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Abstract

Federated Learning (FL) enables collaborative model training across institutions
without sharing raw data. However, gradient sharing still risks privacy leakage,
such as gradient inversion attacks. Homomorphic Encryption (HE) can secure
aggregation but often incurs prohibitive computational and communication over-
head. Existing HE-based FL methods sit at two extremes: encrypting all gradients
for full privacy at high cost, or partially encrypting gradients to save resources
while exposing vulnerabilities. We present DictPFL, a practical framework that
achieves full gradient protection with minimal overhead. DictPFL encrypts every
transmitted gradient while keeping non-transmitted parameters local, preserving
privacy without heavy computation. It introduces two key modules: Decompose-
for-Partial-Encrypt (DePE), which decomposes model weights into a static dic-
tionary and an updatable lookup table—only the latter is encrypted and aggregated,
while the static dictionary remains local and requires neither sharing nor encryp-
tion; and Prune-for-Minimum-Encrypt (PrME), which applies encryption-aware
pruning to minimize encrypted parameters via consistent, history-guided masks.
Experiments show that DictPFL reduces communication cost by 402–748× and
accelerates training by 28–65× compared to fully encrypted FL, while outper-
forming state-of-the-art selective encryption methods by 51–155× in overhead
and 4–19× in speed. Remarkably, DictPFL’s runtime is within 2× of plaintext
FL, demonstrating—for the first time—that HE-based private federated learn-
ing is practical for real-world deployment. The code is publicly available at
https://github.com/UCF-ML-Research/DictPFL.

1 Introduction

Federated Learning (FL) [1] was introduced to enable collaborative training of a shared machine
learning model among different data owners (e.g., hospitals or banks), where model gradients (or
weights), rather than raw data, are shared to address privacy concerns. However, even sharing gradi-
ents poses privacy risks, as attackers could potentially exploit this information. For instance, model
inversion (or gradient inversion) attacks [2, 3] have demonstrated the feasibility of reconstructing a
client’s original training data from the gradients shared by clients. In such scenarios, the server or
users with access to the server can act as potential attackers.

To protect the privacy of clients’ gradients during aggregation and enable private FL, various privacy-
preserving primitives such as Differential Privacy (DP) [4, 5], Secure Multiparty Computation
(MPC) [6, 7], and Homomorphic Encryption (HE) [8–20] have been utilized. Among these meth-
ods, HE is especially appealing in cross-silo settings [21], as it provides non-interactive privacy
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protection without the accuracy-privacy trade-off associated with DP [22–24] and without requiring
the assumption of trusted servers, as in MPC [25–28]. In HE-based privacy-preserving federated
learning [21, 29–31], locally updated gradients are encrypted by clients before being shared with the
server, allowing the server to perform homomorphic aggregation directly on ciphertexts. Despite its
security benefits, HE introduces significant overhead: ciphertext expansion increases communication
costs by 1 to 3 orders of magnitude, while encryption, decryption, and homomorphic aggregation
impose high computational costs [21, 31].
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Figure 1: (a) Prior HE-based FL [31] encrypts only deemed sensitive gradients. The less-sensitive
weights are shared in plaintext, which may lead to privacy concerns. (b) In contrast, our DictPFL min-
imizes encryption while ensuring privacy guarantees through Decompose-for-Partial-Encrypt (DePE)
and Prune-for-Minimum-Encrypt (PrME). DePE decomposes gradients into a frozen dictionary and a
trainable lookup table, with only the lookup table being encrypted and shared for aggregation. PrME
further prunes the lookup table parameters on the client side to reduce encryption costs.

Prior efforts to improve the efficiency of HE-based FL often compromise privacy. The state-of-the-art
method, FedML-HE [31], as illustrated in Figure 1 (a), adopts a Select-and-Encrypt (SaE) strategy:
clients pre-compute sensitivity scores for model parameters and encrypt only the gradients of the
most sensitive subset (e.g., the top 10%), while transmitting the remaining parameters in plaintext.
However, these unencrypted gradients still expose private information. As shown in Figure 7 (a), when
30% of gradients remain unencrypted under FedML-HE, gradient inversion attacks can reconstruct
images with up to 23% similarity to the originals. Moreover, the pre-computed sensitivity scores
fail to capture dynamic sensitivity shifts during training, as parameter updates continually alter their
privacy relevance. Consequently, encrypting all transmitted gradients remains essential to eliminate
leakage. Although the SaE strategy achieves lower communication overhead and faster training than
fully encrypted methods, it inevitably exposes privacy risks due to the shared plaintext gradients.

