
Towards a General Recipe for Combinatorial Optimization
with Multi-Filter GNNs

Frederik Wenkel∗
Dept. of Mathematics & Statistics

Université de Montréal
Mila – Quebec AI Institute

frederik.wenkel@umontreal.ca

Semih Cantürk∗

Dept. of Computer Science and Operations Research
Université de Montréal

Mila – Quebec AI Institute
semih.canturk@umontreal.ca

Stefan Horoi
Dept. of Mathematics & Statistics

Université de Montréal
Mila – Quebec AI Institute

Michael Perlmutter†
Dept. of Mathematics
Boise State University

Guy Wolf†
Dept. of Mathematics & Statistics

Université de Montréal
Mila – Quebec AI Institute

Abstract
Graph neural networks (GNNs) have achieved great success for a variety of tasks
such as node classification, graph classification, and link prediction. However,
the use of GNNs (and machine learning more generally) to solve combinatorial
optimization (CO) problems is much less explored. Here, we introduce GCON,
a novel GNN architecture that leverages a complex filter bank and localized
attention mechanisms to solve CO problems on graphs. We show how our
method differentiates itself from prior GNN-based CO solvers and how it can be
effectively applied to the maximum cut, minimum dominating set, and maximum
clique problems in a unsupervised learning setting. GCON is competitive across
all tasks and consistently outperforms other specialized GNN-based approaches,
and is on par with the powerful Gurobi solver on the max-cut problem. We
provide an open-source implementation of our work1.

1 Introduction
Recent years have seen the rapid development of neural networks for graph-structured data [37, 1].
Indeed, graph neural networks (GNNs) achieve state-of-the-art performance for tasks such as node
classification and are incorporated in industrial applications such as helping power Google Maps [10]
and Amazon’s recommender system [35]. Popular message-passing neural networks (MPNNs)
typically consider a graph together with a collection of features associated with each node [22, 39, 34].
In each layer, they first perform a local aggregation which effectively smooths the features over
neighboring nodes of the graph, and then perform a transformation which learns combinations of the
smoothed node features.

Here, we consider leveraging GNNs to solve combinatorial optimization (CO) problems, a somewhat
less explored yet emerging application area of graph learning. In particular, we focus on finding (i)
the maximum clique, i.e., the largest fully connected subgraph, (ii) the minimum dominating set,
i.e., the smallest subset of the vertices which “dominates" the graph in the sense that every vertex
is within at most one hop of the dominating set, and (iii) the maximum cut, i.e., a partition of the
vertices into two clusters with as many cross-cluster edges as possible.

Notably, these tasks differ significantly from, e.g., node classification in several important ways. The
aggregations used in common message passing neural networks are localized averaging operations

∗Equal contribution.
†Equal senior author contributions.
1https://github.com/WenkelF/copt

F. Wenkel et al., Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs. Proceedings
of the Third Learning on Graphs Conference (LoG 2024), PMLR 269, Virtual Event, November 26–29, 2024.

https://github.com/WenkelF/copt


Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

that can be interpreted, from the perspective of graph signal processing (GSP) [26, 29], as low-pass
filtering. In this manner, they effectively treat smoothness as an inductive bias. While this is a
useful heuristic on homophilic social networks such as the ubiquitous Cora, CiteSeer, and PubMed
datasets [7], we find that this assumption is not quite appropriate for CO problems. Moreover, in
CO problems, it is not reasonable to assume the presence of informative node features. Instead,
algorithms are expected to learn directly from the network geometry (taking initial inputs to be
constant or features derived from the graph structure, e.g., vertex degree). We also note that the CO
problems we are interested in are typically NP-hard. Therefore, it is computationally intractable to
obtain sufficient labeled data for supervised learning. As we shall see below, our approach tackles
various CO problems with a fully unsupervised framework, using task-specific loss functions.

To address these challenges, we propose the Graph Combinatorial Optimization Network (GCON),
a novel GNN that uses a hybrid filter bank consisting of both (i) aggregation operations such as
those used in common MPNNs, as well as (ii) comparison operations, which will take the form of
band-pass, wavelet filters and aim to capture more intricate aspects of the network geometry. In order
to balance the importance of these different filters, we use a localized attention mechanism which
may choose to lend more importance to different filters on a node-by-node basis. We compare GCON
to various competing methods, such as heuristics, commercial solvers, other specialized GNN-based
approaches [18, 25], and recent advances that apply GFlowNets (GFNs) to the above mentioned
problems [41]. Our main contributions are:

1. We develop GCON, a novel GNN architecture with a sophisticated filter bank and a localized
attention mechanism that is particularly suited for solving CO problems.

2. We evaluate GCON on a variety of graph-CO problems on synthetic graph benchmarks, and
demonstrate that our architecture is highly performant.

3. We prove a theorem that helps us interpret the improved performance of our method.

2 Background and Related Work
Many well-known graph-CO problems are either NP-hard or even NP-complete [19], rendering it
impossible to efficiently generate exact solutions for large graphs. Instead, one may hope to efficiently
generate approximate solutions. Almost forty years after Hopfield and Tank [17] first proposed
applying deep neural networks to CO problems, there has been a recent revival in achieving this goal
via GNNs. Indeed, GNNs are a natural candidate due to their success on a wide variety of tasks such
as node classification, graph classification, and link prediction [1, 37]; a comprehensive overview can
be found in Cappart et al. [8]. Researchers have explored ways to solve graph-CO problems using
both supervised and unsupervised (in particular self-supervised) methods as well as reinforcement
learning (RL). Unfortunately, supervised methods are often computationally infeasible due to the
cost of labeling for NP-hard problems. RL-based solutions, on the other hand, may run into problems
arising from the large size of the state space. We thus view self-supervised learning as the most
promising family of approaches.

Notably, Tönshoff et al. [32], Karalias and Loukas [18], Min et al. [25] have all used GNNs to solve
CO problems in a unsupervised manner through self-supervision. Tönshoff et al. [32] solves binary
constraint satisfaction problems using message-passing with recurrent states. Subsequently, Karalias
and Loukas [18] proposed a seminal self-supervised learning framework in which a GNN outputs a
Bernoulli distribution over the vertex set of the input graph, and a surrogate loss function designed
to encourage certain properties in the distribution (e.g., vertices that are assigned high probabilities
form a clique) and softly enforce constraints in a differentiable manner. They then propose specific
loss instantiations to tackle maximum clique and graph partitioning problems. A similar loss is
derived in Min et al. [25], who use an architecture based on the graph scattering transform [14] to
obtain promising results for the maximum clique problem. A notable difficulty associated with these
methods is that the proposed self-supervised loss functions are highly non-convex. This motivated a
separate line of work by Sun et al. [30] which designed an annealed optimization framework that
aims to optimize GNNs effectively for such loss functions. We also note the recent work by Zhang
et al. [41], which effectively applied generative flow networks [3] to solve CO problems in an iterative
manner. Our work is most closely related to Karalias and Loukas [18] and Min et al. [25], relying on
the same or closely related self-supervised loss functions, while improving on the learned part of the
pipeline, leveraging a more powerful hybrid GNN architecture.

