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ABSTRACT

Contrastive learning has played a pivotal role in the recent success of unsupervised
representation learning. It has been commonly explained with instance discrimi-
nation and a mutual information loss, and some of the fundamental explanations
are based on mutual information analysis. In this work, we develop new methods
that enable rigorous analysis of mutual information in contrastive learning. Using
the methods, we investigate three existing beliefs and show that they are incorrect.
Based on the investigation results, we address two issues in the discussion section.
In particular, we question if contrastive learning is indeed an unsupervised repre-
sentation learning method because the current framework of contrastive learning
relies on validation performance for tuning the augmentation design.

1 INTRODUCTION

Contrastive learning (Oord et al., 2018; Chen et al., 2020a) has achieved a remarkable success in the
field of unsupervised representation learning, and one of the known success factors is the InfoNCE
loss (Poole et al., 2019) that is used as the training objective. InfoNCE loss not only plays a key role
for achieving a robust and outstanding performance, but it also provides an elegant interpretation
where the representation learning can be understood as a Mutual Information (MI) maximization
between the two augmented views (X and Y ) of a given image (Oord et al., 2018; Hjelm et al.,
2018; Bachman et al., 2019; Tian et al., 2020a; Sordoni et al., 2021). Numerous works have studied
contrastive learning based on the theoretical interpretation, and some have become fundamental and
crucial for understanding contrastive learning.

An analysis based on MI of X and Y , however, can be tricky and misleading. First of all, an exact
evaluation of MI requires the joint distribution function p(x, y), but p(x, y) is not directly accessible
for practical problems. For practical problems with complex neural representations and intractable
p(x, y), the neural estimators based on variational bounds are known to be the most reliable (Bel-
ghazi et al., 2018; Poole et al., 2019). The neural estimators, however, do not guarantee a sound
analysis because they can only provide estimates and we cannot tell if the estimates are sufficiently
accurate for the analysis of interest. This problem can be alleviated if we can have a practical dataset
with known true MI values, but many of the previous works simply assumed the estimates to be exact
in the absence of the true MI values. Second, the limitations of the MI estimators should be carefully
related to the limitations of what contrastive learning can learn. Because of the use of InfoNCE loss
as the objective of contrastive learning, where InfoNCE is also a popular MI estimator (Oord et al.,
2018; Poole et al., 2019; Song and Ermon, 2019; Tschannen et al., 2019), many of the previous
works incorrectly assumed the limitations to be the same for both MI estimation and contrastive
learning. Third, a precaution is needed for interpreting the MI value where MI is simply a measure
of the shared information between the two views. Without carefully examining what information is
actually being shared by the two views, the interpretation can be completely misleading.

In this work, our main contribution is to develop a set of rigorous methods for analyzing MI in
contrastive learning and to show that the following three existing beliefs are incorrect.

1. A small batch size is undesirable for contrastive learning because of InfoNCE’s O(logK)
bound (Hjelm et al., 2018; Tian et al., 2020a; Bachman et al., 2019; Wu et al., 2020; Song and
Ermon, 2020; Chen et al., 2020a; Sordoni et al., 2021).
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2. MI cannot measure how effective the representation is for the downstream task’s perfor-
mance (Tschannen et al., 2019). Instead, other metrics such as uniformity (Wang and Isola,
2020; Wang and Liu, 2021), alignment (Wang and Isola, 2020), tolerance (Wang and Liu,
2021), and linear CKA (Nguyen et al., 2020; Song et al., 2012; Nguyen et al., 2022) are more
relevant and useful than MI.

3. For designing optimal views, task-irrelevant information needs to be discarded for a better
generalization (Tian et al., 2020b; Tsai et al., 2020; Xiao et al., 2020; Chen et al., 2021a).

For a rigorous investigation, we develop an analysis framework based on three key elements. First,
we clarify that the choice of augmentation design dictates the shared information between the two
views. While this can sound obvious, it is a crucial step for cautiously investigating contrastive
learning because the choice of augmentation design directly commands the joint distribution p(x, y),
in turn p(x, y) decides the MI of learning, and ultimately the MI determines what will be learned
as the representation. A specific choice of augmentation, named same-class sampling in our work,
plays a pivotal role in our study. It is special because it only shares the class information between the
two views and because its true MI can be proven to be the same as the class entropy H(C) under a
mild assumption. Second, we use a dedicated phase of MI estimation that is called post-training MI
estimation. In the previous works, MI estimation was typically performed concurrently during the
training phase because the InfoNCE can be conveniently used not only as the training loss but also as
the variational estimator. Separating MI estimation into a post-training phase allows us to compare
a wide scope of representation encoders because it is applicable to any representation encoder (e.g.,
a basic supervised network learned with the cross-entropy loss). Third, we introduce CDP dataset
that allows information to be embedded in an image by varying color, digit, and position. Thanks to
the way CDP dataset is constructed, the true MI value can be easily manipulated by controlling the
dependency among the three attributes over the two views. Using the CDP dataset, we were able to
construct a few experiments without any ambiguity in interpretation. Also, we were able to confirm
that the MI estimation values in our experiments are accurate. This was made possible by comparing
the theoretically derived true MI values with the estimated MI values.

Finally, we discuss two essential issues based on our investigation results. First, we clarify that a
properly chosen MI is an excellent metric for evaluating representations, but the same metric is not
an effective training objective for a successful representation learning. Second, we raise the question
of whether contrastive learning is really an unsupervised representation learning method. The cur-
rent framework heavily relies on a heuristic and extensive tuning of the augmentation design based
on a validation dataset. Apparently, it still remains open to develop a further advanced representation
learning framework compared to the contrastive learning.

2 METHOD

2.1 BACKGROUND – INFONCE FOR CONTRASTIVE LEARNING AND MI ESTIMATION

Given a dataset D = {si|si ∈ Rm}, we can sample an image si, generate its views with a family of
augmentations T , and randomly select two of them to form a positive pair (xi, yi). See Figure 1(b)
for an example where T is a family of SimCLR (Chen et al., 2020a) augmentations. After repeating
it K times, InfoNCE loss for a batch can be calculated as

L =
1

2K

K∑
k=1

[l(2k − 1, 2k) + l(2k, 2k − 1)] with l(i, j) = − log
exp (zi,i/τ)∑2K

j=1 1[j ̸=i] exp (zi,j/τ)
, (1)

where zi,j = sim(f(xi), f(yj)); f = fp ◦ fe with fe(·) as the encoder and fp(·) as the projection
head; sim(u, v) = uT v/||u||||v|| denotes the dot product between l2 normalized u and v (i.e. cosine
similarity); τ denotes a temperature scalar; and K is the batch size. We denote the encoded repre-
sentation vector of an input X as hX = fe(X). While the InfoNCE loss can be used for training,
it can be slightly modified to the following InfoNCE bound and used for Mutual Information (MI)
estimation, too.

Î(hX ;hY ) = log (2K − 1)− L ≤ log (2K − 1) (2)

See Supplementary A.3 for the well-known derivation. From Eq. (2), we can see that minimizing
InfoNCE loss L is equivalent to maximizing InfoNCE bound Î(hX ;hY ).
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(a) Positive pairing

(b) An example of positive pairing using a family of augmentations Taug. Sim-
CLR augmentation (Chen et al., 2020a) is shown.

(c) Positive pairing with same-class sampling Tclass. Unlike the case of using a
family of augmentations Taug, only downstream task’s class information is used
for positive pairing.

Figure 1: Positive pairing method implicitly determines the joint distribution – p(x, y) is determined
by the choice of T .

2.2 EXPANDING THE CONCEPT OF AUGMENTATION TO POSITIVE PAIRING

In contrastive learning, the chosen family of augmentations Taug plays the critical role of implicitly
determining the joint distribution p(x, y) and the marginal distribution p(x)p(y). For the actual
training, however, we do not need to know the exact distributions. Instead, we just need to be able
to sample with the distributions. Therefore, the concept of augmentation (Taug) can be certainly
expanded to the concept of positive pairing (T ) as shown in Figure 1. Positive pairing can be
performed with an augmentation function as shown in Figure 1(b) or without any augmentation
function as shown in Figure 1(c).

In our study, we heavily rely on a simple yet special positive pairing method called same-class sam-
pling, Tclass. As shown in Figure 1(c), the same-class sampling only relies on the downstream task’s
label information and it does not utilize any augmentation at all. Same-class sampling is special be-
cause the only shared information between the two views is the downstream task’s class information.
In this case, the true MI for its joint distribution pclass(x, y) can be proven to be upper bounded by the
entropy of the class distribution, H(C). We provide a simple proof in Supplementary A.1, and we
also provide a stronger result of an equality proof under a mild assumption in Supplementary A.2.
The H(C) upper bound on same-class sampling reveals that the downstream-task information, with
its entropy H(C), is the only meaningfully shared information between a pair of positive examples.
This result can be conveniently utilized in our empirical investigations because the calculation of
H(C) is trivial for uniformly distributed class labels. Note that the same-class sampling is a super-
vised method because it utilizes class information. We are introducing this supervised method only
for the purpose of theoretical study and empirical investigation, and we are not suggesting its use
for a practical purpose. We denote the true MI of same-class sampling as Iclass(hX ;hY ) and its
estimate as Îclass(hX ;hY ).

