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ABSTRACT

Over the past few decades, researchers have made significant strides in automating
software development processes. This evolution has transformed the way software
is created, maintained, and enhanced. Recently, the integration of Large Language
Models (LLMs) into software development has opened new horizons. Researchers
have investigated the potential of LLMs and demonstrated that they provide strong
performance gains. These models can understand natural language instructions,
generate code snippets, and even identify and fix bugs, thereby streamlining the
development process. However, software engineering encompasses more than just
coding; it involves the continuous improvement of programs to facilitate software
maintenance and evolution. This includes tasks like program repair to fix bugs and
feature additions to enhance functionality. Traditional automation tools often fall
short in these areas, highlighting the need for more advanced solutions. Inspired
by these insights, we have developed a novel automated program repair method
called AUTOPR. AUTOPR represents a new generation of AI software engineers,
leveraging routing algorithms, in-memory caching, and collaborative agent tech-
nologies. Its design addresses the current efficiency bottlenecks and quality issues
faced in software development.

1 INTRODUCTION

Automating various tasks within software engineering has long been a goal for both researchers and
practitioners (11; 30). Over the years, significant advances have been made in areas such as auto-
mated test generation, program repair, and even automatic code generation through large language
models (LLMs) (2; 3). However, despite these developments, fully autonomous software engineer-
ing—where an AI system independently manages the entire lifecycle of a software project—remains
an unsolved challenge. One of the main hurdles lies in dealing with ambiguous natural language re-
quirements and seamlessly integrating generated code into complex, large-scale projects (20; 22).

Previous methods have made strides by leveraging LLMs and tools like GitHub Copilot, which pro-
vide code suggestions and assist with simple programming tasks (13). However, these approaches
often struggle with deeper integration issues, such as code refactoring, comprehensive bug fixing,
and code optimization. The trustworthiness of automatically generated code remains a concern, es-
pecially when such code must fit within large-scale, ongoing projects (23). These tools have yet
to fully address the challenges of scaling across entire codebases, handling performance improve-
ments, and autonomously generating new code frameworks for upcoming projects. The remaining
challenges in realizing fully autonomous software engineering include effectively understanding
large-scale codebases, automating complex refactoring and optimization tasks, intelligently detect-
ing and fixing bugs, and generating project structures from scratch based on natural language re-
quirements (8; 4). Moreover, the ability to continuously learn and adapt as the software evolves is
still lacking in existing tools.

To illustrate the limitations of current approaches, we present a motivating example using our
proposed tool, AutoPR. Figure 2 demonstrates the workflow of AutoPR on a feature addition
task from the Django issue tracker, classified as a ”New feature” in the tracker and included
in SWE-bench lite with the ID “django-13933.” This issue requests adding support to the
ModelChoiceField class so that it ”displays the value of the invalid choice when raising a
validation error.” AutoPR operates in two main stages: context retrieval and patch generation. In the
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context retrieval stage, AutoPR identifies related classes and methods (e.g., ModelChoiceField,
ModelMultipleChoiceField) and retrieves relevant code segments using APIs to search the
Abstract Syntax Tree (AST) of the project. After gathering sufficient context, AutoPR generates a
patch that modifies the to python method to include the invalid value in the error message. The
generated patch is validated and optimized using an automated refactoring tool, ensuring compatibil-
ity and adherence to project standards. This example demonstrates how AutoPR addresses complex
feature addition tasks, something existing LLM-based tools often struggle with.

Our approach is guided by the intuition that combining LLMs with advanced algorithms such as
routing algorithms, in-memory caching, and collaborative agent technologies can address these gaps.
By augmenting the capabilities of LLMs with specialized techniques, we can enable more effective
code understanding, optimization, and problem-solving across large projects. The motivation behind
this work is to alleviate the manual, time-consuming aspects of software development, allowing
developers to focus on higher-level tasks while the system handles routine maintenance, bug fixing,
and performance improvements.

