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ABSTRACT

Federated Domain-Incremental Learning (FDIL) orchestrates model updates across
multiple clients with data drawn from diverse domains. Although pre-trained
models (PTMs) offer a robust initial foundation, naively adapting them in FDIL
environments often leads to inter- and intra-client task confusion, in addition to
catastrophic forgetting. In this work, we mathematically characterize these issues
within the FDIL framework and introduce Representative Replay and Mixture of
BatchNoise Autoencoders (ReMoBA), a replay-based generative approach that
consolidates both representations and classifiers. Specifically, ReMoBA employs
a diversity-guaranteed exemplar-selection strategy in the latent space to replay
the optimally curated tiny subset of past data stored at the client side, preserving
previously acquired representations while the new domain embeddings are deter-
mined for all the clients by the server globally via charged particle system energy
minimization equations and repulsive force algorithm. ReMoBA further leverages
a mixture of autoencoders, trained with structured noise, to enhance robustness
and generalization. Extensive experiments on benchmark datasets demonstrate that
ReMOoBA consistently outperforms state-of-the-art FDIL methods, offering PTMs
superior adaptability to new domains and mitigating inter- and intra-client task
confusion. Source code will be released upon acceptance.

1 INTRODUCTION

Federated Domain-Incremental Learning (FDIL) is a challenging scenario in which a model must
continuously adapt to new domains on decentralized clients (Sun et al.| 2024a; Li et al.| [2024a; Sun
et al.,2024b} [Zhou et al., 2024b)). Pre-trained models (PTMs) offer a powerful initialization for such
incremental learning tasks (Han et al.,[2021; /Wang et al.| 2022ajbzc). However, simply fine-tuning
or naively adapting PTMs in FDIL can cause inter- and intra-client task confusion in addition to
catastrophic forgetting, as highlighted in recent studies (Khademi Nori & Kiml, [2025; [Nori et al.,
20255 [Shokrolahi & Kim), [2025}; |Cormerais et al., |2021; [Masana et al., 2020).

PTMs in FDIL specifically encounter three major issues: inter-client task confusion, intra-client task
confusion, and within-task class confusion (Nori et al., 2025)). Inter-client task confusion arises when
the model struggles to differentiate tasks originating from distinct domains across various clients. In
contrast, intra-client task confusion occurs when the model fails to discriminate among multiple tasks
within the same client. Lastly, within-task class confusion occurs when the model fails to discriminate
classes within a task. Catastrophic forgetting refers to the tendency of the model to lose either of the
three aforementioned distinctory knowledge (Khademi Nori & Kim), [2025; Shokrolahi & Kim) 2025},
Cormerais et al.,|2021; Masana et al.,|2020). Addressing these challenges (across the representations
and classifiers) is vital to enhancing the effectiveness of PTMs in FDIL environments.

Previous works utilizing PTMs in FDIL scenarios (Sun et al., 2024a; Li et al.l [2024a} |Sun et al.|
2024bj [Zhou et al., 2024b) have not adequately addressed critical issues of inter- and intra-client task
confusion (Khademi Nor1 & Kim| 2025} [Shokrolahi & Kiml [2025} |Cormerais et al.| [2021; | Masana
et al.,|2020) (across representations and classifiers). To bridge this gap, our contributions in this paper
are as follows:
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* We mathematically formalize inter-, intra-client task confusion, and within-task class confu-
sion for PTMs in FDIL, providing theoretical insight into the nature of optimal solutions for
FDIL scenarios.

* We propose Representative Replay and Mixture of BatchNoise Autoencoders (ReMoBA),
a novel approach that guarantees sample diversity by leveraging a latent-space exemplar-
selection strategy to replay a tiny curated subset of past data stored on the client side,
effectively addressing intra-client task confusion and within-task class confusion (Bardenet
et al., [2024).

* On the server side, ReMoBA utilizes energy minimization equations from charged particle
systems and the repulsive force algorithm (Nazmitdinov et al., 2017) to globally determine
new domain embeddings for all clients, ensuring consistency of representation among
clients.

* ReMoBA further employs a mixture of autoencoders trained with structured noise. These
autoencoders have been shown to effectively reduce inter-client task confusion (Nori et al.,
2023; [van de Ven et al., 2021).