To address this challenge, we propose DictPFL, as shown in Figure 1 (b), which ensures that
all shared parameters are fully encrypted to guarantee privacy while minimizing the number of
shared parameters through two modules: Decompose-for-Partial-Encrypt (DePE) and Prune-for-
Minimum-Encrypt (PrME). DePE decomposes the model weights to be trained into a globally
consistent dictionary, which is identical across all clients, and a lookup table, which each client
trains independently. Only the encrypted gradients of the lookup table are shared with the server for
aggregation, while the globally consistent dictionary remains frozen and is never shared. Building
on DePE, PrME further reduces encrypted lookup tables through consistent pruning across clients.
Unlike plaintext-level pruning in FL [32–34], where clients perform pruning locally and the server
aligns the retained gradients before aggregation, HE-based FL presents unique challenges: retained
gradients are batch-encrypted into ciphertexts in a SIMD format, preventing the server from aligning
them without decryption. PrME addresses this by pruning based on shared global gradient history,
ensuring consistent indices. Additionally, dynamic probabilities are assigned to the pruned parameters,
allowing for their potential reintroduction in future rounds and mitigating the negative effects of
premature pruning. Since the pruned lookup tables are significantly smaller than the full model
weights, and all transmissions are encrypted, this approach substantially reduces the number of
ciphertexts without compromising privacy.

Extensive experiments demonstrate that DictPFL delivers substantial performance gains over the state-
of-the-art FedML-HE [31] across diverse tasks, including (i) image recognition, (ii) text classification,
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and (iii) text generation. Compared with fully encrypted frameworks [35], DictPFL outperforms
the selectively encrypted FedML-HE [31] by lowering communication overhead by 51–155× and
speeding up training by 4–19×. Remarkably, DictPFL introduces less than a 2× training-time
increase even relative to plaintext FL, demonstrating that homomorphic encryption—commonly
considered prohibitively expensive—can in fact be practical for federated learning at scale.

2 Background and Motivation

2.1 Privacy-preserving Federated Learning

Federated Learning (FL) enables collaborative training among distributed clients without directly
sharing their datasets. In this framework, clients train their models locally and send gradients (or
model updates) to a central server, which aggregates them using algorithms such as FedAvg [36]
and FedSGD [1]. However, the direct exposure of local gradients to the server poses severe privacy
risks [37]. For instance, with access to a client’s local gradients, the server can perform model
inversion attacks [2, 3, 38] to reconstruct the client’s dataset.

Several methods have been proposed to protect the gradients transmitted between clients and the
server. One strategy employs Differential Privacy (DP) [22–24] by injecting noise into the gradients
before sharing them. Although DP imposes minimal computational overhead, it inevitably degrades
model performance due to the added noise. Secure Multi-Party Computation (MPC) [25, 28] ensures
that the server can access only aggregated gradients rather than individual ones. However, the
aggregated gradients remain exposed to the server, and the reliance on multiple non-colluding servers
makes MPC unsuitable for single-server settings.

DictPFL
Plaintext

FedML-HE
Ciphertext

0 20 40 60 80 180 200
Running Time (Minutes)

Train Aggregate
Comm. En-Decrypt

Figure 2: Time breakdown for train-
ing a ViT on GTSRB.

Another approach leverages Homomorphic Encryption
(HE) [21, 31] to encrypt gradients on the client side, en-
abling the server to aggregate them without decryption. HE
provides end-to-end protection by securing gradient trans-
mission, aggregation, and server storage. This protection
addresses multiple security threats, including adversaries in
network communications, multi-tenant vulnerabilities during
computation on servers, and insider attacks on stored data.
While platforms such as IBM FL [39] and Nvidia FLARE [35] have explored integrating HE into FL,
they fail to address its significant overhead. As shown in Figure 2, HE-related operations dominate
training time, and ciphertext expansion substantially increases communication costs. Reducing HE‘s
computational and communication overhead is key to realizing its practical benefits in FL.

2.2 Efficient HE-based Federated Learning

Many efforts have been made to improve the efficiency of HE-based FL. These approaches can be
broadly classified into two categories: encryption-scheme optimization and algorithmic optimization.

Quantization [21, 40–43] and packing [21, 44, 45] are widely studied techniques within the realm
of encryption-scheme optimization for HE-based FL. Quantization reduces communication costs
by converting high-precision gradients into low-precision values, whereas packing (also referred to
as batching) consolidates multiple local gradients into a single plaintext, significantly reducing the
number of plaintexts that need to be encrypted and transmitted.

Algorithmic optimization involves tailoring efficient strategies based on the characteristics of the
machine learning model, and our DictPFL falls into this category. The state-of-the-art work, FedML-
HE [31] proposes to selectively encrypt the gradients based on privacy-sensitive scores, i.e., Select-
and-Encrypt (SaE), as shown in Figure 1 (a). However, it suffers from several critical limitations.
First, privacy-sensitive scores are computed once before training and remain static throughout the
training process. This static approach fails to account for how weight sensitivity changes during
training, because weights classified as non-sensitive on the initialized model may later become
critical for privacy protection. Most critically, it cannot ensure complete privacy protection. Since
only the gradients of selected parameters are encrypted, the remaining gradients are transmitted in
plaintext, leading to inevitable information leakage and making it impossible to guarantee privacy
protection regardless of which gradients are selected for encryption. Additionally, as illustrated in
Figure 2, although FedML-HE substantially reduces the communication overhead and HE operations
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(including aggregation, encryption, and decryption) by a factor of ten when only the top 10%
of sensitive parameters are encrypted, these overheads induced by ciphertexts are still primary
bottlenecks in the training process. In contrast, our DictPFL effectively reduces HE-related overhead
and achieves efficiency comparable to non-private plaintext FL.

