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Abstract001

Large language models (LLMs) are trained on002
vast amounts of text from the internet, which003
contains both factual and misleading informa-004
tion about the world. While unintuitive from a005
classic view of language models, recent work006
has shown that the truth value of a statement007
can be elicited from the model’s representa-008
tions. This paper presents an explanation, per-009
sona hypothesis, for why LLMs appear to know010
the truth despite not being trained with truth la-011
bels. We hypothesize that the pretraining data012
is generated by groups of (un)truthful agents013
whose outputs share common features, and they014
form a (un)truthful persona. By training on015
this data, LMs can infer and represent the per-016
sona in its activation space. This allows the017
model to separate truth from falsehoods and018
controls the truthfulness of its generation. We019
show evidence for the persona hypothesis via020
two observations: (1) we can probe whether021
a model’s answer will be truthful before it is022
generated; (2) finetuning a model on a set of023
true facts improves its truthfulness on unseen024
topics. Next, using arithmetics as a synthetic025
environment, we show that structures of the026
pretraining data are crucial for the model to027
infer the truthful persona. Overall, our findings028
suggest that models can exploit hierarchical029
structures in the data to learn abstract concepts030
like truthfulness.031

1 Introduction032

Large language models (LLMs) are pretrained033

on increasing amounts of data from the internet034

(Brown et al., 2020; Chowdhery et al., 2022)—a035

noisy corpus which contains both factual and in-036

correct statements about the world. For example,037

CDC claims that "most studies suggest COVID vac-038

cines are safe" (true), whereas InfoWars claims that039

"DNA contaminants in COVID shots can trigger040

cancer" (false). Such misconceptions and conspir-041

acy theories pose a risk of misinformation as they042

can be regurgitated by models (Lin et al., 2021).043

In this work, truthful text is defined as text con- 044

sistent with facts that most domain experts agree 045

upon. Untruthful text, distinct from blatant errors, 046

refers to plausible but incorrect information that 047

exists online and could mislead LLM users (e.g. 048

conspiracy theories). Importantly, we restrict our 049

focus to untruthful text supported by the pretraining 050

data, rather than hallucinations that are fabricated 051

by models themselves and ungrounded. 052

Given a noisy training set, how does a LLM se- 053

lect its answers? Following the previous example, 054

when asked about the safety of COVID vaccines, 055

the classic view of LMs suggests that they are more 056

likely to generate the most frequent statement, re- 057

gardless of whether it is true. However, recent 058

work shows that the truth value of a statement can 059

be elicited from its embedding (Burns et al., 2022; 060

Li et al., 2023), suggesting that LMs have an inter- 061

nal notion of truth. This divergence motivates our 062

main research question: how do LMs distinguish 063

truth from falsehood in a noisy dataset? 064

This paper presents a possible explanation for 065

why LLMs appear to “know” what is true despite 066

not being trained on data with truth labels. Our 067

hypothesis is based on the following generative pro- 068

cess of the pretraining data. Text on the internet is 069

generated by different sources (e.g., CDC), which 070

we call agents following Andreas (2022). Mod- 071

eling these agents allows LLMs to generate text 072

consistent with the respective agent’s belief (e.g., 073

COVID vaccines are safe). Assuming there is no 074

oracle agent that generates truthful text universally, 075

to have a global notion of truth, the model must 076

connect multiple agents that are truthful in different 077

domains. We hypothesize that these truthful agents 078

in different domains are clustered to form a truthful 079

persona due to common features of their outputs 080

(e.g., formality and consistency with certain facts). 081

By modeling and representing the agent’s persona 082

given a piece of text, LLMs can separate truth from 083

falsehoods across different domains. 084
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MODERNA ADMITS VAX CAUSES CANCER! Huge
Development As Millions Die From Covid Injections.

Bombshell! 95% COVID Deaths Among Vaccinated.

Agent 1: InfoWars 

Agent 2: Before It’s News

Agent 3: The New York Times

Feeling Terrible After Your Covid Shot? Then It’s
Probably Working.

Agent 4: BBC

Covid vaccines being given to millions of people in
the UK are extremely safe.

Truthful
Persona

😇

Untruthful
Persona

😈

Agents are clustered into personas during LLM training During inference, answers match the inferred persona

Q: Why is the COVID vaccine
so deadly?

LLM

😈

A: The COVID vaccine is so
deadly because it is a live
attenuated vaccine.

Q: Are COVID vaccines safe for
humans?

LLM

😇

A: Yes, COVID vaccines have
been shown to be safe for
humans.

“Which persona is more 
likely to generate this text?”

Figure 1: Our main hypothesis is that LLMs can discern truth from falsehood by modeling truthful personas in the
pretraining data—cluster of agents who are likely to be truthful (left). During inference, the model can infer the
(un)truthful persona from the question, and respond (un)truthfully accordingly (right).