Unlike the same-class sampling, MI of augmentation-based methods such as TSimCLR (Chen et al.,
2020a), TAutoAugment (Cubuk et al., 2018), and TRandAugment (Cubuk et al., 2020) are intractable be-
cause the shared information is dependent on the particular choice of Taug whose joint distribution is
unknown. In our study, we select TSimCLR as the representative example of Taug because it has been
widely used in the previous works (Chen et al., 2020b; Chen and He, 2021; Caron et al., 2020; Grill
et al., 2020; Zbontar et al., 2021; Bardes et al., 2021; Tomasev et al., 2022).

2.3 TRAINING VS. MI ESTIMATION

As explained in Section 2.1, InfoNCE can be used as a training loss or as a bound for MI estimation.
Let’s consider the training first. As shown in Figure 2(Top), training is not only dependent on the
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Figure 2: Training and MI estimation. (Top) Training: We train the encoder fe(·) and the projection
head fp(·) to minimize the InfoNCE loss L. (a) With augmentation-based method TSimCLR. (b)
With same-class sampling Tclass. (Bottom) Post-training MI estimation: We train the critic fc(·)
to maximize the InfoNCE bound Î(hX ;hY ) while fe(·) is frozen. (c) With augmentation-based
method TSimCLR. (d) With same-class sampling Tclass.

choice of loss but also on the choice of positive pairing T . For brevity, we denote the loss as LSimCLR
and Lclass when InfoNCE loss in Eq. (1) is used with TSimCLR and Tclass, respectively. Because same-
class sampling Tclass requires class label, training with Lclass implies a supervised training.

Second, let’s consider MI estimation. Most, if not all, of the previous works have estimated MI
during the training. This imposes a limitation where T for training and T for MI estimation can-
not differ. Furthermore, the encoder weights are not fixed during training and thus the MI of a
moving target needs to be estimated. To overcome the limitations, we propose post-training MI
estimation that is illustrated in Figure 2(Bottom). With our post-training MI estimation, we have the
flexibility to estimate MI that corresponds to any positive pairing and its joint distribution including
pSimCLR(x, y) and pclass(x, y). Also, we have the flexibility to choose any network pre-trained in a
supervised or unsupervised way because the encoder network is kept frozen during the MI estima-
tion phase. Overall, we can examine either ÎSimCLR(hX ;hY ) or Îclass(hX ;hY ) of any pre-trained
network fe(·) using the post-training MI estimation process shown in Figure 2(Bottom). Also, sepa-
rating MI estimation into a post-training phase can improve the estimation accuracy because we can
use a larger batch size for the estimation without affecting the choice of batch size for training and
the resulting learning dynamics of the encoder.

For training, a projection head fp(·) is used as shown in Figure 2(Top). For MI estimation, a critic
function fc(·) is used as shown in Figure 2(Bottom). We use a common MLP network for both fp(·)
and fc(·) to ensure a fair comparison. See Supplementary B.2 for the details. Again, the introduction
of supervised Lclass is not for a practical purpose but only for in-depth investigations.

2.4 CDP DATASET

In the existing MI analyses that are related to practical contrastive learning, only the estimated MI
value has been studied simply because evaluating the true MI value has not been possible. For a
dataset that allow the class label to be clearly identified for each image, however, the true MI value
for same-class sampling can be proven to be equal to the class label entropy, H(C). The proof is
provided in Supplementary A.2. To take advantage of this special case, we introduce a synthetic
dataset named CDP dataset. In CDP dataset, each image is constructed by uniformly choosing a
color ccolor from {Red,Green,Blue,White}, a digit cdigit from {2, 3, 4, 5}, and a position cposition
from {Upper left,Upper right,Lower left,Lower right}. The three attributes are independently cho-
sen for each image. Because of the uniform selection, the entropy of each class label is clearly
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(a) T color
class (b) T digit

class (c) T position
class (d) T all

class

Figure 3: Manipulating true MI with CDP dataset. When only one of color, digit, and position is
matched by same-class sampling as shown in (a), (b), and (c), the true MI is 2 bits (Iclass(X;Y ) = 2).
When all three are consistently matched as shown in (d), the true MI is 6 bits (Iclass(X;Y ) = 6).

H(Ccolor) = H(Cdigit) = H(Cposition) = 2 bits. Note that random ImageNet examples are linearly
mixed up in the background to make the dataset realistic.

Thanks to the way the CDP dataset is constructed, the true MI under same-class sampling can be
easily manipulated as shown in Figure 3. If only the color attribute is consistently chosen for each
pair (Figure 3(a)), it corresponds to a downstream task whose class label is the color information and
the positive pairing is denoted as T color

class . In this case, the true MI is Iclass(X;Y ) = H(Ccolor) = 2
bits. Similarly, Iclass(X;Y ) = 2 bits for Figure 3(b) and Figure 3(c). When all three attributes
are consistently chosen for each pair (Figure 3(d)), it corresponds to a downstream task whose class
label is the combination of color, digit, and position information. Then, the true MI is Iclass(X;Y ) =
H(Ccolor)+H(Cdigit)+H(Cposition) = 6 bits. Note that the entropies add up because looking at one
of the pair provides the exact information of the color, digit, and position of the other image.

3 MAIN RESULTS

3.1 A SMALL BATCH SIZE IS A LIMITING FACTOR FOR MI ESTIMATION BUT NOT FOR
CONTRASTIVE LEARNING.

Existing belief 1:

A small batch size is undesirable for contrastive learning because of InfoNCE’s O(logK)
bound (Hjelm et al., 2018; Tian et al., 2020a; Bachman et al., 2019; Chen et al., 2020a;
Sordoni et al., 2021; Wu et al., 2020; Song and Ermon, 2020).

Correction 1:

A small batch size limits the training loss, but it limits neither the information in the learned
representation nor the downstream-task performance.

It is a well-known fact that the estimated MI in Eq. (2) is upper bounded by log (2KTr − 1) (Oord
et al., 2018; Sordoni et al., 2021; McAllester and Stratos, 2020; Poole et al., 2019), where KTr is
the batch size of training. See Supplementary A.3 for the derivation. Because of the bound, it has
been often believed that a small batch size affects the contrastive learning negatively. To overcome
this limitation, many of the previous works have increased the batch size (Hjelm et al., 2018; Tian
et al., 2020a; Bachman et al., 2019) or have modified the InfoNCE loss (Sordoni et al., 2021; Wu
et al., 2020; Song and Ermon, 2020). The existing works, however, have estimated MI concurrently
during the training phase. Using CDP dataset and Îclass(hX ;hY ), we have performed two sets of
experiments as shown in Figure 4. Even though the estimated MI with the training loss is limited by
log (2KTr − 1), we can see that the post-training MI estimation is almost the same as the true MI (=
6 bits) and that the performance is over 96% for all the cases. Clearly, log (2KTr − 1) bound is not
necessarily harmful and a small batch size does not limit the representation learning. We also note
that Îclass(hX ;hY ) is almost identical to the ground-truth MI, i.e., Îclass(hX ;hY ) ≈ 6bits = H(C).
Thus, this result supports that the CDP dataset satisfies Iclass(X;Y ) = H(C).
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KTr 2 4 8 16 32 64 128 256
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(b) ResNet-50

Figure 4: True MI, training MI (conventional estimating of MI at the time of training using the
training loss), and our post-training MI. For CDP dataset, we train two ResNet models using
Îclass(hX ;hY ) as the loss (as in Figure 2(b)). We evaluate Îclass(hX ;hY ) at the end of training (blue)
and post-training (orange). During training, the MI is upper bounded by log (2KTr − 1) (dashed
lines of green color). After the training is complete, the network is frozen and we evaluate the MI
using a large batch size of KEst = 256. Even though the training MI is limited by the log (2KTr − 1)
bound, the post-training MI turns out to be almost the same as the true MI (= 6 bits). Obviously,
the trained model can represent sufficiently large amount of information.

3.2 AUGMENTATION-BASED MI AND OTHER METRICS ARE NOT EFFECTIVE, BUT
ÎCLASS(hX ;hY ) IS EFFECTIVE.

Existing belief 2:

• MI cannot measure how effective the representation is for the downstream task’s perfor-
mance (Tschannen et al., 2019).

