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Abstract

Large language models (LLMs) are trained on
vast amounts of text from the internet, which
contains both factual and misleading informa-
tion about the world. While unintuitive from a
classic view of language models, recent work
has shown that the truth value of a statement
can be elicited from the model’s representa-
tions. This paper presents an explanation, per-
sona hypothesis, for why LLMs appear to know
the truth despite not being trained with truth la-
bels. We hypothesize that the pretraining data
is generated by groups of (un)truthful agents
whose outputs share common features, and they
form a (un)truthful persona. By training on
this data, LMs can infer and represent the per-
sona in its activation space. This allows the
model to separate truth from falsehoods and
controls the truthfulness of its generation. We
show evidence for the persona hypothesis via
two observations: (1) we can probe whether
a model’s answer will be truthful before it is
generated; (2) finetuning a model on a set of
true facts improves its truthfulness on unseen
topics. Next, using arithmetics as a synthetic
environment, we show that structures of the
pretraining data are crucial for the model to
infer the truthful persona. Overall, our findings
suggest that models can exploit hierarchical
structures in the data to learn abstract concepts
like truthfulness.

1 Introduction

Large language models (LLMs) are pretrained
on increasing amounts of data from the internet
(Brown et al., 2020; Chowdhery et al., 2022)—a
noisy corpus which contains both factual and in-
correct statements about the world. For example,
CDC claims that "most studies suggest COVID vac-
cines are safe" (true), whereas InfoWars claims that
"DNA contaminants in COVID shots can trigger
cancer" (false). Such misconceptions and conspir-
acy theories pose a risk of misinformation as they
can be regurgitated by models (Lin et al., 2021).

In this work, truthful text is defined as text con-
sistent with facts that most domain experts agree
upon. Untruthful text, distinct from blatant errors,
refers to plausible but incorrect information that
exists online and could mislead LLLM users (e.g.
conspiracy theories). Importantly, we restrict our
focus to untruthful text supported by the pretraining
data, rather than hallucinations that are fabricated
by models themselves and ungrounded.

Given a noisy training set, how does a LLM se-
lect its answers? Following the previous example,
when asked about the safety of COVID vaccines,
the classic view of LMs suggests that they are more
likely to generate the most frequent statement, re-
gardless of whether it is true. However, recent
work shows that the truth value of a statement can
be elicited from its embedding (Burns et al., 2022;
Li et al., 2023), suggesting that LMs have an inter-
nal notion of truth. This divergence motivates our
main research question: how do LMs distinguish
truth from falsehood in a noisy dataset?

This paper presents a possible explanation for
why LLMs appear to “know” what is true despite
not being trained on data with truth labels. Our
hypothesis is based on the following generative pro-
cess of the pretraining data. Text on the internet is
generated by different sources (e.g., CDC), which
we call agents following Andreas (2022). Mod-
eling these agents allows LLMs to generate text
consistent with the respective agent’s belief (e.g.,
COVID vaccines are safe). Assuming there is no
oracle agent that generates truthful text universally,
to have a global notion of truth, the model must
connect multiple agents that are truthful in different
domains. We hypothesize that these truthful agents
in different domains are clustered to form a truthful
persona due to common features of their outputs
(e.g., formality and consistency with certain facts).
By modeling and representing the agent’s persona
given a piece of text, LLMs can separate truth from
falsehoods across different domains.



Agents are clustered into personas during LLM training
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Figure 1: Our main hypothesis is that LLMs can discern truth from falsehood by modeling truthful personas in the
pretraining data—cluster of agents who are likely to be truthful (left). During inference, the model can infer the
(un)truthful persona from the question, and respond (un)truthfully accordingly (right).

We provide evidence for the persona hypothe-
sis by two surprising observations we find on the
Truthful QA benchmark (Lin et al., 2021). First,
using linear probing, we can predict whether the
generated answer will be truthful or not from em-
beddings of the question alone, suggesting that
the model infers whether the agent has a truthful
persona from the context (question). Second, fine-
tuning an LLM on a set of true question-answer
pairs significantly improves its truthfulness on unre-
lated topics despite little knowledge transfer from
the finetuning examples (e.g., blood type has no
influence on personality) to the test examples (e.g.,
single day’s weather does not reflect the climate).
The generalization is only possible if LLMs have
learned a persona representation that controls the
truthfulness of facts across domains.

Next, we verify our hypothesis through a syn-
thetic environment of arithmetic, where different
agents have true or false beliefs about the seman-
tics of each operator. We train LMs on equations
generated by these agents. By controlling the pre-
training data generative distribution, we show that
models can separate true and false equations, and
generalize an agent’s truthful behavior to unseen
operators, but this is only possible when a truth-
ful persona exists, i.e. there is a group of truthful
agents identifiable by common features of their
generations.