2



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

Finally, GCON is related to several lines of work on building neural solvers that can perform well
across graph-CO problems. Tönshoff et al. [33] and Boisvert et al. [6] propose building unified
representations for constraint satisfaction problems (CSP), Berto et al. [4] and Zhou et al. [42]
similarly propose unified methods for vehicle routing problem (VRP) variants, while Drakulic et al.
[11] proposes a modular architecture for multi-task learning over a variety of CO problems.

3 Problem Setup
The purpose of this paper is to develop methods for (approximately) solving combinatorial optimiza-
tion problems on graphs in a scalable and computationally efficient manner.

We let G = (V,E) denote a simple, connected, undirected graph. We assume an arbitrary (but
fixed) ordering on the vertices V = {v1, . . . , vn}. In a slight abuse of notation, if x is a function
defined on the vertices V , we do not distinguish between x and the vector defined by xi = x[vi].
We let A ∈ Rn×n be the adjacency matrix of G, let D be the corresponding diagonal degree matrix,
D = diag(A1), and let P = 1

2 (I+AD−1) denote the transition matrix of a lazy random walk (a
Markov chain in which, at each step, the walker either stays put or moves to a neighboring vertex,
each with probability one half). Finally, we let X ∈ Rn×d denote a matrix of input node features.

We consider the following CO problems in this work, but also note that our framework could be
extended to a large variety of graph-CO problems such as vertex cover, maximal independent set or
graph coloring by constructing appropriate supervised or self-supervised loss functions:

1. Maximum Cut: Find a partition of the vertex set V = S ⊔ T that maximizes the number of
edges between S and T , i.e., |{{vi, vj} ∈ E : vi ∈ S, vj ∈ T}|.

2. Maximum Clique: Find a fully connected subgraph (a clique) with as many vertices as possible.
3. Minimum Dominating Set: A subset of the vertices S ⊆ V is called a dominating set if for

every vertex vi is either an element of S or a neighbor of S, in the sense that {vi, vj} ∈ E for
some vj ∈ S. Find a dominating set with as few vertices as possible.

4 Methodology
We treat each of the CO problems as an unsupervised learning problem. We first compute basic node
statistics to serve as input features to the graph. We then use our GNN, described in detail in Section 5,
to generate a function/vector p whose i-th entry pi = p[vi] is interpreted as the probability that vi
is in the set of interest. We apply a sigmoid in its final layer ensuring that all entries are between 0
and 1. Finally, we use a rule-based decoder to construct a candidate solution by subsequently adding
nodes ordered by decreasing probability, based on p. Our methodology is illustrated in Fig. 1. In the
following subsections, we will explain how to develop suitable loss functions and decoders for each
problem of interest.

4.1 Maximum Cut

In this problem, we aim to find the maximum cut V = S ⊔ T, and without loss of generality, we
choose pi to be the probability that vi ∈ S. We then define y := 2p−1n (where 1n ∈ Rn is the
vector of all 1’s) so that the entries of y lie in [−1, 1] (rather than [0, 1]) and use the loss function

L(y) := 1
2 y

⊤ Ay =
∑

{vi,vj}∈E yiyj .

After learning y, we then set S to be the set of vertices where y is greater than or equal to zero and T
to be the set of vertices where y is negative. Intuitively, we note that every edge that connects two
nodes in different parts of the cut, i.e., sgn(yi) = − sgn(yj), decreases the loss, while the opposite
case yields an additive term that increases the loss. For example, if p = 1S (where 1S is the indicator
function on S ⊂ V , i.e, 1S [v] = 1 if v ∈ S, and zero otherwise), we have y = 1S − 1T , and our
loss function is equal to the number of cuts minus the number of intra-cluster edges. Thus, the loss
function encourages a node labeling that cuts as many edges as possible.

4.2 Maximum Clique

For the maximum clique, we let A denote the adjacency matrix of the complement graph G = (V,Ec),
where Ec is the set of all {{vi, vj} /∈ E, i ̸= j} and use the two-part loss function considered in

3



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

Min et al. [25] (see also Karalias and Loukas [18]):

L(p) := L1(p) + βL2(p) = −p⊤ Ap+β p⊤ Ap .

To understand this loss function, consider the idealized case where p = 1S is the indicator function
of some set S. In that case, one may verify that

−L1(1S) = 1⊤
S A1S =

∑
i,j

A[i, j]1S [vi]1S [vj ]

is the number of edges between elements of S. Similarly, we see have that

L2(1S) = 1⊤
SA1S =

∑
i,j

A[i, j]1S [vi]1S [vj ]

is the number of “missing edges” within S, i.e., the number of {vi, vj} ∈ Ec, vi, vj ∈ S. Therefore, in
minimizing L(p), we aim to find a subset with as many connections, and as few missing connections,
as possible. The hyper-parameter β is used to balance the contributions of L1 and L2.

After computing p, we then reorder the vertices {vi}ni=1 → {v′i}ni=1 so in the new ordering p(v′i) ≥
p(v′i+1). We then build an initial clique by initializing C(1) = {v′1} and iterating over i. At each
step, if C(1) ∪ {v′i} forms a clique, we add v′i to C(1), otherwise we do nothing. Note that C(1) is
guaranteed to be a clique by construction.

We then repeat this process multiple times to construct additional cliques C(2), . . . , C(K). However,
on the k-th iteration, we initialize with C(k) = {v′k} and automatically exclude v′1, . . . , v

′
k−1 from

C(k). We then choose the maximal clique C∗ to be the C(k) with the largest cardinality. We note
that increasing K does increase the computational cost of our decoder; however, running the decoder
with different initializations {v′k} can be parallelized in a straightforward manner.

4.3 Minimum Dominating Set

For the minimum dominating set problem, we use the loss function:

L(p) := L1(p) + βL2(p) := ∥p ∥1 + β
∑
vi∈V

exp

 ∑
vj∈Nvi

log(1− p[vj ])

 ,

where Nv denotes the set of nodes within distance one of v (including v itself). The first loss term
promotes the sparsity of the dominating set. To understand the second term, observe as soon as
there is at least one vj ∈ Nvi with p[vj ] ≈ 1 we will have exp

(∑
vj∈Nvi

log(1− p[vj ])
)
≈ 0.