We introduce AUTOPR, a tool designed to automate complex software engineering tasks such as
code refactoring, optimization, bug localization, and zero-shot code generation. AUTOPR enhances
LLMs with advanced program representations like Abstract Syntax Trees (ASTs) and call graphs
to deeply analyze and optimize codebases. The use of routing algorithms and in-memory caching
allows for efficient navigation through large-scale projects, while collaborative agent technologies
enable AUTOPR to perform multiple tasks simultaneously, such as analyzing code, refactoring, and
fixing bugs (32).

To evaluate AUTOPR, we applied it to various large-scale codebases and new project requirements.
Our tool demonstrated significant improvements in development efficiency, with faster refactoring
times, more accurate bug fixes, and high-quality zero-shot code generation. We conducted thorough
evaluations by measuring the correctness of the generated code, runtime performance improvements,
and developer feedback in real-world projects.

Our contributions are as follows:

• We present a novel tool, AUTOPR, that enhances LLMs with advanced algorithms to au-
tonomously handle complex software engineering tasks.

• We demonstrate how AUTOPR improves the efficiency of large-scale code analysis, refac-
toring, optimization, and bug fixing.

• We show that AUTOPR enables zero-shot code generation for new projects, significantly
reducing development time and effort.

• Our approach effectively combines routing algorithms, in-memory caching, and collabora-
tive agent technologies to manage large codebases and concurrent development tasks.

• We provide a comprehensive evaluation of AUTOPR ’s performance, showing improve-
ments in both code quality and developer productivity.

Figure 1: Overall workflow of AutoPR
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2 METHODOLOGY

In this section, we present a novel approach for constructing and optimizing call graphs in Python
projects by leveraging advanced mathematical optimization techniques. The methodology is de-
signed to handle large-scale codebases with thousands of functions, classes, and files, ensuring effi-
cient processing and accurate capture of code dependencies. The optimization framework not only
minimizes computational complexity but also ensures scalability, making it applicable to projects of
varying sizes and complexities.

2.1 CALL GRAPH CONSTRUCTION

A call graph is a directed graph G = (V,E), where V is the set of nodes representing entities such as
files, functions, and classes in the codebase, and E represents the directed edges that denote function
calls or object instantiations between these components. The construction of this graph is crucial for
visualizing and analyzing the structure of the software, as it captures the flow of execution across
different parts of the code. The primary objective is to accurately capture all the relationships within
a codebase while minimizing the error introduced during graph construction, ensuring that important
connections are not overlooked.

To solve this optimization problem, we can introduce more complex reasoning and additional con-
straints to model the quantization process more precisely and consider the regularization of the
low-rank matrices.

First, we explicitly specify the limitations of the quantized matrix Q, that is, its elements can only
take discrete quantization level values. Let the set of quantization levels be Q = {q1, q2, . . . , qN}.
Therefore, we can reformulate the optimization problem as:

min
Q,A,B

∥W −Q−AB⊤∥2F + λA∥A∥2F + λB∥B∥2F , (1)

s.t. Qij ∈ Q, ∀i, j, rank(AB⊤) = r. (2)

Here, λA and λB are regularization parameters controlling matrices A and B, which help prevent
overfitting and ensure the stability of the low-rank matrices.

To further complicate the problem, we can model the quantization process as an optimization vari-
able. Suppose we introduce indicator variables Zk

ij , satisfying:

Qij =

N∑
k=1

qkZ
k
ij , (3)

where Zk
ij ∈ {0, 1} and

∑N
k=1 Z

k
ij = 1 holds for all i, j. In this way, our optimization problem

becomes:

min
Z,A,B

∥∥∥∥∥W −
N∑

k=1

qkZ
(k) −AB⊤

∥∥∥∥∥
2

F

+ λA∥A∥2F + λB∥B∥2F ,

s.t. Zk
ij ∈ {0, 1},

N∑
k=1

Zk
ij = 1, ∀i, j,

rank(AB⊤) = r.

