
Under review as a conference paper at ICLR 2023

LEARNING TO PREDICT PARAMETER FOR UNSEEN
DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Typical deep learning models depend heavily on large amounts of training data
and resort to an iterative optimization algorithm (e.g., SGD or Adam) for learning
network parameters, which makes the training process very time- and resource-
intensive. In this paper, we propose a new training paradigm and formulate net-
work parameter training into a prediction task: given a network architecture, we
observe there exists correlations between datasets and their corresponding optimal
network parameters, and explore if we can learn a hyper-mapping between them
to capture the relations, such that we can directly predict the parameters of the
network for a new dataset never seen during the training phase. To do this, we
put forward a new hypernetwork with the purpose of building a mapping between
datasets and their corresponding network parameters, and then predict parameters
for unseen data with only a single forward propagation of the hypernetwork. At
its heart, our model benefits from a series of GRU sharing weights to capture the
dependencies of parameters among different layers in the network. Extensive ex-
perimental studies are performed and experimental results validate our proposed
method achieves surprisingly good efficacy. For instance, it takes 119 GPU sec-
onds to train ResNet-18 using Adam from scratch and the network obtains a top-1
accuracy of 74.56%, while our method costs only 0.5 GPU seconds to predict the
network parameters of ResNet-18 achieving comparable performance (73.33%),
more than 200 times faster than the traditional training paradigm.

1 INTRODUCTION

Deep learning has yielded superior performance in a variety of fields in the past decade, such as
computer vision (Kendall & Gal, 2017), natural language processing (DBL), reinforcement learning
(Zheng et al., 2018; Fujimoto et al., 2018), etc. One of the keys to success for deep learning stems
from huge amounts of training data used to learn a deep network. In order to optimize the network,
the traditional training paradigm takes advantage of an iterative optimization algorithm (e.g., SGD)
to train the model in a mini-batch manner, leading to huge time and resource consumption. For
example, when training RestNet-101 (He et al., 2016) on the ImageNet (Deng et al., 2009) dataset,
it often takes several days or weeks for the model to be well optimized with GPU involved. Thus,
how to accelerate the training process of the network is an emergent topic in deep learning.

Nowadays, many methods for accelerating training of deep neural networks have been proposed
(Kingma & Ba, 2015; Ioffe & Szegedy, 2015; Chen et al., 2018). The representative works include
optimization based techniques by improving the stochastic gradient descent (Kingma & Ba, 2015;
Yong et al., 2020; Anil et al., 2020), normalization based techniques (Ioffe & Szegedy, 2015; Sali-
mans & Kingma, 2016; Ba et al., 2016), parallel training techniques (Chen et al., 2018; Kim et al.,
2019), et. Although these methods have showed promising potential to speed up the training of the
network, they still follow the traditional iterative-based training paradigm.

In this paper, we investigate a new training paradigm for deep neural networks. In contrast to
previous works accelerating the training of the network, we formulate the parameter training prob-
lem into a prediction task: given a network architecture, we attempt to learn a hyper-mapping be-
tween datasets and their corresponding optimal network parameters, and then leverage the hyper-
mapping to directly predict the network parameters for a new dataset unseen during training. A basic

1



Under review as a conference paper at ICLR 2023

Fashion-MNIST CIFAR-100 Mini-ImageNet
Datasets

0.3

0.4

0.5

0.6

0.7

0.8

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t random

learned

Figure 1: Correlation coefficients between
training datasets and the network parameters
on the Fashion-MNIST (Xiao et al., 2017),
CIFAR-100 (Krizhevsky et al., 2009), Mini-
ImageNet (Vinyals et al., 2016) datasets, respec-
tively.‘learned’ depicts correlations between train-
ing datasets and the corresponding optimal net-
work parameters. ‘random’ denotes correlations
between training datasets and the network param-
eters selected randomly from 1000 groups.

assumption behind the above prediction task is
that there exists correlations between datasets
and their corresponding parameters of a given
network. In order to demonstrate the rational-
ity of this assumption, we perform the follow-
ing experiment: for a dataset, we first randomly
sample 3000 images to train a 3-layer convolu-
tional neural network until convergence. Then
we conduct the average pooling operation to the
original inputs as a vector representation of the
training data. We repeat the above experiment
1000 times, and thus obtain 1000 groups of rep-
resentations and the corresponding network pa-
rameters. Finally, we utilize Canonical Cor-
relation Analysis (CCA) (Weenink, 2003) to
evaluate the correlations between training data
and the network parameters by the above 1000
groups of data. Figure 1 shows the results,
which illustrates there are indeed correlations
between training datasets and their network pa-
rameters for a given network architecture.

In light of this, we propose a new hypernet-
work, called PudNet, to learn a hyper-mapping between datasets and network parameters. Specifi-
cally, PudNet first summarizes the characters of datasets by compressing them into different vectors
as their sketch. Then, PudNet extends the traditional hypernetwork (Ha et al., 2017) to predict net-
work parameters of different layers based on these vectors. Considering that parameters among
different layers should be dependent, we incorporate Gate Recurrent Unit (GRU) (Cho et al., 2014)
into PudNet to capture the relations among them, so as to improve the performance of PudNet. Fi-
nally, it is worth noting that for training PudNet, it is infeasible if we prepare thousands of datasets
and train networks on these datasets to obtain the corresponding optimal parameters respectively.
Instead, we adopt a meta-learning based approach (Finn et al., 2017) to train the hypernetwork.

Extensive experiments demonstrate the surprising effectiveness of our PudNet. For example, it
takes around 54, 119, 140 GPU seconds to train ResNet-18 using Adam from scratch and ob-
tain top-1 accuracies of 99.91%, 74.56%, 71.84% on the Fashion-MNIST (Xiao et al., 2017),
CIFAR-100 (Krizhevsky et al., 2009), Mini-ImageNet (Vinyals et al., 2016), respectively. While
our method costs only around 0.5 GPU seconds to predict the parameters of ResNet-18 and still
achieves 96.24%, 73.33%, 71.57% top-1 accuracies on the three datasets respectively, at least 100
times faster than the traditional training paradigm.

Our contributions are summarized as follows: 1) We find there are correlations between datasets and
their corresponding parameters of a given network, and propose a general training paradigm for deep
networks by formulating network training into a parameter prediction task. 2) We extend hypernet-
work to learn the correlations between datasets and their corresponding network parameters, such
that we can directly generate parameters for arbitrary unseen data with only a single forward prop-
agation. 3) Our method achieves surprisingly good performance for unseen data, which is expected
to motivate more researchers to explore along with this research direction.

2 RELATED WORK

2.1 HYPERNETWORKS

The original goal of hypernetwork proposed in (Ha et al., 2017) is to decrease the number of training
parameters , by training a hypernetwork with a smaller size to generate the parameters of another
network with a larger size on a fixed dataset. Because of its promising performance, hypernet-
work has been gradually applied to various tasks (Krueger et al., 2017; Zhang et al., 2019; von
Oswald et al., 2020; Li et al., 2020; Shamsian et al., 2021). von Oswald et al. (2020) proposes a
task-conditioned hypernetwork to overcome catastrophic forgetting in continual learning. It learns
an embedding for each task and utilizes the task embedding to generate corresponding parameters

2



Under review as a conference paper at ICLR 2023

for each task. Bayesian hypernetwork (Krueger et al., 2017) is proposed to approximate Bayesian
inference in neural networks. GHN-2 proposed in Knyazev et al. (2021) attempts to build a map-
ping between the network architectures and network parameters, where the dataset is always fixed.
GHN-2 leverages graph neural networks to model the information of the network architectures for
learning the mapping. Our work is orthogonal to GHN-2, since we aim to build a mapping between
the datasets and the network parameters, given a network architecture. Moreover, we extend the tra-
ditional hypernetwork by incorporating GRU to capture the relations among parameters of differnt
layers and develop a meta-learning based manner to optimize the hypernetwork.