We provide evidence for the persona hypothe-085

sis by two surprising observations we find on the086

TruthfulQA benchmark (Lin et al., 2021). First,087

using linear probing, we can predict whether the088

generated answer will be truthful or not from em-089

beddings of the question alone, suggesting that090

the model infers whether the agent has a truthful091

persona from the context (question). Second, fine-092

tuning an LLM on a set of true question-answer093

pairs significantly improves its truthfulness on unre-094

lated topics despite little knowledge transfer from095

the finetuning examples (e.g., blood type has no096

influence on personality) to the test examples (e.g.,097

single day’s weather does not reflect the climate).098

The generalization is only possible if LLMs have099

learned a persona representation that controls the100

truthfulness of facts across domains.101

Next, we verify our hypothesis through a syn-102

thetic environment of arithmetic, where different103

agents have true or false beliefs about the seman-104

tics of each operator. We train LMs on equations105

generated by these agents. By controlling the pre-106

training data generative distribution, we show that107

models can separate true and false equations, and108

generalize an agent’s truthful behavior to unseen109

operators, but this is only possible when a truth-110

ful persona exists, i.e. there is a group of truthful111

agents identifiable by common features of their112

generations.113

2 The Persona Hypothesis114

We assume that the pretraining data consists of a115

set of statements x generated by different agents116

parameterized by θagent ∈ Θ, which may spec-117

ify the agent’s belief and the style of its genera- 118

tion: x ∼ ptext(· | θagent). For example, in Fig- 119

ure 1, agent "BBC" has the belief that COVID 120

vaccines are safe and produces text with a for- 121

mal style. Further, groups of agents are gener- 122

ated from a persona parameterized by λpersona: 123

θagent ∼ pagent(· | λpersona). In particular, agents 124

that are more likely to be truthful share a persona, 125

thus they are close to each other in Θ. In Figure 1, 126

agents "NYT" and "BBC" can be clustered by their 127

common beliefs and similar writing styles. In the 128

following discussion, we remain agnostic to the 129

specific features enabling the clustering of truthful 130

agents, and we discuss whether the truthful per- 131

sona represents actual truth or merely superficial 132

features associated with truthful text in Section 5. 133

Our main hypothesis consists of two parts: 134

1. LMs infer the persona of groups of (un)truthful 135

agents from the context, represent it in the acti- 136

vation space, and generate text consistent with 137

the inferred persona. 138

2. (1) is only possible if the agents that generate 139

truthful text in the pretraining data indeed share 140

a persona (i.e. their generations have common 141

features). 142

To verify this hypothesis, we first provide ev- 143

idence for the existence of a latent truthful per- 144

sona in LLMs’ representations (Section 3). We 145

then show that such a representation arises from 146

the persona-agent structure of the pretraining data 147

through synthetic experiments (Section 4). 148
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3 Evidence of LLMs Modeling Personas149