2.3 Motivation

As illustrated in Figure 2, communication and computation overheads caused by ciphertexts become
the main bottleneck in HE-based FL. Although the state-of-the-art FedML-HE [31] attempts to
improve efficiency by selectively omitting encryption for partial parameters, it not only compromises
privacy but also continues to struggle with significant HE-induced communication and computation
overheads. To achieve higher efficiency without sacrificing privacy, we focus on reducing the total
number of trainable parameters. Guided by this principle, we propose DictPFL, which employs two
strategies: Decompose-for-Partial-Encrypt (DePE) (Sec. 4.1) to decompose gradients and Prune-for-
Minimum-Encrypt (PrME) (Sec. 4.2) to prune the gradients of parameters with minimal updates.

3 Preliminaries

3.1 System Overview

Same with FedML-HE [31], the workflow of HE-based privacy-preserving federated learning begins
with clients using a trusted key authority to generate a public-secret HE key pair. During each training
iteration: (1) clients compute local gradients; (2) these gradients are encrypted with the public key
and transmitted to the server; (3) the server aggregates the encrypted gradients; and (4) the aggregated
ciphertext is broadcast back to the clients, who decrypt it using their secret keys and update their
local models with the decrypted result.

3.2 Threat Model

We consider a semi-honest adversary A that may corrupt the server, which is the same as the setting
of FedML-HE [31]. While A follows the protocol, it attempts to infer private information from
benign participants. Security guarantees ensure A learns no information from the data of clients.

4 DictPFL

DictPFL consists of two modules: Decompose-for-Partial-Encrypt (DePE) and Prune-for-Minimum-
Encrypt (PrME). DePE decomposes model weights into a fixed global dictionary D and a trainable
lookup table T . Only the encrypted gradients of T are transmitted and aggregated, whereas D
remains identical across clients and never leaves local devices. PrME further reduces encryption
cost by pruning parameters with persistently small gradients, using shared historical statistics to
ensure consistent pruning across clients. Together, these two modules ensure that all transmitted
gradients are encrypted and all unencrypted ones remain strictly local, while significantly reducing
the number of ciphertexts exchanged between clients and the server to achieve high efficiency without
compromising privacy.

4.1 Decompose-for-Partial-Encrypt (DePE)
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Figure 3: Representing the weight matrix W
with dictionary D and lookup table T .

Model weight decomposition, representing a weight
matrix W as a linear combination of vectors from
a compact dictionary D and a sparse lookup table
T , is a proven strategy for parameter reduction in
inference [46–48]. The key insight lies in reducing
the inherent redundancy in weight parameters: corre-
lated parameters can be represented as sparse linear
combinations of a dictionary of vectors. We adapt
this principle to HE-based FL, where reducing the dimensionality of trainable parameters directly
minimizes the number of ciphertexts.
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Constructing W with D and T . Figure 3 demonstrates the construction of the weight matrix
W ∈ Rn×m using a dictionary D ∈ Rn×r and a lookup table T ∈ Rr×m. Each column vector
W [:][i] of W is derived through a linear combination of the r vectors in D, weighted by the
corresponding scalars in the i-th column of T , denoted T [:][i]. This process is formally expressed by:

W [:][i] =

r∑
k=0

D[:][k] · T [k][i] (1)

Take Figure 3 as an example. Given r = 3 and the i-th column of T as [0.3, 0.2, 0.5], the correspond-
ing i-th column of weights in W can be represented as W [:][i] = 0.3·D[:][0]+0.2·D[:][1]+0.5·D[:][2].
By reducing r, the dictionary size, we effectively decrease the number of trainable parameters and
thus reduce the communication overhead associated with ciphertexts.

Factorization of Dictionary and Lookup Tables. To ensure that the dictionary D contains critical
and generalizable weight vectors while reducing parameter redundancy, we employ a truncated SVD
factorization to decompose the weights to be trained, i.e., W0, which has dimensions n×m, into a
smaller dictionary D and a lookup table T ′. Specifically, W0 is approximated as UrΣrV

⊤
r , where

Ur, Σr, and V ⊤
r correspond to the top-r singular values and vectors, thus reducing the dimensionality

to n× r for D and r ×m for T ′,
W0 ≈ UrΣrV

⊤
r (2)

D,T ′ = SV D(W0, r) = UrΣr, V
⊤
r (3)

DePE initializes D as UrΣr and T ′ as V ⊤
r according to Equation 3. However, directly freezing D

and training T ′ can lead to suboptimal performance due to the information loss inherent in SVD
truncation, particularly when r is much smaller than m or n. To counteract this, we retain the original
weight W0 and initialize T by zeroing out T ′. This strategy allows for the construction of W as
W0 + D · T , with D remaining static and shared among all clients, while T is updated locally
and aggregated on the server. By selecting a smaller r, we significantly reduce the communication
overhead for encrypted parameters, as encryption is only required for the r ×m entries in T .
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Figure 4: (a) As training progresses, parameters that initially have large gradients gradually transition
to having smaller ones. (b) Concurrently, the number of parameters with substantial gradients
decreases significantly. (c) An example of failed aggregation caused by different pruning locations
on clients A and B.