2.2 ACCELERATION OF NETWORK TRAINING

Many works have been proposed to speed up the training process of deep neural networks in the past
decade, including optimization based methods (Kingma & Ba, 2015; Yong et al., 2020; Anil et al.,
2020), normalization based methods (Ioffe & Szegedy, 2015; Ba et al., 2016), parallel training meth-
ods (Chen et al., 2018; Kim et al., 2019), etc. Optimization based methods mainly aim to improve
the stochastic gradient descent. For instance, Yong et al. (2020) proposes a gradient centralization
method that centralizes gradient vectors to improve the Lipschitzness of the loss function. Nor-
malization based methods intend to propose good normalization methods to speed up the training
process. The representative work is the batch normalization (Ioffe & Szegedy, 2015) that can make
the optimization landscape smooth and lead to fast convergence (Santurkar et al., 2018). Parallel
training methods usually stack multiple hardwares to conduct parallel training, which can reduce
training time by dispersing calculation amounts to distributed devices. However, these methods still
follow the traditional iterative based training paradigm. Different from them, we attempt to explore
a new training paradigm, and transform the network training problem of into a prediction task.

3 PROPOSED METHOD

In this section, we will introduce our PudNet in detail. For better illustration, we first give prelimi-
naries and our problem formulation, and then elaborate the details of our method.

3.1 PRELIMINARIES

Notation We denote Hθ as our hypernetwork parameterized by θ. Let Dtrain = {Di}Ni=1 be the
set of training datasets, where Di is the ith dataset and N is the number of training datasets. Each
sample xj ∈ Di has a label yj ∈ Ctri , where Ctri is the class set of Di. We use Ctr =

⋃N
i=1 Ctri

to denote the whole label set of training datasets. Similarly, we define Dtest as the set of unseen
datasets used for testing and Cte as the set containing all labels in Dtest.

Problem Formulation In contrast to traditional iterative-based training paradigm, we attempt to
explore a new training paradigm, and formulate the network training into a parameter prediction
task. To this end, we propose the following objective function:

argmin
θ

N∑
i=1

L(F(Di,Ω;Hθ),MΩ
i ), (1)

where F(Di,Ω;Hθ) denotes a forward propagation of our hypernetwork Hθ. The input of the
forward propagation is the dataset Di and its output is the predicted parameters of network Ω by
Hθ. Note that the architecture of Ω is always fixed during training and testing, e.g., ResNet-18.
This makes sense because we often apply a representative deep model to data of different domains.
Thus, it is obviously meaningful if we can predict the network parameters for unseen data using an
identical network architecture. MΩ = {MΩ

i }Ni=1 denotes the ground-truth parameter set of network
Ω corresponding to datasets Dtrain, where MΩ

i is the ground-truth parameters for the dataset Di.
L is a loss function, measuring the difference between the ground-truth parameters MΩ

i and the
predicted parameters.

The core idea in (1) is to learn a hyper-mappingHθ between datasets Dtrain and the network param-
eter set MΩ, on the basis of our finding that there are correlations between datasets and the network
parameters, as shown in Figure 1. However, it is prohibitive if preparing thousands of datasets Di

3



Under review as a conference paper at ICLR 2023

GRU GRU

�

�

FC

Weight Generator Weight Generator Weight Generator

GRU

�� �� ��

Dataset

Dataset

�

Dataset Compression Context-Aware Parameter Prediction

Loss ℒ!"#$%

Target Network

weight application
initial residual connection��

support set

Predicted
parameters

class centroids

Figure 2: Overview of our proposed PudNet. PudNet first compresses each dataset into a sketch with
a fixed size, and then utilizes the hypernetwork to generate parameters of a target network based on
the sketch. Finally, PudNet is optimized based on a support set in a meta-learning based manner.

and training network Ω on Di to obtain the corresponding ground-truth parameters MΩ
i respec-

tively. To alleviate this problem, we adopt a meta-learning based (Vinyals et al., 2016) approach to
train the hypernetwork Hθ, and propose another objective function as:

argmin
θ

N∑
i=1

∑
xj∈Di

L(xj , yj ;F(Di,Ω;Hθ)), (2)

Instead of optimizing Hθ by directly matching the predicted parameters F(Di,Ω;Hθ) with the
ground-truth parameters MΩ

i , we can adopt a typical loss, e.g., cross-entropy, to optimizeHθ, where
each dataset Di can be regarded as a task in meta-learning (Vinyals et al., 2016). By learning on
multiple tasks, the parameter predictorHθ is gradually able to learn to predict performant parameters
for training datasets Dtrain. During testing, we can utilize F(D,Ω;Hθ) to directly predict the
parameters for a testing dataset D never seen in Dtrain with only a single forward propagation.

3.2 OVERVIEW OF OUR FRAMEWORK

Our goal is to learn a hypernetwork Hθ, so as to directly predict the network parameters for an
unseen dataset by Hθ. However, there remains two issues that are not solved: First, the sizes of
differentDi may be different and the dataset sizes may be large, which makesHθ hard to be trained;
Second, there may be correlations among parameters of different layers in a network. However, how
to capture such context relations among parameters has not been fully explored so far.

To this end, we propose a novel framework, PudNet, as shown in Figuire 2, PudNet first introduces
a dataset compression module to compress each dataset Di into a small size sketch si ∈ Rl×m to
summarize the major characteristics of Di, where l and m are the size and dimension of the sketch,
respectively. Then, our context-aware parameter prediction module takes the sketch si as input, and
outputs the predicted parameters of the target network, e.g., ResNet-18. At its heart, multiple GRUs
sharing weights are constructed to capture the dependencies of parameters among different layers in
the network. Finally, PudNet is optimized based on a support set in a meta-learning based manner.

3.3 DATASET COMPRESSION

To solve the issue of different sizes of training datasets, we first compress each dataset into a sketch
with a fixed size. In recent years, many data compression methods have been proposed, such as
matrix sketching (Liberty, 2013; Qian et al., 2015), random projection (Sarlos, 2006; Liberty et al.,
2007), etc. In principle, these methods can be applied to our data compression module. For simpli-
fication, we leverage a deep neural network to extract a feature vector as the representation of each

4



Under review as a conference paper at ICLR 2023

sample, and then conduct the average pooling operation to generate a final vector as the sketch of
the dataset. The sketch si for the dataset Di can be calculated as:

si =
1

|Di|
∑
xj∈Di

Tϕ(xj), (3)

where Tϕ(·) denotes a feature extractor parameterized by ϕ, and the structure of the feature extractor
used in the experiments can be found in Appendix A.1. |Di| is the size of the dataset Di. The
parameter ϕ is jointly trained with PudNet in an end-to-end fashion. In future work, more efforts
could be made to explore more effective solutions to summarize the information of a dataset, e.g.
using statistic network (Edwards & Storkey, 2017) to compress datasets.

3.4 CONTEXT-AWARE PARAMETER PREDICTION

After obtaining the sketches for all training datasets, we will feed them into the context-aware pa-
rameter prediction module, i.e., our hypernetwork, as shown in Figure 2. In the followings, we will
introduce this module in detail.

Capturing Context Relations via GRU Since an input of a neural network would sequentially
pass forward the layers of this network, the parameters of different layers should be not independent.
If we ignore the context relations among parameters of different layers, the solution may be sub-
optimal. Thus, we utilize GRU (Cho et al., 2014) to capture the context-aware parameter relations as
shown in Figure 3. Note that we have two changes compared to conventional GRU: 1) conventional
GRU utilizes the randomly initialized hidden state h0. Different from this, we set the dataset sketch
embedding as the initial hidden state: h0 = si, so as to provide dataset information for predicting
corresponding structure parameters; 2) In each recurrent step, conventional GRU usually takes the
next word as input in natural language process field (Cho et al., 2014). Instead of that, we exploit
the predicted structure parameters of previous layer as input, enabling the information of shallower
layer parameters memorized in GRU to help the prediction of parameters in the deeper layer. By
this way, the dependency relations among parameters of different layers can be well captured.

