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ABSTRACT

Recent advances in video generation have produced powerful diffusion models
capable of generating high-quality, temporally coherent videos. We ask whether
space-time tracking capabilities emerge automatically within these generators, as a
consequence of the close connection between synthesizing and estimating motion.
We propose a simple but effective way to elicit point tracking capabilities in off-the-
shelf image-conditioned video diffusion models. We simply place a colored marker
in the first frame, then guide the model to propagate the marker across frames,
following the underlying video’s motion. To ensure the marker remains visible
despite the model’s natural priors, we use the unedited video’s initial frame as a
negative prompt. We evaluate our method on the TAP-Vid benchmark using several
video diffusion models. We find that it outperforms prior zero-shot methods, often
obtaining performance that is competitive with specialized self-supervised models,
despite the fact that it does not require any additional training.

1 INTRODUCTION

Recent generative models have shown the remarkable ability to produce temporally consistent videos.
The objects within them persist across frames, through occlusion, and despite variations in camera
pose and lighting. These capabilities are closely related to the visual tracking problem. While
generation deals with producing videos that contain temporally persistent objects, tracking deals
with analyzing such videos to estimate motion. A variety of methods have exploited the connections
between these two problems, such as by using trackers to supervise or control video generators (Chefer
et al., 2025; Burgert et al., 2025; Geng et al., 2025; Hao et al., 2018; Ardino et al., 2021) and to
evaluate the temporal consistency of generated videos by measuring how “trackable” they are (Allen
et al., 2025; Lai et al., 2018; Ceylan et al., 2023; Geyer et al., 2023).

In this paper, we ask whether tracking capabilities emerge automatically in video diffusion models,
as a consequence of the close connection between the two problems. Unlike high-level understanding
tasks that are naturally described by captions, like object recognition, tracking cannot easily be
induced by text prompting. To elicit these capabilities from a video generator, we propose a novel
approach to counterfactual modeling that allows us to directly obtain high-quality point tracks “zero
shot” from pretrained image-conditioned video diffusion models. We simply mark the position of the
query point in the initial video frame using a distinctively colored dot (Fig. 1), then propagate it to
future video frames by regenerating the video using SDEdit (Meng et al., 2021). After generation,
the query point’s position can be estimated in each frame by basic image processing.

In counterfactual modeling (Bear et al., 2023), one carefully perturbs the input variables, then analyzes
how the generation changes in response. Yet large generative models have strong priors that sometimes
conflict with this goal. The marker in Fig. 1, for example, may be unnatural in some environments, and
so samples from a generative model may ignore it. We use a simple but effective method to address
this issue: when sampling from the model, we use the unmodified initial input frame as a negative
prompt for the diffusion model, thereby guiding the model toward samples that contain the marker.

Our approach is closely related to (and takes inspiration from) a recent line of work that applies
counterfactual modeling to self-supervised motion estimation (Bear et al., 2023; Venkatesh et al.,
2023). These methods train a future prediction model, then measure how the predicted future changes
when a given point is perturbed in the initial frame, indicating its motion. This requires training
a special-purpose model (based on masked autoencoders) that is designed specifically with this
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Figure 1: Prompting a diffusion model for tracking. (a) We use an off-the-shelf video diffusion model to
perform point tracking. We add a small, distinctive marking—a red dot—to the first frame of an input video, then
ask the diffusion model to regenerate the rest of the video using SDEdit (Meng et al., 2021), which propagates the
marking to subsequent frames. (b) We then track the motion of this marking over time. This motion corresponds
to the trajectory of the underlying physical point. The model successfully tracks through occlusion. We show
results for point propagation and tracking at https://iclr-2026-demo.github.io/project-demo .

downstream use case in mind, and requires training auxiliary models to obtain high performance. By
contrast, we show that off-the-shelf video diffusion models can track points by prompting. In this
way, our work is closely related to “zero shot” emergent correspondence methods (Tang et al., 2023;
Zhang et al., 2023a). However, previous methods rely on extracting internal feature representations
from image, are highly architectural specific, and largely deal with semantic correspondence from
image diffusion models.

Our results suggest that video diffusion models are capable of tracking points through video via
counterfactual modeling, without need for additional training. Through experiments on the TAP-
Vid (Doersch et al., 2022) benchmark, we show:
• Pretrained video diffusion models can be directly used as visual trackers.
• The object permanence capabilities of generative models enable tracking through occlusion.
• Points can be reliably propagated through video using a novel diffusion prompting strategy.
• Tracking performance can improve through iterative refinement using inpainting.
• We significantly outperform previous zero-shot tracking methods, such as those that use features

from pretrained image diffusion models.
We see this work as being a step toward understanding the capabilities of large, pretrained video
diffusion models, and new ways to extract these capabilities from them.