• Instead, other metrics such as uniformity (Wang and Isola, 2020; Wang and Liu,
2021), alignment (Wang and Isola, 2020), tolerance (Wang and Liu, 2021), and linear
CKA (Nguyen et al., 2020; Song et al., 2012; Nguyen et al., 2022) are more relevant and
useful than MI.

Correction 2:

The only metric that is strongly relevant to the downstream-task performance is the MI of
the downstream-task information itself.

The early contrastive learning studies (Oord et al., 2018; Hjelm et al., 2018; Bachman et al., 2019;
Sordoni et al., 2021; Tian et al., 2020a) have regarded the minimization of InfoNCE loss to be
equivalent to the maximization of MI. The existing belief in Section 3.1 is an example. Then,
Tschannen et al. (2019) empirically showed that the estimated MI does not correlate well with the
downstream-task performance. The analysis method in the work, however, was not rigorous in that
only a particular choice of augmentation and the corresponding joint distribution paug(x, y) were
studied. Without addressing exactly what information is shared by paug(x, y), the analysis can be
quite misleading.

Subsequent works have suggested a variety of metrics to evaluate and explain the representation
quality. Well-known metrics include alignment (Wang and Isola, 2020), uniformity (Wang and
Isola, 2020; Wang and Liu, 2021), tolerance (Wang and Liu, 2021), and linear CKA (Nguyen et al.,
2020; Song et al., 2012; Nguyen et al., 2022). The description of the metrics can be found in
Supplementary B.3. While the suggested metrics have become popular because they are intuitive
and enlightening, there has been no attempt to provide a comprehensive analysis on how reliable the
metrics are.

To investigate the existing beliefs, we have designed an experiment where the representations of
many pre-trained networks can be carefully compared. To better understand the existing beliefs,
we have followed the previous works and examined the relationship between each metric and the
downstream-task performance. The first experiment’s results can be found in Table 1. By examining
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Table 1: Post-training MI estimation results for ResNet-50 on ImageNet-100 and ImageNet-1k.
Sixteen pre-trained models in Goyal et al. (2021); Wightman (2019); Khosla et al. (2020) are used
to evaluate the effectiveness of ÎSimCLR(hX ;hY ) and Îclass(hX ;hY ).

Algorithm ImageNet-100 ImageNet-1k

Acc. (%) ÎSimCLR(hX ;hY ) Îclass(hX ;hY ) Acc. (%) ÎSimCLR(hX ;hY ) Îclass(hX ;hY )

SupCon (Khosla et al., 2020) 94.40 7.889 6.100 78.72 8.722 7.783
Supervised pretrained 93.00 7.598 5.816 74.11 8.378 6.761
SwAV (Caron et al., 2020) 92.52 8.541 5.560 74.78 9.428 6.214
DeepCluster-v2 (Caron et al., 2020) 92.38 8.540 5.559 73.65 9.416 6.232
DINO (Caron et al., 2021) 92.22 8.443 5.539 74.22 9.313 6.133
Barlow Twins (Zbontar et al., 2021) 90.80 8.528 5.513 72.82 9.407 6.157
PIRL (Misra and Maaten, 2020) 90.58 8.584 5.480 70.51 9.481 6.247
SeLa-v2 (Caron et al., 2020) 89.50 6.020 5.039 69.66 7.354 5.774
SimCLR (Chen et al., 2020a) 89.40 8.669 5.546 69.12 9.580 6.277
MoCo-v2 (Chen et al., 2020b) 87.54 8.592 5.490 63.89 9.499 6.221
NPID++ (Misra and Maaten, 2020) 79.60 8.190 4.792 56.60 9.009 4.692
MoCo (He et al., 2020) 76.94 8.338 4.904 47.05 9.155 4.907
NPID (Wu et al., 2018) 76.68 8.039 4.188 52.70 8.821 3.836
ClusterFit (Yan et al., 2020) 75.66 8.016 4.155 48.81 8.773 3.915
RotNet (Gidaris et al., 2018) 66.90 7.020 2.916 41.54 7.696 2.802
Jigsaw (Noroozi and Favaro, 2016) 56.74 6.339 2.510 30.85 7.155 2.583

Pearson’s correlation coefficient ρ with Acc. 0.510 0.967 0.535 0.943
Kendall’s rank correlation coefficient τK with Acc. 0.233 0.883 0.233 0.617

Table 2: Summary of Pearson’s correlation for seven scenarios. All of the popular metrics turned out
to be ineffective for assessing downstream-task performance. For alignment and uniformity, smaller
values indicate better representations so we flipped the signs.

Encoder Dataset Metrics

Alignment Uniformity Tolerance Linear CKA ÎSimCLR(hX ;hY ) Îclass(hX ;hY )

Is label information utilized? No No Yes Yes No Yes

Pearson’s Correlation Coefficient ρ with linear accuracy
ResNet-{18, 50} CDP −0.977 −0.058 0.956 0.992 −0.988 0.990
ResNet-{18, 50} CIFAR-10 −0.738 −0.319 0.121 −0.503 −0.041 0.634
ResNet-{18, 50} ImageNet-100 0.165 −0.197 0.214 0.410 0.085 0.805
ResNet-50(Pretrained) ImageNet-100 0.286 0.265 −0.227 0.722 0.510 0.967
ResNet-50(Pretrained) ImageNet-1k 0.175 0.157 −0.132 0.451 0.535 0.943
ViT(Pretrained) ImageNet-100 −0.102 0.623 −0.395 0.856 0.721 0.974
ViT(Pretrained) ImageNet-1k −0.077 0.561 −0.392 0.203 0.783 0.977

Average −0.181 0.147 0.021 0.447 0.229 0.899

Pearson’s correlation and Kendall’s rank correlation, the conclusion by Tschannen et al. (2019) can
be confirmed for ÎSimCLR(hX ;hY ). For Îclass(hX ;hY ) whose joint distribution is directly related
to the downstream task’s class label information, however, the MI correlates very well with the
downstream-task performance. Therefore, we can see that it is misleading to say that MI in general
does not correlate well with the downstream-task performance. Clearly, Îclass(hX ;hY ), the MI
that is directly associated with the downstream task’s class label information, correlates with the
downstream-task performance very well.

The experiment was repeated for five other scenarios, and the summary of Pearson’s correlation
results can be found in Table 2. In the table, we are also showing the results for the other metrics.
Surprisingly, none of the known metrics shows a high correlation. The only metric that consistently
shows a high correlation is the Îclass(hX ;hY ), implying that the downstream-task information itself
(i.e. class label information) is the only metric that correlates well with the downstream-task perfor-
mance. Note that the class label information is also utilized by tolerance and linear CKA. So, they
are also supervised metrics like Îclass(hX ;hY ), but they fail to achieve a high correlation. The full
experimental results of all the scenarios can be found in Supplementary C.1.

A short note on the recent theoretical bounds: Same-class sampling has been also utilized in
recent theoretical works where theoretical bounds are derived to connect contrastive learning and
supervised learning (Arora et al., 2019; Nozawa and Sato, 2021; Ash et al., 2021; Bao et al., 2022).
Unlike the practical and popular Taug, the supervised Tclass provides strong structures and enables
the deriving of meaningful results. All of the theoretical bounds, however, fail to correlate well with
the downstream-task performance (see Table 7 in Supplementary C.1). Furthermore, contrastive
training based on Tclass does not guarantee a high performance as we will discuss in Section 4.1.
Overall, the theoretical works are insightful, but somewhat disconnected from the practical issue of
downstream-task performance.
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3.3 MINIMIZING TASK-IRRELEVANT INFORMATION IS NOT ALWAYS NECESSARY.

Existing belief 3:

For designing optimal views, task-irrelevant information needs to be discarded for a better
generalization (Tian et al., 2020b; Tsai et al., 2020; Xiao et al., 2020; Chen et al., 2021a).

Correction 3:

Task-irrelevant information do not necessarily harm the generalization of the downstream
task.

The choice of augmentation is known to determine which type of invariance will be learned during
contrastive learning (Tian et al., 2020b; Tsai et al., 2020; Xiao et al., 2020; Chen et al., 2021a). Tian
et al. (2020b) formalized this idea into the InfoMin principle: ‘a good set of views are those that
share the minimal information necessary to perform well at the downstream task’.
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Figure 5: Linear evaluation performance of
CDP dataset for task-dependent training. The
task in x-axis indicates the positive pairing T
used for training. The task in y-axis indicates
the evaluated downstream task C.