(4)

Here, Z(k) is the matrix composed of Zk
ij . By incorporating the quantization process into the opti-

mization framework, we make the problem more complex and precise.

Additionally, we can consider introducing sparsity constraints to further reduce storage and compu-
tational overhead. By adding ℓ1 regularization terms to the objective function, we get:
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min
Z,A,B

∥∥∥∥∥W −
N∑

k=1

qkZ
(k) −AB⊤

∥∥∥∥∥
2

F

+ λ1 (∥A∥1 + ∥B∥1) + λ2

(
∥A∥2F + ∥B∥2F

)
,

s.t. Zk
ij ∈ {0, 1},

N∑
k=1

Zk
ij = 1, ∀i, j.

(5)

Here, λ1 and λ2 are regularization parameters, and ∥ · ∥1 denotes the sum of the absolute values of
the matrix elements, encouraging sparse solutions.

Finally, to handle the non-convexity and non-differentiability of the quantization function, we can
use approximate continuous functions (such as soft quantization) to replace hard quantization, al-
lowing the use of gradient-based optimization methods to solve it.

2.2 ENHANCED OPTIMIZATION PROCEDURE

To solve this optimization problem, we adopt an advanced alternating optimization strategy that
iterates between updating the quantized matrix Q and refining the low-rank matrices A and B,
incorporating complex constraints and regularization techniques to enhance the solution quality.

The optimization procedure is divided into two key steps:

Step 1: Quantization Update with Constraints

At each iteration t, we update the quantized matrix Qt by solving a constrained optimization
problem that explicitly models the quantization process. We define the set of quantization lev-
els Q = {q1, q2, . . . , qN} and introduce binary indicator variables Zk

ij , where Zk
ij ∈ {0, 1} and∑N

k=1 Z
k
ij = 1 for all i, j. The quantized matrix Qt is expressed as:

Qt,ij =

N∑
k=1

qkZ
k
ij , (6)

To update Qt, we solve the following integer programming problem:

min
Z

∥∥∥∥∥W −At−1B
⊤
t−1 −

N∑
k=1

qkZ
(k)

∥∥∥∥∥
2

F

,

s.t. Zk
ij ∈ {0, 1},

N∑
k=1

Zk
ij = 1, ∀i, j.

(7)

This problem is combinatorial in nature and NP-hard due to the binary constraints. To make it
tractable for large-scale problems, we can employ approximation algorithms such as:

- **Relaxation to Continuous Variables**: Relax Zk
ij to be in [0, 1], turning the problem into a

convex optimization problem. After solving, apply thresholding to obtain binary values. - **Greedy
Algorithms**: Update Zk

ij element-wise by selecting the quantization level that minimizes the local
reconstruction error. - **Alternate Direction Method of Multipliers (ADMM)**: Decompose the
problem into subproblems that are easier to solve iteratively.

Step 2: Low-Rank Approximation with Regularization and Sparsity Constraints

After obtaining Qt, we compute the residual matrix: Rt = W −Qt.

We then seek to find low-rank matrices At and Bt that approximate Rt while incorporating regu-
larization and sparsity constraints to prevent overfitting and enhance interpretability. We solve the
following optimization problem:
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min
At,Bt

∥∥Rt −AtB
⊤
t

∥∥2
F
+ λA∥At∥2F + λB∥Bt∥2F + λ1 (∥At∥1 + ∥Bt∥1) ,

s.t. rank(AtB
⊤
t ) ≤ r.

(8)

The ℓ1 regularization terms λ1 (∥At∥1 + ∥Bt∥1) encourage sparsity in the factors At and Bt, which
can be crucial in high-dimensional settings to improve model interpretability and reduce overfitting.