GRU GRU GRU
ℎ! = #"

$#$% $#

ℎ#$% ℎ#
�

Figure 3: An illustration of capturing context re-
lations via GRU.

The following comes a formal description:

rt = σ(Wr · [ht−1,at−1]),

zt = σ(Wz · [ht−1,at−1]),

h̃t = tanh(Wh · [rt ∗ ht−1,at−1]),

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t,
at = σ(Wo · ht),

where ht could transfer dataset related infor-
mation. at is a latent vector encoding the context information. Wr,Wz,Wh,Wo are the learnable
parameters. As in GRU, the reset gate rt decides how much information in the hidden state ht−1

needs to be reset. h̃t is a new memory, which absorbs the information of ht−1 and at−1. zt is
an update gate, which regulates how much information in h̃t to update and how much information
in ht−1 to forget. The context-aware output at is taken as input to the weight generator to predict
parameters of the t-th layer of the target network Ω.

Initial Residual Connection To ensure that the final context-aware output contains at least a frac-
tion of the initial dataset information, we additionally implement an initial residual connection be-
tween dataset sketch embedding si and at as:

ât = at × (1− η) + si × η, (4)

where η is the hyperparameter. After obtaining ât, we put ât into a weight generator used to generate
the parameters of Ω.

Weight Generator Since the target network Ω usually has different sizes and dimensions in dif-
ferent layers, we construct the weight generator gψt for each layer t to transform ât of a fixed
dimension to network parameter tensor wt with variable dimensions. Here gψt denotes the weight

5



Under review as a conference paper at ICLR 2023

generator of the t-th layer, ψt is the learnable parameters of gψt
, wt is the predicted parameter of

t-th layer in Ω. We can derive the predicted parameter of the t-th layer as:
wt = gψt

(ât) (5)
where gψt consists of one linear layer and two 1×1 convolutional layers. More details of the weight
generator can be found in Appendix A.1. When the parameters wt of each layer are predicted, we
can use these parameters as the final parameters of Ω.

3.5 OPTIMIZATION OF OUR FRAMEWORK

In this section, we introduce how to optimize our PudNet. In contrast to traditional classification
tasks where training data and testing data have the identical label space. In our task, the label spaces
between training and testing can be different, even not overlapped. Thus, training a classification
head on the training data can not be used to predict labels of testing data. Motivated by several
metric learning methods (Chen et al., 2021; Oreshkin et al., 2018), we introduce a parameter-free
classification method to solve the above issue.

Similar to Chen et al. (2021), we obtain a metric-based category prediction on class ck as:

p(y = ck|xj ,Ω, Di;Hθ) =
exp(τ · < f(xj ;F(Di,Ω;Hθ)),uk >)∑
c exp(τ · < f(xj ;F(Di,Ω;Hθ)),uc >)

, (6)

where uk is the centroid of class ck, which is the average output of the predicted network Ω over
samples belonging to class ck in the support set, as in Snell et al. (2017). < ·, · > denotes the cosine
similarity of two vector, and τ is a learnable temperature parameter. f(xj ;F(Di,Ω;Hθ)) is the
output of the target neural network Ω based on the input xj .

Then, the parameter-free classification loss can be defined as:

L1 =

N∑
i=1

∑
xj∈Di

L(p(y|xj ,Ω, Di;Hθ), yj), (7)

where yj is the true label of xj , L is the cross-entropy loss.

To further improve the performance of the model, we introduce an auxiliary task for training our
hypernetwork, by adding a full classification head Qφ parameterized by φ. The classification head
aims to map the output of the target network Ω to probabilities of the whole classes Ctr from Dtrain.
The full classification loss is defined as:

L2 =

N∑
i=1

∑
xj∈Di

L(Qφ(f(xj ;F(Di,Ω;Hθ))), yj). (8)

Our parameter prediction task co-trained with a full classification head is related to curriculum
learning (Oreshkin et al., 2018). Since learning on varying label space is more challenging than
learning on a static one, the full classification problem that maps features to a static label set could
be regraded as a simpler curriculum. This easier ’prerequisite’ could help the hypernetwork to
obtain the basic level knowledge before handling harder parameter prediction task. Moreover, to
make parameter-free based prediction and full classification based prediction consistent, which is
motivated by (Chen et al., 2022; Wu et al., 2019), we introduce a Kullback-Leibler Divergence loss
to encourage their predicted probabilities to be matched:

L3 =

N∑
i=1

∑
xj∈Di

KL(q(y|xj)||p(y|xj)), (9)

where KL is the Kullback-Leibler Divergence. p(y|xj) and q(y|xj) are the predicted probabilities
of xj of parameter-free based and full classification based methods, respectively. The probabilities
of the corresponding classes in p(y|xj) are padding with zero to match the dimension of q(y|xj).
Finally, we give the overall multi-task loss as:

Ltotal = L1 + L2 + L3. (10)
where Di can be regarded as a task similar to that in meta-learning. By minimizing (10), our
hypernetwork can be well trained. For an unseen data in testing, we utilize our hypernetwork to
directly predict its network parameters, and use the parameter-free based method for classification.
The training procedure of our PudNet is in Appendix A.4.

6



Under review as a conference paper at ICLR 2023

4 EXPERIMENT

4.1 DATASET CONSTRUCTION

In the experiment, we construct numerous datasets for evaluating our method based on four datasets:
Fashion-MNIST (Xiao et al., 2017), CIFAR-100 (Krizhevsky et al., 2009), Mini-ImageNet (Vinyals
et al., 2016), Animals-10 (Gupta & Brown, 2022). The constructed datasets are summarized as:

Fashion-set: We randomly select 6 classes from Fashion-MNIST to construct training datasets and
the remaining 4 classes for constructing testing datasets. We construct 2000 groups of datasets from
the 6-category training set to train PudNet. To verify PudNet’s ability to directly generate param-
eters, we construct 500 groups of datastes from the 4-category testing set to generate 500 groups
of network parameters. For each group of network parameters, we also construct another dataset
having identical labels but not overlapped samples with the dataset used for generating parameters,
in order to test the performance of the predicted network parameters. Each dataset contains 600
randomly sampled images with 2 randomly sampled classes.

CIFAR100-set: We randomly choose 80 classes from CIFAR-100 for constructing training datasets
and 20 classes not overlapped with the above 80 classes to construct testing datasets. We sample
100000 groups of datasets for training PudNet. Similar to Fashion-set, we construct 500 groups of
datastes to directly generate their network parameters by PudNet, and create another 500 groups
of datasets for testing the performance of the predicted parameters. Each datasets consists of 500
images with 5 classes randomly selected.

ImageNet-set: Similar to CIFAR100-set, the mini-Imagenet dataset is randomly split into 80 classes
for creating training datasets and 20 classes for creating testing datsets. We sample 50000 groups of
datasets for training PudNet. Similar to Fashion-set, we use 500 groups of datastes to generate their
network parameters, and construct another 500 groups of datasets for testing. There are 500 images
with 5 classes selected randomly in each dataset.

CIFAR100→Animals10: To further verify our PudNet, we construct a cross-domain dataset. We
use CIFAR100-set to construct training datasets, and Animals-10 for testing datasets. There are
100000 groups of datasets from CIFAR100-set to train PudNet. We randomly split Animals10 into
two not overlapped subsets: one is used to generate parameters, and the other for testing.