We examine the belief with two experiments. In
the first experiment, we have investigated the CDP
dataset where T color

class , T digit
class , T position

class , and T all
class are

considered for training and Ccolor, Cdigit, Cposition,
and Call are considered as the downstream task.
The results are shown in Figure 5. As an exam-
ple for ResNet-18, it can be seen that when T digit

class
is used for training, the performance for classify-
ing color is 80.6%. If the InfoMin holds strongly,
we would expect only the diagonal elements (same
information for training and evaluation) to achieve
a high performance. But the result shows that there
are many non-diagonal elements that achieve a high
performance. For instance, we can see that the per-
formance of Cdigit is higher when T all

class is used for
training (99.2%; four types of information are retained in the representation) than when T digit

class is used
for training (98.9%). Post-training MI estimation results are provided in Supplementary C.2.

There is another interesting topic that can be noticed from Figure 5. When a specific positive pairing
is used for training (e.g. T color

class ), we would expect only the corresponding information (e.g. Ccolor)
to be learned in the representation. The results in Figure 5, however, show that a task-irrelevant
information is frequently learned in the representation regardless of the positive pairing chosen for
training. In particular, position information is always learned in our example. This indicates that
targeting only for a specific type of information in contrastive learning might be quite challenging.

As the second experiment, we expand our experiment to two well-known augmentations of Taug.
Following (Tian et al., 2020b), we utilize color jittering and random resized crop augmentations
by varying the strength parameter. The details of the experiment and the results can be found in
Supplementary C.3 where the same conclusions as in the first experiment can be arrived.

4 DISCUSSION

4.1 DOWNSTREAM TASK’S MI IS AN EXCELLENT PERFORMANCE METRIC, BUT IT IS NOT AN
EFFECTIVE LEARNING OBJECTIVE.

Because we have shown that Îclass(hX ;hY ) is a very effective metric of downstream task’s linear
evaluation performance (Section 3.2), it is reasonable to ask if the corresponding loss Lclass in Fig-
ure 2(b) can learn a superior representation and achieve an excellent performance. A quick answer
for this question is ‘no’. The experimental results with a full discussion can be found in Supple-
mentary D.1. Surprisingly, a carefully designed unsupervised learning can outperform a supervised
contrastive learning that is based on the downstream-task information only. Here, a careful design
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basically means a well-crafted augmentation where the augmentation may have been designed in a
heuristic manner or through an extensive tuning.

Recently, the limitations of MI-based contrastive learning have been becoming clear. Many of the
recent works have developed non-contrastive learning methods that can outperform MI-based con-
trastive learning (Caron et al., 2020; Grill et al., 2020; Zbontar et al., 2021). Even for contrastive
learning, small modifications in the loss function have been shown to be useful (Yeh et al., 2021),
indicating that the loss function’s deviation from an exact MI formulation can be advantageous. In
Supplementary D.2, we additionally show that the viewpoint of Noise Contrastive Estimation (NCE)
in (Gutmann and Hyvärinen, 2010) can be more relevant for enhancing the performance of unsuper-
vised representation learning than the viewpoint of InfoNCE.

While a high performing network must have its representation express the downstream-task infor-
mation very well as we have shown in Section 3.2, the training of such a network requires additional
learning signals regardless of the presence of the downstream-task information. All the cases dis-
cussed above strengthen the idea that MI of downstream task is an outstanding metric but clearly not
an excellent learning objective. Finally, we would like to make it clear that our analysis and result
are fundamentally different from the work of Tschannen et al. (2019). Please refer to Supplemen-
tary D.1.

4.2 RETHINKING CONTRASTIVE LEARNING - IS IT REALLY AN UNSUPERVISED LEARNING
METHOD?

If the only metric that is truly effective for predicting downstream task’s performance is the
downstream-task information itself as we have shown in Section 3.2, how is it possible to learn
effective representations in an unsupervised way? First of all, it is crucial to recognize that the aug-
mentation design is not completely unsupervised because the validation performance (linear evalu-
ation performance) is used for the selection of augmentation design. The validation data does not
directly affect the network parameters (i.e., no gradient descent with the validation data), but it indi-
rectly affects the network parameters because the selection of augmentation design affects the joint
distribution p(x, y), in turn p(x, y) defines the MI of the learning, and the MI affects the goal of
learning as well as the learning dynamics.

The success of contrastive learning methods, and the closely related non-contrastive learning meth-
ods, seem to be due to two main reasons. First, compared to the early techniques such as pretext
learning (Doersch et al., 2015; Pathak et al., 2016; Noroozi and Favaro, 2016; Gidaris et al., 2018),
augmentation design can be successfully and efficiently completed within a limited design search
space. Typically, effective augmentation techniques for supervised learning are already known for
each application area, and properly combining the known techniques is a good start for achieving
a high performance with an unsupervised contrastive learning. Second, the learned representation
seems to generalize better than the traditional methods. This seems to be surprisingly true for the
popular benchmark problems, but a careful study is still needed to confirm it for a wider set of
applications and datasets.

Despite the amazing success of contrastive learning, it still remains open to develop a further ad-
vanced representation learning framework where a heuristic search of augmentation design per ap-
plication area can be avoided.

5 CONCLUSION

In this work, we have examined three existing beliefs on mutual information in contrastive learning.
For a rigorous investigation, we made use of same-class sampling, post-training MI estimation,
and CDP dataset. We have empirically shown that the existing beliefs are incorrect or misleading,
and provided adequate corrections. We discussed how maximizing the MI of downstream task’s
information is necessary but not sufficient for an unsupervised representation learning. A limitation
of our study is that we have focused on image classification as the only downstream task. Our study
can be extended to other downstream tasks such as object detection and to other datasets such as
NLP datasets.
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Supplementary materials for the paper
“Correcting Three Existing Beliefs on

Mutual Information in Contrastive Learning”

A PROOFS

A.1 PROOF OF ICLASS(X;Y ) ≤ H(C)

Proof. From the construction of same-class sampling, X ← C → Y . The dependency is Markov
equivalent to X → C → Y . Then,

I(X;Y ) ≤ I(X;C) = H(C)−H(C|X) ≤ H(C)

where the first inequality follows from the data processing inequality and the second inequality
follows from the positiveness of entropy for the case of discrete random variable C.

A.2 PROOF OF ICLASS(X;Y ) = H(C) WHEN AN ERROR-FREE CLASSIFICATION FUNCTION
fclass(·) EXISTS

(a) (b)

Figure 6: The Markov process of same-class-sampling, Tclass. S denotes the anchor image, C de-
notes the image’s downstream-task class label, and X and Y correspond to the positive pair chosen
for same-class-sampling of the image S. (a) The original Markov process of same-class-sampling.
(b) An equivalent Markov process of the same-class-sampling.

Proof. The Markov dependency of Tclass can be summarized as shown in Figure 6(a). For the same-
class-sampling, C is the common class label of S, X and Y (i.e., ci = fclass(si) = fclass(xi) =
fclass(yi), where fclass(·) is a function that returns the class label information). Then, H(C|X) = 0
and H(C|Y ) = 0 due to the deterministic nature of each image’s class label and the below directly
follows.

I(X;C) = H(C)−H(C|X) = H(C) (3)
I(Y ;C) = H(C)−H(C|Y ) = H(C) (4)

Because C can be perfectly determined from either X or Y , the Markov process in Figure 6(a) can
be alternatively expressed as S → C → X → C → Y → C as shown in Figure 6(b). Here, the first
part of the new Markov process is the same as in Figure 6(a): we start from si, read its class label
ci = fclass(si), and sample an example xi using the class label ci. In Figure 6(b), however, we can
alternatively read xi’s class label without any uncertainty to recover ci = fclass(xi) = fclass(si)
and then use the class label to sample yi. Because ci = fclass(yi) can be recovered from yi, the last
part of dependency, Y → C, follows. For the equivalent Markov process in Figure 6(b), we derive
an upper bound and a lower bound to complete the proof.

Upper bound: We apply data processing inequality Cover (1999) to the Markov dependency X →
C → Y in the middle part of Figure 6(b).

I(X;Y ) ≤ I(X;C) (5)
= H(C)−H(C|X) (6)
= H(C) (7)

Eq. (5) is the data processing inequality, Eq. (6) is from the definition of MI, and Eq. (7) is because
of H(C|X) = 0 as in Eq. (3).
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Lower bound: We apply data processing inequality Cover (1999) to the Markov dependency C →
X → C → Y → C part of Figure 6(b). The following directly follows from the data processing
inequality.

I(C;C) ≤ I(X;Y ) (8)
⇒H(C) ≤ I(X;Y ) (9)

Note that we have C in the beginning and at the end of the Markov dependency. The first C in
I(C;C) corresponds to the C in the beginning and the second C in I(C;C) corresponds to the C
at the end of the Markov dependency. Eq. (9) is because I(C;C) is the self-information that is the
same as H(C).

Therefore, the true mutual information value of same-class-sampling, Iclass(X;Y ), is the same as
the class label’s entropy, H(C).