3.1 LLMs infer personas from the context150

To test hypothesis 1, we verify if the model can151

infer the (un)truthful persona from the context by152

probing its internal activations. Specifically, we153

will show that truthfulness of the answer to a ques-154

tion can be predicted from model activations before155

the answer is generated.156

Experimental setup. We use the TruthfulQA157

dataset which contains question-answer pairs158

where the answer can be either truthful or untruth-159

ful. We prompt the instruction-tuned Alpaca model160

(Taori et al., 2023) with a question (see Appendix161

A for the detailed prompt) and obtain: (1) the em-162

bedding of every token of the question at each layer163

and (2) the generated answer to the question using164

greedy decoding. We then label if the answer is165

truthful or not using GPT-judge (Lin et al., 2021) in166

line with previous work (Nakano et al., 2021; Rae167

et al., 2021; Askell et al., 2021) (see Appendix C168

for details). This gives us a dataset of token embed-169

dings for questions and truthfulness of the sampled170

answer. We then train a set of linear probing clas-171

sifiers to predict truthfulness of an answer from172

the question embedding at different tokens and lay-173

ers. We randomly split the dataset into 50% for174

training and 50% for testing. To account for the im-175

balance in labels (Alpaca produces more untruthful176

answers than truthful ones), we report the weighted177

F1-score of the probing classifier. We run each ex-178

periment (data splitting, training, evaluation) over179

20 random seeds.180

Results. Figure 2 (left) shows the average and181

standard deviation of the F1-score of the probe182

using the last token embedding from each layer.183

The probe performance is above random guessing184

from very early layers and peaks at layer 17 at ap-185

proximately 65% F1. This suggests that the model186

infers whether the answer should be generated from187

an agent with a truthful persona while processing188

the question. Since the embedding does not con-189

tain information about the answer, the encoded per-190

sona likely represents style or false presuppositions191

(Kim et al., 2022) in the question.192

Next, we visualize the persona inference process193

by plotting the probe performance given the ques-194

tion embedding from layer 17 (where we observed195

the best performance previously) at different to-196

kens. Figure 2 (right) shows that as we incorporate197

more context from left to right, the persona is repre-198

sented more prominently, peaking when the entire 199

question is observed by the model, whereas prob- 200

ing the instruction (which is same for all questions) 201

performs at the level of random guessing. 202

One may wonder if the model is simply relying 203

on the question topic to predict answer truthful- 204

ness, as Alpaca might be better at certain topics 205

than others. Appendix B shows probing results 206

for the 6 largest categories in TruthfulQA. We ob- 207

serve that the probe performs better than random 208

guessing on all but one categories, ruling out the 209

possibility that the probe is solely relying on the 210

topic. However, performance does vary with the 211

question category, suggesting that for certain top- 212

ics, truthful statements can be harder to separate 213

from false ones. 214

3.2 Truthfulness generalizes across topics 215

Having established that models can infer 216

(un)truthful persona from the context and encode it 217

in the activation space, we now examine whether 218

the the persona can control truthfulness of the 219

model’s generation across topics. We finetune 220

LLMs on pairs of questions and truthful answers 221

from TruthfulQA. Since all questions are factually 222

unrelated (i.e. there is no knowledge that can 223

be transferred from training to test questions), 224

generalization of truthfulness can be attributed 225

to a latent persona that controls model behavior 226

globally. 227

Experimental setup. We finetune Alpaca on 228

question-answer pairs from TruthfulQA using 229

LoRA (Hu et al., 2021). We randomly split Truth- 230

fulQA into 80% for finetuning and 20% for eval- 231

uation. In truthful finetuning (TF), the model is 232

trained to output truthful answers. To test our hy- 233

pothesis in both directions, we also perform un- 234

truthful finetuning (UF) where untruthful answers 235

are used as the targets. To ensure that the model is 236

not relying on heuristics specific to TruthfulQA,1 237

we further test the model on the misconception 238

dataset from BigBench (Srivastava et al., 2022). 239

We transform this dataset to fit our prompt for- 240

mat and remove questions similar to the ones in 241

TruthfulQA, resulting in 83 questions (see details 242

in Appendix C). To evaluate truthfulness of the gen- 243

erated answers, we use both GPT-Judge and human 244

evaluation performed by the authors. 245

1TruthfulQA may contain superficial patterns that can be
exploited to increase truthfulness. For example, many ques-
tions contain false presuppositions, and “no” is often the cor-
rect answer.
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Figure 2: (Left) Mean and standard deviation for F1 of linear probes trained on each model layer to predict if
the response will be truthful, over 20 randomized executions. (Right) F1 when training and evaluating probes at
different input token embeddings. Best F1 is obtained when using the entire question. Additional metrics and
ablations in Appendix B.

TruthfulQA BigBench-misconceptions
GPT-judge Human evaluation Human evaluation

No Finetuning 39.0± 7.4 31.7± 7.1 54.2± 10.7
Truthful finetuning 74.4± 6.6 58.0± 7.5 59.4± 10.5
Untruthful finetuning 9.8± 4.5 6.7± 3.8 30.7± 9.9

TriviaQA 24.4± 6.5 15.2± 5.4 45.3± 10.7
MS MARCO 37.8± 7.4 21.3± 6.2 49.2± 10.7

Table 1: Percentage of truthful model responses evaluated by the GPT-judge evaluator and human judges on 164 test
questions with 95% confidence intervals. Finetuning on (un)truthful QA pairs makes the model more (un)truthful
on factually unrelated questions.

Truthfulness generalizes to unseen topics and246

domains. In Table 1, we observe substantial247

changes in truthfulness after both TF and UF on248

TruthfulQA: Truthfulness of generations increases249

from 39% to 74% after TF, and decreases to 10%250

after UF; a similar trend holds according to human251

evaluation. Furthermore, we evaluate a stronger252

form of generalization across categories. We train253

models on TruthfulQA while holding out one of the254

following categories: misconceptions (104 exam-255

ples), specialized domains (economics, education,256

finance, health, law, nutrition, politics, psychology,257

science, sociology, statistics; 283 examples), and258

falsehoods (stereotypes, conspiracies, superstitions,259

myths, and fairy tales, misinformation; 104 exam-260

ples). In Figure 3 (left), an improvement in truth-261

fulness is observed for the heldout categories after262

finetuning. In addition, model performance on held-263

out categories is close to the TF model finetuned264

on all categories. These out-of-domain generaliza-265

tion results strengthen the evidence for a truthful266

persona shared by agents across domains.267

To ensure that the improvements do not come268

from general question-answering abilities (e.g., bet-269

ter adaptation to the QA format), we include a con-270

trol experiment by finetuning Alpaca on random271

splits from TriviaQA (Joshi et al., 2017) and MS 272

Marco (Nguyen et al., 2016) of the same size as 273

our TF training set. The model is less likely to 274

infer (un)truthful personas from these questions 275

as they do not have common untruthful answers 276

on the internet. Thus, finetuning should provide a 277

similar boost in QA abilities, but not modify the 278

(un)truthful behavior we are studying. The results 279

in Table 1 show that models finetuned on these 280

datasets have similar or worse truthfulness scores 281

than the non-finetuned model. 282

Model generalizes from small sample size. If 283

finetuning mainly helps the model mirror an al- 284

ready existing truthful persona, it should not re- 285

quire many examples to reach good performance. 286

Thus, we finetune the model with increasing sam- 287

ple sizes and investigate whether in-context learn- 288

ing (ICL) similarly guides the model to be more 289

(un)truthful. We run TF with smaller splits (5%, 290

20%, and 50%) and in-context learning with 10 291

(1.5%) and 20 (3%) examples. Results in Figure 292

3 (right) show that, aside from ICL with 10 exam- 293

ples, all methods achieve a substantial increase in 294

truthfulness. Finetuning on 20% of the data already 295

matches the performance of finetuning on 80% of 296

the data. 297
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Figure 3: Generalization of Alpaca to unseen TruthfulQA questions. (Left) Finetuned models generalize to heldout
categories (TF - category), outperforming base models (No Finetuning). (Right) Models generalize truthfulness
given small sample size.

