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Abstract

The rapid development of large language mod-001
els (LLMs) has raised concerns about the po-002
tential misuse of these models for generat-003
ing fake news and misinformation. To mit-004
igate this risk, watermarking techniques for005
auto-regressive language models have been pro-006
posed as a means of detecting text generated by007
LLMs. However, this method assumes that the008
target text, which is watermarked, contains a009
sufficient number of tokens, and the detection010
accuracy decreases as the number of tokens in011
the text becomes smaller. To address this issue,012
we introduce a novel nested watermark that013
embeds two watermarks in a nested structure.014
Our method ensures that high detection accu-015
racy can be achieved even with fewer tokens016
compared to conventional approaches. Our ex-017
periments show that the nested watermark out-018
performed the single watermark in terms of019
embedding success ratio and text quality when020
dealing with short text.021

1 Introduction022

Large language models (LLMs) have made signif-023

icant advancements in recent years, enabling the024

generation of high-quality text that is often indis-025

tinguishable from human-written content (Achiam026

et al., 2023). However, this remarkable ability has027

also raised concerns about the potential misuse of028

LLMs for creating and spreading fake news and029

misinformation (Crothers et al., 2023). To address030

this issue, researchers have proposed various meth-031

ods to detect text generated by LLMs (Mitchell032

et al., 2023; Jawahar et al., 2020).033

One such method is a watermark for LLMs,034

which embeds specific token patterns into the gener-035

ated text, allowing for the identification of the text’s036

source (Kirchenbauer et al., 2023a). This approach037

increases the probabilities of tokens included in a038

specific vocabulary, which is constructed based on039

a key. While this method has shown promise, its040

detection relies on statistical test, which assumes 041

that the target text for watermarking contains a suf- 042

ficient number of tokens. Therefore, as the number 043

tokens in the text decreases, the detection accuracy 044

of the watermark also declines, posing a challenge 045

for short text (Sadasivan et al., 2023; Krishna et al., 046

2024). 047

To overcome this limitation, we propose a novel 048

nested watermark that embeds two watermarks in 049

a nested structure. Our method aims to achieve 050

high detection accuracy even when the target text is 051

short segments (from 50 to 100 tokens) commonly 052

found in social media posts and other applications. 053

By leveraging the nested structure, we can effec- 054

tively embed watermarks in short text segments 055

with less error rates, enhancing the efficiency of the 056

watermarking process. Furthermore, we introduce 057

a pseudo-instruction dataset that closely resembles 058

real-world user prompts to assess the quality of the 059

generated text under realistic input conditions. By 060

evaluating the nested watermark using this dataset, 061

we can accurately evaluate its performance in prac- 062

tical applications. 063

The main contributions of this paper are as fol- 064

lows: 065

• We introduce a novel nested watermark that 066

mitigates the limitations of single watermarks 067

in detecting LLM-generated text, particularly 068

for short text segments. 069

• We demonstrate that our approach improves 070

the embedding success ratio (ESR) for text 071

segments under 100 tokens while preserving 072

text quality, using a pseudo-instruction dataset 073

that emulates real-world user prompts. 074

• Additionally, our nested watermark ensures 075

that a portion of the source of the generated 076

text can still be identified even if the first key is 077

compromised, thereby enhancing the security 078

and robustness of the watermarking process. 079
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Figure 1: An overview of our nested watermark. The text on the right side of the figure demonstrates the detection
of the first and second watermarks using the first and second keys, respectively. In the first text detected by the first
key, the gray parts represent tokens classified as belonging to the token group without increased probabilities, while
the light green parts indicate tokens classified as having increased probabilities. Furthermore, in the second text
detected by the second key, the dark green parts signify tokens that belong to the group with increased probabilities
during the embedding of the second watermark.