2 The Persona Hypothesis

We assume that the pretraining data consists of a
set of statements x generated by different agents
parameterized by Oyeene € ©, which may spec-

ify the agent’s belief and the style of its genera-
tion: & ~ Prexi(- | Bagent). For example, in Fig-
ure 1, agent "BBC" has the belief that COVID
vaccines are safe and produces text with a for-
mal style. Further, groups of agents are gener-
ated from a persona parameterized by Apersona:
Oagent ~ Pagent(* | Apersona). In particular, agents
that are more likely to be truthful share a persona,
thus they are close to each other in ©. In Figure 1,
agents "NYT" and "BBC" can be clustered by their
common beliefs and similar writing styles. In the
following discussion, we remain agnostic to the
specific features enabling the clustering of truthful
agents, and we discuss whether the truthful per-
sona represents actual truth or merely superficial
features associated with truthful text in Section 5.

Our main hypothesis consists of two parts:

1. LMs infer the persona of groups of (un)truthful
agents from the context, represent it in the acti-
vation space, and generate text consistent with
the inferred persona.

2. (1) is only possible if the agents that generate
truthful text in the pretraining data indeed share
a persona (i.e. their generations have common
features).

To verify this hypothesis, we first provide ev-
idence for the existence of a latent truthful per-
sona in LLMs’ representations (Section 3). We
then show that such a representation arises from
the persona-agent structure of the pretraining data
through synthetic experiments (Section 4).



3 Evidence of LLMs Modeling Personas

3.1 LLMs infer personas from the context

To test hypothesis 1, we verify if the model can
infer the (un)truthful persona from the context by
probing its internal activations. Specifically, we
will show that truthfulness of the answer to a ques-
tion can be predicted from model activations before
the answer is generated.

Experimental setup. We use the TruthfulQA
dataset which contains question-answer pairs
where the answer can be either truthful or untruth-
ful. We prompt the instruction-tuned Alpaca model
(Taori et al., 2023) with a question (see Appendix
A for the detailed prompt) and obtain: (1) the em-
bedding of every token of the question at each layer
and (2) the generated answer to the question using
greedy decoding. We then label if the answer is
truthful or not using GPT-judge (Lin et al., 2021) in
line with previous work (Nakano et al., 2021; Rae
et al.,, 2021; Askell et al., 2021) (see Appendix C
for details). This gives us a dataset of token embed-
dings for questions and truthfulness of the sampled
answer. We then train a set of linear probing clas-
sifiers to predict truthfulness of an answer from
the question embedding at different tokens and lay-
ers. We randomly split the dataset into 50% for
training and 50% for testing. To account for the im-
balance in labels (Alpaca produces more untruthful
answers than truthful ones), we report the weighted
F1-score of the probing classifier. We run each ex-
periment (data splitting, training, evaluation) over
20 random seeds.

Results. Figure 2 (left) shows the average and
standard deviation of the Fl-score of the probe
using the last token embedding from each layer.
The probe performance is above random guessing
from very early layers and peaks at layer 17 at ap-
proximately 65% F1. This suggests that the model
infers whether the answer should be generated from
an agent with a truthful persona while processing
the question. Since the embedding does not con-
tain information about the answer, the encoded per-
sona likely represents style or false presuppositions
(Kim et al., 2022) in the question.

Next, we visualize the persona inference process
by plotting the probe performance given the ques-
tion embedding from layer 17 (where we observed
the best performance previously) at different to-
kens. Figure 2 (right) shows that as we incorporate
more context from left to right, the persona is repre-

sented more prominently, peaking when the entire
question is observed by the model, whereas prob-
ing the instruction (which is same for all questions)
performs at the level of random guessing.

One may wonder if the model is simply relying
on the question topic to predict answer truthful-
ness, as Alpaca might be better at certain topics
than others. Appendix B shows probing results
for the 6 largest categories in Truthful QA. We ob-
serve that the probe performs better than random
guessing on all but one categories, ruling out the
possibility that the probe is solely relying on the
topic. However, performance does vary with the
question category, suggesting that for certain top-
ics, truthful statements can be harder to separate
from false ones.

3.2 Truthfulness generalizes across topics

Having established that models can infer
(un)truthful persona from the context and encode it
in the activation space, we now examine whether
the the persona can control truthfulness of the
model’s generation across topics. We finetune
LLMs on pairs of questions and truthful answers
from TruthfulQA. Since all questions are factually
unrelated (i.e. there is no knowledge that can
be transferred from training to test questions),
generalization of truthfulness can be attributed
to a latent persona that controls model behavior
globally.