Overall, our results support the hypothesis that298

LLMs infer and represent (un)truthful personas in299

the activation space. During truthful finetuning, the300

model maps any inferred persona to the truthful301

persona, which then controls the truthfulness of its302

generations beyond the finetuning domains. As a303

result, LLMs can directly generalize the truthful304

behavior as opposed to learning correct answers to305

each questions.306

4 Arithmetic Laboratory: Connecting307

Pretraining Data to Truthfulness308

In the previous section, we have shown evidence309

for hypothesis 1 which states that LLMs infer310

(un)truthful personas from the context. In this sec-311

tion, we verify hypothesis 2 by establishing a direct312

connection between the pretraining data and model313

truthfulness. Specifically, we intervene on the data314

generating process in a synthetic environment in-315

spired by Power et al. (2022) and observe behavior316

of an LM trained on this data.317

Data generation. We design the synthetic data318

to simulate real pretraining data that contains a mix-319

ture of truthful and untruthful statements generated320

by various agents (e.g., Wikipedia and Twitter).321

The synthetic data consists of arithmetic equations322

generated by different agents. An operator op ∈ O323

takes in two integer operands x, y ∈ N+ and re-324

turns z. Each operator has two interpretations and325

we randomly assign one to be true, denoted by opT ,326

and the other to be false, denoted by opF . For ex-327

ample, the result of op(3, 2) is 5 using the correct328

interpretation (addition), and is 1 using the incor-329

rect interpretation (subtraction). Each agent a ∈ S330

is parameterized by p(a,op) ∈ (0, 1), which spec-331

ifies how likely it generates equations using the332

true interpretation of each operator op. Each data333

point follows the format: a | x op y = z where z 334

is either opT (x, y) or opF (x, y) depending on the 335

agent, and | is a separator token. Formally, we use 336

the following generative process: 337

a ∼ U(S) ; op ∼ U(O) ; x, y ∼ U({1, 2, .., n}) 338
339

z =

{
opT (x, y) w.p. p(a,op)
opF (x, y) otherwise

340

where U denotes the uniform distribution. The 341

exact interpretations of operators can be found in 342

Appendix D. 343

We can then further impose structures on top 344

of the agents. Specifically, some agents have 345

a higher likelihood of using opT : p(a,op) ∼ 346

U(0.8, 1) ∀ op ∈ O, forming a truthful persona, 347

whereas others are less likely to use the correct in- 348

terpretation: p(a,op) ∼ U(0, 0.2) ∀ op ∈ O, form- 349

ing an untruthful persona. Note that to simulate 350

the real world setting, no agents are completely 351

truthful or untruthful on an given operator. 352

Experimental setup. We train a 4-layer Trans- 353

former with 4 attention heads from scratch on the 354

synthetic data using the causal language modeling 355

objective. The hidden dimension and the embed- 356

ding dimension are set to 128. All models are 357

trained with a batch size of 512 and a learning rate 358

of 0.001 using the Adam optimizer (Kingma and 359

Ba, 2014) for 20k steps. We use a custom tokenizer 360

where the vocabulary contains agent tokens, oper- 361

ator tokens, digit tokens and special tokens (e.g., 362

the separator). Numbers are tokenized so that each 363

digit is a separate token in the sequence. For more 364

training details, see Appendix C. 365

4.1 Probing for Truthfulness 366

Motivated by the observations on LLMs, we train 367

probes to predict whether a model’s answer for 368
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Figure 4: (left) Maximum F1 score across layer with std. deviation. A linear probe can predict if model will be
truthful in the presence of a truthful persona much better than when there is no truthful persona in the data; (right)
Probability assigned by model to the truthful answer (with std. deviation). It increases with truthfulness of the agent
when there is a truthful persona, but we do not see a consistent trend in the absence of a truthful persona.
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Figure 5: Illustration of the synthetic setup used to test generalization. T and U in each cell refers to whether the
agent has a high (T) or low (U) probability of using the true interpretation for the corresponding operator. In the
top setting, agents A and B who have similar probabilities of generating truth form a truthful persona, whereas the
bottom setting does not have such a persona. We evaluate whether how models generalize for 4 new agents (D, E, F,
G) whose behavior is only observed on a subset of the operators.

an incomplete equation (e.g., a | x op y =) will be369

truthful. We expect that it would only be possible to370

probe for truthfulness if there is a truthful persona371

in the generative process. That is, agents who are372

likely to produce truthful outputs are generated373

from the same distribution, forming a cluster. To374

ablate the role of personas in truthfulness probing,375

we design two pretraining setups with and without376

truthful personas as follows:377

1. Has truthful persona. We use four agents378

(A, B, C, and D) and m operators. A clus-379

ter of truthful agents are defined by p(a,op) ∼380

U(0.8, 1) ∀ op ∈ O, a ∈ {A,B}; and a cluster381

of untruthful agents are defined by p(a,op) ∼382

U(0, 0.2) ∀ op ∈ O, a ∈ {C,D}.383

2. No truthful persona. Same as in (1), we have384

four agents and m operators. However, the385

agents are truthful on disjoint sets of operators. 386

Thus, their parameters p(a,·) are nearly orthogo- 387

nal. This is analogous to agents having distinct 388

true beliefs and no other shared features (e.g., 389

style) in practical settings. 390

In both cases, we first generate synthetic data 391

according to Equation 4 covering all agents, opera- 392

tors, and operands (i.e. 4·m·10k data points in total 393

with n = 100). We then randomly split this dataset 394

into 70% training data and 30% test data and train 395

a language model. We vary m ∈ {8, 12, 16, 20}. 396

Then, we train probes to predict whether the 397

model’s prediction given an input expression a | 398

x op y = is truthful or not. The probe is a linear 399

model that takes in the embedding of ‘=’ from a 400

particular layer. Analogous to the LLM probing 401

experiments, we train the probes on half of the 402
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operators and evaluate them on the other half to403