4.2 BASELINES

We compare our method with traditional iterative based training paradigm including training from
scratch and one training acceleration method, GC (Yong et al., 2020). We also take the pretrained
model as a baseline. In addition, we also compare with meta-learning methods, including Match-
Net (Vinyals et al., 2016), ProtoNet (Snell et al., 2017), Meta-Baseline (Chen et al., 2021), Meta-
DeepDBC (Xie et al., 2022), and MUSML (Jiang et al., 2022). We use two kinds of architectures
as our target network Ω: a 3-layer CNN, ConvNet-3 and Resnet-18. To ensure a fair comparison,
we use all training datasets for training meta-learning methods and the pretrained model. For all
experiments, we use ACC (Top-1 Accuracy) metric to evaluate the classification performance.

4.3 IMPLEMENTATION DETAILS

We perform the experiments using GeForce RTX 3090 Ti GPU. We set the learning rate as 0.001.
For the target network ConvNet-3, we set the hyperparameter η as 0.2,0.1,0.3,0.1 for Fashion-set,
CIFAR100-set, ImageNet-set, CIFAR100→Animals10 respectively. For the target network ResNet-
18, we set the hyperparameter η as 0.2,0.5,0.5,0.5 for Fashion-set, CIFAR100-set, ImageNet-set,
CIFAR100→Animals10 respectively. More details could be found in Appendix A.1 and A.2.

4.4 RESULT AND ANALYSIS

General Performance Analysis Table 1 and Table 2 show the general results of our method. We
could find that our method consistently outperforms the meta-learning methods and the pretrained
method. This demonstrates that learning a hyper-mapping between datasets and corresponding net-
work parameters is effective. To demonstrate the time consumption our method could save, we also

7



Under review as a conference paper at ICLR 2023

Table 1: Results of different methods in terms of the target network ConvNet-3 on the Fashion-set,
CIFAR100-set, ImageNet-set datasets.

Method Fashion-set CIFAR100-set ImageNet-set
ACC(%) time (sec.) ACC time (sec.) ACC time (sec.)

Pretrained 94.12±0.63 - 58.35±0.61 - 53.28±0.67 -
MatchNet 89.93±0.65 - 47.75±0.73 - 43.83±0.83 -
ProtoNet 92.32±0.37 - 51.96±0.57 - 49.59±0.88 -

Meta-Baseline 94.85±0.31 - 57.69±0.38 - 54.97±0.75 -
Meta-DeepDBC 95.76±0.39 - 60.52±0.41 - 55.36±0.73 -

MUSML 96.05±0.32 1.21 56.49±0.56 1.22 54.03±0.94 1.22

Adam
Scratch

1 epochs 91.07±1.11 0.87 49.11±1.03 0.99 41.53±1.20 2.67
30 epochs 99.97±0.02 25.99 64.54±0.40 28.37 64.33±0.83 77.08
50 epochs 99.96±0.03 43.36 70.68±0.53 49.02 67.25±0.69 133.48

GC
1 epochs 92.36±1.20 0.88 50.23±1.23 0.99 40.74±1.32 2.67
30 epochs 99.98±0.01 26.01 66.76±0.54 29.83 65.45±0.89 77.12
50 epochs 99.97±0.02 43.42 71.56±0.63 50.22 69.44±0.77 133.69

PudNet 96.64±0.34 0.03 64.09±0.40 0.03 59.31±0.64 0.03

Table 2: Results of different methods in terms of the target network ResNet-18 on the Fashion-set,
CIFAR100-set, ImageNet-set datasets.

Method Fashion-set CIFAR100-set ImageNet-set
ACC(%) time (sec.) ACC time (sec.) ACC time (sec.)

Pretrained 93.76±0.47 - 64.58±0.59 - 65.67±0.73 -
MatchNet 90.16±0.53 - 56.23±0.71 - 53.17±0.91 -
ProtoNet 93.64±0.47 - 60.29±0.59 - 58.95±0.83 -

Meta-Baseline 95.35±0.29 - 67.51±0.55 - 67.16±0.70 -
Meta-DeepDBC 94.28±0.31 - 69.54±0.49 - 68.48±0.60 -

MUSML 95.87±0.44 2.55 66.47±0.63 2.59 66.03±0.91 2.60

Adam
Scratch

1 epochs 93.98±1.21 1.83 52.82±1.01 3.96 46.43±1.18 4.81
30 epochs 99.91±0.05 54.22 74.56±0.45 118.87 71.84±0.69 140.37
50 epochs 99.87±0.11 91.19 79.85±0.47 198.12 75.98±0.71 231.63

GC
1 epochs 94.11±1.25 1.88 53.21±1.23 4.01 47.55±1.33 4.82
30 epochs 99.94±0.05 54.93 75.74±0.59 119.03 72.89±0.73 140.98
50 epochs 99.96±0.03 91.73 79.98±0.55 199.61 76.73±0.87 232.57

PudNet 96.24±0.39 0.50 73.33±0.54 0.49 71.57±0.71 0.50

Table 3: Results of different methods on the cross-domain datasets CIFAR100→Animals10

.

Method ConvNet-3 ResNet-18
ACC (%) time (sec.) ACC (%) time (sec.)

Pretrained 16.43±0.73 - 33.36±0.75 -
Meta-DeepDBC 31.93±0.81 - 40.50±0.64 -

MUSML 26.77±0.67 1.71 36.78±0.59 3.21

Adam
Scratch

1 epochs 18.33±0.57 21.37 22.09±0.58 31.29
5 epochs 38.71±0.31 103.25 49.12±0.08 156.56
10 epochs 53.62±0.18 203.64 66.44±0.37 311.74

GC
Scratch

1 epochs 18.94±0.64 21.33 23.01±1.02 30.79
5 epochs 39.43±0.44 102.73 49.77±0.54 155.34
10 epochs 55.21±0.51 202.67 68.56±0.39 310.29

PudNet 35.15±0.77 0.03 43.21±0.69 0.49

provide the time of training the model from scratch by a widely-used optimizer Adam (Kingma &
Ba, 2015) and the training acceleration technique, GC. We could find that it takes around 55, 119,
140 GPU seconds to train ResNet-18 using the accelerated method GC and the network obtains top-
1 accuracies of 99.94%, 75.74%, 72.89% on the Fashion-set, CIFAR-set, ImageNet-set respectively.
While our method costs only around 0.5 GPU seconds to predict the parameters of ResNet-18 and
still achieves a comparable performance (96.24%, 73.33%, 71.57% top-1 accuracies) on the three
datasets respectively, at least 100 times faster than the accelerated method.

Performance on Cross-domain Datasets We further evaluate our method on the cross-domain
datasets, CIFAR100→Animals10. Table 3 shows the results on the CIFAR100→Animals10 dataset.

8



Under review as a conference paper at ICLR 2023

Table 4: Ablation study of our method.
ConvNet-3 ResNet-18

Setting Fashion-set CIFAR100-set ImageNet-set Fashion-set CIFAR100-set ImageNet-set

PudNet-w.o.-Context 93.13±0.36 59.51±0.42 54.36±0.67 93.08±0.44 65.35±0.51 61.42±0.70

PudNet-Random 90.51±0.32 57.26±0.39 52.88±0.59 89.09±0.40 60.56±0.50 55.93±0.70
PudNet-w.o.-initRes 95.46±0.35 61.56±0.40 57.81±0.66 95.42±0.44 71.06±0.51 68.98±0.73

PudNet-metric 95.31±0.45 60.97±0.53 50.15±0.87 94.75±0.44 68.60±0.61 61.28±0.85
PudNet-w.o.-kl 95.92±0.34 61.29±0.41 57.64±0.62 95.44±0.38 70.27±0.54 67.53±0.73

PudNet 96.64±0.34 64.09±0.40 59.31±0.64 96.24±0.39 73.33±0.54 71.57±0.71

we can obtain comparable accuracy when training the model from scratch at around 5 epochs, while
our method is at least 300 times faster than the traditional training methods. In addition, we also
compare with Meta-DeepDBC that generally achieves better performance based on Table 1 and
2 and with MUSML which is proposed very recently. Our model still outperforms them in a large
margin. We expect that such a result could motivate more researchers to explore along this direction.