Experimental setup. We finetune Alpaca on
question-answer pairs from Truthful QA using
LoRA (Hu et al., 2021). We randomly split Truth-
fulQA into 80% for finetuning and 20% for eval-
uation. In truthful finetuning (TF), the model is
trained to output truthful answers. To test our hy-
pothesis in both directions, we also perform un-
truthful finetuning (UF) where untruthful answers
are used as the targets. To ensure that the model is
not relying on heuristics specific to TruthfulQA,'
we further test the model on the misconception
dataset from BigBench (Srivastava et al., 2022).
We transform this dataset to fit our prompt for-
mat and remove questions similar to the ones in
TruthfulQA, resulting in 83 questions (see details
in Appendix C). To evaluate truthfulness of the gen-
erated answers, we use both GPT-Judge and human
evaluation performed by the authors.

"Truthful QA may contain superficial patterns that can be
exploited to increase truthfulness. For example, many ques-

tions contain false presuppositions, and “no” is often the cor-
rect answer.
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Figure 2: (Left) Mean and standard deviation for F1 of linear probes trained on each model layer to predict if
the response will be truthful, over 20 randomized executions. (Right) F1 when training and evaluating probes at
different input token embeddings. Best F1 is obtained when using the entire question. Additional metrics and

ablations in Appendix B.

Truthful QA BigBench-misconceptions

GPT-judge Human evaluation Human evaluation

No Finetuning 39.0174 31.747.1 54.24 107
Truthful finetuning 7444 66 58.04+ 75 59.44 105
Untruthful finetuning 98145 6.7+33 30.7+ 99
TriviaQA 24.4i 6.5 15.2i 54 45-3i 10.7
MS MARCO 37.8+74 21.3162 4924 107

Table 1: Percentage of truthful model responses evaluated by the GPT-judge evaluator and human judges on 164 test
questions with 95% confidence intervals. Finetuning on (un)truthful QA pairs makes the model more (un)truthful

on factually unrelated questions.

Truthfulness generalizes to unseen topics and
domains. In Table 1, we observe substantial
changes in truthfulness after both TF and UF on
Truthful QA: Truthfulness of generations increases
from 39% to 74% after TF, and decreases to 10%
after UF; a similar trend holds according to human
evaluation. Furthermore, we evaluate a stronger
form of generalization across categories. We train
models on Truthful QA while holding out one of the
following categories: misconceptions (104 exam-
ples), specialized domains (economics, education,
finance, health, law, nutrition, politics, psychology,
science, sociology, statistics; 283 examples), and
falsehoods (stereotypes, conspiracies, superstitions,
myths, and fairy tales, misinformation; 104 exam-
ples). In Figure 3 (left), an improvement in truth-
fulness is observed for the heldout categories after
finetuning. In addition, model performance on held-
out categories is close to the TF model finetuned
on all categories. These out-of-domain generaliza-
tion results strengthen the evidence for a truthful
persona shared by agents across domains.

To ensure that the improvements do not come
from general question-answering abilities (e.g., bet-
ter adaptation to the QA format), we include a con-
trol experiment by finetuning Alpaca on random

splits from TriviaQA (Joshi et al., 2017) and MS
Marco (Nguyen et al., 2016) of the same size as
our TF training set. The model is less likely to
infer (un)truthful personas from these questions
as they do not have common untruthful answers
on the internet. Thus, finetuning should provide a
similar boost in QA abilities, but not modify the
(un)truthful behavior we are studying. The results
in Table 1 show that models finetuned on these
datasets have similar or worse truthfulness scores
than the non-finetuned model.

Model generalizes from small sample size. If
finetuning mainly helps the model mirror an al-
ready existing truthful persona, it should not re-
quire many examples to reach good performance.
Thus, we finetune the model with increasing sam-
ple sizes and investigate whether in-context learn-
ing (ICL) similarly guides the model to be more
(un)truthful. We run TF with smaller splits (5%,
20%, and 50%) and in-context learning with 10
(1.5%) and 20 (3%) examples. Results in Figure
3 (right) show that, aside from ICL with 10 exam-
ples, all methods achieve a substantial increase in
truthfulness. Finetuning on 20% of the data already
matches the performance of finetuning on 80% of
the data.
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Figure 3: Generalization of Alpaca to unseen TruthfulQA questions. (Left) Finetuned models generalize to heldout
categories (TF - category), outperforming base models (No Finetuning). (Right) Models generalize truthfulness

given small sample size.

Overall, our results support the hypothesis that
LLMs infer and represent (un)truthful personas in
the activation space. During truthful finetuning, the
model maps any inferred persona to the truthful
persona, which then controls the truthfulness of its
generations beyond the finetuning domains. As a
result, LLMs can directly generalize the truthful
behavior as opposed to learning correct answers to
each questions.