ensure that they do not simply learn which com-404

binations of agents and operators are truthful, but405

rather rely on features that generalize across agents406

and operators (i.e. personas). We train the probe on407

5k examples and test on another 5k. Each exper-408

iment is run 3 times with different random seeds409

for splitting train/test operators. We observe that410

probes trained on different layers can achieve dif-411

ferent performance. To account for the variation,412

we report the maximum probing F1 across layers.413

In Figure 4 (left), we observe that across all val-414

ues of m, probes get higher F1 when training data415

contains a truthful persona. In contrast, we observe416

a larger variance in the setting with no truthful per-417

sona. We hypothesize that this happens because,418

in the absence of a truthful persona, the probe has419

arbitrary generalization on the unseen operators.420

This result supports hypothesis 2: true and false421

statements can be distinguished only if agents can422

be clustered to form a (un)truthful persona.423

4.2 Generalizing to Unseen Operators424

To test our hypothesis that personas can be used to425

generalize an agent’s behavior to unseen contexts,426

we evaluate if models trained on the synthetic data427

can generalize a (un)truthful agent’s behavior to428

unseen operators. We expect the model will gen-429

eralize the behavior of a (un)truthful agent consis-430

tently only in the presence of a truthful persona in431

the training data. We create two training setups, as432

illustrated in Figure 5: (1) has truthful persona, and433

(2) no truthful persona.434

Both training setups consist of seven agents435

(from A to G) and four operators (from op1 to436

op4). Agents A, B, and C are trained on all four437

operators, whereas agents D through G are only438

trained on op1, op2 and op3. op4 is heldout to439

evaluate generalization to unseen operators. The440

only difference between both training setups is the441

behavior of agents A, B and C. In the "truthful442

persona" setup, agents A and B are generated from443

a truthful persona, and agent C is generated from444

an untruthful persona. In the "no truthful persona"445

setup, A, B, and C are truthful on only two out of446

the four operators with little overlap among them:447

each agent is generated in a distinct way.448

In both setups, we first generate synthetic data449

according to Equation 4, and randomly split it into450

70% training and 30% test data. We repeat the ex-451

periment 10 times, by randomly selecting the defi-452

nitions of the operators.2 To evaluate the model on 453

an unseen agent-operator combination, we compute 454

the average model likelihood for the truthful and 455

untruthful answers across all held-out equations 456

for that operator. We use ptruthful and puntruthful to 457

denote the average model likelihood for the truthful 458

and untruthful answers. 459

Results. In each of the two setups, we report 460

ptruthful for the unseen operators across the four 461

agents D, E, F , G in Figure 4 (right). We observe 462

that in the setting with a truthful persona, the model 463

generalizes truthfully for the truthful agent G on 464

the unseen operator. Similarly, the model general- 465

izes untruthfully for the untruthful agent D3—both 466

have much smaller variance than the intermediate 467

agents where the agents are not (un)truthful on all 468

operators. On the other hand, in the setup with 469

no truthful persona, there is not such a clear gen- 470

eralization pattern. In fact, we observe the model 471

generalizes untruthfully for the most truthful agent 472

G since the ‘closest’ agent in the training data is 473

A (shared belief on op1 and op2 where both are 474

truthful), and A has untruthful belief on op4. 475

Overall, these results show that LMs are able 476

to infer (un)truthful personas from the context be- 477

cause the training data is generated by groups of 478

agents with similar behavior. In our synthetic setup, 479

the truthful agents have similar probabilities of gen- 480

erating the true answer for each operator, which 481

forms a truthful persona. However, in the no truth- 482

ful persona setting, even though the model has ob- 483

served the true answer for each operator (generated 484

by different agents), there is no common feature 485

that connect these true answers, therefore the model 486

is not able to infer a truthful persona that controls 487

the truthfulness of the generation. 488

5 Discussion 489

Have LLMs robustly learnt what is truthful? In 490

this work, we investigate the question of whether 491

LLMs can distinguish true and false statements. 492

Note that this does not necessarily mean that LLMs 493

have perfectly learnt the concept of truthfulness. 494

First, as we observed in both the LLM finetun- 495

ing and probing experiments, even though models 496

perform much better than chance there is a still a 497

considerable gap; e.g., we can probe with only up 498

to ≈70% accuracy whether the model will make a 499

2This is done to ensure that model generalization is not
affected by the specific choice of the operator definitions.

