, and et al. 2022. BLOOM:
A 176b-parameter open-access multilingual language
model. CoRR, abs/2211.05100.

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng
Pan, Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma,
Yugqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. 2023. Retentive network: A successor to
transformer for large language models. CoRR,
abs/2307.08621.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shao-
han Huang, Alon Benhaim, Vishrav Chaudhary, Xia
Song, and Furu Wei. 2022. A length-extrapolatable
transformer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000-6010, Red Hook, NY,
USA. Curran Associates Inc.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar
Panda, and Yoon Kim. 2023. Gated linear attention
transformers with hardware-efficient training. CoRR,
abs/2312.06635.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/2308.06404
http://arxiv.org/abs/2308.06404
http://arxiv.org/abs/2308.06404
http://arxiv.org/abs/1606.06031
http://arxiv.org/abs/1606.06031
http://arxiv.org/abs/1606.06031
https://openreview.net/forum?id=QtTKTdVrFBB
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://doi.org/10.18653/v1/2022.emnlp-main.473
http://arxiv.org/abs/2307.14995
http://arxiv.org/abs/2307.14995
http://arxiv.org/abs/2307.14995
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1503.06733
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.48550/ARXIV.2307.08621
https://doi.org/10.48550/ARXIV.2307.08621
https://doi.org/10.48550/ARXIV.2307.08621
http://arxiv.org/abs/2212.10554
http://arxiv.org/abs/2212.10554
http://arxiv.org/abs/2212.10554
https://doi.org/10.48550/ARXIV.2312.06635
https://doi.org/10.48550/ARXIV.2312.06635
https://doi.org/10.48550/ARXIV.2312.06635

Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

A Appendix

A.1 Notations Of Vanilla Transformer

In the transformer architecture, X is transformed
into three distinct sequences, namely query (Q),
key (K), and value (V), through separate linear
projections. This projection is split into h atten-
tion heads, known as Multi Head Attention. As
shown in Eq. 5, [-th head transform @, K,V into
dy, dimension, obtaining @, K;, V;.

Q =QW]
Ko =KW 5)
Vi=vw)

WlQ7 WZK7 le c Rdmodel xXdp

Attention calculation is defined as Eq. 6, where
Att is known as attention score.

QK T>
Vdp

Attention(Q, K, V) = Att -V

Att = softmax <
(6)

And final output of attention needs to concatenate
(notated as concat in equations) each head and
apply a linear projection.
MultiHead(Q, K, V)
= concat(heady, . .., headp)Wo,
head; = Attention(QVVIQ, KW vy
WO c Rdmodelemodel

(N

A.2 Classification of Positional Encodings

Absolute Positional Encoding For queries)
and keys K with positional information a
[1,2,...,n]. APE can be represented as functions
to add positional information to input sequences,
notated as Eq. 8.

Q = APE(Q,a),K = APE(K,a) (8)

Relative Positional Encoding RPE leverages the
positional difference, ¢ — j, between the i-th token
in the query and the j-th token in the key. Con-
sequently, the similarity calculation as depicted in
Eq. 1 incorporates additional relative information,

11

denoted as g(i — j), in Eq. 9. Here, f signifies a
novel function designed to integrate relative posi-
tional information into the similarity calculation,
where common approaches typically involve either
adding or multiplying g(7 — j) to incorporate RPE,
as discussed in (Raffel et al., 2020; Press et al.,
2022).

Sim(Qi, Kj) = f(Qi, Kj, g(i — 7))
PE Convertible Between RPE and APE Some
positional encodings can freely convert between
RPE and APE. These encodings must satisfy Eq. 10
holds for V1 < 4,5 < n (Suet al., 2024).

©)

(10)
In Eq. 10, on the left side, this type of PE is applied
to query and key, fulfilling the requirements for
APE as specified in Eq. 8. On the right side of
Eq. 10, this PE is related to the difference (i — j)
and affects both query and key, meeting the criteria
for RPE outlined in Eq. 9.

A.3 Conversion of Kernel-Based Linear
Attention to RNN

The process of converting kernel-based linear at-
tention to an RNN framework hinges on the ability
to decompose the similarity calculation into inde-
pendent functions of queries and keys. Here, we
delve into the mathematical underpinnings of this
conversion, starting with the general form of linear
attention:

o ‘¢(Qi)¢(KJ‘)T
L 6(Qi)e ()T

The computation of the updated representation
V! involves weighting by the attention scores:

Att

U S 6@,
b i d(Qi)e(K)T
This equation can be simplified by recognizing

that ¢((Q;) can be factored out, leading to a recur-
sive form that mirrors RNN computations:

v = AQi)(Si-1 + 6(Ki)Vi)
o d(Qi)(Zima + o(K)T)
with S;_1 and Z;_1 representing cumulative sums

over j up to 7 — 1, allowing for an RNN-like itera-
tive update mechanism.