4 Arithmetic Laboratory: Connecting
Pretraining Data to Truthfulness

In the previous section, we have shown evidence
for hypothesis 1 which states that LLMs infer
(un)truthful personas from the context. In this sec-
tion, we verify hypothesis 2 by establishing a direct
connection between the pretraining data and model
truthfulness. Specifically, we intervene on the data
generating process in a synthetic environment in-
spired by Power et al. (2022) and observe behavior
of an LM trained on this data.

Data generation. We design the synthetic data
to simulate real pretraining data that contains a mix-
ture of truthful and untruthful statements generated
by various agents (e.g., Wikipedia and Twitter).
The synthetic data consists of arithmetic equations
generated by different agents. An operator op € O
takes in two integer operands z,y € N and re-
turns z. Each operator has two interpretations and
we randomly assign one to be true, denoted by op?,
and the other to be false, denoted by op’’. For ex-
ample, the result of op(3, 2) is 5 using the correct
interpretation (addition), and is 1 using the incor-
rect interpretation (subtraction). Each agent a € S
is parameterized by p(q,op) € (0, 1), which spec-
ifies how likely it generates equations using the
true interpretation of each operator op. Each data

point follows the format: a | x op y = z where z
is either op’ (, %) or op’ (z, y) depending on the
agent, and | is a separator token. Formally, we use
the following generative process:

a~U(S); op~U(O); z,y ~U({1,2,..,n})
L {opT(%y)

op” (z,y)
where U denotes the uniform distribution. The
exact interpretations of operators can be found in
Appendix D.

We can then further impose structures on top
of the agents. Specifically, some agents have
a higher likelihood of using op”: Plaop) ™~
U(0.8,1) Vop € O, forming a truthful persona,
whereas others are less likely to use the correct in-
terpretation: p(, opy ~ U(0, 0.2) Vop € O, form-
ing an untruthful persona. Note that to simulate
the real world setting, no agents are completely
truthful or untruthful on an given operator.

W.P- P(a,0p)
otherwise

Experimental setup. We train a 4-layer Trans-
former with 4 attention heads from scratch on the
synthetic data using the causal language modeling
objective. The hidden dimension and the embed-
ding dimension are set to 128. All models are
trained with a batch size of 512 and a learning rate
of 0.001 using the Adam optimizer (Kingma and
Ba, 2014) for 20k steps. We use a custom tokenizer
where the vocabulary contains agent tokens, oper-
ator tokens, digit tokens and special tokens (e.g.,
the separator). Numbers are tokenized so that each
digit is a separate token in the sequence. For more
training details, see Appendix C.

4.1 Probing for Truthfulness

Motivated by the observations on LL.Ms, we train
probes to predict whether a model’s answer for
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top setting, agents A and B who have similar probabilities of generating truth form a truthful persona, whereas the
bottom setting does not have such a persona. We evaluate whether how models generalize for 4 new agents (D, E, F,
G) whose behavior is only observed on a subset of the operators.

an incomplete equation (e.g., a | zopy =) will be
truthful. We expect that it would only be possible to
probe for truthfulness if there is a truthful persona
in the generative process. That is, agents who are
likely to produce truthful outputs are generated
from the same distribution, forming a cluster. To
ablate the role of personas in truthfulness probing,
we design two pretraining setups with and without
truthful personas as follows:

1. Has truthful persona. We use four agents
(A, B, C, and D) and m operators. A clus-
ter of truthful agents are defined by p(4 op) ~
U(0.8,1) Yop € O, a € {A, B}; and a cluster
of untruthful agents are defined by p(4,0p) ~
U(0,0.2) Yop € O, a € {C, D}.

2. No truthful persona. Same as in (1), we have
four agents and m operators. However, the

agents are truthful on disjoint sets of operators.
Thus, their parameters p(,,.) are nearly orthogo-
nal. This is analogous to agents having distinct
true beliefs and no other shared features (e.g.,
style) in practical settings.

In both cases, we first generate synthetic data
according to Equation 4 covering all agents, opera-
tors, and operands (i.e. 4-m-10k data points in total
with n = 100). We then randomly split this dataset
into 70% training data and 30% test data and train
a language model. We vary m € {8,12,16,20}.

Then, we train probes to predict whether the
model’s prediction given an input expression a |
zopy = is truthful or not. The probe is a linear
model that takes in the embedding of ‘=" from a
particular layer. Analogous to the LLM probing
experiments, we train the probes on half of the



operators and evaluate them on the other half to
ensure that they do not simply learn which com-
binations of agents and operators are truthful, but
rather rely on features that generalize across agents
and operators (i.e. personas). We train the probe on
5k examples and test on another 5k. Each exper-
iment is run 3 times with different random seeds
for splitting train/test operators. We observe that
probes trained on different layers can achieve dif-
ferent performance. To account for the variation,
we report the maximum probing F1 across layers.