A.3 PROOF OF Î(X;Y ) ≤ log (2K − 1)

The inequality is well-known as described in (Oord et al., 2018). We provide the derivation for a
typical augmentation (SimCLR-like augmentation) to make it clear that log (2K − 1), instead of
log (K), is due to the number of terms in the denominator.

K is the batch size and q(x|y) = p(x)
Z(y)e

sim(f(x),f(y))/τ , where Z(y) = Ep(y)[e
sim(f(x),f(y))/τ ]; f =

fp ◦ fe, where fe is the encoder network and fp is the projection head; sim(u, v) = uT v/||u||||v||
denotes the dot product between l2 normalized u and v (i.e. cosine similarity); and τ denotes a
temperature parameter.

I(X;Y ) = Ep(x,y)

[
log

p(x|y)
p(x)

]
(10)

= Ep(x,y)

[
log

q(x|y)
p(x)

]
+ Ep(y)[KL(p(x|y)||q(x|y))] (11)

≥ Ep(x,y)

[
log

q(x|y)
p(x)

]
(12)

= Ep(x,y)

[
log

esim(f(x),f(y))/τ

Z(y)

]
(13)

≈ E

[
log

esim(f(xi),f(yi))/τ

1
2K−1

∑2K
j=1 1[j ̸=i]esim(f(xi),f(yj))/τ

]
(14)

= log (2K − 1) + E

[
log

esim(f(xi),f(yi))/τ∑2K
j=1 1[j ̸=i]esim(f(xi),f(yj))/τ

]
(15)

= log (2K − 1)− L (16)

≜ Î(X;Y ) (17)

Inequality in Eq. (12) is due to the non-negativeness of KL-divergence and the approximation in
Eq. (14) is due to the replacement of the expectation with its empirical mean. Finally, the negative
loss −L(xi) in Eq. (16) is always negative because the argument of the second log term in Eq. (15)
is always between zero and one. Therefore, Î(X;Y ) ≤ log (2K − 1).
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B IMPLEMENTATION DETAILS

B.1 SIMCLR AUGMENTATION (TSIMCLR)

As a representative case of unsupervised positive pairing Taug, we adopt the SimCLR augmenta-
tion (Chen et al., 2020a). The details of the code implementation of each dataset are provided here.
We use PyTorch and torchvision library.

B.1.1 CDP DATASET

img_size = 32; strength = 0.5
color_jitter = torchvision.transforms.ColorJitter(

brightness=0.8 * strength, contrast=0.8 * strength,
saturation=0.8 * strength, hue=0.2 * strength)

transform = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(size=img_size),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.RandomApply([color_jitter], p=0.8),
torchvision.transforms.RandomGrayscale(p=0.2),
torchvision.transforms.ToTensor()])

For Table 12, We empirically found the Taug shown below by searching for the performance.

transform = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(

size=img_size, scale=(0.5, 1.0)),
torchvision.transforms.RandomApply([color_jitter], p=0.5),
torchvision.transforms.ToTensor()])

B.1.2 CIFAR-10

img_size = 32; strength = 0.5
color_jitter = torchvision.transforms.ColorJitter(

brightness=0.8 * strength, contrast=0.8 * strength,
saturation=0.8 * strength, hue=0.2 * strength)

transform_train = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(size=img_size),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.RandomApply([color_jitter], p=0.8),
torchvision.transforms.RandomGrayscale(p=0.2),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(

mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])

B.1.3 IMAGENET

img_size = 224; strength = 1.; ksize = 23
color_jitter = torchvision.transforms.ColorJitter(

brightness=0.8 * strength, contrast=0.8 * strength,
saturation=0.8 * strength, hue=0.2 * strength)

transform = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(

size=img_size, scale=(0.2, 1.0)),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.RandomApply([color_jitter], p=0.8),
torchvision.transforms.RandomGrayscale(p=0.2),
GaussianBlur(kernel_size=ksize),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(

mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
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B.2 HYPERPARAMTERS

B.2.1 TRAINING

In our study, we train the encoder fe(·) of ResNet-18 and ResNet-50 and the projection head fp(·)
of 2-layer MLP with batch normalization for 100 epochs. We set the batch size KTr as 256 for CDP
and CIFAR-10, and 128 for ImageNet-100 and ImageNet-1k. We set the temperature scalar τ as 0.5
for CIFAR-10 and 0.2 for other datasets. We optimize the InfoNCE loss using SGD with learning
rate of 0.001 and weight decay of 1e−4 for CDP and CIFAR-10, and with learning rate of 0.4 and
weight decay of 0.00002 for ImageNet. We also use linear warm-up for the first 3 epochs (10 for
ImageNet), and decay the learning rate with the cosine decay schedule without restarts (Loshchilov
and Hutter, 2016; Goyal et al., 2017). We carried out all the experiments using PyTorch on a single
Nvidia RTX 3090 GPU.

B.2.2 POST-TRAINING MI ESTIMATION

The critic fc(·) can be flexibly chosen as explained in (Poole et al., 2019; Song and Ermon, 2019),
but we set it identical in architecture and hyperparameters as the projection head fp(·) of the training
stage. The estimation is performed with the epoch size of 30. We have chosen the epoch size based
on the learning curves of a variety of post-training MI estimation results shown in Figure 7. We
empirically found that 30 is sufficiently large for the estimations to converge. MI estimation aims
to maximize the lower bound of MI, and we define the final estimated MI as the average of the
last 1000 steps (as highlighted in the figures) to deal with the estimation variance. To prevent the
log (2KEst − 1) becoming a limiting factor of the MI estimation, we have chosen the MI estimation
batch size KEst to be sufficiently large. We set KEst as 256 for CDP and CIFAR-10 and 512 for
ImageNet-100 and ImageNet-1k. Note that KEst is independently chosen from KTr, the batch size
of training. Unlike the training stage, MI estimation is not affected by the temperature scalar τ , and
we set τ = 0.1 throughout our study.
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Figure 7: Examples of post-training MI estimation: (a) CDP, ÎSimCLR(hX ;hY ), (b) CDP,
Îclass(hX ;hY ), (c) CIFAR-10, ÎSimCLR(hX ;hY ), (d) CIFAR-10, Îclass(hX ;hY ), (e) ImageNet-
100, ÎSimCLR(hX ;hY ), (f) ImageNet-100, Îclass(hX ;hY ), (g) ImageNet-1k, ÎSimCLR(hX ;hY ), (h)
ImageNet-1k, Îclass(hX ;hY ). Note that the MI estimation ÎSimCLR(hX ;hY ) in (a) is relatively
smaller when compared to the Îclass(hX ;hY ) in (b). This is an example where ÎSimCLR(hX ;hY )

does not properly reflect the downstream-task performance while Îclass(hX ;hY ) does.
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B.3 REPRESENTATION EVALUATION METRICS

The metrics in Table 2 are summarized below. For the implementation, we either adopt the authors’
code (Wang and Isola, 2020) or implement it by ourselves based on the equations in the paper (Wang
and Liu, 2021; Nguyen et al., 2020).

Alignment (Wang and Isola, 2020): expected distance between positive pairs defined by Taug.
Two views of positive pair should be mapped to nearby features, and thus be (mostly) invariant to
unneeded noise factors. Representations are more aligned when the metric is smaller.

Alignment = E(x,y)∼ppos [||f(x)− f(y)||α2 ]

Uniformity (Wang and Isola, 2020): the logarithm of the average pairwise Gaussian potential.
Feature vectors should be roughly uniformly distributed on the unit hypersphere, preserving as much
information of the data as possible. Representations are more uniform when the metric is smaller.

Uniformity = logEx,y∼pdata

[
e−t||f(x)−f(y)||22

]
Tolerance (Wang and Liu, 2021): mean similarity of samples of the same class. It utilize the
supervised information. Representations are more tolerant when the metric is higher.

Tolerance = Ex,y∼pdata

[
(f(x)T f(y)) · 1cx=cy

]
Linear CKA (Centered Kernel Alignment) (Nguyen et al., 2020; Song et al., 2012; Nguyen
et al., 2022): the similarity between pairs of representations. We adopt the minibatch estimators
and set the batch size as 200. Representations are more similar when the metric is higher. It is
defined as

Linear CKA =
1

n(n− 3)

(
tr(K̃L̃) +

1T K̃11T L̃1

(n− 1)(n− 2)
− 2

n− 2
1T K̃L̃1

)
,

where K = XXT , L = Y Y T , K̃ and L̃ are obtained by setting the diagonal entries of K and L to
zero, and X and Y denote the representation matrix for each view. This metric is not directly used
to evaluate contrastive learning, and we assume (x, y) ∼ pclass(x, y). Therefore, it also utilizes the
supervised information.
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C ADDITIONAL RESULTS

C.1 FULL RESULTS OF TABLE 2

In Table 2, the summary of seven experiments is provided. Here, we report the full results of the
seven experiments. For alignment and uniformity, a smaller value is better (↓). For tolerance and
linear CKA, a higher value is better (↑). Note that class label information is utilized by tolerance,
linear CKA, and Îclass(hX ;hY ).