4.2 Prune-for-Minimum-Encrypt (PrME)

As DePE training progresses, the number of parameters with large gradients gradually declines, as
shown in Figure 4 (a). By the 50-th training round, only a small subset of parameters still exhibit
gradients exceeding 10−5, as shown in Figure 4 (b). Encrypting and transmitting all gradients to the
server for aggregation, including those of parameters that no longer change significantly, introduces
unnecessary redundancy. By enabling clients to upload only substantial gradients, communication
overhead can be dramatically reduced.

Existing gradients pruning methods in plaintext federated learning involve clients independently
pruning their smallest local gradients before transmission to the server for aggregation. Since clients
possess different local gradients, they may prune parameters at different positions, necessitating the
sharing of pruning indices with the server to ensure proper aggregation. However, implementing such
methods to HE-based federated learning presents two fundamental challenges. First, indices must be
encrypted to protect privacy, while encrypted indices force the server to perform non-linear operations
(e.g., comparing encrypted indices to match) alongside linear operations (e.g., aggregation), a hybrid
workflow that incurs prohibitive computational overhead [49, 50]. Second, the SIMD batching
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mechanism, which packs multiple plaintext gradients into several slots of a single ciphertext, renders
index-specific operations infeasible. Since HE aggregation occurs slot-wise, gradients occupying the
same slot across clients are combined automatically, regardless of their indices.

Figure 4 (c) illustrates the above challenges of pruned HE aggregation. Consider a scenario where
client A encrypts and uploads gradients from positions 1 and 3, while client B encrypts and uploads
gradients from positions 1 and 4. The server cannot perform correct aggregation because the ciphertext
slots are misaligned, and the encryption prevents any coordination or realignment of the gradients.
To ensure consistent gradient pruning across clients, they require an identical metric for determining
which gradients to prune. The optimal approach would involve clients pruning their local gradients
based on current round global gradients. However, clients cannot access the current round global
gradients until after sharing their complete local gradients with the server for aggregation. This
creates a dilemma: clients cannot prune independently as it leads to inconsistencies, nor can they rely
on global gradients to coordinate pruning.
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Figure 5: Evolution of a parameter’s global gradients under different pruning strategies. Green
background indicates the parameter is pruned (excluded from aggregation), while gray background
indicates the opposite. Larger green areas reflect more overhead reduction. Closer alignment of
gradient trends with the baseline (a) signifies preserved convergence performance.

Temporal Inactivity Pruning (TIP). To resolve this dilemma, clients require a shared pruning
metric that is independent of the current round’s global gradients. A straightforward solution is to
base pruning decisions on the last round’s global gradients, which are identical across clients and
accessible before aggregation. Specifically, clients prune local gradients corresponding to parameters
with the smallest s% magnitudes from the prior global gradients. However, parameters showing
minimal activity in one round may experience significant updates in subsequent rounds, leading to
unintended removal if pruning decisions rely exclusively on last round gradients. For instance, as
illustrated in Figure 5 (b), the parameter with a small gradient magnitude in an earlier round may be
pruned, despite its gradient resurgence in later rounds, as indicated in Figure 5 (a).

To mitigate the influence of transient fluctuations and retain critical gradients, we introduce a
temporal windowing strategy that leverages information from the previous τ consecutive rounds.
Clients identify parameters whose gradients fall within the smallest s% across all τ rounds (referred
to as pruning patience). Formally, the pruning mask for parameter wi at round t is defined as:

Mi,t =

{
0 if

∑τ
k=1 1 (|δwi,t−k| < θs,t−k) = τ

1 otherwise
(4)

Here, Mi,t = 0 indicates that the local gradient of wi is pruned, while Mi,t = 1 retains its local
gradient for aggregation. The δwi,t−k denotes the global gradient of parameter wi at round t − k,
and 1 is the indicator function. The threshold θs,t−k dynamically adapts as the (100-s)-th percentile
of |δwi,t−k|. As shown in Figure 5 (c), the pruning is postponed to a later round when gradients
exhibit more stable behavior, thereby preserving gradients that regain significance after initially being
considered for pruning.

Holistic Reactivation Correction (HRC). Although TIP reduces communication overhead while
preventing premature pruning by chance, it still has an inherent limitation: once a parameter is pruned,
its local gradients no longer participate in aggregation. Consequently, its global gradient magnitudes
remain zero in subsequent rounds, effectively excluding it permanently. This irreversible pruning can
hinder training convergence, as parameters with substantial gradients in later rounds may no longer
be updated. For example, in Figure 5 (a), the example parameter may have siginificant gradient
magnitudes even after the 100-th round.
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To mitigate the performance loss caused by irreversible pruning, we propose a dynamic reactivation
scheme, Holistic Reactivation Correction (HRC). Instead of permanently excluding pruned parameters,
HRC assigns each pruned parameter wi a reactivation probability pi, which is dynamically adjusted
based on its aggregated global gradients δwi,t after reactivation:

pi[t+ 1] =

{
pi[t]× β if |δwi,t| < θs,t
min (pi[t]/β, 1) otherwise

(5)