Ablation Study We design a variant of our method to analyse the effect of the context relation
information. PudNet-w.o.-Context denotes our method directly feeds the dataset sketch into the
weight generator without using GRU. The results are listed in Table 4. Our PudNet outperforms
PudNet-w.o.-Context in a large margin, demonstrating the effectiveness of capturing dependencies
among parameters of different layers.

Moreover, we design two variants of our method to further study the contribution of the dataset
information. PudNet-Random denotes our method randomly initializes the hidden state of GRU.
PudNet-w.o.-initRes denotes our method does not utilize initial residual connection for initial dataset
information complementary. As shown in Table 4, the performance of our method decreases when
randomly initializing the hidden state of GRU. It indicates that exploiting the initialization of the
hidden state to deliver the information of datasets is effective. Moreover, PudNet is better than
PudNet-w.o.-initRes, illustrating the effectiveness of the initial residual connection.

Finally, we design another two variants of our methods to study the impact of the auxiliary task.
PudNet-metric means our method only using the parameter-free loss. PudNet-w.o.-kl means out
method without using the KL Divergence. As shown in Table 4, PudNet-w.o.-kl has better per-
formance than PudNet-metric, demonstrating it is effective for the auxiliary full classification task.
PudNet outperforms PudNet-w.o.-kl. This illustrates it is effective to encourage the predicted prob-
ability distribution of parameter-free method and full classification method to be matched.

Table 5: Performance of finetuning all meth-
ods using 50 epochs.

Method ConvNet-3 ResNet-18

From Scratch 44.85±0.23 48.25±0.30
Pretrained 49.40±0.17 59.75±0.24

Meta-DeepDBC 50.05±0.21 61.35±0.28
PudNet 55.21±0.19 65.19±0.22

Fine-tuning Predicted Parameters Since a typi-
cal strategy for applying a pretrained model to a new
dataset is to fine-tune the model. Thus, we intend to
evaluate the performance of fine-tuning our method
and baselines on the CIFAR-set dataset. To do this,
we first incorporate an additional linear classifica-
tion layer to our method and baselines, except ‘From
scratch’. Then, we randomly select 10000 samples
from 20 classes for fine-tuning the models, and use the remaining 2000 samples for testing. Table
5 shows the results. Here ’From Scratch’ means directly training the target network with random
initialized parameters from scratch. Our method achieves the best performance. This indicates the
predicted parameters by our PudNet can well serve as a pretrained model.

5 CONCLUSION

In this paper, we found there are correlations among datasets and the corresponding parameters of
a given network, and explored a new training paradigm for deep neural networks. We proposed a
new hypernetwork, PudNet, which can directly predict the network parameters for an unseen data
with only a single forward propagation. Essential to our hypernetwork is the construction of a
series of GRU, to capture the relations among parameters of different layers in a network. Extensive
experimental results demonstrated the effectiveness and efficiency of our method.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances in neural information pro-
cessing systems, 26, 2013.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normal-
ization. Advances in neural information processing systems, 31, 2018.

Jianguo Chen, Kenli Li, Kashif Bilal, Keqin Li, S Yu Philip, et al. A bi-layered parallel training
architecture for large-scale convolutional neural networks. IEEE transactions on parallel and
distributed systems, 30(5):965–976, 2018.

Yinbo Chen, Zhuang Liu, Huijuan Xu, Trevor Darrell, and Xiaolong Wang. Meta-baseline: Explor-
ing simple meta-learning for few-shot learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9062–9071, 2021.

Zekai Chen, Xiao Zhang, and Xiuzhen Cheng. Asm2tv: An adaptive semi-supervised multi-task
multi-view learning framework for human activity recognition. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pp. 6342–6349, 2022.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 1724–1734, 2014.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. L2 regularization for learning kernels.
arXiv preprint arXiv:1205.2653, 2012.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 248–255, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Harrison Edwards and Amos J. Storkey. Towards a neural statistician. In Proceedings of the Inter-
national Conference on Learning Representations, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the International Conference on Machine Learning, pp.
1126–1135, 2017.

Zhenyong Fu, Tao Xiang, Elyor Kodirov, and Shaogang Gong. Zero-shot object recognition by
semantic manifold distance. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2635–2644, 2015.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Proceedings of the International Conference on Machine Learning, pp. 1587–
1596, 2018.

Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil,
Kenji Fukumizu, and Bharath K Sriperumbudur. Optimal kernel choice for large-scale two-sample
tests. Advances in neural information processing systems, 25, 2012.

Shesh Narayan Gupta and Nicholas Bear Brown. Adjusting for bias with procedural data. arXiv
preprint arXiv:2204.01108, 2022.

10



Under review as a conference paper at ICLR 2023

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In Proceedings of the International
Conference on Learning Representations, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Timothy M Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J Storkey. Meta-learning in
neural networks: A survey. IEEE transactions on pattern analysis and machine intelligence,
2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the International Conference on Machine
Learning, pp. 448–456, 2015.

Weisen Jiang, James Kwok, and Yu Zhang. Subspace learning for effective meta-learning. In
International Conference on Machine Learning, pp. 10177–10194, 2022.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? Advances in Neural Information Processing Systems, 30, 2017.

Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji Jeong, Hyeonmin Ha, Sanha Lee,
Joo Seong Jeong, and Byung-Gon Chun. Parallax: Sparsity-aware data parallel training of deep
neural networks. In Proceedings of the Fourteenth EuroSys Conference, pp. 1–15, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations, 2015.

Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero Soriano. Parameter
prediction for unseen deep architectures. Advances in Neural Information Processing Systems,
34:29433–29448, 2021.

Elyor Kodirov, Tao Xiang, and Shaogang Gong. Semantic autoencoder for zero-shot learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3174–3183,
2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
Courville. Bayesian hypernetworks. arXiv preprint arXiv:1710.04759, 2017.

Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu Timofte. Dhp: Differentiable meta
pruning via hypernetworks. In Proceedings of the European Conference on Computer Vision, pp.
608–624, 2020.

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 581–588, 2013.

Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. Ran-
domized algorithms for the low-rank approximation of matrices. Proceedings of the National
Academy of Sciences, 104(51):20167–20172, 2007.

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normal-
ization layers: Sharpness reduction. arXiv preprint arXiv:2206.07085, 2022.

Boris Oreshkin, Pau Rodrı́guez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. Advances in Neural Information Processing Systems, 31,
2018.

Farhad Pourpanah, Moloud Abdar, Yuxuan Luo, Xinlei Zhou, Ran Wang, Chee Peng Lim, Xi-
Zhao Wang, and QM Jonathan Wu. A review of generalized zero-shot learning methods. IEEE
transactions on pattern analysis and machine intelligence, 2022.

11



Under review as a conference paper at ICLR 2023

Chao Qian, Yang Yu, and Zhi-Hua Zhou. Subset selection by pareto optimization. Advances in
neural information processing systems, 28, 2015.

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 62(1):107–
136, 2006.

Bernardino Romera-Paredes and Philip Torr. An embarrassingly simple approach to zero-shot learn-
ing. In International conference on machine learning, pp. 2152–2161. PMLR, 2015.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in Neural Information Processing Systems, 29, 2016.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? Advances in Neural Information Processing Systems, 31, 2018.

Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In
47th annual IEEE symposium on foundations of computer science (FOCS), pp. 143–152, 2006.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In Proceedings of the International Conference on Machine Learning, pp. 9489–
9502, 2021.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in Neural Information Processing Systems, 30, 2017.

Tatiana Tommasi and Barbara Caputo. The more you know, the less you learn: from knowledge
transfer to one-shot learning of object categories. In BMVC, number CONF, 2009.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in Neural Information Processing Systems, 29, 2016.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F. Grewe. Continual
learning with hypernetworks. In Proceedings of the International Conference on Learning Rep-
resentations, 2020.