Table 3: Summary of seven experiments. Except for Îclass(hX ;hY ), all the other known metrics
turn out to be ineffective for assessing downstream-task performance. For alignment and uniformity,
smaller values indicate better representations, so we flipped the signs. Note that the label information
is also utilized by tolerance and linear CKA.

Encoder Dataset Metrics

Alignment Uniformity Tolerance Linear CKA ÎSimCLR(hX ;hY ) Îclass(hX ;hY )

Is label information utilized? No No Yes Yes No Yes

Pearson’s Correlation Coefficient ρ with linear accuracy
ResNet-{18, 50} CDP −0.977 −0.058 0.956 0.992 −0.988 0.990
ResNet-{18, 50} CIFAR-10 −0.738 −0.319 0.121 −0.503 −0.041 0.634
ResNet-{18, 50} ImageNet-100 0.165 −0.197 0.214 0.410 0.085 0.805
ResNet-50(Pretrained) ImageNet-100 0.286 0.265 −0.227 0.722 0.510 0.967
ResNet-50(Pretrained) ImageNet-1k 0.175 0.157 −0.132 0.451 0.535 0.943
ViT(Pretrained) ImageNet-100 −0.102 0.623 −0.395 0.856 0.721 0.974
ViT(Pretrained) ImageNet-1k −0.077 0.561 −0.392 0.203 0.783 0.977

Average −0.181 0.147 0.021 0.447 0.229 0.899

Kendall’s Rank Correlation Coefficient τK with linear accuracy
ResNet-{18, 50} CDP −0.545 0.061 0.485 0.333 −0.727 0.545
ResNet-{18, 50} CIFAR-10 −0.600 −0.067 0.333 −0.467 −0.067 0.467
ResNet-{18, 50} ImageNet-100 −0.200 0.333 −0.067 0.467 0.067 0.467
ResNet-50(Pretrained) ImageNet-100 0.293 0.008 0.092 0.410 0.233 0.883
ResNet-50(Pretrained) ImageNet-1k 0.109 −0.059 0.109 0.243 0.233 0.617
ViT(Pretrained) ImageNet-100 −0.033 0.253 −0.055 0.626 0.516 0.802
ViT(Pretrained) ImageNet-1k 0.030 0.364 −0.061 0.152 0.576 0.848

Average −0.135 0.128 0.119 0.252 0.119 0.661

C.1.1 CDP, CIFAR-10, IMAGENET-100 WITH THREE DIFFERENT TEMPERATURES

For CDP, CIFAR-10, and ImageNet-100, we train the encoders of ResNet-18/50 from scratch fol-
lowing the setups in Supplementary B.2.1. We test three temperature parameters for each dataset.
The results are shown below.

Table 4: Metrics evaluated on CDP dataset. For CDP dataset, we could not achieve the good per-
formance based on LSimCLR, we also investigate the results when we use Lclass during contrastive
learning.

Model Training loss Temperature Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

ResNet-18 LSimCLR 0.1 42.64 0.196 -0.941 0.776 0.056 5.960 3.179
ResNet-18 LSimCLR 0.2 46.27 0.227 -1.074 0.743 0.052 5.387 3.060
ResNet-18 LSimCLR 0.3 49.90 0.218 -1.041 0.747 0.017 4.938 2.957
ResNet-50 LSimCLR 0.1 44.45 0.184 -0.685 0.834 0.005 5.663 3.374
ResNet-50 LSimCLR 0.2 50.01 0.226 -0.784 0.820 0.051 5.107 3.547
ResNet-50 LSimCLR 0.3 46.80 0.214 -0.723 0.829 0.000 4.498 2.936
ResNet-18 Lclass 0.1 99.15 0.357 -0.810 0.978 0.869 0.890 5.970
ResNet-18 Lclass 0.2 99.26 0.404 -0.989 0.988 0.897 0.890 5.970
ResNet-18 Lclass 0.3 99.13 0.388 -0.995 0.990 0.912 0.946 5.956
ResNet-50 Lclass 0.1 98.60 0.396 -0.689 0.978 0.909 1.298 5.966
ResNet-50 Lclass 0.2 97.21 0.402 -0.806 0.987 0.934 0.910 5.976
ResNet-50 Lclass 0.3 93.04 0.423 -0.849 0.989 0.937 0.950 5.857

Pearson’s ρ with Acc. 0.977 0.058 0.956 0.992 -0.988 0.990
Kendall’s τK with Acc. 0.545 -0.061 0.485 0.333 -0.727 0.545
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Table 5: Metrics evaluated on CIFAR-10 dataset.

Model Temperature Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

ResNet-18 0.1 90.03 0.380 -2.735 0.399 0.287 8.063 2.717
ResNet-18 0.3 91.11 0.449 -3.147 0.321 0.293 7.912 2.874
ResNet-18 0.5 90.97 0.427 -2.839 0.427 0.452 7.730 2.756
ResNet-50 0.1 92.06 0.403 -2.351 0.458 0.227 8.117 2.806
ResNet-50 0.3 92.97 0.562 -2.950 0.328 0.224 7.954 2.902
ResNet-50 0.5 93.01 0.467 -2.432 0.467 0.267 7.879 2.803

Pearson’s ρ with Acc. 0.738 0.319 0.121 -0.503 -0.041 0.634
Kendall’s τK with Acc. 0.600 0.067 0.333 -0.467 -0.067 0.467

Table 6: Metrics evaluated on ImageNet-100 dataset.

Model Temperature Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

ResNet-18 0.1 72.60 0.291 -2.265 0.497 0.329 8.364 3.394
ResNet-18 0.2 76.42 0.352 -2.593 0.438 0.375 8.375 3.907
ResNet-18 0.3 75.66 0.315 -2.268 0.515 0.405 8.313 3.857
ResNet-50 0.1 74.08 0.038 -0.270 0.941 0.272 8.412 3.967
ResNet-50 0.2 75.52 0.037 -0.277 0.943 0.332 8.347 4.186
ResNet-50 0.3 77.80 0.056 -0.408 0.914 0.338 8.403 4.263

Pearson’s ρ with Acc. -0.165 0.197 0.214 0.410 0.085 0.805
Kendall’s τK with Acc. 0.200 -0.333 -0.067 0.467 0.067 0.467

Table 7: Theoretical upper bounds of the supervised loss for CDP dataset. All the bounds are
determined based on the same variables, including the batch size, the number of class, and the
contrastive loss. Since we fix the batch size and the number of classes, only the contrastive loss
affects the bounds. Thus, all bounds have the same correlation coefficient of ρ = −0.409 and
τK = −0.182. We follow the official implementation codes of (Bao et al., 2022).

Model Training loss Temperature Acc. (%) (Arora et al., 2019) (Nozawa and Sato, 2021) (Ash et al., 2021) (Bao et al., 2022)

ResNet-18 LSimCLR 0.1 42.64 -399.448 1.931 -911.233 0.807
ResNet-18 LSimCLR 0.2 46.27 4830.149 5.277 11018.672 2.447
ResNet-18 LSimCLR 0.3 49.90 7315.527 6.867 16688.383 3.226
ResNet-50 LSimCLR 0.1 44.45 213.227 2.323 486.419 0.999
ResNet-50 LSimCLR 0.2 50.01 5250.332 5.546 11977.204 2.579
ResNet-50 LSimCLR 0.3 46.80 7553.165 7.019 17230.492 3.301
ResNet-18 Lclass 0.1 99.15 -159.413 2.084 -363.658 0.883
ResNet-18 Lclass 0.2 99.26 1089.677 2.883 2485.801 1.274
ResNet-18 Lclass 0.3 99.13 3778.281 4.604 8619.119 2.117
ResNet-50 Lclass 0.1 98.60 -167.034 2.079 -381.042 0.880
ResNet-50 Lclass 0.2 97.21 1133.557 2.911 2585.902 1.288
ResNet-50 Lclass 0.3 93.04 4061.839 4.785 9265.980 2.206
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C.1.2 EVALUATIONS OVER PRE-TRAINED ENCODERS: IMAGENET-100 AND IMAGENET-1K

We additionally test a variety of pre-trained models loaded from (Goyal et al., 2021; Khosla et al.,
2020; Wightman, 2019). We inspect 16 pre-trained ResNet-50 models and 14 pre-trained ViT mod-
els. All models are pre-trained by ImageNet-1k dataset. We load the pre-trained models and evaluate
the linear accuracy and the metrics. The results are shown below.