In Figure 4 (left), we observe that across all val-
ues of m, probes get higher F1 when training data
contains a truthful persona. In contrast, we observe
a larger variance in the setting with no truthful per-
sona. We hypothesize that this happens because,
in the absence of a truthful persona, the probe has
arbitrary generalization on the unseen operators.
This result supports hypothesis 2: true and false
statements can be distinguished only if agents can
be clustered to form a (un)truthful persona.

4.2 Generalizing to Unseen Operators

To test our hypothesis that personas can be used to
generalize an agent’s behavior to unseen contexts,
we evaluate if models trained on the synthetic data
can generalize a (un)truthful agent’s behavior to
unseen operators. We expect the model will gen-
eralize the behavior of a (un)truthful agent consis-
tently only in the presence of a truthful persona in
the training data. We create two training setups, as
illustrated in Figure 5: (1) has truthful persona, and
(2) no truthful persona.

Both training setups consist of seven agents
(from A to ) and four operators (from op; to
op4). Agents A, B, and C' are trained on all four
operators, whereas agents D through G are only
trained on opi, ops and op3. opy4 is heldout to
evaluate generalization to unseen operators. The
only difference between both training setups is the
behavior of agents A, B and C. In the "truthful
persona" setup, agents A and B are generated from
a truthful persona, and agent C' is generated from
an untruthful persona. In the "no truthful persona"
setup, A4, B, and C are truthful on only two out of
the four operators with little overlap among them:
each agent is generated in a distinct way.

In both setups, we first generate synthetic data
according to Equation 4, and randomly split it into
70% training and 30% test data. We repeat the ex-
periment 10 times, by randomly selecting the defi-

nitions of the operators.> To evaluate the model on
an unseen agent-operator combination, we compute
the average model likelihood for the truthful and
untruthful answers across all held-out equations
for that operator. We use puuthful and Puntruthful tO
denote the average model likelihood for the truthful
and untruthful answers.

Results. In each of the two setups, we report
Puuthful for the unseen operators across the four
agents D, F, I, GG in Figure 4 (right). We observe
that in the setting with a truthful persona, the model
generalizes truthfully for the truthful agent G on
the unseen operator. Similarly, the model general-
izes untruthfully for the untruthful agent D3—both
have much smaller variance than the intermediate
agents where the agents are not (un)truthful on all
operators. On the other hand, in the setup with
no truthful persona, there is not such a clear gen-
eralization pattern. In fact, we observe the model
generalizes untruthfully for the most truthful agent
G since the ‘closest’ agent in the training data is
A (shared belief on op; and ops where both are
truthful), and A has untruthful belief on opg4.

Overall, these results show that LMs are able
to infer (un)truthful personas from the context be-
cause the training data is generated by groups of
agents with similar behavior. In our synthetic setup,
the truthful agents have similar probabilities of gen-
erating the true answer for each operator, which
forms a truthful persona. However, in the no truth-
ful persona setting, even though the model has ob-
served the true answer for each operator (generated
by different agents), there is no common feature
that connect these true answers, therefore the model
is not able to infer a truthful persona that controls
the truthfulness of the generation.

5 Discussion

Have LLMs robustly learnt what is truthful? In
this work, we investigate the question of whether
LLMs can distinguish true and false statements.
Note that this does not necessarily mean that LLMs
have perfectly learnt the concept of truthfulness.
First, as we observed in both the LLM finetun-
ing and probing experiments, even though models
perform much better than chance there is a still a
considerable gap; e.g., we can probe with only up
to ~70% accuracy whether the model will make a

This is done to ensure that model generalization is not
affected by the specific choice of the operator definitions.
3See Appendix D for the graph of punruthful-



truthful prediction. Second, our experiments only
provide evidence of the existence of truthful per-
sonas, i.e. there exist features that the model can
use to cluster truthful agents. Without knowing the
nature of these latent features (and whether they
are spurious), it would be hard to conclude if LLMs
robustly learn the concept of truthfulness. Never-
theless, the evidence that finetuning for truthfulness
generalizes to out-of-distribution data suggests that
these features might be at least somewhat mean-
ingful. Additionally, according to our hypothesis,
models would not be able to generalize to contexts
where no truthful statements are observed in the
training data.

Other hypotheses of how LLMs can learn
truthfulness. Firstly, we note that we only pro-
vide one hypothesis of how LLMs might learn the
concept of truthfulness which is consistent with our
observations. Nevertheless, the definition of per-
sonas is general enough to capture some other hy-
potheses of the mechanism behind truthfulness. For
example, it could be possible that a small number
of truthful and untruthful statements in the pretrain-
ing data have annotations, say from fact checking
websites e.g. https://www.factcheck.org. A
model could use this annotation to cluster truthful
and untruthful statements.