2 LITERATURE REVIEW

Domain-Incremental Learning (DIL). Incremental learning is divided into three categories: task-
incremental learning, DIL, and class-incremental learning (van de Ven & Tolias,|[2019). In DIL, the
model encounters a sequence of tasks where the input distributions change (different domains) while
the output classes remain the same (Wang et al.|[2024). A canonical example is learning to recognize
the same objects under different imaging conditions or backgrounds, each condition providing data
from a new domain (Shi & Wang, 2023).

DIL with Pre-Trained Models (PTMs). Leveraging PTMs has emerged as a powerful trend in
incremental learning, particularly in DIL scenarios (Wang et al., 2022a:b). PTMs such as large
convolutional backbones or vision transformers trained on massive datasets offer broad, generalizable
feature representations (Zhou et al., [2024bf |Smith et al.| |2023)). In fact, recent work has shown that
using a frozen pre-trained encoder and only learning lightweight components can beat state-of-the-art
incremental learning methods (Wang et al.| 2022c; [Han et al., 2021). For example, a simple baseline
that keeps a pre-trained CNN frozen and incrementally computes class prototypes (means of feature
vectors for each new class) can outperform complex incremental learning models trained from scratch
(Zhou et al., [20244a).

Federated Domain-Incremental Learning (FDIL). FDIL integrates DIL (Shi & Wang, 2023)
into the federated learning framework, enabling multiple clients (such as devices or data silos) to
collaboratively train a shared global model while preserving data privacy (Li et al.,[2024a). In FDIL,
each client encounters a sequence of tasks or domains over time, with their data remaining local
to avoid sharing with others or the central server (Li et al., 2024b). Notably, the task sequences
across clients may exhibit distinct domain shifts, reflecting the diverse data distributions typical in
decentralized environments (Psaltis et al., [2023)). This setup is particularly relevant to real-world
applications; for instance, in personal mobile devices, where each device continuously encounters
new domains, FDIL allows for collective model improvement without the need to pool sensitive data
centrally (Huang et al.| [2022).

Task Confusion. In incremental learning, models often suffer from task confusion, a challenge
where they must discriminate multiple tasks without explicit task identifiers (Cormerais et al., 2021}
Masana et al., [2020). |[Khademi Nori & Kim|(2025)) demonstrate that task confusion is distinct from
catastrophic forgetting. Building upon that, |Nor1 et al.|(2025)) extend the concept of task confusion
to federated learning, distinguishing between inter-client and intra-client task confusion. Recent
work by Shokrolahi & Kim/(2025) demonstrates that metric learning can effectively mitigate task
confusion.

Exemplar Selection. Exemplar selection is a key method in incremental learning, designed to retain
a small, representative subset of data from prior tasks to address task confusion and catastrophic
forgetting (Nokhwal & Kumar, 2023 Luo et all) [2024). Methods vary in complexity, ranging
from simple random sampling - surprisingly effective despite its simplicity - to more sophisticated
techniques such as clustering or herding, which select exemplars based on proximity to class centroids
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(Masana et al., 2020; [Pereira et al., [2025)). Advanced approaches, however, explicitly emphasize
diversity. For example, Determinant Point Processes Probabilistically Select a Guarantee-ably Diverse
exemplar set (Chen et al.| 2023; Bardenet et al., |[2024).

Generative Modeling. Incremental learning strategies can be divided into two broad categories: dis-
criminative and generative. Most strategies including generative replay fall within the discriminative
category because they ultimately rely on a discriminator for classification—even when generators are
employed for rehearsal purposes (Khademi Nori & Kiml| 2025)). In contrast, generative classifiers
employ generative modeling directly for classification. Hayes & Kanan|(2020); Nori et al.|(2023);
van de Ven et al.|(2021)); Zajac et al[(2023) propose a rehearsal-free generative classifier that achieves
state-of-the-art performance in addressing task confusion and catastrophic forgetting.

3 FDIL PROBLEM FORMULATION

In FDIL, we consider a system consisting of K clients, each progressively encountering sequences
of tasks drawn from distinct domains. For client k, this sequence is represented as {D% } 2%, , where
Dt = (X}, V!) denotes the dataset for the ¢-th task. Here, X} = {x% ,}"""}' consists of input samples,

and i = {y}. ;},=1 are the corresponding labels with each x}, ; € R” belonging to class yj, ; € V.

In FDIL, the input distribution varies both temporally within a client and spatially across clients.