Table 8: Metrics evaluated on ImageNet-100 dataset using pre-trained ResNet-50 models.

Algorithm Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

SupCon (Khosla et al., 2020) 94.40 0.107 -2.600 0.489 0.439 7.889 6.100
Supervised pretrained 93.00 0.701 -3.173 0.380 0.403 7.598 5.816
SwAV (Caron et al., 2020) 92.52 0.296 -1.659 0.636 0.282 8.544 5.560
DeepCluster-v2 (Caron et al., 2020) 92.38 0.244 -1.308 0.709 0.254 8.544 5.560
DINO (Caron et al., 2021) 92.22 0.433 -1.829 0.592 0.277 8.443 5.539
Barlow Twins (Zbontar et al., 2021) 90.80 0.477 -2.415 0.458 0.316 8.528 5.513
PIRL (Misra and Maaten, 2020) 90.58 0.388 -3.387 0.361 0.452 8.584 5.480
SeLa-v2 (Caron et al., 2020) 89.50 0.208 -1.098 0.752 0.302 6.020 5.039
SimCLR (Chen et al., 2020a) 89.40 0.519 -3.032 0.336 0.425 8.669 5.546
MoCo-v2 (Chen et al., 2020b) 87.54 0.321 -2.820 0.497 0.413 8.592 5.490
NPID++ (Misra and Maaten, 2020) 79.60 0.745 -2.637 0.423 0.303 8.190 4.792
MoCo (He et al., 2020) 76.94 0.701 -3.174 0.380 0.403 8.338 4.904
NPID (Wu et al., 2018) 76.68 0.745 -2.637 0.423 0.201 8.039 4.188
ClusterFit (Yan et al., 2020) 75.66 0.706 -3.019 0.321 0.199 8.016 4.155
RotNet (Gidaris et al., 2018) 66.90 0.625 -1.927 0.561 0.166 7.020 2.916
Jigsaw (Noroozi and Favaro, 2016) 56.74 0.220 -0.486 0.888 0.076 6.339 2.510

Pearson’s ρ with Acc. -0.286 -0.265 -0.227 0.722 0.510 0.967
Kendall’s τK with Acc. -0.293 -0.008 0.092 0.410 0.233 0.883

Table 9: Metrics evaluated on ImageNet-1k dataset using pre-trained ResNet-50 models.

Algorithm Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

SupCon (Khosla et al., 2020) 78.72 0.697 -2.560 0.479 0.302 8.722 7.783
Supervised pretrained 74.11 0.704 -3.169 0.369 0.373 8.378 6.761
SwAV (Caron et al., 2020) 74.78 0.298 -1.637 0.634 0.228 9.428 6.214
DeepCluster-v2 (Caron et al., 2020) 73.65 0.247 -1.284 0.708 0.177 9.416 6.232
DINO (Caron et al., 2021) 74.22 0.434 -1.802 0.590 0.225 9.313 6.133
Barlow Twins (Zbontar et al., 2021) 72.82 0.485 -2.394 0.454 0.240 9.407 6.157
PIRL (Misra and Maaten, 2020) 70.51 0.400 -3.378 0.345 0.375 9.481 6.247
SeLa-v2 (Caron et al., 2020) 69.66 0.209 -1.064 0.756 0.218 7.354 5.774
SimCLR (Chen et al., 2020a) 69.12 0.536 -2.991 0.329 0.397 9.580 6.277
MoCo-v2 (Chen et al., 2020b) 63.89 0.333 -2.801 0.480 0.399 9.499 6.221
NPID++ (Misra and Maaten, 2020) 56.60 0.845 -2.634 0.335 0.289 9.009 4.692
MoCo (He et al., 2020) 47.052 0.704 -3.169 0.369 0.373 9.155 4.907
NPID (Wu et al., 2018) 52.70 0.761 -2.634 0.417 0.192 8.821 3.836
ClusterFit (Yan et al., 2020) 48.81 0.710 -3.004 0.313 0.171 8.773 3.915
RotNet (Gidaris et al., 2018) 41.54 0.627 -1.913 0.553 0.143 7.696 2.802
Jigsaw (Noroozi and Favaro, 2016) 30.85 0.221 -0.479 0.888 0.091 7.155 2.583

Pearson’s ρ with Acc. -0.175 -0.157 -0.132 0.451 0.535 0.943
Kendall’s τK with Acc. -0.109 0.059 0.109 0.243 0.233 0.617
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Table 10: Metrics evaluated on ImageNet-100 dataset using pre-trained ViT models.

Algorithm Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

Swin-B (Liu et al., 2021) 96.20 0.787 -3.663 0.502 0.559 8.073 6.222
Supervised pretrained (ViT-B/16) (Dosovitskiy et al., 2021) 95.36 0.565 -3.843 0.450 0.538 8.252 5.977
PiT-B (Heo et al., 2021) 94.62 0.880 -3.694 0.497 0.520 7.895 6.398
DeiT (ViT-B/16) (Touvron et al., 2021a) 94.30 0.833 -3.761 0.507 0.499 7.799 6.287
CaiT (XXS-36/16) (Touvron et al., 2021b) 93.90 0.644 -3.745 0.566 0.414 7.492 5.795
PiT-S (Heo et al., 2021) 93.76 0.820 -3.763 0.491 0.448 7.664 6.151
DeiT (ViT-S/16) (Touvron et al., 2021a) 93.42 0.789 -3.774 0.513 0.436 7.435 6.021
CaiT (XXS-24/16) (Touvron et al., 2021b) 93.28 0.662 -3.784 0.532 0.379 7.488 5.690
MoCo(v3) (ViT-B/16) (Chen et al., 2021b) 93.12 0.130 -1.275 0.796 0.390 8.594 5.654
DINO (ViT-B/16) (Caron et al., 2021) 92.84 0.408 -3.610 0.475 0.510 8.454 5.675
Supervised pretrained (ViT-S/16) (Dosovitskiy et al., 2021) 92.70 0.886 -3.482 0.505 0.528 6.863 5.515
DeiT (ViT-T/16) (Touvron et al., 2021a) 90.12 0.797 -3.813 0.471 0.336 7.186 5.365
Supervised pretrained (ViT-T/16) (Dosovitskiy et al., 2021) 80.14 1.047 -3.211 0.438 0.303 4.988 3.814
DINO (ViT-S/16) (Caron et al., 2021) 76.54 0.295 -0.728 0.818 0.182 6.868 3.525

Pearson’s ρ with Acc. 0.102 -0.623 -0.395 0.856 0.721 0.974
Kendall’s τK with Acc. -0.033 0.253 -0.055 0.626 0.516 0.802

Table 11: Metrics evaluated on ImageNet-1k dataset using pre-trained ViT models. Because of the
computational budget, we exclude the two largest models.

Algorithm Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

Supervised pretrained (ViT-B/16) (Dosovitskiy et al., 2021) 78.93 0.563 -3.889 0.432 0.365 9.199 7.208
DeiT (ViT-B/16) (Touvron et al., 2021a) 78.34 0.842 -3.834 0.482 0.234 8.679 8.009
PiT-S (Heo et al., 2021) 76.81 0.820 -3.833 0.472 0.198 8.513 7.543
CaiT (XXS-36/16) (Touvron et al., 2021b) 75.67 0.637 -3.840 0.550 0.228 8.373 6.795
DeiT (ViT-S/16) (Touvron et al., 2021a) 75.59 0.789 -3.852 0.498 0.209 8.278 7.280
MoCo(v3) (ViT-B/16) (Chen et al., 2021b) 75.51 0.130 -1.297 0.792 0.268 9.524 6.658
CaiT (XXS-24/16) (Touvron et al., 2021b) 74.09 0.661 -3.864 0.516 0.205 8.315 6.547
DINO (ViT-B/16) (Caron et al., 2021) 73.28 0.411 -3.646 0.465 0.375 9.367 6.598
Supervised pretrained (ViT-S/16) (Dosovitskiy et al., 2021) 72.85 0.889 -3.506 0.494 0.428 7.572 6.233
DeiT (ViT-T/16) (Touvron et al., 2021a) 68.67 0.791 -3.872 0.462 0.197 7.874 5.883
Supervised pretrained (ViT-T/16) (Dosovitskiy et al., 2021) 53.01 1.044 -3.203 0.437 0.267 5.474 3.741
DINO (ViT-S/16) (Caron et al., 2021) 51.11 0.157 -0.702 0.881 0.193 7.426 3.316

Pearson’s ρ with Acc. 0.077 -0.561 -0.392 0.203 0.783 0.977
Kendall’s τK with Acc. -0.030 -0.364 -0.061 0.152 0.576 0.848
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C.2 POST-TRAINING MI ESTIMATION RESULTS OF FIGURE 5

In addition to the linear evaluation performance, we also estimate MI after training and the results
are shown in Figure 8. For each of the three individual tasks Ccolor, Cdigit, and Cposition, the true MI
is 2 bits. For Call, the true MI is 6 bits. For an easier understanding, we show the colors in Figure 8
after normalizing the estimated values by the true MI. As we have already found in Section 3.2,
Îclass(hX ;hY ) is well-aligned with the linear accuracy and the post-training MI estimation values
show similar patterns as in Figure 5.
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Figure 8: Post-training MI estimation results for the experiment cases in Figure 5.