Wei Wang, Vincent W Zheng, Han Yu, and Chunyan Miao. A survey of zero-shot learning: Settings,
methods, and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10
(2):1–37, 2019.

David Weenink. Canonical correlation analysis. In Proceedings of the Institute of Phonetic Sciences
of the University of Amsterdam, volume 25, pp. 81–99, 2003.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 374–382, 2019.

Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. Feature generating networks for
zero-shot learning. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 5542–5551, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jiangtao Xie, Fei Long, Jiaming Lv, Qilong Wang, and Peihua Li. Joint distribution matters: Deep
brownian distance covariance for few-shot classification. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 7972–7981, 2022.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
improving layer normalization. Advances in Neural Information Processing Systems, 32, 2019.

12



Under review as a conference paper at ICLR 2023

Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin Ding, Ruirui Li, and Zhenhui Li. Automated
relational meta-learning. arXiv preprint arXiv:2001.00745, 2020.

Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and Lei Zhang. Gradient centralization: A new
optimization technique for deep neural networks. In Proceedings of the European Conference on
Computer Vision, pp. 635–652, 2020.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture
search. In Proceedings of the International Conference on Learning Representations, 2019.

Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing Xie, and
Zhenhui Li. Drn: A deep reinforcement learning framework for news recommendation. In Pro-
ceedings of the world wide web conference, pp. 167–176, 2018.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):
43–76, 2020.

13



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 ARCHITECTURE DETAILS

Dataset Compression Module Details. The feature extractor in our framework contains several
basic blocks, where each basic block consists of a 5× 5 convolutional layer, a leakyReLU function
and a batch normalization layer. For generating parameters of ConvNet-3, we use one basic block
as the feature extractor. For ResNet-18 or ResNet-34, we stack five basic blocks as the feature
extractor. Note that our feature extractor is jointly trained with PudNet in an end-to-end manner.

Structure of the Weight Generator Figure 4 shows the architecture of the weight generator. The
weight generator takes as input a vector with the dimension of da, and outputs a tensor with the size
of dout × din × f × f as the parameters of the convolutional layer.

FC

1×
1
Co
nv

A
ct
iv
at
io
n

A
ct
iv
at
io
n

1×
1
Co
nv

d! d"×� ×�

d"
� ×� 2d"

� ×� � ×�

d#$%×d&'

Weight Generator

Figure 4: Architecture of the Weight Generator.

Structures of the Target Networks. We use ConvNet-3, ResNet-18, ResNet-34 as the target net-
works. The structure of ConvNet-3 is shown in Figure 5. For ResNet-18 and ResNet-34, we use the
same architectures with He et al. (2016).

�
��

�
�	
��

5×
5
Co
nv

Re
LU

Ba
tc
hN
or
m
2d

M
ax
Po
ol
2d

5×
5
Co
nv

Re
LU

Ba
tc
hN
or
m
2d

M
ax
Po
ol
2d

5×
5
Co
nv

Re
LU

Ba
tc
hN
or
m
2d

3×
3C
on
v

Ba
tc
hN
or
m
2d

Re
LU

3×
3C
on
v

Ba
tc
hN
or
m
2d

1×
1C
on
v

Ba
tc
hN
or
m
2d

��

Re
LU

Re
sid
ua
lB
lo
ck

Figure 5: Structure of the Target Network ConvNet-3.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

For all experiments, we use ACC (Top-1 Accuracy) metric to evaluate the classification performance.
All experiments are optimized by Adam optimizer. We set learning rate to 0.001 and train PudNet
until convergence. In metric-based learning process, following Chen et al. (2021), the temperature
τ = 10 in Eq.( 6) is fixed. 10 labeled samples per class are used as support sets to deduce the
class centroid. As mentioned in the main paper, we introduce auxiliary tasks to assist optimization.
We add an full classification linear layer (e.g. 80-way linear head in CIFAR-100) to maintain static
class set during training. We also introduce a consistency loss, while the dimension between logits
deduced by metric-based classification (e.g.5-dimensional in CIFAR-100) and the logits produced
by full linear head (e.g.80-dimensional in CIFAR-100) are not matching, thus we transpose the 5-
dimensional logit to 80-dimensional logit, by padding the rest values with zero. We search η from
{0, 0.1, 0.2, 0.3, · · · , 0.9}. For target network ConvNet-3, we set η = 0.2 for Fashion-set, η = 0.1
for CIFAR100-set, η = 0.3 for ImageNet-set, η = 0.1 for CIFAR100→Animals10. For target
network ResNet-18, we set η = 0.2 for Fashion-set, η = 0.5 for CIFAR100-set and ImageNet-set,
η = 0.5 for CIFAR100→Animals10.

14



Under review as a conference paper at ICLR 2023

Table 6: Results of different methods on new dataset CIFAR-100→CIFAR-10.
Method ConvNet-3 ResNet-18

ACC(%) time (sec.) ACC (%) time (sec.)

Pretrained 34.32±0.61 - 40.93±0.48 -
Meta-DeepDBC 41.28±0.59 - 47.15±0.63 -

MUSML 37.45±0.53 2.37 45.37±0.57 5.34

Adam
Scratch

1 epochs 19.98±0.63 51.57 21.37±0.71 60.79
5 epochs 44.67±0.42 253.16 33.76±0.44 310.29

10 epochs 48.69±0.48 506.63 48.21±0.25 621.75
20 epochs 58.34±0.53 1015.26 65.17±0.55 1248.23

GC
Scratch

1 epochs 20.03±0.83 51.74 21.44±1.02 60.99
5 epochs 44.89±0.67 253.56 34.41±0.78 310.33

10 epochs 49.36±0.55 507.12 49.89±0.53 622.01
20 epochs 58.74±0.49 1015.87 66.78±0.47 1248.98

PudNet 43.76±0.64 0.05 51.05±0.56 0.56

Table 7: Results of different methods on the cross-domain datasets on ResNet-18.
Method ImageNet→Animals10 ImageNet→CIFAR10

ACC (%) time (sec.) ACC (%) time (sec.)

Pretrained 34.79±0.49 - 34.54±0.63 -
Meta-DeepDBC 38.57±0.55 - 40.93±0.71 -

MUSML 36.89±0.44 3.21 37.12±0.65. 5.34

Adam
Scratch

1 epochs 22.09±0.58 31.29 21.37±0.71 60.79
5 epochs 49.12±0.08 156.56 33.76±0.44 310.79
10 epochs 66.44±0.37 311.74 48.21±0.25 621.75
20 epochs 73.47±0.67 623.92 65.17±0.55 1248.23

GC
Scratch

1 epochs 23.01±1.02 30.79 21.44±1.02 60.99
5 epochs 49.77±0.54 155.34 34.41±0.78 310.33
10 epochs 68.56±0.39 310.29 49.89±0.53 622.01
20 epochs 75.04±0.61 623.33 66.78±0.47 1248.98

PudNet 42.43±0.58 0.48 45.07±0.70 0.57

A.3 ADDITIONAL EXPERIMENTS

Performance on Other Full Dataset Analysis: Here we utilze CIFAR100-set to train the model
and evaluate the performance on CIFAR-10. Note that the classes in CIFAR-10 are mutually ex-
clusive with the classes in CIFAR-100(Krizhevsky et al., 2009). Since Meta-DeepDBC achieves
better performance among all meta-learning methods based on Table 1 and 2, here we only report
the results of Meta-DeepDBC and pretrained model for clarity. Table 6 shows the results on CIFAR-
100→CIFAR-10. We observe that our model outperforms the Pretrained and Meta-DeepDBC com-
petitors. This further verifies the effectiveness of our method. We also provide the time consumption
of training the target network from scratch with Adam optimizer on CIFAR-10. It worth noting that
it takes around 622 GPU seconds to train ResNet-18 using Adam from scratch and obtain top-1 ac-
curacy of 48.21% on CIFAR-10. While our method costs only around 0.56 GPU seconds to predict
the parameters of ResNet-18 and still achieves 51.05% top-1 accuracy, which is 1000 times faster
than the training from scratch method.