Specifically, for client &, the data distribution changes across tasks, i.e., p(X}) # p(X, ,2/) fort # ¢,
reflecting intra-client domain shifts. Additionally, at the same global task ¢, data distributions differ
across clients, i.e., p(X}) # p(X},) for k # k', capturing inter-client heterogeneity. The target of
FDIL is to train a global model f that accurately classifies instances from all domains encountered by
all clients up to the current task ¢, while the objective function minimizes the expected loss over the
union of all seen data:

f* = argmin E(m,y)NDutmon]I(y 7é f(x)) and f* ~ argmin E(m,y)wD{;mn[’(f(w)v y) (h
fer feHr

where D! . = Ule Uizl Dj represents the union of all seen datasets, # is the hypothesis space,

I(+) is the indicator function (1 if true, 0 otherwise), and £ is a loss function measuring the discrepancy
between the model’s predictions and true labels. Since data remains local in FDIL for privacy, this
union is conceptual; the server has to achieve this goal through aggregated updates without directly
accessing client data.

Following prior work (Wang et al.l
2022bliclat [Smith et al 2023} [Zhou et al, Algorithm 1 Federated Domain Incremental Learning

2024b), we initialize the global model Require: Number of clients K, number of global tasks T,
with a pre-trained Vision Transformer rounds per task R, the PTM f,

(ViT) PTM to leverage its strong feature  1: for each global taskt = 1,...,7T do

extraction capabilities across evolving do- 2 Server broadcasts model f;—1 to clients

mains while maintaining a shared feature 3 for each communication round r = 1,..., R do
space, which is the last [CLS] token. As 4 for each client k € {1,..., K} in [t)arallel do

in (Zhou et al [2024b)), the PTM consists 2 Receive domain-specific data Dy
7
8

of a embedding function ¢(-) : RP — R4 Perform local training:

th ¢ ¢ foat [ & + LOCALUPDATE( fi—1, D},)
at extracts compact feature represen- Send updated local model f; , to server

tations and a classifier 1V, forming the . end for

full predictive function f(z) = W ¢(x). 10 Server aggregates client models:
The classifier is represented by a weight 11. fi e & YK R

matrix W € RIXEIY] where ¢t denotes  12: end for o

the current global task index, and K is the 13: end for
number of participating clients in FDIL.

The classifier at each client dynamically expands at each task by appending |Y'| new class-specific
weight vectors, yielding W = [wy, wa, ..., w; KIY\]' Predictions are made by selecting the class
index that maximizes the inner product between the weight vectors and the feature representation
j= (arg max; w:gb(m)) mod |Y'| (Wang et al., 2022b;cza; Smith et al., 2023 Zhou et al., [2024b).

As shown in Algorithm [T} the learning process in FDIL is organized into a sequence of global tasks
t =1toT, where T' = B if all clients have the same number of tasks (a simplifying assumption for
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this exposition). At each global task ¢, client k receives data D}, from its ¢-th domain and performs
local training. At each communication round r, a central server aggregates these local updates to
refine a global model f;. Each client accesses only its current dataset D}, during the ¢-th training
stage, retaining no direct access to past data unless explicitly curated.

Various approaches have been proposed in the literature to address incremental knowledge incorpora-
tion in FDIL. Some methods freeze the PTM feature extractor ¢(-) to preserve the stability of learned
representations, which are formed by training on a vast corpus of data. In contrast, other works allow
fine-tuning the PTM backbone, reporting promising results in adapting to new tasks while mitigating
catastrophic forgetting. In the next section, we present our proposed approach ReMoBA that follows
the latter approach, making tiny deliberate adjustments to the learning representations via energy
minimization equations from charged particle systems and the repulsive force algorithm to accommo-
date new domains. Furthermore, to combat intra-client task confusion and catastrophic forgetting,
ReMoBA curates a tiny number of samples with guaranteed diversity. And finally, ReMoBA adopts
generative modeling to address inter-client task confusion.

4 PROPOSED APPROACH: REMOBA

In traditional supervised learning, models are trained on a fixed dataset with a known class distribution,
and full access to training data is assumed throughout the training process. The objective is typically
to minimize a loss function that measures the discrepancy between predicted and true labels:

Io = / U(fo(x), y)p(@, y) dz dy. D)
X XY

In contrast, FDIL requires models to evolve continuously across tasks and clients, where data remain
decentralized and non-stationary. The global loss function must therefore account for both past and
present contributions across all client interactions (Nor1 et al.,[2025). This dynamic is captured in the
following recursive formulation:

M M
Iék+1) _ Z Z (Iék),m,n + Alékﬂ),m,n) 7 3)
m=1n=1
. . . (k+1),m,n . .
in which the incremental update A, is defined as:
(i) 1 N N E N N
k+1),mn __ m,n m,n
N 1 ) DURINEE) B ) WA L @
i=1j=1 =1 i=1 j=1
where u::l;iﬂ represents the pairwise loss between class ¢ from client m (at task /) and class j from

client n (at task step (k + 1)).