Here, β is a decay factor less than 1. When a pruned parameter is reactivated, the client uploads its
accumulated local gradients since the pruning round for aggregation and gets the current round’s
global gradients δwi,t. This approach preserves small gradients that, while individually minor,
can meaningfully accumulate over time, rather than discarding these gradients, maintaining them
locally for future aggregation helps convergence. If |δwi,t| < θs,t, indicating that the parameter’s
cumulative global gradients remain small even after reactivation, the reactivation probability pi
decreases, discouraging further reactivation. Conversely, if |δwi,t| ≥ θs,t, pi increases, encouraging
the update of this parameter to rejoin aggregation. This adaptive mechanism mitigates information
loss from premature pruning by flexibly adjusting the likelihood of reactivation. Although HRC
introduces some uncertainty, consistency across clients can be easily maintained by preserving a
shared random seed for the pruning mask. Notably, our PrME does not need to share pruning mask to
server, eliminating the risk of attacks via plaintext mask, e.g., inferring sensitive patterns from pruned
parameter locations.

5 Experimental Methodology

Datasets. We conduct experiments on three image classification tasks: CIFAR-10 [51], GTSRB [52],
and Diabetic Retinopathy [53], as well as AG’s News [54] for sentence classification and Meta-
MathQA [55] for text generation. The experiments are performed under varying levels of data
heterogeneity and different numbers of clients. We generate homogeneous data splits by randomly
assigning training examples to individual clients without replacement. For heterogeneous settings,
we simulate data heterogeneity by sampling the label ratios from a Dirichlet distribution with a
symmetric parameter, following the [56]. In both settings, each client holds the same number of
samples, following [57].

Models. We perform DictPFL on multiple prevalent transformer-based models including, ViT [58]
designed for image recognition, BERT [59], and TinyLlama [60] for natural language processing.

Baselines. We compare DictPFL with three baselines: FedHE-Full [35], which trains the entire model
and encrypts all gradients; FedHE-Top2, fine-tuning only the last two layers; and FedHE-ML [31],
which encrypts a subset of gradients (10% unless specified otherwise) while leaving the rest in
plaintext.

Evaluation Metrics. We assess the efficacy of our proposed DictPFL by comparing its communica-
tion overhead, training time, and model accuracy against existing methods. For privacy evaluation, we
compare DictPFL with FedML-HE [31] in terms of potential privacy leakage. We utilize recovered
image similarity scores derived from 1−LPIPS, where the Learned Perceptual Image Patch Similarity
(LPIPS) [61] measures discrepancies between reconstructed and original images. Therefore, higher
scores indicate greater similarity and consequently, higher privacy risks.

Hyperparameters. Unless otherwise specified, we set the dictionary size r to 4, the pruning ratio
s% to 70%, the pruning patience τ to 3, and the reactivation probability scaler β to 0.2. Detailed
analyses of these hyperparameters are provided in Section 6.2.

HE Implementation. We adopt the CKKS homomorphic encryption scheme with bootstrapping [62–
64], implemented via OpenFHE [65]. The scheme is configured for 128-bit security following the
Homomorphic Encryption Standard [66], with a cyclotomic ring dimension of N = 216, ciphertext
modulus of 1555 bits, and multiplicative depth L = 12. Each ciphertext contains N/2 = 32, 768
slots, enabling parallelized SIMD operations [67]. Data encoding follows the approach in [68]. All
experiments were conducted on an AMD Ryzen Threadripper PRO 3955WX processor (2.2 GHz)
with 125 GB of memory.
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Figure 6: Efficiency comparison of different federated learning frameworks, in terms of accuracy
versus communication overhead on three datasets using the ViT model. Higher efficiency is indicated
by higher accuracy for the same communication or achieving the same accuracy with less communi-
cation, as shown by lines closer to the upper left corner. Communication is quantified by the total
amount of data exchanged, including both plaintexts and ciphertexts, training iterations.

6 Results

6.1 Main Results

Comparison with Existing Works. To demonstrate DictPFL’s effectiveness, we compare it with
other HE-based FL frameworks on the CIFAR-10, Diabetic Retinopathy, and GTSRB datasets using
the ViT-16 model within a 3-client homogeneous setting. All experiments are conducted on the same
pre-trained model to ensure a fair comparison. Figure 6 provides an overall comparison. Notably,
DictPFL significantly and consistently reduces communication overhead compared to the baselines
without sacrificing accuracy. Specifically, FedHE-Full has the highest communication. FedHE-Top2,
which fine-tunes only the last two layers, shows reduced overhead but underperforms, because
freezing most layers limits learning capacity, particularly on datasets that diverge from those used in
pre-training. For instance, it achieves only 58.9% accuracy on GTSRB versus DictPFL’s 95.27%.
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Figure 7: (a) Gradient inversion attacks against
FedML-HE and DictPFL. The communication ra-
tio is the communication overhead relative to en-
crypting the full-size model gradients in FedHE-
Full. (b) Communication overhead of DictPFL and
the baselines on models of different sizes.