Indeed, we note that, if p = 1S is the indicator function of a dominating set S, we have that
exp

(∑
vj∈Nvi

log(1− p[vj ])
)
= exp(−∞) = 0, for all vi. Therefore, L(1S) = ∥1S∥1 would be

exactly the cardinality of S.

After learning p, we construct our proposed minimum dominating set in a manner analogous to
the max-clique case. We again begin by reordering the vertices so that p(v′i) ≥ p(v′i+1). We then
initialize our first dominating set S(1) = {v′1} and iterate over i. At each step, we check if S is a
dominating set. If so, we stop. Otherwise, we add v′i+1 to S(1) and repeat the process. Similarly
to the maximum clique, we repeat this process several times, where we initialize S(k) = {v′k}
(automatically excluding v′1, . . . , vk−1′ from the set S(k) considered on the k-th iteration) and take
S∗ to be the smallest dominating set S(k) found in any iteration.

5 The GCON Architecture
In this section, we introduce the Graph Combinatorial Optimization Network (GCON). A notable
feature of our architecture is that it utilizes several different types of filtering operations in each layer.
It includes localized aggregation operations similar to those used in common message-passing neural
networks (which may be interpreted as low-pass filters from a GSP perspective). We also include
comparison operations that extract multi-scale geometric information and consider changes across

4



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

G
C

O
N

Fi
lte

rin
g

N
or

m
 +

 D
ro

po
ut

A
ct

iv
at

io
n

R
ul

e-
ba

se
d

D
ec

od
er

FC
 L

ay
er

(s
)

M
in

M
ax

 / 
So

ftm
ax

G
ra

ph
 s

ta
tis

tic
s

FC
 L

ay
er

(s
)

Figure 1: Illustration of our general framework. Graphs are first equipped with node features derived
from graph statistics and then passed through a GNN composed of GCON hybrid layer blocks (detail
in Fig. 2(a)) with a min-max or softmax output layer. A rule-based decoder then processes the
node-level outputs to determine the set of interest.

(a) (b)

Figure 2: Illustration of the layer-wise update for (a) the new decoupled GCON filter bank and (b)
the ScatteringClique filter bank from Min et al. [25].

the different scales. These comparison operations will take the form of wavelets, based on those
utilized in the geometric scattering transform [14, 13, 43], and can be interpreted as band-pass filters
again from a GSP perspective. The different filters of each type will be combined using a localized
attention mechanism that allows the network to focus on different filters at each node, which makes
our architecture fundamentally different from many traditional GNN methods that apply the same
aggregation at each node of the graph.

5.1 The GCON filter bank: Aggregation and Comparison operations

The most basic component of our filter bank is a traditional one-step aggregation somewhat similar to
popular message passing neural networks (e.g., Kipf and Welling [22], Hamilton et al. [16]). It has the
form F1(X) := m (PX), where P = 1

2 (I+AD−1) is the lazy random walk matrix.2 The function
m := mσ,θ can be either a linear layer or multi-layer perceptron (MLP) with activation function σ
and learned weights θ. At each node, this process averages information from all direct neighbors of
the node, followed by a transformation step that learns new cross-feature combinations. Networks
utilizing this setup are commonly referred to as aggregate-transform GNNs [39] due to the alternation
of aggregations X → AGG(X) and transformations of node features AGG(X) → m(AGG(X)).
Additionally, we also consider higher-order aggregations of the form

Fk(X) := m
(
Pk X

)
, k ≥ 1. (1)

We will refer to the filters Fk as aggregation operations.

Next, we add filters inspired by diffusion wavelets [9] that calculate the difference of two different
aggregations Fk1

, Fk2
, where k1 ̸= k2, by setting

Fk1,k2(X) := m
(
(Pk1 −Pk2)X

)
. (2)

2One could readily replace P with generic graph shift operators S ∈ Rn×n, i.e., a matrix where S[i, j] = 0
unless {vi, vj} ∈ E or i = j. Likewise with the more complex filters Fk(X) and Fk1,k2(X) defined below.

5



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

Filters of this form are fundamentally different from Fk(X) discussed above. From the GSP
perspective, Fk1,k2(X) constitute band-pass filters, whereas Fk(X) constitute low-pass filters. Since
the operation X→ (Pk1 −Pk2)X compares aggregations at two different scales, we will refer to
them as comparison operations. We denote the set of all our filtering operations as F = FA ⊔ FC,
where FA consists of aggregation operations and FC consists of comparison operations. As our filter
bank consists of two different types of filters, we will also refer to it as a hybrid filter bank.

The use of the Fk1,k2 is inspired by the geometric scattering transform [43, 14, 27], a handcrafted
multi-layer network, which iteratively filters the input node features via dyadic diffusion wavelets
of the form X → (P2j−1

−P2j )X and takes vertex-wise absolute values in between wavelet
filterings. Notably, the original versions of the geometric scattering transform were handcrafted
feature extractors. However, subsequently, Wenkel et al. [36], Tong et al. [31] used the geometric
scattering transform as a basis for a fully learned graph neural network. In particular, Tong et al.
[31] aimed to learn the optimal diffusion scales (i.e., the powers ki to which P is raised) and Wenkel
et al. [36] introduced a hybrid-scattering network that utilized both aggregation operations (low-pass
filters) and comparison operations (band-pass, wavelet filters).

5.2 Attention over filters

We let Xℓ−1 denote the input to the ℓ-th layer and use an attention mechanism to determine the
importance of information from different filters for each node. For each filter response Hf :=

F (Xℓ−1) ∈ Rn×d, we concatenate it with a matrix of transformed input features H := m(Xℓ−1),
and apply an attention mechanism to their horizontal concatenation [H ∥Hf ]. This takes the form

sAf := σ ([H ∥Hf ]aA) , f ∈ FA, and sCf := σ ([H ∥Hf ]aC) , f ∈ FC

where aA,aC ∈ R2d are learned attention vectors for aggregation and comparison filters, respectively.
We then use softmax to normalize the importance scores across filters within FA and FC at each
vertex, resulting in a normalized score s̄A

f ∈ Rn and s̄C
f ∈ Rn given by

s̄A
f (v) = softmax ({sf [v] : f ∈ FA}) , s̄C

f (v) = softmax ({sf [v] : f ∈ FC}) . (3)

Importantly, sA
f and sC

f (and thus each s̄A
f and s̄C

f ) will take different values for each node. Therefore,
they act as localized attention mechanisms, which can up-weight different filters at different vertices.