Equations [3]and [] capture the fundamental tension in FDIL: balancing the retention of previously
acquired knowledge, denoted by 7, (gk)’m’", against the acquisition of new information. This knowledge
retention is essential for addressing the stability-plasticity dilemma—the challenge of learning new
tasks without catastrophically forgetting previous ones. Common approaches to achieve this balance
include regularization techniques that constrain parameter updates, knowledge distillation methods
that preserve learned representations, and replay strategies that revisit past examples during new
learning phases.

Equation [4] contains two loss components that address different aspects of the learning challenge.
The first term governs learning the new task, capturing all interactions between classes in the current
task. The second term quantifies the loss between the new task and all previously learned tasks.
Inadequate minimization of this second term leads to intra-client task confusion, where the model
cannot effectively distinguish between different tasks within the same client (Nori et al., 2025)).

Beyond this intra-client challenge, Equation [3|implicitly addresses what we term inter-client task
confusion—the loss arising from interactions between tasks across different clients. When inter-
client task confusion remains unresolved, the model loses its ability to differentiate between classes
belonging to different clients (Nori et al., 2025)).



Under review as a conference paper at ICLR 2026

The above equations therefore reveal four fundamental challenges in federated continual learning:
(i) preserving previously acquired knowledge, (ii) effectively assimilating new tasks, (iii) mitigating
intra-client task confusion, and (iv) resolving inter-client task confusion. The literature collectively
refers to challenges (i) and (iii) as local forgetting, while challenge (iv) constitutes global forgetting
(Dong et al. 2022).

We propose ReMoBA-
Representative Replay and Algorithm 2 DPP-Coreset Sampler for FDIL

Mixture of Batch-Noise Autoen- Require: Data points X = {z1,

..., Tn}; weights p; VIT feature ex-

coders. The proposed approach tractor ¢(-); target size m

systematically addresses all Ensure: Weighted coreset (S, w) with |S| = m

the aforementioned challenges. Step 1: Feature extraction and kernel construction

ReMoBA  comprises three 1 F < [¢($1)7~T- L d(zn)]T € R > VT features
pillars: 2: Kij <+ E F > cosine similarity kernel

. : [1Ell2 (1 F5 |2
The first pillar—intended to Find scaling factor « via bisection s.t. tr(aK) = m; set K <+ aK
address old knowledge preser- Step 2: k-DPP sampling

vation and intra-client task 4. if n < 5000 then

confusion—is a provably diverse 5 Compute eigendecomposition K = > 7| \j u; u;
coreset that clients replay locally. 6: Sample S C X with |\S| = m via exact DPP sampling
We cast exemplar selection asa  7: else
8.
9

(O8]

negative-dependence sampling : Use Nystrom approximation for scalable sampling to obtain S
problem: selecting a minimal 9: endif
subset that is simultaneously Step 3: Importance reweighting
representative of past domains 10 forallz; € Sdo
and maximally non-redundant Hf wi < p(@:)/Kii

o . 12: end for
within the latent space of the ViT 13 return (S, )
backbone. Determinantal Point ’
Processes (DPPs) offer an ideal probabilistic framework by inherently favoring well-distributed
points with rigorous variance guarantees. Formally, we adopt the e-multiplicative coreset definition
of Bardenet et al.| (2024) and implement the corresponding sampler.

Specifically, given a weighted
dataset (X, u) and a function Algorithm 3 Physics-Based CCE Repulsion Dynamics

class -7'- g {f : X — R}, an . Input: Previous embeddings {P1, ..., Ps—1}, repulsive constant ¢,
e-multiplicative coreset defined mass m, time step At, duration 7

as a weighted subset (S, w) satis-  2: Output: Current task embeddings P,
fying, for all f € F: 3: Initialize P{ < ¢p(we—1, D¢), velocities v] < 0
4: fort =1to 7 do
Z;pes w(z)f(z) 1l < 5: for j = 1to J, do > Current task classes
ZzGX () f () e 6: F] <0 > Reset force accumulator
sy T for (¢',j) € {(',5') | " < €, 5" < Ju}\ {(¢,5)} do
Sampling the subset S using a k- o dempy
ampling the subset .S using a k- j j .
DPPpwiti marginal kerneng € o Fl < F) + W d > Repulsive force
R™*" provides significant advan- 10: eI;.d for i F )
tages over random sampling. In 11! vy v+ o At > Update velocity
practice, we construct the kernel ~ 12: p; < Py v, At > Update position
K using the cosine similarity be- 13:  end for
14: end for

tween ViT embeddings, ensuring
computational efficiency while maintaining diversity. The key benefit lies in the variance structure:
DPPs naturally select diverse points, leading to representative estimates.