2 Related Work080

The concept of embedding watermarks in text has081

been extensively explored long before the emer-082

gence of large language models (LLMs) (Kamarud-083

din et al., 2018; Atallah et al., 2001; Brassil et al.,084

1994). One of the key advantages of watermarks085

designed for LLMs is their high robustness against086

text tampering, as demonstrated by (Kirchenbauer087

et al., 2023b). However, despite their resilience,088

the detection accuracy of watermarks significantly089

deteriorates when subjected to paraphrase attacks.090

(Sadasivan et al., 2023).091

(Zhu et al., 2024) proposed Duwak, a dual wa-092

termarking scheme for large language models that093

embeds secret patterns in both the token probabil-094

ity distribution and sampling scheme using two095

keys, similar to our method; however, our approach096

is distinctive in that it does not require access to097

the model parameters in detection for the second098

watermark.099

3 Method100

Figure 1 shows the overall structure of the proposed101

method when the number of nested watermarks is102

two. The proposed method consists of a nested103

watermark generator, nested watermark detector,104

and multiple different keys. In the nested water-105

mark generator, while interacting with the language106

model that generates text according to the prompt,107

it embeds nested watermarks using multiple keys.108

The nested watermark detector receives the text109

generated by the language model and determines110

the presence or absence of each watermark from111

the multiple keys. In the following sections, we dis- 112

cuss the details of the nested watermark generator 113

and nested watermark detector. 114

3.1 Nested Watermark Embedding 115

Let wt be the t-th token in the text, and pkt be the 116

probability of the k-th token in the vocabulary V at 117

the t-th step. The probability pkt is calculated using 118

the softmax function: 119

pkt =
exp(lkt )∑|V |
i=1 exp(l

i
t)

(1) 120

where lkt is the logit of the k-th token in the 121

vocabulary V at the t-th step. 122

We define a hash function, H , that map the con- 123

catenation of a token wt−n at the (t − n)-th step 124

and a secret key s1 to a random number r1, and the 125

concatenation of a token wt−m at the (t − m)-th 126

step and a secret key s2 to a random number r2, 127

where m ̸= n: 128

r1 = H(wt−n, s1) (2) 129
130

r2 = H(wt−m, s2) (3) 131

The random numbers r1 and r2 are used to de- 132

termine the token groups G1 and G2, respectively. 133

G1 is a subset of the vocabulary V , and G2 is a 134

subset of G1. The ratio of the size of G1 to the size 135

of R1 (the remaining tokens in the vocabulary) is 136

γ : (1− γ), where γ is a hyperparameter. 137

To embed the watermarks, we add biases δ1 and 138

δ2 to the logits of the tokens in G1 and G2, re- 139

spectively. The total sum of the exponential of the 140

logits, Dtotal, is calculated as follows: 141
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Dtotal =
∑

i∈G1,i/∈G2

exp(lit + δ1) +
∑
i∈R1

exp(lit)

+
∑
i∈G2

exp(lit + δ1 + δ2)

(4)

142

The adjusted probabilities for the tokens in G1143

and G2 are then calculated as:144

p̂kt =
exp(lkt + δ1)

Dtotal
, k ∈ G1, k /∈ G2 (5)145

146

p̂kt =
exp(lkt + δ1 + δ2)

Dtotal
, k ∈ G2 (6)147

3.2 Nested Watermark Detection148

To detect the presence of the watermarks (G1 and149

G2) in the text, we calculate the counts c1 and c2150

of the tokens belonging to G1 and G2, respectively.151

We then compute the z-scores z1 and z2 as follows:152

For the first watermark:153

z1 =
c1 − γT√
Tγ(1− γ)

(7)154

where T is the total number of tokens in the text.155

For the second watermark:156

z2 =
c2 − γc1√
c1γ(1− γ)

(8)157

If the z-scores z1 and z2 exceed a predetermined158

threshold θ, we conclude that the watermarks are159

present in the text.160

Following the detection method proposed by161

Zhu (Zhu et al., 2024) using Fisher’s method, we162

also combine the p-values (P1 and P2) from the163

two independent tests for our nested watermarks164

into a single statistic that follows a chi-square (χ2)165

distribution with d = 4 degrees of freedom:166

−2(ln(P1) + ln(P2)) ∼ χ2(4). (9)167

Furthermore, the resulting p-value PF , derived168

from the chi-square distribution, is given as:169

PF = 1− Fχ2(−2(ln(P1) + ln(P2)), 4), (10)170

where Fχ2 represents the cumulative distribution171

function (cdf) for the chi-square distribution, pro-172

viding a unified statistical metric to evaluate the173

existence of watermarks in the text.174

Bias(δ) Win(%) Lose(%) Tie(%) diff.
4.0 19.00 16.10 64.90 2.90
3.5 18.70 16.05 65.25 2.65
3.0 17.70 16.50 65.80 1.20