To solve this non-convex optimization problem, we can employ iterative algorithms such as:

- **Alternating Minimization**: Fix Bt and solve for At, then fix At and solve for Bt, iteratively
updating each while keeping the other constant. - **Proximal Gradient Methods**: Incorporate
proximal operators to handle the non-smooth ℓ1 regularization terms, updating At and Bt simulta-
neously.

The update rules for At and Bt in proximal gradient methods can be expressed as:

At ← proxαλ1∥·∥1
(At − α∇At

f(At, Bt)) , (9)

Bt ← proxαλ1∥·∥1
(Bt − α∇Bt

f(At, Bt)) , (10)

where α is the step size, f(At, Bt) =
∥∥Rt −AtB

⊤
t

∥∥2
F
+ λA∥At∥2F + λB∥Bt∥2F , and proxγ∥·∥1

(·)
denotes the proximal operator for the ℓ1 norm.

The gradients are computed as:

∇At
f = −2(Rt −AtB

⊤
t )Bt + 2λAAt, (11)

∇Bt
f = −2(Rt −AtB

⊤
t )⊤At + 2λBBt. (12)

The proximal operator for the ℓ1 norm is defined component-wise as:

proxγ∥·∥1
(xi) = sign(xi) ·max(|xi| − γ, 0), (13)

which performs soft-thresholding to promote sparsity.

The overall optimization algorithm is as shown in appendix.

2.3 INTEGRATION INTO CALL GRAPHS

Once the matrices Qt, At, and Bt are updated, the optimized structure is integrated into the call
graph. In this graph, each node represents a component in the code, such as a function, class, or
file, while the edges represent the relationships between these components as determined by the
non-zero entries in the final matrix W . The resulting call graph G = (V,E) effectively captures
function calls, object instantiations, and other execution flow dependencies within the codebase.

This optimized call graph provides an efficient and scalable representation of large-scale projects,
making it a powerful tool for code analysis and refactoring tasks. By combining quantization with
low-rank approximation, we are able to reduce the memory and computational requirements of
handling complex codebases. Additionally, this process makes it easier to identify important de-
pendencies and potential performance bottlenecks, facilitating optimizations and improvements in
software projects.

The iterative nature of the optimization ensures that large-scale projects with thousands of nodes and
edges can be handled without sacrificing performance. As the optimization refines the approxima-
tion, the graph becomes a more accurate reflection of the code structure, making it ideal for various
software engineering tasks such as bug detection, refactoring, and dependency analysis.
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3 EXPERIMENTAL SETUP

To evaluate the capabilities of AutoPR in resolving real-world software issues, we aim to answer
the following research questions.

RQ1: To what extent can AutoPR automate software issue resolution like human developers?

RQ2: Can existing debugging or analysis techniques assist AutoPR?

RQ3: What are the challenges for AutoPR and fully automated program improvement in the future?

Benchmark. We evaluate AutoPR using the SWE-bench benchmark (10), which comprises a collec-
tion of real-life GitHub issues. The input for each instance includes the natural language description
from the original GitHub issue and its corresponding buggy codebase. Details of SWE-bench are
provided in Section 2.2.

Baselines and Evaluation Metrics. We selected two LLM-based agent systems, Devin and Swe-
agent (32), as baselines to compare their performance against AutoPR. Since we do not have access
to Devin, we reference the most relevant reported results from their technical report. Swe-agent is
publicly available as a GitHub repository, and we replicated it with default settings based on the
provided scripts. To evaluate the effectiveness of the tools, we use (1) the percentage of resolved in-
stances, (2) average time cost, and (3) average token cost. These evaluation metrics represent overall
effectiveness, time efficiency, and economic efficacy in resolving real-world GitHub issues (10).