Next, the filter responses are reweighted according to the attention scores, yielding aggregation and
comparison representations HFA ,HFC ∈ Rn×d:

HFA =
∑

f∈FA

(
s̄A
f ◦ 1d

)
⊙Hf , and HFC =

∑
f∈FC

(
s̄C
f ◦ 1d

)
⊙Hf ,

where, ◦ and ⊙ denote the outer and Hadamard product, respectively. Finally, Xℓ is then given by

Xℓ = MLP
(
Xℓ−1 +HFA +HFC

)
. (4)

Our layer-wise update rule is inspired by the one utilized in Min et al. [25], which also used a
localized attention mechanism to balance the contributions of aggregation and comparison operations
(i.e., low-pass and band-pass filters). However, our network improves upon Min et al. [25] in several
ways. Most importantly, it computes separate normalized attention scores s̄A

f (v) and s̄C
f (v) for the

aggregation and the comparison operators, whereas Min et al. [25] uses a single softmax for the entire
filter bank F . Additionally, Min et al. [25] omits the learnable function m in Equations 1 and 2, and
uses a different layer-wise update in place of Equation 4. For further details, see Appendix A.1.

5.3 Theoretical Analysis

As noted in the previous subsection, one of the improvements we introduce relative to Min et al. [25]
is a different method for computing the normalized attention scores. We normalize separately over
FA and FC, resulting in s̄A and s̄C, where Min et al. [25] applies a single attention mechanism over
the entire filter bank F = FA ⊔ FC. Below, we provide a theoretical analysis that underlines the
advantages of this modification. For clarity, we refer to our method as the decoupled architecture
since it separates (i.e., decouples) the aggregation operations FA and the comparison operations

6



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

FC when computing the normalized attention scores. We also refer to a variant of our method that
computes attention over the entire filter bank together (similar to Min et al. [25]) as the non-decoupled
architecture. In our analysis of the non-decoupled architecture, we also assume that the function m(.)
is not learned (only applying a nonlinear activation as in Min et al. [25]).

To understand the decoupled architecture, we note that the low-pass filters Fk and band-pass filters
Fk1,k2 constitute fundamentally different operations and capture different types of information. While
low-pass filters use a weighted averaging of the features of the node’s neighbors, band-pass filters
compare two such averages of neighborhoods at different scales. As different types of information
may be useful at different nodes, it is important that our MLP has access to both families of filterings.

However, we find that when grouped together, the outputs of the low-pass filters tend to have a
larger magnitude than the band-pass filters. Therefore, the MLP is incapable of extracting band-pass
information in the non-decoupled architecture. In the remainder of this section, we prove a theorem
illustrating this phenomenon as a complement to our empirical evidence presented later. We will
prove a result demonstrating that, in the non-decoupled architecture, the low-pass information will
dominate the band-pass information as long as the receptive fields of the filters are sufficiently large.
For simplicity, we will assume that we have a single node feature so that the input to our layer is a
signal x ∈ Rn. Moreover, for f ∈ F , we will write hf [v] to denote the response of f at v.

Definition 1 (Band-dominant representation). Consider a graph G = (V,E), a non-negative input
signal x ∈ Rn, and a filter bank F = FA ⊔ FC. For c > 1, we refer to the representation at a node
v ∈ V x 7→ (s̄f [v],hf [v])f∈F as c-band-dominant if

max{s̄f [v] : f ∈ FC} = c ·max{s̄f [v] : f ∈ FA}.

A band-dominant representation may be interpreted as a situation where the model is paying more
attention to band-pass filter information at a specific node than to low-pass filter information. We
now show that, under certain assumptions, the model may nevertheless primarily use the low-pass
information. We provide the proof of this statement in the Appendix A.2.

Theorem 1. Consider the non-decoupled architecture and a c-band-dominant representation x 7→
(s̄f ,hf )f∈F at a node v ∈ V for a non-negative input signal x ≥ 0. Then, if all filters have
sufficiently large scales, the low-pass filter responses will always dominate the band-pass filter
responses in the sense that ∑

f∈FC

s̄f [v]hf [v] ≤ ϵc
∑
f∈FA

s̄f [v]hf [v],

where ϵ > 0 can be made arbitrarily small if the scales of the filters are sufficiently large.

For adequate choices of filters, we can therefore expect the magnitude of filter responses of low-pass
filters to be significantly larger than the band-pass filter responses. This leads us to the conclusion
that the non-decoupled attention limits the ability of the network to leverage diverse information. Our
decoupled architecture addresses this shortcoming by (i) learning the functions m(·) for each filter in
Equations 1 and 2 to individually re-balance the filter responses, and (ii) decoupling low-pass from
band-pass filters to prevent the former from dominating the latter.

6 Experiments
Data & Benchmarks: Our choice of benchmark datasets is based on those used in previous works
exploring GNNs for CO problems [18, 41, 30]. For the maximum clique problem, we use the RB
model from Xu et al. [38] to generate challenging synthetic graphs as proposed by Karalias and
Loukas [18]. For MDS and maximum cut, we follow Zhang et al. [41] and Sun et al. [30], generating
Barabási–Albert (BA) graphs [2] on small (200-300 vertices) and large (800-1200 vertices) scales.

For benchmarks, we use Gurobi [15], a state-of-the-art program solver that outperforms all deep
learning-based methods in Karalias and Loukas [18] and Zhang et al. [41], alongside deep-learning-
based solvers and two heuristic approaches: Greedy (see Appendix F for the specific algorithms)
and mean-field annealing (MFA) [5], an extension of simulated annealing (SA) [23] that replaces the
Markov process formulation of SA with a mean-field to guide the search procedure.

We note that while Gurobi is very accurate when given large amounts of time, on tighter time budgets
it is unable to find optimal solutions [18]. As for deep-learning-based solvers, we compare against

7



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

Karalias and Loukas [18] (Erdős), Zhang et al. [41] (GFN), Min et al. [25] (ScatteringClique), and
Sun et al. [30] (Anneal). The Erdős models and ScatteringClique represent our main benchmarks
since our model & training framework, a GNN-based encoder-decoder with customized message-
passing layers, is most analogous to them. Anneal represents a different avenue in that it proposes a
novel training framework with an annealed loss function while borrowing Erdős’s architecture. For a
fairer comparison, we also compare against larger variants of Erdős and Anneal with the number of
layers and hidden dimensions set to match GCON at each task; denoted Erdős-large and Anneal-large
respectively. GFN is a generative flow network [3] based solver that represents the state-of-the-art
deep learning method on various problems, despite being less scalable than GNN-based solvers.

As input node features to GCON, we compute a collection of node-level statistics; we find that this
approach is superior to using one-hot encodings (akin to Erdős/Anneal) or random features. For BA
datasets we use node degree, eccentricity, cluster coefficient, and triangle counts; we drop eccentricity
on RB graphs due to its computational cost. These features are then mapped to the hidden dimension
of our GNN layers with a linear layer or a shallow MLP.