For any bounded test function ¢ : X — R, define A(p) = > ¢ @(z) as the empirical sum over the
selected subset. The variance of this estimator is:

Var[A(p)] = Tr[®(I — K)PK], (6)

where @ is the diagonal operator defined as (®g)(x) = ¢(x)g(x). Crucially, the factor (I — K)
explicitly encodes negative dependence—when one point is selected, similar points become less likely
to be chosen. This significantly reduces variance compared to independent (i.i.d.) sampling, ensuring
that our small coreset provides more reliable estimates of the full dataset statistics.
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This variance reduction translates into strong concentration guarantees. For a universal constant
A > 0, the DPP sampler satisfies:

Pi{|A(p) —EA(p) 2 ¢) < QGXP(MijA(@)' ©

This provides Hoeffding-type concentration bounds without requiring independence assumptions,
ensuring diverse replay with minimal storage requirements (see Algorithm [2)).

The third pillar of ReMoBA inspired by [Nori
et al.| (2023)); ivan de Ven et al.| (2021)) further Algorithm 4 ReMoBA Server Protocol

mitigates inter-client task confusion via a mix- 1: Input: K tasks, I clients per round, {2 communica-
ture of batchnoise autoencoders (MBAs), in tion rounds

which each artificial neuron is characterized as 2 Initialize: PTM ¢, P 0
f (O, wiz; +b) + az, where Z introduces reg- 3: for task h = 1 to K do
—~1 . . . 4. Select I clients Cy,; broadcast ¢pp,—1
ularizing noise with magnitude controlled by : s . c .
. . 5: Receive embeddings { Py, }cec,, from clients
hyperparameter o and normalized noise term aligned " .
~ . 6: Py < PARTICLE_REPULSION({P}})
Z ~ N(0,1) drawn from a standard Gaussian aligned
distribution 7: Broadcast Ph to Cp
' 8: for round w = 1 to 2 do
Following [Nori et al|(2023); [van de Ven et al| 9: Receive {7}, }cec), froql clients
(2021), instead of a single autoencoder, Re- . A global , 1 c
o . ; . : ggregate ¢ 7" — =3 oo, B
MoBA utilizes a collection of lightweight, class- global I ectn
conditional batchnoise autoencoders. Crucially, B d]iroadcast ¢ 0 Ch
these autoencoders operate not on raw input data, 13 en def1(1) " or

but on the rich, high-dimensional feature repre-
sentations extracted by the shared ViT PTM backbone, ¢(-). This design makes them highly efficient
to train and allows them to focus on modeling the specific data manifold of each class within a
semantically meaningful space.

For each class ¢ € ) encountered by client &k Algorithm 5 ReMoBA Client Update
in task ¢, a dedicated autoencoder, consisting —
globa

of a batchnoise encoder E? and a batchnoise 1 Input: PTM ¢; %™, local data Dj, coresets

decoder GZ, is trained. The objective is to re- {Siti<n

construct the feature Vector of a given sample. 2: Output: Model update ¢}, {Aj}

: P < EXTRACT_EMBEDDINGS(¢7'**", D§)
send to server

(9%}

The reconstruction loss Lmon is as follows:

: forround r = 1to R do )
L+ Mg (M5) — {Pi|
Pallqned”

Using activation noise during the inference
phase, MBAs transform a deterministic predic-
tion into a stochastic sampling process. The +>‘2H¢h (D)

meDt lop(x) — GZ(EZ(p(x))) ||§ . (8) 4 Receive P9 from server
5: S + DPP_CORESET_SAMPLE(Dj)
where D}, _ is the subset of data from client ks~ 6: Mj, + U, ., Sf
task ¢ belongmg to class c. 7o @5 — ¢910bal
8
9:

theoretical goal is to compute the expected log- }(1) en dqégr& Ph —
likelihood lg- (z|y) over a continuous noise dis- 5. {A}  TRAIN_MIXTUREAUTOENCODERS(DS)
tribution 7(z), as defined by: 13- return b5, {AS)