Implementation and Parameters. We use the state-of-the-art OpenAI GPT-4
(gpt-4-0125-preview) as the foundational inference model for AutoPR. The GPT-4
model is responsible for selecting search APIs to retrieve codebase context, refining the issue de-
scription, and writing a final patch. For the GPT-4 parameters, we set a low temperature=0.2
and max tokens=1024 to produce relatively deterministic results and allow sufficient reasoning
length for AutoPR; all other parameters remain at their default settings. Note that AutoPR does not
have a time limit and terminates either when a patch is generated or when the cost of resolving an
issue reaches two USD (4).

System Environment. All experiments are conducted on an x86 64 Linux server with Ubuntu 20.04
installed. graphicx

4 EXPERIMENT RESULTS

4.1 RQ1: OVERALL EFFECTIVENESS ON SWE-BENCH

We first measure the overall effectiveness of AutoPR and baselines with the number of resolved task
instances in SWE-bench. Aiming to understand the extent to which current AI systems can automat-
ically resolve real-life software issues, we provided only the natural language issue description and
a local code repository checked out at the erroneous version as inputs. We repeated AutoPR’s exper-
iment three times and presented the average and total number of resolved software issues across the
three runs. The average and total results are denoted as AutoPR-avg and AutoPR-all respectively
(for brevity, we use AutoPR to denote AutoPR in this section). When reporting time and token/-
cost for AutoPR-all, we report the time and cost required for running each task three times. Since
Devin was evaluated on a random 25% subset of SWE-bench (10), we also report results of AutoPR
on this subset (referred to as “SWE-bench Devin subset”). Table 1 shows the overall result in full
SWE-bench, SWE-bench Devin subset, and SWE-bench lite respectively. Figure 6 provides a visual
summary of AutoPR’s comparison with Swe-agent and Devin.

In the full SWE-bench, AutoPR-all (union from the three AutoPR runs) resolved 18.16% of task
instances, taking 1377 seconds per task ( 23 minutes). In comparison, Swe-agent resolved 12.29%
of tasks in full SWE-bench, according to their report (32) (we did not replicate Swe-agent-rep on
the full SWE-bench due to high cost).

The state-of-the-art closed-source baseline tool Devin (10) is evaluated on a random 25% subset of
SWE-bench. To compare AutoPR with Devin, we report AutoPR’s results on the 570 task instances
Devin was evaluated on, taken from AutoPR’s runs on full SWE-bench. In the SWE-bench Devin
subset, the union of three runs of AutoPR successfully resolved 17.98% of the task instances, which
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is higher than Devin’s 13.86%. Figure 7a provides a more detailed exposition of the resolved tasks.
Moreover, the times taken by AutoPR and Devin are comparable.

We performed another round of experiments with AutoPR on SWE-bench lite (300 instances). The
results reported in Table 1 indicate that on average AutoPR-avg can resolve 18.35% of task instances
in SWE-bench lite, which is higher than the reported results from Swe-agent (17.00%). We also
investigated the union of all resolved tasks in the three runs, in which the percentage of resolved
task instances increased to 25.43%.

Table 1: Results comparing Swe-agent, Devin, and AutoPR on various SWE-bench datasets

Tools Resolved Tasks Avg Time Avg Tokens
Reported result on full SWE-bench (size=2294)

Swe-agent (32) 12.29% (282) 93 -
A-PR-avg 12.06% (275) 460 78926 ($0.912)
A-PR-all 18.16% (415) 1377 236777 ($2.735)

Reported result on SWE-bench Devin subset (size=570)
Devin (10) 13.86% (79) >600 -
A-PR-avg 11.92% (67) 454 76748 ($0.888)
A-PR-all 17.98% (102) 1359 230243 ($2.666)

Reported result on SWE-bench lite (size=300)
Swe-agent (32) 17.00% (51) 93 69976 ($0.739)
A-PR-avg 18.35% (54) 340 58682 ($0.4112)
A-PR-all 25.43% (76) 1022 221603 ($2.562)

Table 2: Replication result on SWE-bench lite (size=300)