https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068

A.4 Proof of Constraints on Converting
Linear Attention to RNN

The core operation of Linear Attention can be ex-
pressed as follows:

B(QS(K,)T
23:1 ¢(Qz‘)¢(KJ‘)T

This formulation necessitates updating the rep-
resentation V; using attention scores weighted by
the respective values:

v . NTY/.
v S oY,
> =1 O(Qi)d(K)T
The potential for simplification arises from the
ability to factor out ¢(Q);), thereby converting the
attention computation into a recursive form remi-
niscent of RNN computations:

V“:¢K%ﬂ&fr+¢UQVW)
Qi) (Zioa + o(KG)T)

where S;_1 and Z;_ 1 represent the cumulative
sums over j up to ¢ — 1, facilitating an RNN-like
iterative update mechanism.

For the transformation into RNN be viable, the
positional encoding introduced must independently
influence) and K without involving cross terms
of ¢ and j. If such independence is not maintained,
¢(Q;) cannot be isolated from the summation ex-
pression, ultimately impeding the transformation
of linear attention into RNN. This requirement un-
derscores the necessity of adhering to the specified
positional encoding format, ensuring that linear
attention remains computationally efficient and the-
oretically sound.

11

t; =

13)

A.5 Implementation Details of Experiments

The specific model parameters and training settings
are presented in Table. 3.

A.6 Calculation and Initialization of Other
Positional Encoding

ROPE (Su et al., 2024) exploits APE to catch rela-
tive Positional information. We select implementa-
tion for linear attention as Eq. 14, where R; stands
for RoPE positional encoding for position . ROPE
cancels applications of APE in normalization of
similarity calculation.

Sim(Qi, Kj) = (Rid(Qi)) (R;d(K;)T)
23:1 ¢(Qi)¢(Kj)T

(14)

Att; ;=

12

Parameter Value
Number of Layers 12
Attention Heads 12 per layer

Hidden Dimension 64 per attention head

Batch Size 640

Training Text Length 512 tokens

Learning Rate Se-4

Learning Rate Schedule ~ Cosine

Warmup Rounds 3000

Epochs 1

Gradient Optimizer Adam (Kingma and Ba, 2015)
Total Parameters 137M

Table 3: Training Configuration and Model Parameters

Vanilla APE of Transformer (Vaswani et al.,
2017) applies a trainable embedding > for absolute
positional information F(a),a = [1,2,...,n].
The embedding is initialized randomly.

Sim(Qi, K;) = $(Qi + B(a))¢(K; + E(a),)T
(15)

For D2D, we initialize P} for each head [with

a zero vector 0 € R, PP is initialized with
scalar Plb in Eq. 16, where h indicates the number
of heads, and then fill the vector Plb with the scalar.

(16)

| —A— L.A.withD2D |
Vanilla GPT

—_

(=3

(=]
1

o
(=}
Il

[N}
(=}
Il

S
S
1

353
(=}
Il

Average Infercence Time (Seconds)

4096
Sequence Length (Tokens)

1024 2048

Figure 8: Average infercene time for sequence with dif-
ferent length. L.A. with D2D stands for linear attention
with D2D.

To ensure that D2D exhibits superiority in terms
of inference speed compared to the vanilla model,

STrainable embedding is only added in the first layer of
GPT-2 in vanilla implementation.

we conduct speed tests for language generation
at the inference stage. We transform our method
into RNN-form to achieve O(n) time complexity.
We eliminate the "End of Sequence" (EOS) token
from the vocabulary to guarantee the production of
texts that conform to specified length criteria. We
conducte ten experiments for each model at each
length and took the average as the generation time.
The weights of the model are subjected to random
initialization, given that this has no impact on the
assessment of generation speed.

Results indicate that inference time complex-
ity of our method is lower than that of the vanilla
GPT, and as the inference length increases, the ad-
vantages of our method become increasingly pro-
nounced. When the sequence length is relatively
short, the improvement in time is not very pro-
nounced, as the fundamental computations and data
copying still require a certain amount of time.

13

	Introduction
	Preliminary
	Computational Form of Linear Attention
	Constraints of PE in Linear Attention

	Instability of Training Decay Factor
	Method
	Disentanglement based Positional Encoding
	Stabilizing Training
	Mask-based Efficient Training Implementation

	Experiments
	Experiment Settings
	Experiment Results
	Language Modelling
	Length Extrapolation
	Downstream Task

	Comparing with Other Positional Encoding
	Numerical Stability During Training

	Analysis
	Related Work
	Linear Attention
	Positional Encoding

	Conclusion
	Limitation
	Appendix
	Notations Of Vanilla Transformer
	Classification of Positional Encodings
	Conversion of Kernel-Based Linear Attention to RNN
	Proof of Constraints on Converting Linear Attention to RNN
	Implementation Details of Experiments
	Calculation and Initialization of Other Positional Encoding
	Experiments For Effective Inference