E. (2 [log pe- (zly, 2)] = / log pe~ (x|y, z)r(z)dz. )

However, since this integral is intractable, Nori et al.| (2023)); |van de Ven et al.|(2021) approximate
it using a Monte Carlo estimation. For a given input @, the model’s response is evaluated n times,
with each forward pass perturbed by an independent noise vector z(*) drawn from the inference noise
distribution. The log-likelihoods from these n stochastic evaluations are then averaged to produce a
single estimate:

lo+ (w|y) ~ Zlogpe* (zly, 2D). (10)

Classification in MBAs is done by a direct application of Bayes’ rule, where the model assigns the
input @ to the class ¢ that yields the maximum estimated log-likelihood value: §j = argmax g« (x|y).
Yy
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Table 1: Average (A) and final (Ap) accuracy (%) of all methods on federated DIL benchmarks (first
task order). Best results are bold. All methods use ViT-B/16 IN1K. Methods with { use exemplars
(10/class). Office-Home and DomainNet report for 10 and 20 clients; CORe50 and CDDB-Hard
report 10-client results.

Methods/Benchmarks Office-Home DomainNet CORe50 CDDB-Hard
Clients 10 20 10 20 10 10
Accuracy A Ap A Ap A Ap A Ap A Ap A Ap
FedAvg (McMahan et al.|[2017) 68.63 70.71 6499 68.05 43.14 4428 3950 41.62 69.59 71.66 4532 4575
FedReplay' (Pennisi et al.[[2024) 76.00 79.27 7326 7590 60.06 61.35 57.32 5898 79.73 81.01 45.07 45.16
iCaRL' (Rebuffi et al.|[2017) 71.65 7638 70.09 7432 5427 5540 5271 5382 71.78 76.17 4823 4844
MEMO' (Zhou et al.|[2022) 65.23 66.64 61.85 62.07 5571 57.18 5233 5260 59.92 63.11 49.96 5838
SimpleCIL (Zhou et al.|[2023) 66.59 70.29 63.44 6756 34.60 38.65 31.45 3592 6599 69.32 5452 6281
L2P (Wang et al.[[2022c) 69.93 7383 66.54 69.68 44.44 4646 41.05 4231 7838 8299 58.69 67.89
DualPrompt (Wang et al.|[2022b) 7091 7628 6848 7238 4695 4829 4439 4452 8021 8291 5437 6281
CODA-Prompt (Smith et al.{[2023) 7643 79.74 7370 7724 53772 5578 5099 5128 82.83 86.07 5840 66.92
EASE (Zhou et al.[[2024c) 73.74 71.67 7133 72.82 4822 50.15 4581 4832 81.92 83.57 5946 67.08
RanPAC (McDonnell et al.|[2023) 74.16 7726 7056 7445 4892 4995 4532 47.14 7428 7736 61.78 67.74
S-iPrompt (Wang et al.[|2022a) 7223 7508 68.22 72.83 53.12 5354 49.11 5129 8091 82.09 67.06 76.37
DUCT (Zhou et al.[|2024b) 80.31 80.34 7747 7798 60.10 6225 57.76 5790 8440 86.76 7022 75.32
ReMoBA (Ours) 80.55 81.61 78.14 78.72 62.07 63.34 59.66 60.45 87.31 89.86 73.46 80.02
ReMoBA-Cos (w/ Cos Classifier) 7821 79.03 7588 7641 59.84 60.92 57.11 58.03 85.12 87.34 70.89 76.45

ReMoBA-Rand (Random Sampling) 77.64 7829 7512 7593 5873 59.87 56.05 5721 8397 85.88 69.55 74.88
ReMoBA-Herd (Herding Sampling) 79.02 80.15 76.73 7734 6045 61.76 5822 59.10 85.83 88.02 71.67 77.23
ReMoBA-LJ (Lennard-Jones) 79.88 80.94 7751 78.10 6122 6241 5897 5983 86.74 88.95 7231 78.67

It is worth noting that as mentioned in the previous section, following prior work for each domain-
class combination, one batchnoise autoencoder is trained. Algorithms ] and [5|outline the procedures
of ReMoBA at the server and clients.