6 Related Work

Evaluating truthfulness of LLMs. Lin et al.
(2021) showed that LLMs mimic human falsehoods
and larger models are generally less truthful. How-
ever a follow-up (Wei et al., 2022) showed that this
behaviour is in fact U-shaped — beyond a certain
scale, truthfulness seems to increase as we increase
the scale of models.

Improving truthfulness. Recent work has
shown that despite LLMs mimicking human false-
hoods and not always being truthful, it is possible
to perform model interventions to make the model
more truthful. Burns et al. (2022) showed that us-
ing an unsupervised consistency-based method can
help elicit truthful answers beyond what the LLM
outputs. Similarly, Li et al. (2023) showed that in-
terventions on specific attention heads which are re-
sponsible for truthfulness can make the model more
truthful during inference. Chuang et al. (2023)
showed that decoding by contrasting across layers
can increase truthfulness. Recent work has also
shown, similar to our probing results, that we can
detect whether an answer produced by LLM is

truthful either using its internal state representa-
tion (Azaria and Mitchell, 2023) or using linguistic
features of the answer (Lee et al., 2023). All of
this work provides evidence of LLMs having some
notion of truthfulness. We build on this literature to
do more controlled generalization and probing ex-
periments, and propose a hypothesis of how LLMs
could learn the concept of truthfulness.

Personas and Agents in LLMs. Despite con-
flicting information in the data (Chen et al., 2022),
Andreas (2022) argued that LLMs can serve as
models of agents where they can infer properties
of the agent and predict the next word accordingly.
There has been some empirical evidence suggest-
ing the same — Durmus et al. (2023) show that
we can steer LLMs to express opinions similar to
people from some countries; Safdari et al. (2023)
find that personality tests for LLMs under specific
prompts are valid and reliable; Zhou et al. (2023);
Lin et al. (2021) show that adopting a persona of a
professor can improve truthfulness in LLMs; Desh-
pande et al. (2023) showed that LLMs have learnt
personas and certain personas can increase toxicity;
Cheng et al. (2023) showed that we can use persona
to measure stereotypes in LLMs. Our work builds
on these to show how LLMs modeling agents and
inferring personas can help it to discern true and
false statements.

7 Conclusion

We introduce a hypothesis of how LLMs can
model truthfulness: persona hypothesis—ILLMs
can group agents that share common features into
personas that can be used to distinguish true from
false statements and to generalize agent behavior
beyond the context in which it was observed during
training. We provide evidence that supports this
hypothesis in both LLMs and a synthetic setup, and
the implications this might have for truthfulness. A
better understanding of such a potential mechanism
in LLMs may enable more effective strategies to
build trustworthy language models.

Limitations

We acknowledge the complexity of the term ‘truth-
fulness’, especially for subjective/opinionated top-
ics where there is a lot of philosophical debate.
In this work, we focus only on factual questions
where experts agree on what is truthful. Our work
aims to understand a mechanism through which
LLMs can distinguish true from false statements.
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Advancing our understanding of LLMs can both
help us predict where they will fail, and demystify
the black-box nature of LLM capabilities.

Limitations of the synthetic setting. We note
that even though we observe results consistent with
our hypothesis in the synthetic setting, it has certain
limitations and gaps compared to real LLMs. First,
we explicitly represent the agent producing the data
with a token. In real LLMs, models would have to
infer the agent from the actual text. Nevertheless,
there is evidence suggesting that LL.Ms can do it
e.g. Li et al. (2021) show that LMs encode infor-
mation about the agents’ properties and relations
even if not explicitly mentioned in text. Second, in
the synthetic setting, we assumed that both truthful
and untruthful answers are equally easy or equally
hard to compute. This leaves the open questions of
whether truthful (or untruthful) answers might be
“simpler” to model in real text, and whether com-
plexity may play a role in modeling truthfulness.
Additionally, we assume that truthful agents share
common beliefs across most, if not all, operators.
In practice, truthful agents do not necessarily agree
on every fact.
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A Alpaca Prompts

To prompt Alpaca in a 0-shot setting, we adapt
the prompt used by the original Alpaca authors to
finetune the model (Taori et al., 2023) for question
answering. We also use this prompt for our probing
and finetuning experiments.

### Instruction:
Answer the following question

### Input:
{question}

### Response:

where {question} is the placeholder for the ques-
tion. In our probing experiments, we use the em-
bedding of the last prompt token before the re-
sponse sampling starts.

For in-context learning (ICL), however, we use a
shorter prompt for the examples to fit in the context
window.