DictPFL achieves a 98.3% average reduction
in communication overhead compared to the
state-of-the-art FedML-HE (encrypting 10%),
while maintaining the same level of accuracy.
Although FedML-HE also reduces communi-
cation costs, it does so at the expense of pri-
vacy by exposing part of the gradients in plain-
text. DictPFL, on the other hand, fully preserves
privacy. This is further demonstrated in Fig-
ure 7 (a), which highlights the vulnerability of
FedML-HE to state-of-the-art gradient inversion
attacks [69]. Notably, DictPFL can prevent such
privacy leakage for any data type, not only for
vision tasks.

In addition to ViT, we evaluate several other
models, as shown in Figure 7 (b). The results show that DictPFL consistently outperforms the
baselines across models of different scales. Compared with the fully encrypted baseline FedHE-Full,
DictPFL reduces communication by 402 to 748 times and accelerates training by 28 to 65 times. It
also outperforms the selectively encrypted baseline FedML-HE by reducing overhead by 51 to 155
times and speeding up training by 4 to 19 times.

Breakdown Analysis. In Figure 8, we break down the training time for various HE-based FL
frameworks under both LAN and WAN settings. In FedHE-Full, where all gradients are encrypted,
communication and ciphertext-related operations (encryption, decryption, and aggregation) dominate
the training time. FedHE-Top2 reduces communication and ciphertext-related operations by fine-
tuning the last two layers, but this comes at the cost of reduced accuracy, achieving only 58.9%. On
the contrary, our proposed DePE and PrME techniques significantly reduce the number of ciphertexts,
resulting in a total training time that is 1 to 2 orders of magnitude lower than that of other baselines
while maintaining a comparable level of accuracy.
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Figure 8: Training time breakdown of ViT on GTSRB under LAN and WAN settings.

6.2 Ablation Study

In this section, we explore the design space of DictPFL and study the impact of various settings
on its performance. Unless otherwise specified, all experiments are conducted using the Diabetic
Retinopathy dataset within a 3-client homogeneous setting within 10 rounds, and follows the default
hyperparameter settings detailed in Section 5.

Hyperparameters of DePE. The dictionary size is a crucial hyperparameter in our DePE. A larger
dictionary captures more comprehensive representations of gradients, enhancing accuracy but in-
creasing overhead. As shown in Table 1, even a small dictionary with r = 4 achieves commendable
training performance, e.g., an accuracy of 81.99%, close to the 82.74% achieved by FedHE-Full.
This efficacy stems from the dictionary’s ability to retain essential information corresponding to the
largest singular values.

Table 1: Ablation on dictionary size r.
r Accuracy (%) ↑ Comm. (GB) ↓ Time (min) ↓

2 74.26±0.5 0.046 6.11±0.1

4 81.99±0.4 0.088 6.23±0.1

8 82.67±0.2 0.160 6.42±0.2

16 82.71±0.2 0.332 7.27±0.1

Table 2: Ablation on pruning patience τ .
τ Accuracy (%) ↑ Comm. (GB) ↓ Time (min) ↓

1 80.55±0.6 0.001 6.26±0.1

3 82.29±0.3 0.003 6.36±0.1

5 82.67±0.2 0.160 6.42±0.2

10 82.77±0.3 0.474 6.92±0.1

Hyperparameters of PrME. We explore the impact of pruning ratio s% and pruning pa-
tience τ in PrME. A higher s% results in more minor gradients being pruned, whereas a
lower value preserves them. As shown in Figure 9, without PrME (prune 0%), training
converges rapidly within 10 rounds, but each round incurs the highest communication cost.
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Figure 9: Ablation on the pruning ratio.

Pruning 70% drastically reduces communica-
tion overhead but significantly affects accuracy.
By contrast, pruning 20% preserves accuracy
but results in far less communication reduction
compared to the 70% pruning scenario. Notably,
with our HRC reactivation scheme, prematurely
pruned gradients in earlier rounds can be selec-
tively reintroduced in later rounds. This enables
the model to achieve accuracy similar to the 20%
pruning scenario while achieving the communi-
cation efficiency of the 70% pruning ratio.

Table 2 studies different pruning patience τ . Higher τ values delay the pruning of gradients, reducing
accuracy degradation but limiting communication reduction. Notably, setting τ = 3 already results in
a small accuracy loss. This resilience can be attributed to our HRC, which mitigates the impact on
accuracy by reintroducing pruned gradients, effectively correcting errors over time.

Table 4 in Appendix A.2 showcases that our PrME works well under various reactivation proba-
bility scalers β. For different numbers of clients and heterogeneous levels, we show the results in
Appendix A.3 and A.4, which show that DictPFL performs well across different client scales and
heterogeneous settings.