Table 1: Performance comparison of GCON with other baselines on small datasets. Average of three
runs with standard deviation listed. The best deep learning-based method is highlighted in bold, and
second best is underlined. † indicates Gurobi outperforms all deep learning methods on a given task.

Method Type MCut size ↑ Time ↓ MClique size ↑ Time ↓ MDS size ↓ Time ↓
BA-small RB-small BA-small

GUROBI OR 732.47† 13:04 19.05† 1:55 27.89† 1:47

GREEDY H 684.53 ± 1.17 0:13 13.54 ± 0.10 0:25 37.39 ± 0.19 2:13
MFA H 719.78 ± 1.08 1:36 14.81 ± 3.64 0:27 36.23 ± 0.13 2:56

GFN SSL 700.23 ± 0.60 2:57 16.22 ± 0.06 0:42 29.14 ± 0.68 2:20
ANNEAL SSL 704.28 ± 1.32 0:05 13.06 ± 0.15 3:42 66.52 ± 35.1 1:50
ANNEAL-large SSL 719.57 ± 1.56 0:08 13.27 ± 0.12 3:10 32.45 ± 0.49 1:20
ERDŐS SSL-GNN 704.72 ± 1.39 0:05 13.09 ± 0.19 3:42 69.92 ± 40.8 1:50
ERDŐS-large SSL-GNN 720.04 ± 1.23 0:08 13.21 ± 0.13 3:10 32.48 ± 0.29 1:20
ScatteringClique SSL-GNN 724.45 ± 1.46 0:18 15.80 ± 0.12 4:06 31.07 ± 0.12 1:11
GCON (Ours) SSL-GNN 727.09 ± 1.49 0:22 15.87 ± 0.15 4:09 30.26 ± 0.30 1:15

Table 2: Performance comparison of GCON with other baselines on large datasets. Average of three
runs with standard deviation listed. The best deep learning-based method is highlighted in bold, and
second best is underlined. † indicates Gurobi outperforms all deep learning methods on a given task.

Method Type MCut size ↑ Time ↓ MClique size ↑ Time ↓ MDS size ↓ Time ↓
BA-large RB-large BA-large

GUROBI OR 2915.29 1:05:29 33.89† 16:40 103.80† 13:48

GREEDY H 2781.30 ± 3.59 3:07 27.05 ± 0.26 0:25 141.95 ± 0.34 35:01
MFA H 2929.65 ± 4.14 7:16 28.56 ± 0.19 2:19 167.05 ± 1.59 36:31

GFN SSL 2826.64 ± 19.1 21:20 31.73 ± 1.50 4:50 113.77 ± 1.94 32:12
ANNEAL SSL 2858.85 ± 1.31 0:05 24.86 ± 0.63 4:12 317.30 ± 137 31:42
ANNEAL-large SSL 2878.73 ± 21.4 0:08 24.06 ± 0.48 4:20 131.89 ± 2.48 14:29
ERDŐS SSL-GNN 2858.72 ± 2.78 0:05 25.20 ± 0.14 4:13 274.09 ± 95.0 30:28
ERDŐS-large SSL-GNN 2881.48 ± 11.8 0.08 23.92 ± 0.66 4:19 134.39 ± 2.83 14:29
ScatteringClique SSL-GNN 2952.03 ± 4.85 0:19 29.36 ± 0.38 4:21 121.26 ± 1.68 14:52
GCON (Ours) SSL-GNN 2961.19 ± 3.58 0:27 29.46 ± 0.51 4:57 113.47 ± 0.63 11:24

Table 3: Ablation study comparing our decoupled GCON layer to the non-decoupled version and
common message-passing layers from the literature for the MCut problem on the BA-small dataset.
Average of three runs with standard deviation listed.

Convolution MCut size ↑ MClique size ↑ MDS size ↓
BA-small RB-small BA-small

GCON (Ours, decoupled) 727.09 ± 1.49 15.87 ± 0.15 30.26 ± 0.30
GCON (Ours, non-decoupled) 725.11 ± 1.77 15.78 ± 0.23 39.17 ± 5.47
ScatteringClique 724.45 ± 1.46 15.80 ± 0.12 31.07 ± 0.20
GCN 684.24 ± 0.20 15.24 ± 0.16 48.43 ± 1.66
GIN 691.86 ± 0.88 14.48 ± 0.33 33.96 ± 0.71

8



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

Results & Analysis: In Tables 1 and 2, we report the mean result of the objective sizes, in addition to
inference times for small and large datasets respectively. OR refers to algorithmic solvers, H refers to
heuristics while SSL refers to the self-supervised learning algorithms we compete against. SSL-GNN
denotes self-supervised methods with specialized GNN layers. OR results are as reported in Zhang
et al. [41], while we evaluate all H & SSL baselines on our synthetic datasets using identical data
splits across multiple seeds. More information on our experimental setup is available in Appendix B.

GCON attains the most striking results for the maximum cut problem (MCut). In both BA-small
and BA-large, we obtain the best results amongst all non-OR methods: On BA-small, we obtain a
max-cut size of 727.09, a mere five short of the Gurobi solver. On BA-large, the results are arguably
even more impressive: We not only attain the best result amongst non-OR methods, but also surpass
the Gurobi solver by almost 45 (due to the fact that Gurobi is unable to reach an exact solution within
the time constraint). The success of GCON is further underlined by the fact that the inference time is
fairly robust to the growing graph sizes in MCut, taking just 27 seconds to evaluate on 500 graph,
whereas it takes the Gurobi solver more than an hour to do so.

On the maximum clique (MClique) and minimum dominating set (MDS) benchmarks, GCON remains
very competitive. We surpass GFN by a small margin to attain the best result for MDS on large
graphs, while outperforming the GNN-based solvers ScatteringClique, Erdős and Anneal (including
the large variants) as well as the heuristic methods on all MClique and MDS benchmarks. The
iterative GFlowNet algorithm proves particularly useful for MClique, and represents the best SSL
method for both MClique experiments as well as MDS-BA-small. We should point out that further
gains for our algorithm may be possible here by integrating the optimization framework proposed
in Anneal [30] into our framework. In the meantime, by outperforming our main baselines Erdős
and ScatteringClique on all benchmarks tested on, we demonstrate the power of GCON as a model
framework for a wide array of graph-CO problems.