2 RELATED WORK

Self-supervised Motion Estimation. Deep learning has significantly advanced motion estimation.
Early dense optical flow methods (Dosovitskiy et al., 2015; Sun et al., 2018; Teed & Deng, 2020)
showed strong performance but often struggle with long-range tracking and occlusions. Inspired
by Sand and Teller (Sand & Teller, 2008), recent methods instead track individual points over
time (Harley et al., 2022; Doersch et al., 2022), with newer architectures (Doersch et al., 2023; Karaev
et al., 2024c;a; Neoral et al., 2024; Zheng et al., 2023; Doersch et al., 2024; Zholus et al., 2025)
improving long-term accuracy. However, these models often rely on synthetic data, limiting their
real-world generalization. To bridge this gap, self-supervised optical flow methods (Jonschkowski
et al., 2020; Liu et al., 2019; Huang et al., 2023) have been proposed, but they inherit many limita-
tions of supervised approaches. Other work focuses directly on long-range tracking: Vondrick et
al. (Vondrick et al., 2018) train a model to propagate color in grayscale videos, implicitly learning
motion. Cycle consistency has also been leveraged (Jabri et al., 2020; Wang et al., 2019), including
for point tracking (Shrivastava & Owens, 2024). Models trained for semantic understanding, such as
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DINOv2 (Oquab et al., 2023), have also been adapted for semantic and temporal correspondence.
DIFT (Tang et al., 2023), based on image diffusion models, extracts features suitable for matching,
while SD-DINO (Zhang et al., 2023a) combines Stable Diffusion and DINO features to solve a
range of semantic and geometric tasks. Some work has been done on counterfactual reasoning for
understanding visual scenes. Visual Jenga (Bhattad et al., 2025) progressively removes objects from
a single image until only the background remains, revealing geometric relationships among scene
elements. Recent research on counterfactual world modeling (Bear et al., 2023; Venkatesh et al.,
2023) tackles keypoint prediction and optical flow by training a masked autoencoder for future-frame
prediction, then perturbing inputs to estimate motion. In contrast, we exploit properties of diffusion,
such as the ability to subtly manipulate videos, to obtain our predictions from an off-the-shelf model;
we base our approach on generative video models rather than masked future frame prediction; and we
address the long-range point tracking problem rather than optical flow. Stojanov et al. (Stojanov et al.,
2025) extended the counterfactual world modeling to point tracking by learning RGB perturbations
that can be propagated through a frozen next-frame predictor, optimizing them with a jointly trained
sparse optical-flow module. By contrast, our approach relies entirely on prompting a frozen video
diffusion model and requires no additional training. A recent concurrent work (Nam et al., 2025)
extracts features from a pretrained video model for tracking, using a one-to-one frame-to-latent
mapping to avoid temporal compression, but involves a complex, architecture-dependent analysis to
identify which layers provide the best features and does not handle occlusion. In comparison, our
method does not rely on feature extraction, remains architecture-agnostic and is inherently robust to
occlusion.

Pretrained Models. Large pretrained models have become foundational in computer vision, replacing
task-specific architectures across classification, detection, and segmentation (Donahue et al., 2014;
Chen et al., 2020; He et al., 2020; Zhang et al., 2016; Oquab et al., 2023; Radford et al., 2021;
Zhai et al., 2023; Kirillov et al., 2023; Yang et al., 2024a; Liu et al., 2024; Tong et al., 2024; Li
et al., 2023). Diffusion models for image generation (Podell et al., 2023; Rombach et al., 2022;
Dhariwal & Nichol, 2021; Nichol et al., 2021) introduced generative features that capture semantic
correspondences (Tang et al., 2023; Luo et al., 2023; Zhang et al., 2023a), but lack temporal reasoning
needed for motion-centric tasks. Video diffusion models (Blattmann et al., 2023a;b; Yu et al., 2023;
Wang et al., 2025; Yang et al., 2024b; Polyak et al., 2024; Chefer et al., 2025) address temporal
consistency, though many still prioritize appearance over motion. Chefer et al. (Chefer et al., 2025)
address this by incorporating optical flow during training. We work in the opposite direction, using
generative models to aid motion estimation.

Visual Prompting. Prompting strategies have achieved notable success in natural language pro-
cessing (Wei et al., 2022; Kojima et al., 2022), motivating analogous techniques in computer vision.
One prominent direction frames downstream vision tasks as inpainting problems, using pretrained
models to complete images conditioned on visual cues (Bar et al., 2022; Wang et al., 2023; Bai et al.,
2024). Another line of work focuses on optimizing prompt representations, showing that both textual
and visual prompts can be refined via gradient-based methods to better adapt vision models (Zhou
et al., 2022; Bahng et al., 2022). Recent studies also demonstrate that simple visual prompts, such as
colored shapes, can elicit useful behaviors from vision-language models (Shtedritski et al., 2023; Yao
et al., 2024). We introduce a simple yet effective visual prompt: placing a colored dot at the pixel to
be tracked. To our knowledge, this is the first use of image prompting for point tracking in video
diffusion models.