Q: {example question 1}
A: {example answer 1}

Q: {example question N}
A: {example answer N}

Q: {test question}
A:

B Probing Ablations

We run some additional experiments to better un-
derstand the probing results from Section 3.1. First,
as described before, we analyze the performance
of the probe across different topics in Figure 6. We
observe that the performance of the probe varies by
topic e.g. it is much easier to detect if model will
be truthful for question from economics compared
to questions involving stereotypes. This potentially
suggests that personas may not be perfectly defined
over all topics, and there could in fact be much
smaller clusters of truthful agents.

Next, to expand on the results in Figure 2, we
use the same tokens to obtain the representation
but instead of using a specific layer (layer 17), we
plot the performance of the probe across different
layers in Figure 7.

Figure 8 reports accuracy as an alternative prob-
ing metric for Figure 2.
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Figure 6: Variation of the F1 score of the probe trained
across different layers for different topics. It it easier to
predict if model will be truthful for certain topics (e.g.
Economics) than others (e.g. Stereotypes).
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Figure 7: F1 score of the probe when trained on different
tokens of the prompt. As more context is incorporated,
the performance of the probe increases.
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Figure 8: Mean and standard deviation for accuracy of
linear probes trained on each layer of the model to pre-
dict if the response will be truthful over 20 randomized
executions.
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Figure 9: F1 obtained when training and evaluating
linear probes at different input and generation token
embeddings as an extension of results in Figure 2.

Finally, Figure 9 reports probing results over the
generated tokens as a baseline for results in Figure
2. Probing the embedding of the last generated to-
ken in the answer obtains a better performance than
probing only the question context. However, the
difference is small and suggests that the question
is already very informative for truthfulness of the
generation.

C Experiment Details

TruthfulQA Evaluation. We use GPT-Judge for
automatically evaluating if the model generation is
truthful, in line with previous work (Nakano et al.,
2021; Rae et al., 2021; Askell et al., 2021). To ob-
tain the GPT-Judge model, we use the OpenAl fine-
tuning API at https://platform.openai.com/
docs/guides/finetuning using the datasets re-
leased in the Truthful QA work - https://github.
com/sylinrl/TruthfulQA. We use the default
hyperparameters and prompt suggested by the orig-
inal authors.

Finetuning for TruthfulQA. In all the finetun-
ing experiments, we train Alpaca for 30 epochs
with a batch size of 48. We use the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 9e — 5 and a warmup ratio of 0.03. To finetuning
models with a smaller compute, we use LORA (Hu
et al., 2021) — we apply it to the query and key
projection matrices where we set the rank to 16, a
dropout rate of 0.05.

Transforming the BigBench misconceptions
dataset. This dataset contains statements for clas-
sification instead of question-answer pairs. We
covert these statements into QA pairs using GPT-
3.5 (Brown et al., 2020), and manually correct
some generated questions which were not correct.
Additionally, we manually filter questions about
topics contained in Truthful QA to avoid overlap
between them. The resulting dataset contains 83
examples.
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Training in the synthetic setup. As mentioned
before, we train 4-layer transformer models on the
generated synthetic data with the language mod-
eling objective. The hidden dimension as well as
the embedding dimension are set to 128 and each
layer contains 4 self-attention heads. All models
are trained with a batch size of 512 and learning
rate of 0.001 using the Adam optimizer (Kingma
and Ba, 2014) for a total of 20k steps. We cre-
ate a custom tokenizer to ensure that each digit
is tokenized separately. Specifically, the tokenizer
contains the following tokens — one token for each
agent, separator token (‘|’), start of sequence token,
end of sequence token, tokens corresponding to
each digit (0-9), one token for each operator in the
data and a token for ‘=’.

D Synthetic Dataset Generation

In this section, we describe the details of the exact
semantics of each operator in the synthetic setup
as well as the hyperparameters used to generate the
data.

D.1 Probing for Truthfulness

In this experiment we have two training data setups,
one with truthful persona and one without a truthful
persona as described in Section 3.1. In each setup,
we have m operators where m € {8,12,16,20}.
Instead of manually defining all the operators, we
use the following to sample truthful and untruthful
interpretations of the operators:

ey
2

x,y)=x+y+r
T,Y) =x+y+re

where 71, ro are randomly sampled for each of
the operators from the range (0, 70). Note that r;
and ry are different for all the operators.

We use n = 100 (i.e. range 100 for z,y) and
randomly select the generation parameters. Specifi-
cally, if an agent a is truthful on operator op, we set
D(a,0p) to be a random value > 0.8 and vice versa
we set it to < 0.2 if the agent is untruthful.

D.2 Generalization to Unseen Operators

This experiment contains two setups, one with
truthful persona and one without truthful persona
as described in Section 4.2. Both setups contain
four operators, op; to op4.