6.3 Other Experiments

The results for text tasks and large language models, including classification and generation tasks are
in Appendix A.5. DictPFL outperforms all the baselines on language tasks. In Appendix A.7, we
compare DictPFL with other non-HE based FL.
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7 Conclusion

In this work, we present DictPFL, a novel framework for efficient HE-based FL. To address the
prohibitive ciphertext-related overhead and eliminate information leakage, we propose Decompose-
for-Partial-Encrypt (DePE), which decomposes model weights into a static dictionary and a trainable
lookup table. Only the small lookup table is encrypted and shared for aggregation, while the dictionary
is never transmitted. To further improve communication efficiency, we propose Prune-for-Minimum-
Encrypt (PrME), which prunes gradients based on their long-term activity to minimize redundant
ciphertext operations. Compared with the fully encrypted baseline, DictPFL accelerates training by
up to 65× and outperforms the selectively encrypted FedML-HE by up to 19× while maintaining
accuracy and fully eliminating privacy risks from partial plaintext gradient transmission, achieving a
runtime only 2× that of plaintext FL.

8 Discussion

Broader Impact. The paper introduces DictFPL, a method designed to reduce the computational and
communication overheads associated with protecting federated learning shared weights using homo-
morphic encryption. This approach enhances privacy protections without compromising accuracy,
making it a more feasible solution for large-scale, real-world applications. By ensuring that sensitive
weights remains private, DictFPL can accelerate the adoption of federated learning across industries
such as healthcare, finance, and beyond, while fostering trust in AI systems and promoting global
data privacy.

Limitations. Future work could explore broader scenarios, such as cross-device FL with constrained
client resources or non-transformer model families. Moreover, since DictPFL employs a fixed
shared dictionary, extending it to a dynamic dictionary design could enhance adaptability in highly
heterogeneous client environments and improve model personalization.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Ahe results are based on 5 individual runs. We report the mean and variance
of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 5

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Appendix 8 discusses the broader impact.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix 8.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In Section 5, we cited the related code, datasets and models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A More Experiments

A.1 Comparison without pre-trained weights

As shown in Table 3, even without using pre-trained weights, DictPFL achieves the highest accuracy
among all methods, reaching 95.06%, compared to 94.17% for FedHE-FULL and 94.99% for FedML-
HE. More importantly, DictPFL offers substantial efficiency gains: the total communication cost
is reduced to 0.51 GB, while FedHE-FULL and FedML-HE require 720.72 GB and 73.62 GB,
respectively. In terms of training time, DictPFL completes in just 11.8 minutes, far less than 294.6
minutes for FedHE-FULL and 56.7 minutes for FedML-HE.

Table 3: Comparison with baselines on without pre-trained weights.
Acc. (%) ↑ Comm. (GB) ↓ Time (min) ↓

FedHE-FULL 94.17 720.72 294.6
FedML-HE 94.99 73.62 56.7
DictPFL (ours) 95.06 0.51 11.8

A.2 Different reactivation probability scale β

Table 4 studies different reactivation probability scalers β. The result showcase the our PrME works
well under different β.

Table 4: Ablation study on β under s% = 70% and τ = 3.
β Accuracy (%) ↑ Comm. (GB) ↓ Time (min) ↓

0.2 82.29±0.3 0.003 6.36±0.1

0.5 82.37±0.3 0.007 6.36±0.1

0.8 82.55±0.2 0.031 6.39±0.2

A.3 Different Number of Clients

We assess the performance of DictPFL in environments with varying numbers of clients. The findings,
presented in Table 5, demonstrate that DictPFL performs effectively and consistently across settings
with different client counts.

Table 5: The results of DictPFL under client numbers.
Clients Accuracy (%) ↑ Comm. (GB) ↓ Time (min) ↓

3 82.67 0.160 6.42
5 82.64 0.092 3.70

10 81.94 0.046 1.85
20 81.82 0.041 0.93
50 80.42 0.041 0.75
200 80.56 0.041 1.96

A.4 Different Heterogeneous Level

Unsurprisingly, DictPFL performs better in homogeneous settings than in heterogeneous settings. As
the table 6 shows, we evaluated DictPFL in various heterogeneous settings under different Dirichlet
distributions from 0.3 to 0.9 and compared it with a homogeneous setting. The results indicate that
DictPFL’s performance remains stable across different heterogeneous dataset splits. Specifically,
a smaller α (more heterogeneous) requires more communication size and training time to achieve
comparable accuracy to a larger α (less heterogeneous).
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Table 6: The results under different heterogeneous settings.
α Accuracy (%) ↑ Comm. (GB) ↓ Time (min) ↓

0.3 79.62±0.4 0.103 6.22±0.2

0.6 80.28±0.2 0.145 6.44±0.1

0.9 82.06±0.3 0.151 6.45±0.2

∞ 82.67±0.2 0.160 6.42±0.2

A.5 Performance on NLP tasks.

Table 7 shows that DictPFL significantly improves efficiency in both sentence classification and
generation (instruction tuning) tasks. For the generation task, we train on the MetaMathQA [55]
dataset and evaluate on GSM8K [70], focusing on mathematical reasoning. These gains are especially
pronounced in larger models, where DictPFL reduces training time by 99.4% percent for TinyLlama
and 96.1% percent for BERT. This improvement stems from the high cost of ciphertext operations in
larger models, making DictPFL’s optimizations more impactful.