Performance on Cross-domain Datasets: We construct another two cross-domain datasets. We
use ImageNet-set to construct training datasets, and Animals-10 and CIFAR10 for testing datasets.
There are 50000 groups of datasets from ImageNet-set to train PudNet. We randomly split CIFAR10
into two nonoverlapping subsets separately: one is used to generate parameters, and the other for
testing. The separation process for Animals10 is analogy. We further evaluate our method on these
two cross-domain datasets: ImageNet→Animals10, ImageNet→CIFAR10. Table 7 shows the re-
sults. our method still achieves surprisingly good efficiency. For instance, it takes 622.01 GPU
seconds to train ResNet-18 on the ImageNet→CIFAR10 dataset using GC from scratch and obtain

15



Under review as a conference paper at ICLR 2023

a top-1 accuracy of 49.89%, while our method PudNet costs only 0.57 GPU seconds to predict the
network parameters of ResNet-18 achieving comparable performance (45.07%), more than 1000
times faster than the traditional training paradigm. In addition, we could find that our method also
outperforms state-of-the-art meta-learning methods in a large margin. We expect that such a result
could motivate more researchers to explore along this direction.

Performance on Deeper Target Network: We perform another experiment to directly predict pa-
rameters of ResNet-34 by PudNet on CIFAR100-set. The results are listed in Table 8. We observe
that our method achieves comparable performance to that of GC at 30 epochs, while our method is
more than 250 times faster than GC. This further demonstrates the efficiency of our method.

Table 8: Results of different methods in terms of the target network ResNet-34 on CIFAR100-set.
Method ACC(%) time(sec.)

Pretrained 65.03±0.53 -
Meta-baseline 67.40±0.69 -

Meta-DeepDBC 69.64±0.75 -
MUSML 66.39±0.59 3.11

Adam
Scratch

1 epochs 47.39±1.36 5.47
30 epochs 71.17±0.53 153.87
50 epochs 78.72±0.71 263.25

GC
Scratch

1 epochs 48.44±1.41 5.52
30 epochs 72.37±0.75 154.19
50 epochs 79.85±0.83 264.03

PudNet 72.87±0.64 0.59

Effect of Different Dataset Embedding: To further study the effect of dataset embedding, we de-
sign three variants to predict parameters for ConvNet-3 on CIFAR100. ”Sum” denotes summing up
the representations of all samples in a dataset as the dataset embedding. ”Geometric means” denotes
using the geometric mean of sample representations as the dataset embedding. ”Mean+Var” denotes
concatenating the mean and the variance of sample representations as the dataset embedding. The
results are reported in Table 9. We find that these four dataset embedding methods have comparable
results. Here we only explore some simple dataset embedding methods. In the future, more compli-
cated data compression methods could be explored, such as matrix sketching (Liberty, 2013; Qian
et al., 2015), random projection (Sarlos, 2006; Liberty et al., 2007) and statistic network(Edwards
& Storkey, 2017) , etc.

Table 9: Effect of Different Dataset Embedding
Method Sum Geometric mean Mean+Var Mean(Ours)

Acc(%) 62.81 64.05 65.22 64.09

Effect of Different Number of Training Classes with Varying Groups: We analyze the effect of
different number of classes on training set. We utilize PudNet to predict parameters for ConvNet-3.
The results are shown in Table 10. Train-C20 denotes that the training set involving 50000 groups
of datasets contains 20 classes in total. Similarly, Train-C80 denotes that the training set involving
50000 groups of datasets has 80 classes. We find that with more classes included in training set, the
performance of our PudNet is improved as the number of dataset groups increases.

Table 10: Effect of different number of training classes with varying groups on CIFAR100-set.

Groups 50 100 500 1000 5000 10000 50000

Train-C20 45.77±0.33 49.25±0.31 51.31±0.28 51.11±0.28 50.93±0.29 51.02±0.22 51.10±0.19
Train-C80 45.37±0.54 51.99±0.47 58.98±0.44 60.44±0.45 62.42±0.39 62.84±0.41 64.09±0.40

16



Under review as a conference paper at ICLR 2023

50 100 300 500 1000 1500 200070

75

80

85

90

95

100
ACC

(a) Fashion-set
100 500 1000 5000 10000 50000 10000040

45

50

55

60

65

70
ACC

(b) CIFAR100-set
100 500 1000 5000 10000 30000 5000035

40

45

50

55

60

65
ACC

(c) ImageNet-set

Figure 6: Effect of Different Groups of Datasets for Training to Predict Parameters for ConvNet-3.

50 100 300 500 1000 1500 200070

75

80

85

90

95

100
ACC

(a) Fashion-set
100 500 1000 5000 10000 50000 10000030

40

50

60

70

80
ACC

(b) CIFAR100-set
100 500 1000 5000 10000 50000 10000030

40

50

60

70

80
ACC

(c) ImageNet-set

Figure 7: Effect of Different Groups of Datasets for Training to Predict Parameters for ResNet-18.

Effect of Different Number of Stacked GRU: We exploit stacked GRU to transfer context-aware
information of parameters for ResNet-18. We conduct experiments to investigate the effect of dif-
ferent number of layers in stacked GRU and report the results in Table 11. We can observe that the
performance falls after rising, as the number of layers increases.

Table 11: Effect of different layers of stacked GRU.

Stacked GRU Target Network num layers=1 num layers=2 num layers=4 num layers=6 num layers=8

CIFAR100-set ResNet-18 68.89±0.52 73.33±0.54 71.78±0.57 70.15±0.49 70.81±0.50
ImageNet-set ResNet-18 67.81±0.77 68.13±0.69 71.57±0.71 70.54±0.74 69.26±0.71

Effect of Different Structure of Feature Extractors: To study the influence of feature extractors
with different architectures, we add an experiment on CIFAR100-set in terms of ConvNet-3. The
results are listed in Table 12. In Table 12, ”2conv”, ”3conv”, ”4conv” denote stacking 2, 3, 4
convolution layers as the feature extractor respectively. ”1linear” denotes adding one linear layer
after the convolution layer. We observe that our method obtains comparable performance with the
feature extractors of different structures. Thus, our method is not sensitive to the structure of feature
extractors.

Table 12: Effect of different structure of feature extractors
Method 2conv 3conv 4conv 1conv-1linear 2conv-1linear 3conv-1linear

Acc(%) 63.87 63.49 62.44 64.09 64.01 63.43

Effect of Different Groups of Datasets: We analyze the effect of different groups of datasets for
training. The results of utilizing PudNet to predict parameters for ConvNet-3 are shown in Figure 6.
For the target network ConvNet-3, we construct 2000, 100000, 50000 groups of datasets for training
PudNet on Fashion-set, CIFAR100-set, Imagenet-set respectively. Figure 7 reports the results of ex-
ploiting PudNet to predict parameters for ResNet-18. We construct 2000, 100000, 100000 groups of
datasets for training our PudNet on Fashion-set, CIFAR100-set, Imagenet-set respectively. We find
that with more datasets for training, our PudNet could obtain better performance. This is because

17



Under review as a conference paper at ICLR 2023

0 0.1 0.3 0.5 0.7 0.975

80

85

90

95

100

ACC

(a) Fashion-set with ConvNet-3

0 0.1 0.3 0.5 0.7 0.940
45
50
55
60
65
70

ACC

(b) CIFAR100-set with ConvNet-
3

0 0.1 0.3 0.5 0.7 0.935
40
45
50
55
60
65

ACC

(c) ImageNet-set with ConvNet-
3

0 0.1 0.3 0.5 0.7 0.975

80

85

90

95

100

ACC

(d) Fashion-set with ResNet-18

0 0.1 0.3 0.5 0.7 0.950
55
60
65
70
75
80

ACC

(e) CIFAR100-setwith ResNet-18

0 0.1 0.3 0.5 0.7 0.950
55
60
65
70
75
80

ACC

(f) ImageNet-set with ResNet-18

Figure 8: Sensitivity Analysis of Hyper-parameter η.

with larger groups of datasets to learn the hyper-mapping relation, our PudNet could obtain better
generalization ability. However, when the number of group becomes large, the performance increase
becomes slow.