Notation. In the following, first() and last() are
used for functions that denote the first and last digit
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of the argument respectively. We use ‘;’ to denote
the concatenation of the two numbers (e.g. 2; 3 —
23). We use firsty() for the function denoting the
first two digits of the argument (e.g. firsto(123) =
12).

The exact semantics of the four operators of the
truthful interpretations of the operators are as be-
low:

1. op1 T (z,y) = first(z + 4) + first(y + v)
2. opa? (z,y) = last(z) + last(y + y)

3. op3?(z,y) = first(x); last(y + v)

4. op3” (x,y) = firsta(z + )

Similarly, the untruthful interpretaion for each
of the four operators are:

1. op1F'(z,y) = last(y + y) + firsta ()
2. opof(z,y) = first(z + x) + last(y)

3. ops”'(x,y) = firsta(z + y) + first(y)
4. ops®'(z,y) = last(z + y) + firsta(y)

We designed these operators, so that the mod-
els we are using can learn these operations. We
also ensured that all interpretations are distinct and
unrelated to each other, although all of them are
similarly ‘complex’ allowing the model to learn the
operations at similar times during training.

We use n = 200 (i.e. range 200 for x,y) and
randomly set the generation parameters. Specifi-
cally, if an agent a is truthful on operator op, we set
P(a,0p) t0 be a random value > 0.8 and vice versa
we set it to < 0.2 if the agent is untruthful.

E Generalization to unseen
agent-operator combinations

In Section 4.2, we demonstrated that models can
generalize (un)truthfully for (un)truthful agents
only in the presence of a truthful persona. To do so,
we looked at pyymra across all agents for the un-
seen operator. Here, we additionally plot puntruthful,
the average probability assigned by the model to
the untruthful answer in Figure 10.

F Mechanism for persona-based
computation

Our hypothesis in this work is that LLMs can in-
fer the agent based on the input context, map it
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Figure 10: Probability that the model assigns to the
untruthful answer — pyngumtal decreases as the truthful-
ness of agent increases in the first setup, whereas the
behavior widely varies in the second setup.

D E F G
Truthful Answer 92.66% 91.88% 97.84% 100 %
Control Answer 47.82%  4536% 45.29%  46.33%
Untruthful Answer 96.38% 94.73% 90.78%  79.33%
Control Answer 2458%  25.03% 2498% 2391%

Table 2: Probing accuracy to predict the truthful answer,
the untruthful answer or a control answer. Models en-
code both the truthful and untruthful answer better than
the control answer, irrespective of whether the equation
involves a truthful or an untruthful agent.

to an (un)truthful persona based on the cluster the
agent belongs to, and generate (un)truthful continu-
ations accordingly. An interesting question here is
the mechanism used to perform the persona-based
computation—do LLMs first infer the persona and
then compute the corresponding answer? Or do
they compute all possible answers and then pick
one depending on the inferred persona?

To answer this question, we train two linear
probes. One probe predicts the truthful answer and
the other predicts untruthful answer to the equa-
tion, respectively. All probes are trained on the
embedding of a token before the complete answer
is generated. We expect that if both the truthful
and untruthful probes get high accuracy, the model
computes both answers and then picks one depend-
ing on the inferred persona. We also train control
probes to predict an answer of an unrelated oper-
ation as a baseline—this helps to control for the
possibility of the LLM encoding answers to all op-
erators in the representation, or the probe learning
to perform the task.



Experiment Details. We use the model from Fig-
ure 5 with truthful personas (top), and embeddings
from the last layer to train the linear probes. Since
the answers can span multiple digits, we train the
probe to predict the first different digit between the
truthful and untruthful answers. e.g. if the truthful
answer is 23 and the untruthful answer is 26, the
two probes will be trained on the representation of
2’ to predict ‘3’ or ‘6’ respectively. This is done to
reduce the output space of the probe. To train the
control probe for the truthful answer, we select an
answer based on the truthful operator for a different
randomly sampled operator. Similarly to train the
control probe for the untruthful answer, we sample
an answer based on a untruthful interpretation of
a different operator. All the probes are trained on
50k randomly sampled examples, and evaluated on
held-out equations for opy.

Results. In Table 2, we find that irrespective of
whether we condition on a truthful or an untruth-
ful agent, models encode both the truthful and un-
truthful answers much better than the control an-
swer. This indicates that models compute and store
both possible answers to an input equation and
then “pick” an answer based on the inferred per-
sona. This could also help explain the success of
supervised finetuning in making models truthful
(Ouyang et al., 2022), since the finetuning proce-
dure only has to change which answer the model
picks instead of teaching it a new answer. We leave
more investigation along this direction on larger
models as future work.
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