Table 7: Comparison with baselines on TinyLlama and BERT.
Methods Acc. (%) ↑ Comm. ↓ Time ↓

TinyLlama-
MetaMathQA

FedHE-Full 45.86 30.0 TB 214.2 h
FedHE-FT 6.92 2.4 TB 17.9 h
FedML-HE 45.86 3.0 TB 22.6 h
DictPFL (ours) 45.93 0.3 TB 1.3 h

BERT-
AgNews

FedHE-Full 91.38 137.2 GB 342.6 m
FedHE-FT 90.05 17.5 GB 47.9 m
FedML-HE 91.38 13.7 GB 32.8 m
DictPFL (ours) 91.24 4.8 GB 13.4 m

A.6 Comparision with Non-HE based FL

We compare DictPFL with Secure Aggregation [25] by training a ViT model on the Diabetic
Retinopathy dataset under a 3-client LAN setting (1 Gbps, 0.5 ms). Secure Aggregation increases
training time from 257.6 s to 363.2 s, while DictPFL achieves the same 82.7% accuracy in 385.2 s.
This demonstrates that HE-based FL with DictPFL is practically efficient, with much lower overhead
than commonly assumed.

A.7 Combination with Existing Quantization Techniques

Algorithmic optimization directly reduces gradient redundancy without sacrificing accuracy, whereas
quantization and packing often lead to accuracy degradation. Moreover, their improvements are
limited and easily saturate [71]. More importantly, these optimization approaches are orthogonal
and can be combined—by first reducing gradients through algorithmic optimization and then ap-
plying quantization or packing, overall communication cost can be further minimized. Here we
perform experiments (3-client ViT on CIFAR-10, to compare DictPFL (algorithmic optimization) and
AdaptiveBatchHE [41] (packing optimization), as shown in the table below. It reveals that DictPFL
outperforms AdaptiveBatchHE in both efficiency and accuracy and combining them will further
reduce communication overhead.

Table 8: Comparison of accuracy and communication cost among HE-based frameworks.
Accuracy (%) ↑ Communication (GB) ↓

FedHE-FULL 98.2 60.14
AdaptiveBatchHE 96.7 5.41
DictPFL (ours) 98.2 0.43
DictPFL + AdaptiveBatchHE 96.6 0.0872
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A.8 Client Personality Preservation

DictPFL preserves the personality of each client based on our HRC mechanism. Specifically, while
pruning is guided by the magnitude of global gradients, the HRC mechanism allows each client to
upload accumulated local gradients for parameters that are reactivated, even if they were previously
pruned due to low global gradient magnitudes. This ensures that important client-specific significant
gradients are not lost: whenever such parameters are reactivated again, clients contribute their
accumulated local gradients.

In Table 9, we evaluate DictPFL under various degrees of data heterogeneity by adjusting the Dirichlet
factor α. While greater heterogeneity (lower α) increases training time and communication overhead,
DictPFL consistently maintains strong performance.

To further demonstrate the effect of HRC’s accumulative gradient sharing mechanism, we compare
“accumulative gradient sharing” versus “non-accumulative sharing,” measuring the resulting accuracy
under comparable training time. Our results (3-client ViT on Diabetic Retinopathy, r = 4, s = 0.7,
τ = 3, β = 0.2) show that omitting accumulated gradients notably reduces accuracy, particularly in
more heterogeneous settings—because discarding small but meaningful gradients impairs learning for
clients with diverse data. Overall, these results highlight that DictPFL achieves robust performance
across a wide range of data distributions.

Table 9: Effect of accumulative gradient sharing under different Dirichlet factors α.
α Accumulative gradient sharing (%) Non-accumulative sharing (%)

0.3 79.62 74.26
0.6 80.28 76.13
0.9 82.06 80.45

B Analysis on FedML-HE [31]

FedML-HE trades security for efficiency, and this trade-off persists regardless of whether sensitivity
is dynamically recalculated. While dynamic recalculation can enhance security, it incurs substantial
computational overhead to achieve an empirical 0% attack success rate. Because recalculating
sensitivity scores requires each client to perform a forward pass on the training dataset and share
encrypted sensitivity values for secure aggregation, it introduces overhead comparable to the original
training round and HE aggregation step.

Our experiments (3-client ViT on CIFAR-10, encrypt 10%) with varying recalculation frequencies
(i.e., recalculating every K rounds) show that more frequent updates do improve privacy, but at the
cost of significantly reduced efficiency. Even under these settings, FedML-HE still cannot achieve
the strong privacy guarantees or efficiency of DictPFL.

Table 10: Effect of dynamic sensitivity recalculation in FedML-HE.
Method Accuracy (%) ↑ Communication (GB) ↓ Attack Success Rate (LPIPS) ↓
FedHE-Full 98.17 60.14 0.00
FedML-HE (K=1) 98.16 61.07 0.00
FedML-HE (K=2) 98.16 54.28 0.092
FedML-HE (K=5) 98.16 30.8 0.309
FedML-HE (K=10) 98.16 14.2 0.788
DictPFL (ours) 98.15 0.43 0.00
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