Controllable Generation. Controllable generation is a key goal in generative modeling (Hao et al.,
2018; Zhuang et al., 2021; Liu et al., 2021; Jo & Park, 2019; Chen et al., 2024; Zhang et al., 2023b;
Ruiz et al., 2023; Chen et al., 2023). SDEdit (Meng et al., 2021) introduced a training-free method
for guided synthesis using noise perturbation and iterative denoising. More recent work enables
fine-grained spatial control in diffusion models (Chen et al., 2024; Lugmayr et al., 2022; Si et al.,
2024; Wu et al., 2024; Chefer et al., 2023). RePaint (Lugmayr et al., 2022), for example, inpaints
masked regions without affecting the rest of the image. Methods like ControlNet (Zhang et al., 2023b)
and DreamBooth (Ruiz et al., 2023) enable control via fine-tuning. These ideas have been extended
to video (Zhang et al., 2023c; Feng et al., 2024), providing structured editing through architectural
design and hierarchical sampling.
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Figure 2: Enhancing the Counterfactual Signal. We use negative prompting to ensure that the generated video
contains the marker. In each denoising step (Eq. 5), we condition the denoising on two images: (1) Edited First
Frame: the first frame of the video with a marking added, and (2) Unedited First Frame: the original first frame
of the video. We then subtract the weighted noise vector of the latter from the former.

3 METHOD

Our goal is to repurpose a pretrained generative video model to track points in a video. To do this, we
exploit several key properties of diffusion models. We review diffusion models, then describe how
they can be adapted for point tracking.

3.1 PRELIMINARIES: VIDEO DIFFUSION MODELS

Latent video diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Rombach et al., 2022;
Blattmann et al., 2023a; Wang et al., 2025) generate a sequence of F RGB frames, V ∈ RF×H×W×3.
These models operate on a compact latent representation x ∈ RF ′×H′×W ′×C , where C is the channel
dimension, which can be converted into a video via a decoder.

Forward (Noising) Process.1 Given a clean video latent x0, we define the noising process using a
variance schedule βt over timesteps t ∈ {1, . . . , T}. The corrupted latent is constructed via:

xt =
√
αtxt−1 +

√
1− αtϵ, ϵ ∼ N (0, I), (1)

where αt = 1− βt and ᾱt =
∏t

s=1 αs.

Reverse (Denoising) Process. At each timestep t, the video diffusion model, ϵθ(xt, t, c), predicts
the noise component. These models may be conditioned on additional data c, such as a text prompt
or the desired first frame of the video. We denoise the corrupted latent (Sohl-Dickstein et al., 2015;
Ho et al., 2020):

xt−1 =
1√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t, c)

)
+ σtz (2)

where σ2
t is the variance, and z ∼ N (0, I).

Video Manipulation. Trained diffusion models can also be used to manipulate existing videos,
without additional training. We discuss two such applications: regeneration and inpainting.

Rather than generating a latent vector from scratch, one can regenerate an existing, clean video with
modifications using SDEdit (Meng et al., 2021). We add an intermediate level of noise, 1 < t < T :

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (3)

and then run the reverse diffusion process to denoise it. This results in a video that resembles the
coarse structure of the original, but with different fine-grained details (e.g., restyling a real video into
a cartoon using a text prompt).

We can also use pretrained video diffusion models for inpainting (Lugmayr et al., 2022). Given a
binary spatiotemporal mask m ∈ BF×H×W indicating which patches of the input video can (and

1Our method is agnostic to the specific diffusion model and therefore follows the widely used standard
notation of denoising diffusion models (Ho et al., 2020) with classifier-free guidance (Ho & Salimans, 2022).
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Figure 3: Tracking Enhancements. To improve point tracking in video, we introduce two enhancements:
(1) Color Rebalancing: remove existing red hues to ensure the red marker remains a unique tracking cue; (2)
Refinement: obtain initial trajectories with a color-based tracker, then refine them using an inpainting mask to
correct temporal artifacts such as object shifts. This two-step procedure first produces coarse tracks and then
refines them via mask-constrained reverse diffusion.

cannot) be changed, we run the reverse diffusion process and constrain updates to the masked region.
At each denoising step, we constrain the updates such that they occur only in the masked region. In
each step of the reverse diffusion process, we compute (Lugmayr et al., 2022):

x̃t−1 =
1√
αt

(
xt −

βt√
1− ᾱt

ϵθ

)
+ σtz, z ∼ N (0, I),

xoriginal
t−1 =

√
ᾱt−1x0 +

√
1− ᾱt−1ϵ, ϵ ∼ N (0, I),

xt−1 = m⊙ x̃t−1 + (1−m)⊙ xoriginal
t−1 ,

(4)

where ϵθ is the estimated noise for the iteration t, and as before x0 is the latent for the input video.

3.2 POINT PROMPTING FOR COUNTERFACTUAL TRACKING

We now describe an approach to counterfactual modeling that enables a video diffusion model to
perform “zero shot” tracking.

Marking a Point’s Trajectory. Given an input video and the pixel location of a query point, our
goal is to predict the positions of the point in the subsequent frames. As shown in Fig. 1, we prompt
an off-the-shelf video diffusion model to draw a distinctive marker in each frame at the point’s
position. We then localize the point position using simple low-level image processing.

We insert a distinctive marking on the query point’s position in the initial frame. For this, we simply
use a circular dot, which can plausibly be interpreted as being part of the object’s surface. For
simplicity, we color this dot pure red in all of our experiments. We then apply SDEdit (Sec. 3.2)
using an intermediate timestep 1 < t < T to the video to manipulate the video, while conditioning
on the edited initial frame. This propagates the marker to the subsequent frames of the video.