In our environment In Swe-agent Docker
A-PR Agent-Rep A-PR Agent-Rep

Run 1 18.22% (54) 9.33% (28) 10.00% (30) 6.67% (20)
Run 2 17.85% (53) 11.00% (33) 10.33% (31) 7.00% (21)
Run 3 18.98% (56) 9.33% (28) 10.67% (32) 6.00% (18)
All 25.43% (76) 14.67% (44) 14.00% (42) 9.00% (27)

Since Swe-agent is publicly available, we also attempted to run Swe-agent on SWE-bench lite.
We replicated Swe-agent with two USD as cost budget for conversation with LLM per task in-
stance in our environment (denoted as Swe-agent-rep, it terminates either a patch is generated
or reaches the two USD budget). Table 2 shows that when considering the union of all re-
solved tasks across three repetitions, AutoPR resolved 25.43% out of the 300 tasks, whereas
Swe-agent-rep resolved 14.67%. We further analyzed the commonly and uniquely resolved
instances between AutoPR and Swe-agent-rep in Figure 7b, finding that AutoPR and Swe-
agent-rep complement each other in different scenarios. AutoPR uniquely resolved 32 task in-
stances, benefiting from the fine-grained code context search at the AST level to precisely lo-
cate the bug locations. Conversely, the main reason that AutoPR failed on the 9 unique in-
stances resolved by Swe-agent-rep is unimplemented search APIs (e.g., search file invoked
in django-12286). In such cases, AutoPR can generate invalid search results when unimple-
mented APIs are invoked, implying more robust search APIs are desired for future improvement.

Figure 2: Summary of Results AUTOPR

We are also interested in assessing the feasi-
bility of deploying AutoPR in the real world
in terms of time and economic cost. On aver-
age, AutoPR takes 460 seconds and 78926 to-
kens (equivalent to 0.912 USD) to resolve one
task instance in SWE-bench. In comparison,
our replication experiments with Swe-agent-rep
cost 69976 tokens (equivalent to 0.739 USD)
per task instance. When considering the com-
bined three repetitions, AutoPR takes 1377 sec-
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onds ( 23 minutes) per task, which is below
the 30-60 minute time limit deemed acceptable
by developers for automated repair tools (31).
Looking into the 76 issues resolved by AutoPR
in SWE-bench lite, it costs on average 2.77 days for developers to create pull requests for 57 issues,
and the other 10 issues take even longer to be closed by developers (ranging from 34 - 4023 days).
The short response time and low cost show the significant potential for AutoPR to act as a first step
in future autonomous bug fixing.

Table 3: Result of A-PR-val, A-PR-val-callgraph on SWE-bench lite, in one run only.

Tools Resolved Tasks Avg Time Avg Tokens
A-PR-avg 18.35% (55) 340 58682 ($0.4112)
A-PR-val 19.36% (58) 459 91600 ($1.057)
A-PR-val-callgraph 23.15% (69) 491 79649 ($0.923)

Overfitting is a well-known challenge in the Automated Program Repair community (28). A pro-
gram patch that passes the given test suite is said to be plausible. However, a plausible patch is
deemed as overfitting if it fails to conform to the developer’s intent. Otherwise, it is deemed as
correct. To further understand the patch quality of AutoPR and baselines, we manually verify the
correctness of task-resolving (i.e., plausible) patches in SWE-bench lite. Since three repetitions are
performed, we consider a task to have a correct patch if any of the three repetitions produced a
correct patch. A plausible patch is correct if it is semantically equivalent to the developer patch.
In this verification process, at least two authors of the paper cross-validated each patch, and any
disagreement was resolved with another author. Overall, on SWE-bench lite, AutoPR has a correct-
ness rate of 65.7% (44 correct/67 plausible). Swe-agent-rep has a slightly higher correctness rate of
72.7% (32/44), but the absolute number of correctly resolved tasks is smaller than AutoPR. Finally,
the correctness rate of Devin on SWE-bench Devin subset is 53.2% (42/79). We observed that the
vast majority of AutoPR’s overfitting patches (all but 2 of the overfitting patches) modify the same
methods as the developer patches, but the code modifications are incorrect. This means that even
the overfitting patches from AutoPR are useful to the developer, since it helps in localization. The
main causes of wrong modifications are the limits of the LLM’s capability or insufficient context.