Finally, we perform an ablation study on the message-passing layers in order to demonstrate the
architectural gains of the GCON layer, presented in Table 3. We compare our GCON with a variant
without the decoupled filter bank as well as ScatteringClique and two well-established baseline
MPNNs, GCN [22] and GIN [39], the latter of which forms the backbone of the Erdős’ GNN
architecture. We use identical depth, width, and training procedure for all models. GCON provides
a clear improvement of about three cut-edges on average compared to ScatteringClique, and more
than 35 compared to the best MPNN baseline (GIN) thanks to our hybrid layer. Decoupling the filter
bank provides an additional two-edge improvement on average. We note that these gains are further
amplified on the large counterparts. Similar to the Erdős’ GNN, we use skip-connections and batch
normalization between layers and perform minimal hyperparameter tuning on several components
like the number of layers, layer normalization, and the use of skip-connections within the hybrid
layer. See Appendix B for further details on hyperparameter tuning.

7 Conclusion

We have introduced GCON, a novel GNN that uses a sophisticated pair of decoupled filter banks and
a localized attention mechanism for solving several well-known CO problems. GCON can be trained
using self-supervised loss functions, which allow us to estimate the probability p(v) that each node
is in the set of interest and then determine our solution by utilizing rule-based decoders. We then
demonstrate the effectiveness of our method compared to a variety of common GNNs and other SSL
methods, obtaining leading performance for the max-cut problem. We note that in the future, it would
be interesting to (a) combine our architectural improvements with better optimization frameworks to
leverage the power of our model better, and (b) extend GCON to other CO problems such as MIS and
graph coloring to further validate its efficacy.

Limitations and future work. We found our framework to be more difficult to optimize well on
larger datasets. This insight corroborates our understanding that the self-supervised loss functions
associated with graph-CO problems are highly non-convex and typically challenging to optimize.
This motivates future work that incorporates the annealed optimization framework from Sun et al.
[30] into GCON for superior performance. Additionally, the primary challenge regarding extending
GCON to other graph-CO problems would be to develop appropriate self-supervised losses or efficient
methods of producing labeled data to allow for supervised learning approaches.

9



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

Acknowledgements and Disclosure of Funding
This work was was partially funded by the Fin-ML CREATE graduate studies scholarship for PhD,
the J.A. DeSève scholarship for PhD and Guy Wolf’s research funds [Frederik Wenkel]; Bourse en
intelligence artificielle des Études supérieures et postdoctorales (ESP) 2023-2024 [Semih Cantürk];
Natural Sciences and Engineering Research Council of Canada (NSERC) CGS D 569345 - 2022
scholarship [Stefan Horoi]; NSF OIA 2242769 [Michael Perlmutter]; Canada CIFAR AI Chair,
IVADO (Institut de valorisation des données) grant PRF-2019-3583139727, FRQNT (Fonds de
recherche du Québec - Nature et technologies) grant 299376 and NSERC Discovery grant 03267
[Guy Wolf]; NSF DMS grant 2327211 [Michael Perlmutter and Guy Wolf]. This research was also
enabled in part by compute resources provided by Mila (mila.quebec). The content provided here is
solely the responsibility of the authors and does not necessarily represent the official views of the
funding agencies.

References
[1] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón. Comput-

ing graph neural networks: A survey from algorithms to accelerators. ACM Computing Surveys
(CSUR), 54(9):1–38, 2021. 1, 2

[2] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999. doi: 10.1126/science.286.5439.509. URL https://www.science.
org/doi/abs/10.1126/science.286.5439.509. 7, 15

[3] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 27381–27394. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
e614f646836aaed9f89ce58e837e2310-Paper.pdf. 2, 8

[4] Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan,
Junyoung Park, Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for
vehicle routing problems, 2024. URL https://arxiv.org/abs/2406.15007. 3

[5] Griff Bilbro, Reinhold Mann, Thomas Miller, Wesley Snyder, David van den Bout,
and Mark White. Optimization by mean field annealing. In D. Touretzky, edi-
tor, Advances in Neural Information Processing Systems, volume 1. Morgan-Kaufmann,
1988. URL https://proceedings.neurips.cc/paper_files/paper/1988/file/
ec5decca5ed3d6b8079e2e7e7bacc9f2-Paper.pdf. 7

[6] Léo Boisvert, Hélène Verhaeghe, and Quentin Cappart. Towards a generic representation of
combinatorial problems for learning-based approaches. In Bistra Dilkina, editor, Integration
of Constraint Programming, Artificial Intelligence, and Operations Research, pages 99–108,
Cham, 2024. Springer Nature Switzerland. 3

[7] A. Bojchevski and S. Günnemann. Deep gaussian embedding of graphs: Unsupervised inductive
learning via ranking. In Proc. of ICLR, 2018. 2

[8] Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovic. Combinatorial optimization and reasoning with graph neural networks. Journal
of Machine Learning Research, 24(130):1–61, 2023. URL http://jmlr.org/papers/v24/
21-0449.html. 2

[9] Ronald R Coifman and Mauro Maggioni. Diffusion wavelets. Applied and computational
harmonic analysis, 21(1):53–94, 2006. 5

[10] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez,
Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta prediction with graph
neural networks in google maps. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, pages 3767–3776, 2021. 1

[11] Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial
optimization agent learning, 2024. URL https://arxiv.org/abs/2406.15079. 3

[12] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. 15

10

https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://proceedings.neurips.cc/paper_files/paper/2021/file/e614f646836aaed9f89ce58e837e2310-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e614f646836aaed9f89ce58e837e2310-Paper.pdf
https://arxiv.org/abs/2406.15007
https://proceedings.neurips.cc/paper_files/paper/1988/file/ec5decca5ed3d6b8079e2e7e7bacc9f2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/ec5decca5ed3d6b8079e2e7e7bacc9f2-Paper.pdf
http://jmlr.org/papers/v24/21-0449.html
http://jmlr.org/papers/v24/21-0449.html
https://arxiv.org/abs/2406.15079


Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

[13] Fernando Gama, Alejandro Ribeiro, and Joan Bruna. Diffusion scattering transforms on graphs.
In International Conference on Learning Representations, 2018. 5

[14] Feng Gao, Guy Wolf, and Matthew Hirn. Geometric scattering for graph data analysis. In
International Conference on Machine Learning, pages 2122–2131. PMLR, 2019. 2, 5, 6

[15] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com. 7

[16] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 1025–1035, 2017. 5

[17] J. J. Hopfield and D. W. Tank. “neural” computation of decisions in optimization problems.
Biological Cybernetics, 52(3):141–152, Jul 1985. ISSN 1432-0770. doi: 10.1007/BF00339943.
URL https://doi.org/10.1007/BF00339943. 2

[18] Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework
for combinatorial optimization on graphs. Advances in Neural Information Processing Systems,
33:6659–6672, 2020. 2, 4, 7, 8, 15, 16

[19] Richard Karp. Reducibility among combinatorial problems. volume 40, pages 85–103, 01 1972.
ISBN 978-3-540-68274-5. doi: 10.1007/978-3-540-68279-0_8. 2