Table 1: Win, lose, and tie rates of the proposed method
compared to the single watermark baseline for different
values of the bias term (δ). The last column shows the
difference between the win rate and the lose rate.

4 Experiment 175

4.1 Experimental Setup 176

To evaluate the effectiveness of the proposed 177

nested watermark, we conducted experiments us- 178

ing Llama-2-7b-chat1. These experiments were 179

performed with varying maximum output token 180

counts, ranging from 50 to 100. For the nested 181

watermark, we set the hyperparameters as follows: 182

γ = 0.5, δ1 = 1.5, and δ2 = 2.5. The detec- 183

tion threshold θ was set to 4.0 as in (Kirchenbauer 184

et al., 2023a). For the evaluation dataset, we gener- 185

ated 1,000 samples of an English instructions using 186

GPT-4. This dataset consists of pseudo-prompts 187

generated based on topics that reflect real-world use 188

cases where LLMs are employed, such as news ar- 189

ticles and social media posts. In contrast, previous 190

work (Kirchenbauer et al., 2023a) focuses on text 191

completion tasks, where the prompts used during 192

inference are composed of fragmented texts sam- 193

pled from C4 dataset. By employing our dataset, 194

we can evaluate the proposed method in a setting 195

that more closely resembles actual generation sce- 196

narios. 197

4.2 Evaluation Metric 198

Embedding Success Ratio (ESR) The detection 199

accuracy of watermarks is commonly measured by 200

Type II Error, which indicates the precision of wa- 201

termark detection in a single embedding process. 202

However, in practical applications, it is assumed 203

that the detection is performed immediately after 204

embedding, and if the embedding fails, the process 205

is repeated until the detection succeeds, effectively 206

reducing the Type II Error to zero. Based on this as- 207

sumption, we introduce a new metric called the Em- 208

bedding Success Ratio (ESR). ESR represents the 209

proportion of successful watermark embeddings in 210

a single attempt (ESR is equal to the reciprocal of 211

Type II Error). 212

1https://huggingface.co/meta-llama/
Llama-2-7b-chat
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Embedding success ratio (ESR %) Text quality (win rate %)

Nested watermark (ours) Single (baseline)

Length Watermark I Watermark II Unified Watermark I diff. Nested Single diff.
100 84.6 56.8 95.4 93.3 2.1 27.30 28.35 -1.05
90 77.4 48.1 92.7 88.8 3.9 27.40 26.95 0.45
80 69.4 41.6 87.4 83.8 3.6 25.70 24.40 1.30
70 58.0 32.7 82.7 74.1 8.6 23.15 22.95 0.20
60 53.4 25.3 75.4 68.6 6.8 20.95 20.55 0.40
50 37.5 16.2 63.5 52.1 11.4 18.70 16.05 2.65

Table 2: Comparison of the proposed method and the baseline for varying text lengths. In the ESR comparison, the
proposed method shows the individual accuracy of the first and second watermarks, as well as the accuracy when
both detection results are combined using Fisher’s method (Unified). For the text quality comparison, the win rates
of each method are presented, excluding the instances judged as ties by GPT-4.