Enhancing the Counterfactual Signal. One of the challenges of applying counterfactual modeling
to powerful generative models is that their strong priors lead them to ignore the manipulations
that we introduce. For example, when the marker does not naturally fit into a scene, it will often
disappear from the generated video within a few frames. We address this problem by using a simple
negative prompt that reduces the probability of drawing samples that resemble the original video. We
compute the difference between two noise estimates (Fig. 2) that are computed using different types
of first-frame conditioning: one where we condition on the original image (i.e., without the marker)
and another where we condition on the edited image (i.e., with the marker):

ϵ̃θ (xt, cI) = (λ+ 1) · ϵθ(xt, ϕ(cI))− λ · ϵθ (xt, cI) , (5)
where ϵ̃ is the noise estimate after enhancement, cI is the initial-frame conditioning, ϕ(cI) is the
initial frame after applying the counterfactual manipulation (i.e., adding the marker), and λ > 0 is a
weight. Due to the well-known close connection between denoising and score functions, the modified
denoiser ϵ̃ corresponds to the following score function (Ho & Salimans, 2022; Karras et al., 2024):

∇xt log(pλ(xt)) = ∇xt log

(
p(xt | ϕ(cI))

[
p(ϕ(cI) | xt)

p(cI | xt)

]λ)
, (6)
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where p(xt) is the probability under the model for the noisy input at time t, and where we have
used the well-known fact that ϵ(xt) ∝ −∇xt

log(p(xt)) and Bayes rule, following the standard
formulation of classifier-free guidance (Ho & Salimans, 2022). From this perspective, we see that our
sampling procedure generates videos conditioned on the manipulated initial frame, while biasing the
score direction away from samples from the unedited conditioning.

We note that this strategy is related to (but distinct from) the approach used in previous work on
counterfactual world models (Bear et al., 2023; Stojanov et al., 2025). They generate two possible
futures using a masked autoencoder model: one with the marker and one without. They then
enhance the signal by directly subtracting the two generated images, which amounts to approximately
estimating: Ep(x|ϕ(cI)) [x]− Ep(x|cI) [x] . Like our approach, this method enhances their ability to
detect the effect of the counterfactual by comparing the generated result to an unedited baseline, but
instead of comparing the predicted samples themselves, we include this constraint as guidance in the
sampler. In our experiments, we found that objects often subtly change position in different samples
of a video diffusion model, leading to this differences between generations to contain significant
artifacts, making it challenging to use this approach.

Tracking the Marker. To extract a track from generated videos containing an inserted marker at
a query point, we implement a simple tracker that locates the marker in each frame based on color.
Given the marker’s initial location (u0, v0) in the first frame, we track its motion frame by frame.
For each subsequent frame k, the tracker searches for red pixels (in HSV colorspace) within a local
window of radius r centered at the previous location (uk−1, vk−1), selecting the pixel closest to the
previous position. Since the marker appears as a small blob, we refine the estimate by averaging the
positions of nearby red pixels to obtain a more stable center, which serves as the predicted track point.

If no red pixels are found within the search region, we treat the marker as occluded and propagate the
last known position forward. We expand the search radius r at each step until the marker reappears,
after which we reset r to its original value. This adaptive strategy makes the tracker robust to
temporary occlusions and large displacements, enabling it to recover from tracking uncertainty.

3.3 EXTENSIONS

We can further improve the prediction by coarse-to-fine refinement and by rebalancing the colors in
the video to exclude the marker’s color (Fig. 3).

Coarse-to-Fine Refinement. Accurate tracking requires that the generated video remain pixel-
aligned with the original. However, the generated video may be subtly misaligned with the original
video after regeneration, leading to tracking errors. Inspired by coarse-to-fine motion estimation,
we improve our tracking predictions after their initial estimates, by exploiting the fact that video
diffusion models can be repurposed to perform inpainting. We restrict the model’s ability to modify
the video during generation, allowing it to generate only regions near the potential tracked point,
while preserving the rest of the video content.

After obtaining the initial estimate of marker positions (as described above), we construct a binary
spatiotemporal binary mask m ∈ RF×H×W , where each frame’s mask is set to 1 within a small
radius r centered on the tracked location, i.e., m[u, v] is set to 1 if (u, v) ∈ Br(uk, vk). We then
re-run the video generation, while allowing only the image regions indicated by m to change. and
plug it in Eq. 4.

Color Rebalancing. Since our tracker relies on detecting a particular color, we rebalance the
video’s colors such that the marker’s color does not appear within it. We do this by reducing the
saturation of the marker’s color. For example, when tracking a red marker, we reduce the saturation
of red regions, effectively suppressing natural red hues while preserving overall image quality (details
provided in Appendix D.1). We find that this reduces mistakes during occlusion, since the marker is
not present and thus false detections are more common.

4 EXPERIMENTS

We evaluate our prompting strategy’s ability to accurately track points through a video, using the
TAP-Vid benchmarks (Doersch et al., 2022).