3See Appendix D for the graph of puntruthful.
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truthful prediction. Second, our experiments only500

provide evidence of the existence of truthful per-501

sonas, i.e. there exist features that the model can502

use to cluster truthful agents. Without knowing the503

nature of these latent features (and whether they504

are spurious), it would be hard to conclude if LLMs505

robustly learn the concept of truthfulness. Never-506

theless, the evidence that finetuning for truthfulness507

generalizes to out-of-distribution data suggests that508

these features might be at least somewhat mean-509

ingful. Additionally, according to our hypothesis,510

models would not be able to generalize to contexts511

where no truthful statements are observed in the512

training data.513

Other hypotheses of how LLMs can learn514

truthfulness. Firstly, we note that we only pro-515

vide one hypothesis of how LLMs might learn the516

concept of truthfulness which is consistent with our517

observations. Nevertheless, the definition of per-518

sonas is general enough to capture some other hy-519

potheses of the mechanism behind truthfulness. For520

example, it could be possible that a small number521

of truthful and untruthful statements in the pretrain-522

ing data have annotations, say from fact checking523

websites e.g. https://www.factcheck.org. A524

model could use this annotation to cluster truthful525

and untruthful statements.526

6 Related Work527

Evaluating truthfulness of LLMs. Lin et al.528

(2021) showed that LLMs mimic human falsehoods529

and larger models are generally less truthful. How-530

ever a follow-up (Wei et al., 2022) showed that this531

behaviour is in fact U-shaped — beyond a certain532

scale, truthfulness seems to increase as we increase533

the scale of models.534

Improving truthfulness. Recent work has535

shown that despite LLMs mimicking human false-536

hoods and not always being truthful, it is possible537

to perform model interventions to make the model538

more truthful. Burns et al. (2022) showed that us-539

ing an unsupervised consistency-based method can540

help elicit truthful answers beyond what the LLM541

outputs. Similarly, Li et al. (2023) showed that in-542

terventions on specific attention heads which are re-543

sponsible for truthfulness can make the model more544

truthful during inference. Chuang et al. (2023)545

showed that decoding by contrasting across layers546

can increase truthfulness. Recent work has also547

shown, similar to our probing results, that we can548

detect whether an answer produced by LLM is549

truthful either using its internal state representa- 550

tion (Azaria and Mitchell, 2023) or using linguistic 551

features of the answer (Lee et al., 2023). All of 552

this work provides evidence of LLMs having some 553

notion of truthfulness. We build on this literature to 554

do more controlled generalization and probing ex- 555

periments, and propose a hypothesis of how LLMs 556

could learn the concept of truthfulness. 557

Personas and Agents in LLMs. Despite con- 558

flicting information in the data (Chen et al., 2022), 559

Andreas (2022) argued that LLMs can serve as 560

models of agents where they can infer properties 561

of the agent and predict the next word accordingly. 562

There has been some empirical evidence suggest- 563

ing the same — Durmus et al. (2023) show that 564

we can steer LLMs to express opinions similar to 565

people from some countries; Safdari et al. (2023) 566

find that personality tests for LLMs under specific 567

prompts are valid and reliable; Zhou et al. (2023); 568

Lin et al. (2021) show that adopting a persona of a 569

professor can improve truthfulness in LLMs; Desh- 570

pande et al. (2023) showed that LLMs have learnt 571

personas and certain personas can increase toxicity; 572

Cheng et al. (2023) showed that we can use persona 573

to measure stereotypes in LLMs. Our work builds 574

on these to show how LLMs modeling agents and 575

inferring personas can help it to discern true and 576

false statements. 577

7 Conclusion 578

We introduce a hypothesis of how LLMs can 579

model truthfulness: persona hypothesis—LLMs 580

can group agents that share common features into 581

personas that can be used to distinguish true from 582

false statements and to generalize agent behavior 583

beyond the context in which it was observed during 584

training. We provide evidence that supports this 585

hypothesis in both LLMs and a synthetic setup, and 586

the implications this might have for truthfulness. A 587

better understanding of such a potential mechanism 588

in LLMs may enable more effective strategies to 589

build trustworthy language models. 590

Limitations 591

We acknowledge the complexity of the term ‘truth- 592

fulness’, especially for subjective/opinionated top- 593

ics where there is a lot of philosophical debate. 594

In this work, we focus only on factual questions 595

where experts agree on what is truthful. Our work 596

aims to understand a mechanism through which 597

LLMs can distinguish true from false statements. 598
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Advancing our understanding of LLMs can both599

help us predict where they will fail, and demystify600

the black-box nature of LLM capabilities.601

Limitations of the synthetic setting. We note602

that even though we observe results consistent with603

our hypothesis in the synthetic setting, it has certain604

limitations and gaps compared to real LLMs. First,605

we explicitly represent the agent producing the data606

with a token. In real LLMs, models would have to607

infer the agent from the actual text. Nevertheless,608

there is evidence suggesting that LLMs can do it609

e.g. Li et al. (2021) show that LMs encode infor-610

mation about the agents’ properties and relations611

even if not explicitly mentioned in text. Second, in612

the synthetic setting, we assumed that both truthful613

and untruthful answers are equally easy or equally614

hard to compute. This leaves the open questions of615

whether truthful (or untruthful) answers might be616

“simpler” to model in real text, and whether com-617

plexity may play a role in modeling truthfulness.618

Additionally, we assume that truthful agents share619

common beliefs across most, if not all, operators.620

In practice, truthful agents do not necessarily agree621

on every fact.622
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A Alpaca Prompts754