[20] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49(2):291–307, 1970. doi: 10.1002/j.1538-7305.1970.tb01770.x. 19

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980. 15

[22] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In the 4th International Conference on Learning Representations (ICLR), 2016. 1, 5,
9

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671. URL https://www.science.
org/doi/abs/10.1126/science.220.4598.671. 7

[24] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts. CoRR,
abs/1608.03983, 2016. URL http://arxiv.org/abs/1608.03983. 15

[25] Yimeng Min, Frederik Wenkel, Michael Perlmutter, and Guy Wolf. Can hybrid geometric
scattering networks help solve the maximum clique problem? Advances in Neural Information
Processing Systems, 35:22713–22724, 2022. 2, 4, 5, 6, 7, 8, 13

[26] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106
(5):808–828, 2018. 2

[27] Michael Perlmutter, Alexander Tong, Feng Gao, Guy Wolf, and Matthew Hirn. Understanding
graph neural networks with generalized geometric scattering transforms. SIAM Journal on
Mathematics of Data Science, 5(4):873–898, 2023. 6

[28] Ryan A. Rossi, David F. Gleich, Assefaw H. Gebremedhin, and Md. Mostofa Ali Patwary.
Fast maximum clique algorithms for large graphs. In Proceedings of the 23rd International
Conference on World Wide Web, WWW ’14 Companion, page 365–366, New York, NY, USA,
2014. Association for Computing Machinery. ISBN 9781450327459. doi: 10.1145/2567948.
2577283. URL https://doi.org/10.1145/2567948.2577283. 20

[29] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE signal processing magazine, 30(3):83–98, 2013. 2

[30] Haoran Sun, Etash K. Guha, and Hanjun Dai. Annealed training for combinatorial optimization
on graphs, 2022. 2, 7, 8, 9, 15, 16, 20

[31] Alexander Tong, Frederik Wenkel, Dhananjay Bhaskar, Kincaid Macdonald, Jackson Grady,
Michael Perlmutter, Smita Krishnaswamy, and Guy Wolf. Learnable filters for geometric
scattering modules. arXiv preprint arXiv:2208.07458, 2022. 6

11

https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/BF00339943
https://arxiv.org/abs/1412.6980
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
http://arxiv.org/abs/1608.03983
https://doi.org/10.1145/2567948.2577283


Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

[32] Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. RUN-CSP: unsupervised
learning of message passing networks for binary constraint satisfaction problems. CoRR,
abs/1909.08387, 2019. URL http://arxiv.org/abs/1909.08387. 2

[33] Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One model, any csp: Graph neural
networks as fast global search heuristics for constraint satisfaction. In Edith Elkind, editor, Pro-
ceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23,
pages 4280–4288. International Joint Conferences on Artificial Intelligence Organization, 8
2023. doi: 10.24963/ijcai.2023/476. URL https://doi.org/10.24963/ijcai.2023/476.
Main Track. 3

[34] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017. 1

[35] Zichen Wang and Vassilis N. Ioannidis. How aws uses graph neural net-
works to meet customer needs, 2022. URL https://www.amazon.science/blog/
how-aws-uses-graph-neural-networks-to-meet-customer-needs. 1

[36] Frederik Wenkel, Yimeng Min, Matthew Hirn, Michael Perlmutter, and Guy Wolf. Overcoming
oversmoothness in graph convolutional networks via hybrid scattering networks. arXiv preprint
arXiv:2201.08932, 2022. 6

[37] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-
mender systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022. 1, 2

[38] Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. Random constraint
satisfaction: Easy generation of hard (satisfiable) instances. Artificial Intelligence, 171(8):
514–534, 2007. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2007.04.001. URL
https://www.sciencedirect.com/science/article/pii/S0004370207000653. 7, 15

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018. 1, 5, 9

[40] Jiaxuan You, Rex Ying, and Jure Leskovec. Design space for graph neural networks. In NeurIPS,
2020. 15

[41] Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial optimization problems with gflownets. arXiv
preprint arXiv:2305.17010, 2023. 2, 7, 8, 9, 15, 16

[42] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Xu Chi. MV-
MoE: Multi-task vehicle routing solver with mixture-of-experts. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp,
editors, Proceedings of the 41st International Conference on Machine Learning, volume 235
of Proceedings of Machine Learning Research, pages 61804–61824. PMLR, 21–27 Jul 2024.
URL https://proceedings.mlr.press/v235/zhou24c.html. 3

[43] Dongmian Zou and Gilad Lerman. Graph convolutional neural networks via scattering. Applied
and Computational Harmonic Analysis, 49(3):1046–1074, 2020. 5, 6

12

http://arxiv.org/abs/1909.08387
https://doi.org/10.24963/ijcai.2023/476
https://www.amazon.science/blog/how-aws-uses-graph-neural-networks-to-meet-customer-needs
https://www.amazon.science/blog/how-aws-uses-graph-neural-networks-to-meet-customer-needs
https://www.sciencedirect.com/science/article/pii/S0004370207000653
https://proceedings.mlr.press/v235/zhou24c.html


Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

Our appendix is organized as follows. In Appendix A, we provide further details on the baseline
architecture Min et al. [25] and the proof of Theorem 1. In Appendix B, we give further details
on our experimental setup and hyperparameters. In Appendices C and D, we conduct and discuss
further experiments related to timing and model generalization respectively. Appendix E presents the
MIP formulations for the graph-CO tasks that were employed in Gurobi. Finally, in Appendix F we
provide the greedy heuristic algorithms used as baselines.

A Further Theoretical Analysis
A.1 Further details on the baseline architecture [25]

The GNN-based method most closely related to our work is Min et al. [25], which also utilized a
complex filter bank consisting of low-pass and band-pass filters. As alluded to in Section 5.2, our
method builds on Min et al. [25] in certain ways. (i) We utilize a learnable function m in our filtering
operations; (ii) we use separate attention mechanisms for the aggregation operations FA and the
comparison operations FC ; and (iii) our layer-wise update rule takes a different form. To clarify
these differences, below, we give a more detailed recollection of the architecture from Min et al. [25].

In Min et al. [25], similar to our method, the input features Xℓ−1 of the ℓth layer were filtered by
each filter from a filter bank F that decomposes into low-pass and band-pass filters F = FA ⊔ FC.
The filter responses were also derived according to Equation 1 and 2. However, in Min et al. [25],
they use a simple, non-learned function m(.) that is just an activation function m = σ. By contrast,
we use learned functions.