4.1 VIDEO MODELS

We consider recent image-conditioned video diffusion models:
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Wan2.1 (Wang et al., 2025) combines a 3D causal VAE with a diffusion transformer (DiT) conditioned
on text and an input image and trained using flow-matching (Lipman et al., 2022). The VAE encodes
video into latents x ∈ R(1+F/4)×H/8×W/8, keeping the first frame at full temporal resolution and
downsampling the rest by 4×. Outputs are 480× 832. We test 1.3B- and 14B-parameter variants,
reporting results with the 14B model unless noted.

Wan2.2 (Wang et al., 2025) extends Wan2.1 with a Mixture-of-Experts (MoE) architecture. By
distributing denoising across timesteps among specialized experts, it increases model capacity without
extra computation and is trained on a much larger dataset.

CogVideoX (Yang et al., 2024b) is another I2V diffusion model that also combines a 3D causal VAE
with a diffusion transformer. It generates 768× 1360 videos from a text prompt and reference image.
The VAE compresssion is the same as Wan, while the transformer conditions on the image and T5
text embeddings (Raffel et al., 2020).

For all models we use 50 denoising steps with noise strength 0.5 and an empty text prompt. Ex-
periments run on A40 or L40S GPUs (one GPU per video). Generating a 50-frame video for a
single query point takes about 7 min for Wan2.1-1.3B, 30 min for Wan2.1-14B, and 20 min for
CogVideoX. These runtimes are acceptable given our focus on evaluating the tracking capabilities
of video diffusion models, and our method could be distilled into a more efficient model, similar to
Opt-CWM (Stojanov et al., 2025).

4.2 TAP-VID BENCHMARK

We evaluate on two TAP-Vid benchmark splits: DAVIS (30 videos, 34–104 frames) and Kinetics (30
sampled videos, 250 frames, following (Stojanov et al., 2025)) for efficiency. These natural videos
match the training distribution of our video diffusion models (rather than computer generated video).
Using the first sampling strategy, we pick one query point per video, overlay a red dot at its position
in the first frame, and run our model to propagate the point throughout the video. The resulting
trajectory is then extracted using our tracker.

Evaluation Metrics. We report: (1) Positional Accuracy (δxavg), fraction of visible points within
distance thresholds; (2) Occlusion Accuracy (OA), visibility prediction accuracy; and (3) Average
Jaccard (AJ), average overlap between predicted and ground-truth visible points across thresh-
olds (Doersch et al., 2022).

5 RESULTS

Unless otherwise noted, we use Wan2.1-14B (Wang et al., 2025) as the video diffusion model for all
experiments.

Method Supervision TAP-Vid DAVIS TAP-Vid Kinetics

AJ ↑ < δxavg ↑ OA ↑ AJ ↑ < δxavg ↑ OA ↑
RAFT (Teed & Deng, 2020)

Supervised

34.48 53.55 74.90 30.15 46.44 75.44
TAP-Net (Doersch et al., 2022) 32.05 48.42 77.35 34.59 48.42 80.88
TAPIR (Doersch et al., 2023) 58.47 70.56 87.27 47.46 59.56 85.76
CoTracker3 (Karaev et al., 2024b) 64.45 77.13 90.90 54.35 65.99 89.43
TAPNext (Zholus et al., 2025) 66.56 79.48 92.21 52.97 64.46 89.30

GMRW (Shrivastava & Owens, 2024) Self-Sup. 36.47 54.59 76.36 25.70 41.63 71.33
Opt-CWM (Stojanov et al., 2025) 47.53 64.83 80.87 44.85 57.74 84.12

DINOv2+NN (Oquab et al., 2023)

Zero-Shot

15.19 31.19 61.81 12.69 24.22 62.45
DIFT (Tang et al., 2023) 21.51 39.55 69.71 15.10 25.56 63.17
SD-DINO (Zhang et al., 2023a) 29.68 50.45 69.71 16.47 28.37 62.79
Ours 42.21 57.29 82.90 27.36 41.51 71.39

Table 1: TAP-Vid Benchmark Results. We report results on the TAP-Vid First benchmark. Our zero-shot
method outperforms all other zero-shot baselines and is competitive with self-supervised and supervised trackers.
On TAP-Vid DAVIS-First, it matches self-supervised methods in AJ and exceeds them in occlusion accuracy,
highlighting strong object permanence from generative modeling.

Quantitative Results. Table 1 compares our method against several baselines using Wan2.1. Among
zero-shot methods, ours achieves the highest performance. On TAP-Vid DAVIS, we reach an AJ
score of 42.21, outperforming all other zero-shot baselines and even surpassing GMRW (Shrivastava
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& Owens, 2024), a strong self-supervised approach. Our occlusion accuracy also exceeds that of both
zero-shot and self-supervised methods, approaching supervised performance, highlighting the ability
of diffusion models to reason through occlusions.