5 EXPERIMENTS

Experimental Setting: We evaluate ReMoBA in the Federated Domain-Incremental Learning (FDIL)
setting, following established benchmarks and protocols from both PTM-based domain-incremental
learning (Wang et al., [2022b; |Zhou et al., [2024b; |Smith et al., 2023} |Zhou et al.,2023) and federated
continual learning literature (Li et al., 2019; Dong et al., [2022; Nori et al.,|[2025)). Experiments are
conducted on four widely-used benchmarks: Office-Home (Venkateswara et al., 2017), DomainNet
(Peng et all 2019), COReS0 (Lomonaco & Maltoni, [2017), and CDDB-Hard (L1 et al., [2023)),
covering diverse visual domains, real-world object categories, and challenging distribution shifts.
Each dataset is partitioned across 10 (and 20) clients using non-IID splits, where tasks correspond
to the sequential arrival of new domains per client, simulating realistic federated deployment. All
methods are evaluated under five distinct task orders to mitigate order bias. Full experimental details,
including client-domain assignment, hyperparameters, memory budgets, and additional splits, are
provided in the supplementary material.

Baselines and Evaluation Metrics: We compare ReMoBA against state-of-the-art methods from
both federated continual learning (FedAvg (McMahan et al.,|2017), FedReplay (Pennisi et al.| 2024),
MOON (Li et al., 2021)), FedWelT (Yoon et al.| 2021)) and centralized domain-incremental learning
(Replay (Ratcliff, |1990), iCaRL (Rebuffi et al.,[2017), MEMO (Zhou et al., [2022), SimpleCIL (Zhou
et al., [2023)), L2P (Wang et al., [2022c), DualPrompt (Wang et al., 2022b), CODA-Prompt (Smith
et al., 2023), EASE (Zhou et al., [2024c), RanPAC (McDonnell et al.| [2023)), S-iPrompt (Wang et al.|
2022a), DUCT (Zhou et al., [2024b))). All methods use the same ViT-B/16 backbone pre-trained
on ImageNet-21K to ensure fair comparison. Performance is measured by two key metrics: (1)
Average Accuracy (A), mean accuracy across all incremental tasks; and (2) Final Accuracy (Ap),
performance after learning the last task.

Implementation Details: We use SGD with momentum 0.9, batch size 128, and initial learning rate
0.001 (decayed by 0.1 every 5 epochs), training for 15 local epochs per task. Server aggregation
occurs every 3 local epochs (10 rounds per task). Exemplar-based methods, including ReMoBA,
use a fixed memory budget of 10 samples per class. Hyperparameters for DPP sampling (¢ = 0.1),
repulsion dynamics (¢ = 1.0, 7 = 50, At = 0.01), and MBA noise (« = 0.9,n = 10 Monte Carlo
samples) are kept consistent across datasets.
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Figure 1: Scalability of ReMoBA under increasing task and client load. (Top row) Average
accuracy as the number of tasks increases from 1 to 20 (fixed 10 clients). (Bottom row) Performance
as the number of clients scales from 5 to 50 (fixed 5 tasks). ReMoBA maintains high accuracy across
both axes, demonstrating strong resistance to catastrophic forgetting and inter-client misalignment.

Main Results: As shown in Table[T} ReMoBA consistently achieves state-of-the-art performance
across all benchmarks and client scales. On Office-Home (10 clients), ReMoBA improves average
accuracy by 0.24% and final accuracy by 1.27% over the strongest baseline, DUCT. Gains are
more pronounced on larger-scale and more heterogeneous benchmarks: on DomainNet (10 clients),
ReMoBA achieves 1.97% higher .A and 1.09% higher Ap; on CDDB-Hard, improvements reach
3.24% in A and a remarkable 4.70% in A . These results validate ReMoBA’s ability to mitigate both
intra-client forgetting (via DPP replay) and inter-client confusion (via physics-based alignment and
MBA:G), particularly under severe domain shifts and client heterogeneity.

Notably, pure federated methods (e.g., FedAvg) suffer from significant performance degradation due
to misaligned representations and lack of replay, while centralized DIL methods (e.g., iCaRL, L2P)
struggle to generalize across non-1ID client distributions. Even recent PTM-based approaches like
DUCT and CODA-Prompt, which excel in centralized settings, underperform in FDIL due to their
inability to explicitly model inter-client task confusion or adapt representations globally.