—

4.2 RQ2: EFFECT OF CALLGRAPH

In this research question, we aim to understand whether program analysis techniques such as Call-
Graph can benefit the workflow of AutoPR. Different from RQ1, here we simulate a common
scenario in program repair where AutoPR has access to the complete test-suite of the target task
instance. We use the developer-written test cases for each task instance (provided in SWE-bench
lite) as the test-suite. To assess the effect of CallGraph, we conduct two sets of experiments:

1. AutoPR uses the test-suite for patch validation during the patch generation retry-loop.

2. In addition to the first setup, we provide CallGraph results (top-5 relevant methods based
on call relationships) to AutoPR at the beginning of the context retrieval stage.

We denote these two settings as AutoPR-val and AutoPR-val-callgraph. The patch validation
works as follows: when a patch is generated by the LLM agent, the test-suite is executed on the
patched program. If the patch fails to pass the complete test-suite, AutoPR re-invokes the patch
generation agent to write a new patch. This validation loop is configured to run at most three times.

Results: Table 3 shows that, with the additional information provided by CallGraph, the number of
resolved tasks increased from 58 to 69 (i.e., from 19.36% to 23.15% resolved rate on SWE-bench
lite). Compared to the validation-only setting, adding the CallGraph component helps to resolve 11
additional unique task instances. Moreover, when comparing with task instances resolved in all other
runs combined (i.e., AutoPR-all and AutoPR-val) on SWE-bench lite, AutoPR-val-callgraph still
provides valuable insights by highlighting key method interactions that are not obvious from the
issue description alone.
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For example, when call relationships between methods are revealed through the CallGraph analy-
sis, AutoPR is able to exploit these relationships and improve context retrieval, helping it to generate
more accurate patches. This suggests that a structure-based analysis such as CallGraph can com-
plement the agent’s workflow by revealing deeper inter-method dependencies that may not be fully
detailed in the issue description.

4.3 RQ3: CHALLENGES ON REAL-LIFE TASKS

In this research question, we analyze the task instances in SWE-bench lite that AutoPR failed to
resolve and provide a taxonomy of the issue characteristics to highlight the practical challenges in
achieving fully automated software improvement. Our taxonomy consists of challenges in the fault
localization stage and patch generation stage. Specifically, for each task, we analyze the best run in
the three repetitions and classify each of the 300 tasks into one of the following:

• Success: The generated patch resolves the issue.

• Wrong patch: The generated patch modifies all methods that are modified in the developer
patch. This means the patch content is wrong, but the patch location(s) are correct.

• Wrong location in correct file: The generated patch modifies the correct file but wrong
location(s) in the file.

• Wrong file: The generated patch modifies the wrong file.

• No patch: No patch is generated from the retrieved context.

Figure 9 shows the distribution of the 300 tasks in SWE-bench lite. AutoPR resolves 25.43% of
the issues (“Success”), as mentioned in Section 1. The fail-to-resolve cases are included in the
remaining four categories. In 31.7% of the tasks, AutoPR correctly identified all patch locations
(at the method level), but did not produce a correct patch (“Wrong patch”). More fine-grained intra-
procedural analysis and specification inference techniques can play a significant role in improving
these cases by providing the patch generation agent with more method-level repair guidance.

In the other three categories, the fault localization could not pinpoint all the locations to be modified.
In 20.7% of the tasks, a patch is generated in the correct file but at wrong methods/classes in the
file (“Wrong location in correct file”). In some of these runs, the developer patch modifies multiple
methods, but the generated patch did not modify all of them.