We include top supervised methods such as CoTracker3 (Karaev et al., 2024b) and TAPNext (Zholus
et al., 2025), as well as the best-performing self-supervised baseline, Opt-CWM (Stojanov et al.,
2025). While conceptually related, Opt-CWM learns to propagate perturbations through a next-frame
predictor supervised by sparse flow. In contrast, our method is entirely zero-shot, using a simple
colored dot without training or learned perturbations.

Method TAP-Vid DAVIS
AJ ↑ < δxavg ↑ OA ↑

CogVideoX1.5-5B (Yang et al., 2024b) 24.15 34.38 70.79
Wan2.1-1.3B (Wang et al., 2025) 44.58 58.77 85.16
Wan2.1-14B (Wang et al., 2025) 48.60 63.47 85.75
Wan2.2-14B (Wang et al., 2025) 48.78 63.91 86.17

Table 2: Video Model Ablations. Wan2.1-1.3B and 14B (Wang
et al., 2025) outperform CogVideoX (Yang et al., 2024b), showing
that stronger video models improve tracking performance.

Image source TAP-Vid DAVIS
AJ ↑ < δxavg ↑ OA ↑

DAVIS (256×256) 42.21 57.29 82.90
DAVIS (256×256 up.) 45.48 60.16 83.49
DAVIS (original res.) 48.60 63.47 85.75

Table 3: Image Resolution Ablations. Com-
paring input resolutions for Wan2.1. Upscal-
ing with (Zhou et al., 2024) improves track-
ing by better aligning with the model’s train-
ing distribution.

Method TAP-Vid DAVIS
AJ ↑ < δxavg ↑ OA ↑

all 48.60 63.47 85.75
w/o refinement 42.70 59.26 85.14
w/o counterfactual enhancement 22.03 38.53 61.19
w/o color rebalancing 34.86 52.12 82.18
tracker only 11.26 21.07 77.74

Table 4: Tracking Pipeline Ablations. Quantitative results on
TAP-Vid DAVIS-First showing the impact of each stage in our
pipeline (Fig. 3). The last row uses original pixel color instead
of the red dot for tracking.

0.2 0.3 0.4 0.5 0.6
Denoising Strength

30
40
50
60
70
80

x
avg

OA
AJ

1 2 3 4 5
Query Point Radius (r)

40
50
60
70
80 x

avg

OA
AJ

Figure 4: Effect of denoising strength
and radius on tracking performance.

Different Video Models. Table 2 shows results using Wan2.1 (1.3B and 14B variants), Wan2.2, and
CogVideoX (Yang et al., 2024b). Our method performs well across all four models, demonstrating
compatibility across different video generation backbones. Wan2.1 and Wan2.2 deliver the strongest
results, with the 14B variant outperforming the 1.3B model. We attribute this gain to their higher
video generation quality indicating that improved generative fidelity directly enhances tracking
accuracy.

Generation Resolution. The TAP-Vid benchmark provides videos at a resolution of 256×256, which
we resize to 480×832 to match the input resolution of Wan2.1. To assess the impact of resolution, we
first upsample inputs using Upsample-A-Video (Zhou et al., 2024), which improves tracking (Table 3).
We then run Wan2.1 on the original high-res DAVIS frames (Perazzi et al., 2016), achieving an AJ
score of 48.6, surpassing Opt-CWM. These results show that higher-resolution inputs significantly
enhance tracking by improving video generation quality.

Point Propagation Ablations. Table 4 shows ablations of key components. The first row shows our
full model with all components enabled. Removing the inpainting-based refinement step reduces
positional accuracy due to spatial shifts during denoising which negatively affects tracking precision.
Removing counterfactual enhancement guidance causes failure in point propagation where tracking
is lost after 5–6 frames, highlighting its critical role in maintaining point consistency across frames.
Disabling color rebalancing also degrades performance. Since the tracker relies on detecting red
pixels, failure to suppress red tones in the background introduces false positives, especially when the
query point is occluded, making tracking less reliable.

We also evaluate a tracker-only baseline that tracks the query point’s color from the initial frame
without any point propagation. This performs significantly worse, highlighting that the primary
performance gains in our method arise from accurate point propagation through video generation,
rather than from the tracker itself, which is intentionally kept simple. Additionally, we ablate key
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Figure 5: Point Propagation. Frames generated from the video diffusion model show consistent red dot tracking.
The model recovers the point after long occlusions, showing temporal understanding and object permanence.

time

Figure 6: Tracking results. Frames show the query point being tracked (circled dot) and its trajectory over the
previous 5 frames. When the query point is occluded, only the trajectory tail is displayed without the dot.

hyperparameters in Fig. 4. We observe that a noise strength of 0.5 and a query point radius of 2 pixels
yield the best results.

Qualitative Results. In Fig. 5, we show video generations from our method, where red dots are
successfully propagated across frames, including through occlusions. We extract these points and
display the resulting tracks for multiple query points in Fig. 6. Our method reliably tracks points over
long temporal range and maintains accuracy even in the presence of occlusions.