Parameter Sensitive Analysis: We analyze the effect of different values of the hyper-parameter
η. Recall that η controls the percent of dataset complementary information in the initial residual
connection. Figure 8(a)(b)(c) show the results in terms of ConvNet-3, and Figure 8(d)(e)(f) give the
results for ResNet-18. We observe that our model obtain better performance when η > 0 in general.
Additionally, our method is not sensitive to η in a relatively large range.

Convergence Analysis: We discuss the convergence property of the proposed method by plotting
the loss curves with increasing iteration. Here we utilize PudNet to predict parameters for ConvNet-
3, based on Fashion-set, CIFAR100-set and ImageNet-set respectively. As shown in Figure 9, the
training metric-based loss and training total loss first decrease rapidly as the number of iterations
increases, and then gradually decreases to convergence.

A.4 ALGORITHM PSEUDO-CODE

We provide the training procedure of our PudNet as listed in Algorithm 1. For each training dataset
Di ∈ Dtrain, we first derive the skecth si of dataset Di and set the initial hidden state h0 = si in
GRU. Then, we predict the parameters of each layer in the target network Ω. Finally, we optimize
the the learnable parameters θ, φ by the the overall multi-task loss Ltotal.

A.5 DISCUSSION WITH SOME RELATED TOPICS

Generalization: The generalization ability of model is an important research topic in the machine
learning community. To generalize well on unseen data, many methods have been proposed. For
example, normalization methods such as batch normalization (Bjorck et al., 2018) and layer nor-
malization (Xu et al., 2019) could improve the generalization ability (Lyu et al., 2022). Besides,
some regularization techniques such as L2 regularization (Cortes et al., 2012) and dropout (Baldi &
Sadowski, 2013) could also help the generalization (Wei et al., 2019). What’s more, some works
resort to unsupervised pretraining on large-scale data to obtain a model with great generalization
ability (Devlin et al., 2018).

18



Under review as a conference paper at ICLR 2023

0
10000

20000
30000

40000
50000

60000
70000

Training steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Tr
ai

ni
ng

 m
et

ric
-b

as
ed

 lo
ss

(a) metric-based loss on Fashion-set

0
10000

20000
30000

40000
50000

60000
70000

Training steps

0

1

2

3

4

5

Tr
ai

ni
ng

 to
ta

l l
os

s

(b) total loss on Fashion-set

0
25000

50000
75000

100000
125000

150000

Training steps

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 m
et

ric
-b

as
ed

 lo
ss

(c) metric-based loss on CIFAR100-
set

0
25000

50000
75000

100000
125000

150000

Training steps

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Tr
ai

ni
ng

 to
ta

l l
os

s

(d) total loss on CIFAR100-set

0
20000

40000
60000

80000
100000

120000

Training steps

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Tr
ai

ni
ng

 m
et

ric
-b

as
ed

 lo
ss

(e) metric-based loss on ImageNet-set

0
20000

40000
60000

80000
100000

120000

Training steps

2

3

4

5

6

Tr
ai

ni
ng

 to
ta

l l
os

s

(f) total loss on ImageNet-set

Figure 9: Training Loss of PudNet.

Algorithm 1 The Training of PudNet
Input: a set of training datasets Dtrain = {Di}Ni=1, target network architecture Ω.
Initialize the learnable parameter θ of Hθ.
Initialize the learnable parameter φ of the auxiliary full classification.
while not converged do

for i ∈ {1, · · · ,N} do
Obtain a skecth si of dataset Di via the dataset compression module;
Initialize the hidden state h0 = si;
for each layer t in Ω do

Predict the parameters wt of the t-th layer by (5);
Fix the predicted parameters wt to Ω;

for each batch b in Di do
Compute the parameter-free loss L1 with a batch size of b;
Compute the full classification loss L2 and consistency loss L3 with a batch size of b;
Update the learnable parameters θ, φ by the overall multi-task loss Ltotal in (10);

Output: The PudNet Hθ.

19



Under review as a conference paper at ICLR 2023

Transfer Learning: The key idea of transfer learning is to transfer knowledge from source domains
to a different but related target domain to improve the performance of the target learner (Zhuang
et al., 2020). There are considerable methods on transfer learning, including feature-based meth-
ods (Gretton et al., 2012) , parameter-based methods (Tommasi & Caputo, 2009) and relational-
based methods (Richardson & Domingos, 2006), etc. Feature-based approaches usually transform
the original sample features in different domains into a common latent feature space. Parameter-
based methods usually learn to finetune the parameters of the last few layers across different domain
datasets. Relational-based methods transfer the logical relationship or rules learned in the source
domain to the target domain.

Meta-Learning: Meta-Learning introduces the mechanism of “learning to learn ”, which intends to
train a model on a variety of learning tasks, such that it can solve new learning tasks using only a
small number of training samples (Hospedales et al., 2021). Meta-Learning is usually divided into
three categories: optimization-based methods, metric-based methods, and model-based methods
(Yao et al., 2020). Optimization-based methods usually train the model to be easy to fine-tune by
a small number of gradient steps with a small amount of training data (Finn et al., 2017). Metric-
based methods learn to compare validation points with training points and predicting the label of
matching training points (Hospedales et al., 2021). Note that few-shot learning can be regarded
as the applications of metric-based meta-learning(Hospedales et al., 2021). Model-based methods
embed the training data into activation state, making predictions for test data based on this state.

Zero-shot Learning: Zero-shot learning aims to learn a classifier that could classify never seen
classes during training without knowing any labeled data of novel class (Wang et al., 2019). The
representative zero-shot learning approaches includes: ESZSL (Romera-Paredes & Torr, 2015), SAE
(Kodirov et al., 2017) ,f-CLSWGAN (Xian et al., 2018), etc. The core idea of zero-shot is to transfer
the learned knowledge of seen classes to the classes unseen during training (Pourpanah et al., 2022).
Since there is no label information for the unseen class, the auxiliary information for each unseen
class is necessary to solve zero-shot learning problem (Wang et al., 2019). For example, given the
auxiliary information for a unseen class zebra: ”look like horse, with stripes”, the zero-shot learning
model could use this semantic information to recognize the zebra class as long as the model known
the pattern of ”horse” and ”stripes” (Fu et al., 2015).

Since our work aims to learn a hyper-mapping between datasets and their corresponding network
parameters and directly predict the parameters for an unseen dataset based on the hyper-mapping,
our task is totally different from the above works. Despite this, there are some relations between
our method and the above works. First, since it is prohibitive to prepare thousands of datasets and
training networks on them to obtain the corresponding ground-truth parameters, we develop a new
learning manner, motivated by meta-learning. Besides, because our method can directly predict
network parameters for an unseen dataset, it is potential to couple with zero-shot learning, which is
worthy to be further studied.

20


	Introduction
	Related work
	Hypernetworks
	Acceleration of Network Training

	Proposed Method
	Preliminaries
	Overview of Our Framework
	Dataset Compression
	Context-Aware Parameter Prediction
	Optimization of Our Framework

	Experiment
	Dataset Construction
	Baselines
	Implementation Details
	Result and Analysis

	Conclusion
	Appendix
	Architecture details
	Additional Implementation details
	Additional Experiments
	Algorithm Pseudo-code
	Discussion with some related topics