C.3 ADDITIONAL RESULTS OF SECTION 3.3

We can expand our results to the case of commonly used Taug. Following Tian et al. (2020b), we
utilize the color jittering and random resized crop augmentation and vary their strength parameters.

The results are provided in Figure 9. Considering that color jittering is not related to digit task nor
position task, the results in Figure 9(a) indicate that the peak in the middle might not be relevant to
InfoMin. Similar results can be found for random resized crop. Considering that random resized
crop might be less relevant to the color task than to the digit task or position task, the results in
Figure 9(b) indicate that the peak in the middle might not be relevant to InfoMin either. Based on
our results, aligning the positive pairing method T and the downstream task C is not possible, and
also it might not be always helpful.
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Figure 9: Linear evaluation performance when (a) color jittering or (b) random resized crop is used
for training.
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D TWO EMPIRICAL INVESTIGATIONS RELATED TO THE DISCUSSION SECTION

D.1 TRAINING LOSS FOR EFFECTIVE CONTRASTIVE LEARNING DOES NOT NEED TO
CORRESPOND TO THE DOWNSTREAM TASK’S MI

Because we have observed in Section 3.2 that Îclass(hX ;hY ) is the most effective metric for down-
stream task’s linear evaluation performance, it is reasonable to ask if the corresponding loss Lclass
in Figure 2(b) can learn a better representation and achieve a better performance. Our experimental
results are summarized in Table 12. We can see that the supervised loss Lclass is outperformed by
carefully designed unsupervised losses for two out of three cases. Even though Îclass(hX ;hY ) is a
superior performance metric, the corresponding Lclass is not necessarily a superior loss for learning
representation. Furthermore, it is surprising to note that Lclass is a supervised loss while the com-
pared losses are unsupervised losses. Despite using the exact task information for the training, Lclass
performs worse than the carefully designed unsupervised learning methods.

A possible explanation can be related to the fact that Lclass utilizes the minimum amount of informa-
tion that is related to the task. While a high performing network must have its representation express
the downstream-task information very well as we have shown in Section 3.2, the training of such a
network requires additional learning signals on top of the basic downstream-task information. This
explanation is also supported by the well known supervised loss LSupCon that is proposed in (Khosla
et al., 2020). Even though not shown in Table 12, the popular supervised loss LSupCon easily out-
performs the Lclass. In general, LSupCon outperforms the unsupervised losses as well. LSupCon is
a supervised loss just like Lclass, but it experiments with known unsupervised augmentations and
choose the high-performing augmentations to be used in addition to the class information.

Overall, we can conclude the followings for learning representation. (1) Using downstream-task
information only (supervised) can be outperformed by a careful use of well-designed learning signals
(unsupervised). (2) When supervised learning is allowed, both downstream-task information (i.e.,
class label) and well-designed learning signals (e.g., high-performance augmentations) should be
used together to achieve the best performance.

Additionally, we would like to make it clear how our result is different from the work of Tschannen
et al. (2019). It has been already pointed out by Tschannen et al. (2019) that MI alone might not
be sufficient for learning effective representations for downstream tasks. The analysis method in
the work, however, was not rigorous in that only a particular choice of augmentation and the corre-
sponding joint distribution paug(x, y) were studied. Without addressing exactly what information is
shared by paug(x, y), the analysis can be quite misleading. Furthermore, only Laug was considered
as the training objective in the work. As we have shown in Section 3.2, any analysis based on Laug
can be misleading because the information corresponding to the paug(x, y) might not be sufficiently
relevant to the downstream-task information anyway. In our work, we have considered Lclass that is
definitely related to the desired downstream-task information. While we also conclude that MI is
not sufficient for a successful representation learning, our result is different and broadens the results
in Tschannen et al. (2019) because we have developed and applied rigorous methods for analyzing
MI in contrastive learning.

Table 12: Comparison of linear evaluation performance for a set of loss functions. Performance
with ∗ indicates values reported in the existing works. Despite the superiority of Lclass as a metric,
generally it does not outperform the best known unsupervised losses.

Loss Lclass LSimCLR Laug,best-known

CIFAR-10 91.0 91.0 94.1∗ (SWD (Chen et al., 2021a))
ImageNet-100 87.4 76.4 84.5∗ (MoCo-v2+MoCHi (Kalantidis et al., 2020))
ImagNet-1k 75.2 69.1∗ (Chen et al., 2020a) 76.4∗ (HCA (Xu et al., 2020))

D.2 NEGATIVE SAMPLING FOR EFFECTIVE CONTRASTIVE LEARNING DOES NOT NEED TO
FOLLOW THE MARGINAL DISTRIBUTION

For the contrastive learning to be equivalent to an MI maximization, the negative term (the denom-
inator in Eq. (1)) normalized by (2K − 1) needs to be an asymptotic estimation of the partition
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Table 13: The effect of negative sampling dataset D−. Linear evaluation performance can be af-
fected by choosing negative samples from a related or an unrelated dataset. (a) CIFAR-5A: For
contrastive learning of CIFAR-5A dataset, the best performance is achieved by choosing the neg-
ative samples from CIFAR-5B dataset (i.e., not from CIFAR-5A dataset). (b) CIFAR-50A: For
contrastive learning of CIFAR-50A dataset, the best performance is achieved by choosing the nega-
tive samples from CIFAR-50B dataset (i.e., not from CIFAR-50A dataset).

(a) D = CIFAR-5A

D− CIFAR-5A (Baseline: InfoNCE loss) CIFAR-5B PACS-C PACS-A PACS-P PACS-S Uniform random

Accuracy (%) 85.70 87.62 83.14 81.98 81.14 80.86 79.80

(b) D = CIFAR-50A

D− CIFAR-50A (Baseline: InfoNCE loss) CIFAR-50B PACS-C PACS-A PACS-P PACS-S Uniform random

Accuracy (%) 59.56 60.34 49.52 51.16 50.44 43.40 33.92

function Z(y)(= Ep(y)[e
f(x,y)]) (Poole et al., 2019). This requirement can be fulfilled by drawing

the negative samples with a uniform distribution over the entire training dataset. In practice, the neg-
ative samples in Eq. (1) are chosen as the samples in the mini-batch, primarily for the computational
efficiency.

In contrast to the viewpoint of MI maximization, the viewpoint of Noise Contrastive Estima-
tion (NCE) in (Gutmann and Hyvärinen, 2010) does not require the negative samples to be drawn
from the marginal distribution. Instead, the negative samples can be drawn from any reasonable
distribution including random noise such as Gaussian noise. Interestingly, both viewpoints were ad-
dressed in the original CPC work (Oord et al., 2018), but the relationship between the two viewpoints
was not clarified. Here, we provide an experiment to show that the negative samples do not need
to be drawn from the marginal distribution. In fact, we can enhance the performance of contrastive
learning by carefully manipulating the negative sampling.

Before proceeding, we define four new datasets. CIFAR-5A and CIFAR-5B are disjoint datasets
created from CIFAR-10. CIFAR-5A contains all the examples of the first five classes of CIFAR-10
and CIFAR-5B contains all the examples of the last five classes of CIFAR-10. CIFAR-50A and
CIFAR-50B are created in a similar way from CIFAR-100 (first fifty classes of CIFAR-100 and last
fifty classes of CIFAR-100).

The experimental results are shown in Table 13. The positive pairs are always drawn from the
original datasetD (CIFAR-5A or CIFAR-50A), but the negative samples are drawn from the negative
sampling dataset D−. As expected, performance degradation can be observed when D− is one of
PACS-(cartoon, art, photo, and sketch) (Li et al., 2017) or uniform random noise (Figure 10). When
D− is CIFAR-5B, however, the performance is improved by 1.92%. The same observations can
be made for CIFAR-50A, with the improvement of 0.77%. The experiment results indicate that we
can improve the linear evaluation performance by carefully choosing D− for negative sampling. In
our experiments, the performance was enhanced by choosing a dataset whose distribution slightly
diverges from the true marginal distribution (CIFAR-5B and CIFAR-50B are not the marginals but
at least they come from the same source datasets of CIFAR-10 and CIFAR-100).

Figure 10: An example of uniform random noise image.
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