6 CONCLUSION

We have shown that a video diffusion model, when carefully prompted, can mark the location of a
point as it moves through a scene over time. We use this idea to create a simple point tracker, which
obtains surprisingly effective tracking results, outperforming previous zero-shot approaches. We
see our work as opening two new directions. The first is expanding the number of ways that one
can adapt large pretrained video diffusion models to new tasks, such as through prompting schemes
that go beyond the use of language. Second, our work shows that video generative models are a
useful source of pretraining for tracking. We therefore see our work as a step toward unifying video
generation and tracking. We will release our code upon acceptance.
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A QUALITATIVE RESULTS

We include videos showing point propagation and tracking results at https://iclr-2026-
demo.github.io/project-demo .

B LIMITATIONS

Our approach requires generating a video for each tracked point. Since our goal is to show that
video generators can perform tracking, rather than to perform tracking as an end in itself, we did not
attempt to optimize our approach. However, it can potentially be addressed by distilling our model’s
predictions into a network that directly performs tracking, by considering more efficient generation
methods (e.g., one-step sampling), or by tracking multiple points at once. The video generators also
sometimes fail to interpret the red dot as being attached to the object surface, especially for (likely
out-of-distribution) computer-generated videos (Fig. 7).
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Figure 7: Generation Failures. Typical failure cases in video generation: (1) Stationary Point: The red dot
remains fixed relative to image boundaries, resembling lens dirt. (2) Symmetry Confusion: Symmetrical objects
(e.g., left and right body parts) cause point propagation errors, likely due to compressed latent representations.
(3) Propagation Failure: The red dot vanishes across consecutive frames. (4) Edge Ambiguity: The red dot, near
boundaries, shifts to the background.

C QUANTITATIVE RESULTS ON TAP-VID

Table 5 presents results on TAP-Vid Kubric (using a subset of 30 videos) with our method based on
the Wan2.1-14B model. Our approach outperforms zero-shot baselines, consistent with the results
reported in Table 1 of the main paper.

However, the overall performance on Kubric is comparatively lower, likely due to the dataset’s
synthetic nature. The scenes are generated using a graphics simulator and typically consist of simple
environments with basic textures and objects exhibiting non-natural, erratic motion, as illustrated
in Fig. 8. These characteristics introduce challenges for faithful video re-generation, which in turn
impacts the accuracy of point propagation and tracking.

C.1 ABLATIONS

Tracker Ablations. We ablate key components of our tracking pipeline. First, we run the tracker
without any enhancements on the generated videos. Adding a local search window around the
previously detected point provides a small improvement, especially under occlusion. Gradually
expanding the search radius when the query point becomes occluded yields further gains. We then
introduce a position–refinement step that averages the coordinates of all red pixels within a fixed
neighborhood around the predicted point, achieving the best overall performance. Finally, replacing
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Method Supervision TAP-Vid Kubric
AJ ↑ < δxavg ↑ OA ↑

RAFT (Teed & Deng, 2020)

Supervised

68.50 83.01 89.94
TAP-Net (Doersch et al., 2022) 68.22 79.87 93.35
TAPIR (Doersch et al., 2023) 87.88 93.99 96.09
CoTracker3 (Karaev et al., 2024b) 76.99 92.35 92.35
TAPNext (Zholus et al., 2025) 80.91 87.03 97.16

GMRW (Shrivastava & Owens, 2024) Self-Sup. 55.04 72.22 84.67
Opt-CWM (Stojanov et al., 2025) 60.11 77.24 85.62

DINOv2+NN (Oquab et al., 2023)

Zero-Shot

20.10 40.25 53.27
DIFT (Tang et al., 2023) 25.93 40.12 74.08
SD-DINO (Zhang et al., 2023a) 28.89 47.11 47.10
Ours 31.51 38.42 53.23
Ours (upsampled) 33.55 40.02 54.80

Table 5: TAP-Vid Kubric Results. We show results on TAP-Vid Kubric with first sampling strategy.

time 

time time time time 

time time time time 

Figure 8: Qualitative Results on TAP-Vid Kubric. The top row shows a successful example of point
propagation. In contrast, the bottom row illustrates a failure case where the point is not propagated due to the
surface having very low texture.

the HSV color space with LAB causes a slight drop in accuracy, indicating that HSV is better suited
for red-dot detection in our setup. Results are shown in Table 6.

Color Local search Occlusion based Average over TAP-Vid DAVIS

space window search radius color pixels AJ ↑ < δxavg ↑ OA ↑
HSV 35.80 53.15 81.79
HSV ✓ 38.92 53.55 84.92
HSV ✓ ✓ 39.08 54.57 85.07
HSV ✓ ✓ ✓ 42.70 59.26 85.14
LAB ✓ ✓ ✓ 42.30 57.81 84.84

Table 6: Tracker Ablations. (Sec. 3.2). We assess local search window, adaptive radius for occlusions, averaging
red pixel positions, and performance across HSV vs. LAB color spaces.