Text Quality To quantitatively evaluate the im-213

pact of watermark embedding on text quality, we214

employ the automatic evaluation method called215

LLM-as-a-judge (Zheng et al., 2024), which uti-216

lizes GPT-4 (gpt-4-1106-preview). By using LLM-217

as-a-judge, we can comprehensively assess not only218

the grammatical mistakes caused by watermarking219

but also how the watermarks affect the model’s abil-220

ity to provide semantically relevant responses to221

instructions. It is crucial to acknowledge that LLM-222

as-a-judge shows positional bias, influenced by the223

order of presented texts. To counteract this, we con-224

duct two comparisons per example with swapped225

text orders and report the average result.226

4.3 Preliminary Experiment227

To determine the bias δ for the single watermark228

baseline, we conducted a preliminary experiment.229

As shown in Table 1, we compared text quality of230

the proposed method (δ1 = 1.5, and δ2 = 2.5) and231

single watermark baseline for three different values232

of bias δ, while maintaining the text length at 50.233

The experimental results show that when the bias234

term is high, such as δ = 3.5 or 4.0, the text quality235

of the baseline significantly deteriorates compared236

to the case where δ = 3.0. Even at δ = 3.0, the237

proposed method slightly outperforms the baseline238

by 1.2%. However, considering that higher bias239

values lead to better ESR, for the remaining exper-240

iments, we adopt δ = 3.5 as the baseline, where241

the proposed method’s text quality is sufficiently242

superior.243

4.4 Results244

Table 2 presents a comparison of the embedding245

success ratio (ESR) and text quality between the246

proposed method and the baseline. In terms of 247

ESR, the proposed method outperforms the base- 248

line across all text lengths. The performance gap is 249

most significant at the shortest length of 50, with a 250

difference of more than 11 percentage points. On 251

the other hand, as the length increases, the perfor- 252

mance difference narrows. Within the proposed 253

method, the first watermark achieves a higher ESR 254

compared to the second watermark. When the 255

length reaches 100, the second watermark alone 256

enables detection in more than half of the samples. 257

This finding indicates that the inclusion of a second 258

watermark enhances the robustness and security 259

of the watermarking scheme, providing a fallback 260

mechanism even if the key for the first watermark 261

is compromised. 262

Regarding text quality, the proposed method 263

demonstrates performance on par with or superior 264

to the baseline for all lengths, except for length of 265

100. The difference is most pronounced at a length 266

of 50, with a 2.65 percentage point advantage for 267

the proposed method. Similar to the observations 268

in the ESR comparison, the quality difference tends 269

to diminish as the length increases. 270

5 Conclusion 271

In this paper, we proposed a novel nested water- 272

mark which mitigates the limitations of single wa- 273

termarks, particularly in scenarios involving short 274

text segments. The nested watermark achieves a 275

higher ESR while maintaining the quality of the 276

generated text, as demonstrated through compre- 277

hensive experiments. Future research directions 278

include investigating the performance of the nested 279

watermark under adversarial settings, such as inten- 280

tional attacks aimed at removing the watermarks. 281
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6 Limitations282

While our proposed nested watermark approach283

demonstrates promising results in terms of detec-284

tion accuracy and text quality preservation, there285

are certain limitations to our study that should be286

acknowledged. Firstly, we employ the LLM-as-a-287

judge evaluation metric to assess the quality of the288

generated text. Based on this metric, our experi-289

mental results suggest that the proposed method290

achieves a higher ESR while maintaining text qual-291

ity comparable to or better than the baseline. How-292

ever, it is important to note that the evaluations293

performed by GPT-4 may not always align with294

human judgments. This discrepancy could poten-295

tially impact the reliability of the text quality as-296

sessment. Moreover, the text samples used in our297

experiments consist of extremely short token se-298

quences and fragments truncated at a maximum299

length. This poses challenges in accurately eval-300

uating the text quality, as the limited context may301

hinder the ability to make meaningful comparisons.302

This is evident in the case of length=50, where the303

tie rate is approximately 65% (tie rate indicates304

instances where the text quality cannot be clearly305

distinguished). This high tie rate suggests that clear306

differences in text quality are difficult to observe in307

such short sequences.308

To address these limitations, future research309

should focus on conducting more rigorous eval-310

uations of text quality. This can be achieved by311

involving multiple human evaluators and establish-312

ing clear evaluation criteria for different aspects of313

the text. By incorporating human judgments and314

defining specific evaluation dimensions, we can ob-315

tain a more comprehensive and reliable assessment316

of the text quality.317
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