To prompt Alpaca in a 0-shot setting, we adapt755

the prompt used by the original Alpaca authors to756

finetune the model (Taori et al., 2023) for question757

answering. We also use this prompt for our probing758

and finetuning experiments.759

### Instruction:760

Answer the following question761

762

### Input:763

{question}764

765

### Response:766

where {question} is the placeholder for the ques-767

tion. In our probing experiments, we use the em-768

bedding of the last prompt token before the re-769

sponse sampling starts.770

For in-context learning (ICL), however, we use a771

shorter prompt for the examples to fit in the context772

window.773

Q: {example question 1}774

A: {example answer 1}775

...776

Q: {example question N}777

A: {example answer N}778

779

Q: {test question}780

A:781

782

B Probing Ablations783

We run some additional experiments to better un-784

derstand the probing results from Section 3.1. First,785

as described before, we analyze the performance786

of the probe across different topics in Figure 6. We787

observe that the performance of the probe varies by788

topic e.g. it is much easier to detect if model will789

be truthful for question from economics compared790

to questions involving stereotypes. This potentially791

suggests that personas may not be perfectly defined792

over all topics, and there could in fact be much793

smaller clusters of truthful agents.794

Next, to expand on the results in Figure 2, we795

use the same tokens to obtain the representation796

but instead of using a specific layer (layer 17), we797

plot the performance of the probe across different798

layers in Figure 7.799

Figure 8 reports accuracy as an alternative prob-800

ing metric for Figure 2.801
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Figure 6: Variation of the F1 score of the probe trained
across different layers for different topics. It it easier to
predict if model will be truthful for certain topics (e.g.
Economics) than others (e.g. Stereotypes).

Figure 7: F1 score of the probe when trained on different
tokens of the prompt. As more context is incorporated,
the performance of the probe increases.
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Figure 8: Mean and standard deviation for accuracy of
linear probes trained on each layer of the model to pre-
dict if the response will be truthful over 20 randomized
executions.
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Figure 9: F1 obtained when training and evaluating
linear probes at different input and generation token
embeddings as an extension of results in Figure 2.

Finally, Figure 9 reports probing results over the802

generated tokens as a baseline for results in Figure803

2. Probing the embedding of the last generated to-804

ken in the answer obtains a better performance than805

probing only the question context. However, the806

difference is small and suggests that the question807

is already very informative for truthfulness of the808

generation.809

C Experiment Details810

TruthfulQA Evaluation. We use GPT-Judge for811

automatically evaluating if the model generation is812

truthful, in line with previous work (Nakano et al.,813

2021; Rae et al., 2021; Askell et al., 2021). To ob-814

tain the GPT-Judge model, we use the OpenAI fine-815

tuning API at https://platform.openai.com/816

docs/guides/finetuning using the datasets re-817

leased in the TruthfulQA work - https://github.818

com/sylinrl/TruthfulQA. We use the default819

hyperparameters and prompt suggested by the orig-820

inal authors.821

Finetuning for TruthfulQA. In all the finetun-822

ing experiments, we train Alpaca for 30 epochs823

with a batch size of 48. We use the Adam opti-824

mizer (Kingma and Ba, 2014) with a learning rate825

of 9e−5 and a warmup ratio of 0.03. To finetuning826

models with a smaller compute, we use LORA (Hu827

et al., 2021) — we apply it to the query and key828

projection matrices where we set the rank to 16, a829

dropout rate of 0.05.830

Transforming the BigBench misconceptions831

dataset. This dataset contains statements for clas-832

sification instead of question-answer pairs. We833

covert these statements into QA pairs using GPT-834

3.5 (Brown et al., 2020), and manually correct835

some generated questions which were not correct.836

Additionally, we manually filter questions about837

topics contained in TruthfulQA to avoid overlap838

between them. The resulting dataset contains 83839

examples.840

Training in the synthetic setup. As mentioned 841

before, we train 4-layer transformer models on the 842

generated synthetic data with the language mod- 843

eling objective. The hidden dimension as well as 844

the embedding dimension are set to 128 and each 845

layer contains 4 self-attention heads. All models 846

are trained with a batch size of 512 and learning 847

rate of 0.001 using the Adam optimizer (Kingma 848

and Ba, 2014) for a total of 20k steps. We cre- 849

ate a custom tokenizer to ensure that each digit 850

is tokenized separately. Specifically, the tokenizer 851

contains the following tokens — one token for each 852

agent, separator token (‘|’), start of sequence token, 853

end of sequence token, tokens corresponding to 854

each digit (0-9), one token for each operator in the 855

data and a token for ‘=’. 856

D Synthetic Dataset Generation 857

In this section, we describe the details of the exact 858

semantics of each operator in the synthetic setup 859

as well as the hyperparameters used to generate the 860

data. 861

D.1 Probing for Truthfulness 862

In this experiment we have two training data setups, 863

one with truthful persona and one without a truthful 864

persona as described in Section 3.1. In each setup, 865

we have m operators where m ∈ {8, 12, 16, 20}. 866

Instead of manually defining all the operators, we 867

use the following to sample truthful and untruthful 868

interpretations of the operators: 869

opT (x, y) = x+ y + r1 (1) 870

opF (x, y) = x+ y + r2 (2) 871

where r1, r2 are randomly sampled for each of 872

the operators from the range (0, 70). Note that r1 873

and r2 are different for all the operators. 874

We use n = 100 (i.e. range 100 for x, y) and 875

randomly select the generation parameters. Specifi- 876

cally, if an agent a is truthful on operator op, we set 877

p(a,op) to be a random value > 0.8 and vice versa 878

we set it to < 0.2 if the agent is untruthful. 879

D.2 Generalization to Unseen Operators 880

This experiment contains two setups, one with 881

truthful persona and one without truthful persona 882

as described in Section 4.2. Both setups contain 883

four operators, op1 to op4. 884

Notation. In the following, first() and last() are 885

used for functions that denote the first and last digit 886
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of the argument respectively. We use ‘;’ to denote887