Additional ablations. We further assess model hyperparameters on a subset of TAP-Vid DAVIS
videos (Table 7). We ablate the parameter λ (Eq. 5, main paper), which weights the noise estimate
from the edited image. The best performance occurs at λ = 8. Table 8 reports results when varying
the marker color. While our approach is robust to different marker colors, using red provides a slight
performance gain.
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Method TAP-Vid DAVIS

AJ ↑ < δxavg ↑ OA ↑
λ = 4 34.60 52.48 77.94
λ = 8 35.54 52.98 78.80
λ = 11 32.82 52.08 75.66
λ = 14 31.92 52.13 74.09

Table 7: Counterfactual Enhancement Guidance.We present ab-
lation results for different values of λ, which controls the influence
of the noise estimate from the edited image (with the colored dot)
in counterfactual enhancement guidance.

Color TAP-Vid DAVIS

AJ ↑ < δxavg ↑ OA ↑
red 48.60 63.47 85.75
blue 46.51 60.80 84.08

Table 8: Marker color. We use differ-
ent marker colors as prompt to show
that our approach is invariant to marker
color.

C.2 V-BENCH SCORES

Table 9 shows tracking performance alongside VBench (Huang et al., 2024) scores for Wan2.1 (1.3B
and 14B variants), and CogVideoX (Yang et al., 2024b). VBench I2V benchmark evaluates the
generation quality of image-conditioned video models. Tracking and generation quality both improve
progressively from CogVideoX to Wan2.1-1.3B and further to Wan2.1-14B. We attribute this to the
higher video generation quality—reflected in the superior VBench scores—which suggests that better
generative models can directly boost tracking accuracy.

Method TAP-Vid DAVIS VBench

AJ ↑ Total Score

CogVideoX1.5-5B (Yang et al., 2024b) 24.15 71.58
Wan2.1-1.3B (Wang et al., 2025) 44.58 83.26
Wan2.1-14B (Wang et al., 2025) 48.60 86.66

Table 9: VBench (Huang et al., 2024) results. We show VBench numbers for the different video models used.

D IMPLEMENTATION DETAILS

D.1 VIDEO PREPROCESSING

Color Rebalancing. Our tracker identifies red pixels in each frame as predicted points. To avoid false
positives, we first remove red pixels from the original frame. We convert the frame to the HSV color
space and detect pixels whose hue values fall within [−30◦, 10◦], and whose saturation and value lie
inside an ellipse with semi-major and semi-minor axes r1 = 80, r2 = 30, centered at (255, 255). For
detected red pixels, we clip the saturation to a maximum of 80, effectively desaturating them.

Padding Input Video. Both Wan and CogVideoX require that the input video contains 4T + 1
frames. To satisfy this constraint, we pad the input by repeating the last frame until this condition is
met. After re-generation, the added frames are removed to restore the original length.

Video Upscaling. We observe that using high-resolution videos improves point propagation, reducing
generation artifacts and minimizing drift. To upscale the input videos, we use Upscale-A-Video (Zhou
et al., 2024), a diffusion-based video upscaling method. Starting from 256× 256 input resolution
(from TAP-Vid), we upscale to 1024× 1024 using Upscale-A-Video, then downscale to 480× 832
to match the video model’s expected resolution. For final tracking evaluation, we resize the output
back to 256× 256.

D.2 POINT PROPAGATION

As described in Sec. 3.1, we use SDEdit with a denoising strength γ = 0.5 to control the signal-to-
noise ratio. The diffusion timestep t is calculated based on γ and the total number of diffusion steps
T :
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t = ⌊γ · T ⌋ (7)

Counterfactual Enhancement Guidance To enhance the effect of the guidance from the edited
image (with a colored dot), we use Eq. 5 (main paper) to compute the noise estimate. In our
experiments, we follow the traditional classifier-free guidance scheme, where the guidance weight λ
is set to 8.

D.3 TRACKER

D.3.1 RED PIXEL DETECTION

We detect red pixels using the cv2.inRange function in the HSV color space. OpenCV represents
the hue channel in the range [0, 179], so we define two hue intervals to capture red, which wraps
around the hue axis:

low1 = (0, 150, 150), high1 = (5, 255, 255)

low2 = (170, 150, 150), high2 = (180, 255, 255)

A pixel is considered red if it falls within either of these intervals.

D.3.2 LOCAL SEARCH AND OCCLUSION HANDLING

To effectively locate the marker in each frame, we constrain our search for red pixels to a circular
region of radius r centered at the previous detection. By default, this search radius is set to rdefault = 90.
If an occlusion is detected in the previous frame, we expand the search region to accommodate the
increased positional uncertainty:

r = min(rdefault × 1.1, rmax) (8)

where rmax = 150. Once the marker is successfully detected again, we reset r to its default value to
maintain efficiency and avoid spurious detections.

D.3.3 CENTER ESTIMATION

After identifying candidate red pixels, we first select the one closest to the previous detection as an
anchor. Around this anchor point, we examine a 20-pixel radius to gather nearby red pixel detections.
The final predicted tracking point for the current frame is computed as the average position of these
collected pixels. This averaging process produces a stable and consistent estimate for the red blob’s
center, leading to robust and accurate tracking across frames.

E LLM USAGE STATEMENT

We used large language models solely to refine wording and improve readability of the manuscript,
for example, polishing sentences and enhancing clarity and flow. The models were not involved in
research ideation, experimental design, or substantive content generation, and all scientific claims
and results are our own.
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