Ablation Analysis: To dissect the contribution of each ReMoBA component, we evaluate four
key ablations reported in Table[I] First, ReMoBA-Cos, which replaces the Mixture of BatchNoise
Autoencoders (MBAs) with a standard cosine classifier, shows a consistent performance drop across
all datasets, for instance, a 2.3% decline in average accuracy on CDDB-Hard, confirming that
stochastic MBAs are better for resolving inter-client task confusion and improving robustness under
domain shift. Second, ReMoBA-Rand, which substitutes DPP-based exemplar selection with random
sampling, exhibits degraded performance (e.g., 2.9% A on CORe50), demonstrating that diversity-
aware selection is more effective for preserving previous knowledge and combating intra-client
forgetting. Third, ReMoBA-Herd, which adopts iCaRL-style herding (centroid-based selection),
performs better than random sampling but still underperforms DPP (e.g., 1.5% A on DomainNet-
10), as herding prioritizes centroid proximity over diversity, leading to redundancy in the latent
space. Finally, ReMoBA-LJ, which replaces Coulomb repulsion with the Lennard-Jones potential
(introducing both attractive and repulsive forces), results in a slight but consistent performance
degradation (e.g., 0.7% A on Office-Home-10).

Scalability Analysis: To evaluate the scalability of ReMoBA in realistic FDIL settings, we analyze
its performance under two key stress tests: increasing task sequence length and growing client
population. As shown in Figure [1, ReMoBA exhibits remarkable robustness in both scenarios. In
the top row, when the number of tasks increases from 1 to 20, ReMoBA’s average accuracy declines
by only 2% across all benchmarks, indicating effective mitigation of catastrophic forgetting. In
contrast, CODA-Prompt and FedAvg show significant degradation—especially on CDDB-Hard,
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Figure 2: Latent space embedding dynamics under Coulomb repulsion. This visualization
illustrates the effect of ReMoBA'’s physics-inspired alignment mechanism on domain embeddings
in the latent space of a pre-trained ViT backbone. (Left) Before applying repulsive forces, the two
newly introduced domains (e.g., Sketch and Infograph, marked with triangles) are embedded close to
existing domain clusters, leading to potential inter-client task confusion and representation overlap.
(Right) After the server applies Coulomb repulsion dynamics — where each new domain embedding
experiences a force proportional to the inverse square of its distance from all prior domains — the new
domains are pushed away into distinct regions while preserving intra-domain compactness. The data
shown is synthetic but representative of real-world FDIL scenarios, generated using a non-IID split
of the Office-Home benchmark across 3 clients, with each client receiving sequential domain tasks.
Embeddings are extracted from the last layer of a ViT-B/16 model pre-trained on ImageNet-21K.

where CODA-Prompt drops by over 15%—highlighting their vulnerability to sequential domain
shifts.

The bottom row reveals ReMoBA’s resilience to client heterogeneity. Even with 50 clients, ReMoBA
maintains accuracy within 1-2% of its baseline, thanks to global repulsive force alignment that
enforces consistent representations across clients. FedAvg, however, collapses to near-random
performance (below 20%) as client diversity increases, due to misaligned local updates and lack of
coordination. DUCT performs better than FedAvg but still degrades significantly, underscoring the
importance of explicit inter-client consistency mechanisms. These results confirm that ReMoBA is
not only effective in small-scale settings but also scalable to large, dynamic federated environments.

Qualitative Representation Analysis: Figure 2] provides qualitative validation of ReMoBA's align-
ment mechanism. The clear separation of new domains after repulsion visually confirms the method’s
ability to resolve inter-client confusion—a core challenge in FDIL that competing methods fail to
address explicitly. This structural regularization in the latent space complements the quantitative
gains observed in Table|l|and Figure[l] offering interpretable evidence of representation advantage.

6 CONCLUSION

In this work, we introduce ReMoBA, a theoretically grounded and empirically effective approach for
Federated Domain-Incremental Learning with pre-trained models. ReMoBA addresses the critical
challenges of inter-client and intra-client task confusion as well as representation misalignment
through three synergistic components: (1) diversity-guaranteed DPP-based replay, (2) physics-
inspired Coulomb repulsion for global embedding alignment, and (3) mixture of batchnoise au-
toencoders for robust, generative classification. Extensive experiments across four benchmarks
demonstrate consistent state-of-the-art performance, with significant gains in both average and final
accuracy—particularly under large-scale, non-IID, and long-task-sequence conditions. Ablation stud-
ies and visualizations confirm the necessity of each component and provide interpretable insights into
the method’s behavior. ReMoBA offers a scalable, practical, and principled solution for deploying
PTMs in real-world federated continual learning systems.
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