In the other categories, a patch could not be generated in the correct file—in 18.7% of the tasks, a
patch is generated in wrong files, and in 6.7% of the tasks, there is no applicable patch (“Wrong
file” and “No patch”). We manually inspected some tasks in these two categories and observed
that their issue description mentions few methods/classes/files in the codebase. Instead, some of
them contain short examples to reproduce the issue. For these tasks, one possibility is to generate a
comprehensive test-suite based on the issue description and then use execution information from the
test-suite (e.g., CallGraph) to reveal suspicious program locations. On the other hand, some other
tasks do not contain reproducible examples and only consist of natural language descriptions. For
these tasks, some human involvement might be helpful. Developers could focus on these tasks.

5 RELATED WORK

5.1 PROGRAM REPAIR TECHNIQUES

Test-suite-based Automated Program Repair (APR) methods like GenProg use search-based tech-
niques, while semantic-based repair approaches such as Angelix leverage program synthesis to
generate patches by solving symbolic constraints (30; 21; 19). Other methods like SemFix uti-
lize symbolic execution, and Prophet ranks patches using probabilistic models (14). Recent APR
methods employ deep learning, such as CoCoNuT’s neural machine translation framework and Tu-
fano’s sequence-to-sequence learning models (16; 29). However, they often rely on high-quality
test suites, prompting the exploration of heuristic-based repairs using static analysis or search-based
techniques for scenarios lacking comprehensive test coverage (6; 12).
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5.2 LLMS FOR PROGRAM REPAIR

LLMs like Codex and GPT-3 have shown promise in APR by generating patches based on code
context and natural language bug descriptions (3; 4). While these models excel in zero-shot learn-
ing, they require pre-identified buggy statements, posing challenges in large-scale projects lacking
fault localization capabilities (25; 18). Additionally, issues such as buggy input detection, test case
reliance, and limited semantic understanding remain challenges for LLMs in APR (33; 31).

5.3 SWE-BENCH DATASET

The SWE-bench dataset offers a more realistic evaluation of LLMs in software engineering by
including GitHub issues and corresponding pull requests from large projects like Django and
SymPy (9; 24). It focuses on complex tasks such as understanding, refactoring, and bug fixing
in mature codebases, setting it apart from benchmarks like HumanEval and CodeXGLUE (7; 15).
SWE-bench lite enables faster evaluation while maintaining the challenge of real-world software
tasks.

5.4 ADVANCED TECHNIQUES IN CODE ANALYSIS AND REFACTORING

AutoPR leverages ASTs, call graphs, and graph-based algorithms to navigate large codebases and
perform automated refactoring and optimization (26; 27). Techniques such as static and dynamic
code analysis are used to identify performance bottlenecks (1; 5), while routing algorithms and in-
memory caching enhance efficiency in large projects (27). Collaborative agent technologies enable
concurrent handling of tasks like bug fixing and optimization, reducing developer workload and
improving collaboration (31; 32).

6 CONCLUSION

As a new-generation AI software engineer, AutoPR integrates advanced technologies like graph
analysis (26; 27), memory caching, semantic understanding, and multi-agent collaboration (32), ex-
celling in tasks such as code understanding, generation, and optimization (3; 13). Unlike existing
tools, AutoPR offers clear advantages in scalability, comprehensiveness, and collaboration, han-
dling projects of any size. By leveraging graph-based analysis and memory caching, it efficiently
processes large codebases, overcoming limitations faced by traditional tools (22; 28). AutoPR also
conducts deep semantic analysis, allowing it to refactor code and optimize performance while ensur-
ing correctness (2; 17). Its multi-agent system mirrors human teamwork, enabling parallel handling
of tasks like bug fixing and feature implementation (32). This combination of scalability, accuracy,
and collaboration positions AutoPR as a vital tool for developers, with the potential to greatly en-
hance productivity and code quality, driving the future of intelligent software engineering (11; 31).
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