the concatenation of the two numbers (e.g. 2; 3 →888

23). We use first2() for the function denoting the889

first two digits of the argument (e.g. first2(123) =890

12).891

The exact semantics of the four operators of the892

truthful interpretations of the operators are as be-893

low:894

1. op1
T (x, y) = first(x+ 4) + first(y + y)895

2. op2
T (x, y) = last(x) + last(y + y)896

3. op3
T (x, y) = first(x); last(y + y)897

4. op3
T (x, y) = first2(x+ x)898

Similarly, the untruthful interpretaion for each899

of the four operators are:900

1. op1
F (x, y) = last(y + y) + first2(x)901

2. op2
F (x, y) = first(x+ x) + last(y)902

3. op3
F (x, y) = first2(x+ y) + first(y)903

4. op3
F (x, y) = last(x+ y) + first2(y)904

We designed these operators, so that the mod-905

els we are using can learn these operations. We906

also ensured that all interpretations are distinct and907

unrelated to each other, although all of them are908

similarly ‘complex’ allowing the model to learn the909

operations at similar times during training.910

We use n = 200 (i.e. range 200 for x, y) and911

randomly set the generation parameters. Specifi-912

cally, if an agent a is truthful on operator op, we set913

p(a,op) to be a random value > 0.8 and vice versa914

we set it to < 0.2 if the agent is untruthful.915

E Generalization to unseen916

agent-operator combinations917

In Section 4.2, we demonstrated that models can918

generalize (un)truthfully for (un)truthful agents919

only in the presence of a truthful persona. To do so,920

we looked at ptruthful across all agents for the un-921

seen operator. Here, we additionally plot puntruthful,922

the average probability assigned by the model to923

the untruthful answer in Figure 10.924

F Mechanism for persona-based925

computation926

Our hypothesis in this work is that LLMs can in-927

fer the agent based on the input context, map it928
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Figure 10: Probability that the model assigns to the
untruthful answer — puntruthful decreases as the truthful-
ness of agent increases in the first setup, whereas the
behavior widely varies in the second setup.

D E F G

Truthful Answer 92.66% 91.88% 97.84% 100%
Control Answer 47.82% 45.36% 45.29% 46.33%

Untruthful Answer 96.38% 94.73% 90.78% 79.33%
Control Answer 24.58% 25.03% 24.98% 23.91%

Table 2: Probing accuracy to predict the truthful answer,
the untruthful answer or a control answer. Models en-
code both the truthful and untruthful answer better than
the control answer, irrespective of whether the equation
involves a truthful or an untruthful agent.

to an (un)truthful persona based on the cluster the 929

agent belongs to, and generate (un)truthful continu- 930

ations accordingly. An interesting question here is 931

the mechanism used to perform the persona-based 932

computation—do LLMs first infer the persona and 933

then compute the corresponding answer? Or do 934

they compute all possible answers and then pick 935

one depending on the inferred persona? 936

To answer this question, we train two linear 937

probes. One probe predicts the truthful answer and 938

the other predicts untruthful answer to the equa- 939

tion, respectively. All probes are trained on the 940

embedding of a token before the complete answer 941

is generated. We expect that if both the truthful 942

and untruthful probes get high accuracy, the model 943

computes both answers and then picks one depend- 944

ing on the inferred persona. We also train control 945

probes to predict an answer of an unrelated oper- 946

ation as a baseline—this helps to control for the 947

possibility of the LLM encoding answers to all op- 948

erators in the representation, or the probe learning 949

to perform the task. 950
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Experiment Details. We use the model from Fig-951

ure 5 with truthful personas (top), and embeddings952

from the last layer to train the linear probes. Since953

the answers can span multiple digits, we train the954

probe to predict the first different digit between the955

truthful and untruthful answers. e.g. if the truthful956

answer is 23 and the untruthful answer is 26, the957

two probes will be trained on the representation of958

‘2’ to predict ‘3’ or ‘6’ respectively. This is done to959

reduce the output space of the probe. To train the960

control probe for the truthful answer, we select an961

answer based on the truthful operator for a different962

randomly sampled operator. Similarly to train the963

control probe for the untruthful answer, we sample964

an answer based on a untruthful interpretation of965

a different operator. All the probes are trained on966

50k randomly sampled examples, and evaluated on967

held-out equations for op4.968

Results. In Table 2, we find that irrespective of969

whether we condition on a truthful or an untruth-970

ful agent, models encode both the truthful and un-971

truthful answers much better than the control an-972

swer. This indicates that models compute and store973

both possible answers to an input equation and974

then “pick” an answer based on the inferred per-975

sona. This could also help explain the success of976

supervised finetuning in making models truthful977

(Ouyang et al., 2022), since the finetuning proce-978

dure only has to change which answer the model979

picks instead of teaching it a new answer. We leave980

more investigation along this direction on larger981

models as future work.982
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