Next, Min et al. [25] used an attention mechanism to determine the importance of information of
different filters for each individual node. For each filter response Hf := F (X) ∈ Rn×d of F ∈ F ,
and input features X, this takes the form

sf := σ ([X ∥Hf ]a) ∈ Rn×1,

where ∥ denotes horizontal concatenations. However, differing from our method, when computing
the normalized attention scores the softmax is applied over the entire filter bank. This results in a
single set of normalized attention scores given by s̄f ∈ Rn where

s̄f (v) = softmax ({sf (v) : f ∈ F})

whereas in GCON, we compute separate normalized attention scores s̄Af and s̄Cf for the aggregation
and comparison operators. Next, the filter responses are re-weighted according to the attention scores,
yielding HF ∈ Rn×d, where

HF =
∑

f∈F (s̄f ◦ 1d)⊙Hf ,

where, as in Section 5.2, ◦ and ⊙ denote the outer and Hadamard product, respectively. The final
output of each block is then generated by simply applying an MLP to the HF , i.e.,

Xℓ := MLP(HF ), (5)

instead of the update rule considered in Equation 4, which adds HFA
and HFC

to Xℓ−1 before
applying the MLP.

A.2 Proof of Theorem 1

We start by stating a copy of Theorem 1 presented in Section 5.3 of the main text.

Theorem. Consider the non-decoupled architecture and a c-band-dominant representation x 7→
(s̄f ,hf )f∈F at a node v ∈ V for a non-negative input signal x ≥ 0. Then, if all filters have
sufficiently large scales, the low-pass filter responses will always dominate the band-pass filter
responses in the sense that ∑

f∈FC

s̄f [v]hf [v] ≤ ϵc
∑
f∈FA

s̄f [v]hf [v], (6)

where ϵ > 0 can be made arbitrarily small if the scales of the filters are sufficiently large.

13



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

Proof. Let ϵ > 0, let v ∈ V be fixed and set p∞ := ∥x ∥1 d[v]/∥d ∥1, where d ∈ Rn is the
degree vector. As k → ∞, it is known that Pk(x /∥x∥1) converges to the stationary distribution
d /∥d ∥1, which implies that Fk(x) = Pk x converges to ∥x ∥1 d /∥d ∥1. This in turn implies that
limk1,k2→∞ Fk1,k2

(x) = 0.

Therefore, for all δ > 0, there exists some K := K(δ) ∈ N such that if all of the filters in f ∈ FA
have the form f = Fk, k ≥ K, and if all of the filters in f ∈ FC have the form f = Fk1,k2

,
k1, k2 ≥ K, then we have that

|hf [v]− p∞| ≤ δ for all f ∈ FA

and
|hf [v]| ≤ δ for all f ∈ FC.

We next set τ := max{s̄f [v] : f ∈ FC}, so that the left-hand-side of Equation 6 can be estimated
from above as

LHS =
∑

f∈FC
s̄f [v]hf [v] ≤

∑
f∈FC

τδ = |FC|τδ.
At the same time, if we let fmax

A denote the filter from FA corresponding to the largest value of s̄f ,
we can recall the definition of a c-band dominate representation to estimate the right-hand-side from
below by

RHS ≥ ϵ · c · s̄fmax
A

hfmax
A

[v] ≥ ϵ · c · τ
c
(p∞ − δ) = ϵ · τ (p∞ − δ) .

Hence, Equation 6 will be true if

|FC| ≤
p∞ − δ

δ
ϵ. (7)

We now recall that for filters with sufficiently large scales (i.e., for sufficiently large K), δ can be
arbitrarily small such that the inequality will hold. To confirm this, we note that g(δ) := (p∞ − δ)/δ
is strictly increasing when decreasing 0 < δ < p∞ and tends to infinity as δ ↓ 0. Thus, for sufficiently
large K we can choose δ small enough such that Equation 7 holds.

14



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

B Experimental setup & hyperparameters
Our experimental framework is built on PyTorch Geometric [12] and GraphGym [40]. All experiments
are conducted using a single GPU and 4 CPUs; most experiments (e.g. MClique experiments on
-small graphs) ran within several minutes to an hour, while the largest (e.g. MDS on BA-large using
16-layer-256-width GCON) took several hours to converge.

We perform all timing experiments in Tables 1 and 2 following the setup in Zhang et al. [41], using an
NVIDIA V100 GPU for fair comparison of the inference time estimates on 500 samples. We report
worst-case results, i.e., use a batch size of 1; assuming that Zhang et al. [41] have done so despite not
listing an explicit batch size for the timing experiments. Additional timing experiments comparing
the GCON layer with other baselines can be found in Appendix C.

As mentioned, the self-supervised loss functions associated with combinatorial graph problems are
difficult to optimize well, due to their highly non-convex nature. We thus conducted hyperparameter
optimization on several main components of our model. For each task, a separate set of hyperparame-
ter tuning experiments were conducted for the number of layers, layer width, and activation, as well
as layer normalization for layers and learning rate where appropriate.

In addition to the configurations listed in Table 4, all tasks used Adam optimizer [21] and a cosine
annealing scheduler [24] with a 5-epoch warm-up period. Other hyperparameters shared by all tasks
include the use of batch normalization and dropout with 0.3 probability.

Below in Table 4, GSN refers to graph size normalization where features are divided by the graph size
after each layer, as per Karalias and Loukas [18]. L2 refers to L2 normalization. Additionally, two
different skip connection strategies are considered, denoted skipsum and stack-concat. Skipsum refers
to summing the output of the previous layer to the output features; in stack-concat no actual skip
connections are used, but all intermediate GCON layer outputs are concatenated after the final GNN
layer and passed to the post-GNN fully-connected layers accordingly. We found that stack-concat
performs better overall, but skipsum is particularly helpful when the GNN inner dimension is large.

Table 4: Overview of model hyperparameters associated with the reported results for each dataset.

MCut MCut MClique MClique MDS MDS
BA-small BA-large RB-small RB-large BA-small BA-large

# Pre-GNN layers 1 4 1 1 1 1
# GNN (Hybrid) layers 16 16 20 20 16 16
# Post-GNN layers 1 1 2 2 1 1
Hybrid layer width 32 32 32 32 256 256
Hybrid layer normalization None L2 GSN GSN L2 L2
Hybrid layer activation ELU ELU GELU GELU GELU GELU
MLP activation LReLU (0.3) LReLU (0.3) LReLU (0.01) LReLU (0.01) LReLU (0.3) GELU
Skip connection stack-concat skipsum stack-concat stack-concat stack-concat skipsum
Skip conn. in Hybrid layer Yes Yes Yes Yes No No
Learning rate 1e-3 3e-3 1e-3 1e-3 3e-3 3e-3
# Epochs 200 400 100 100 200 200
# Batch size 256 256 8 8 256 256
Decoder K N/A N/A 10 10 1 1

Further discussion on benchmarks. Our main benchmarking pipeline (Tables 1 and 2) parallel
Zhang et al. [41] to a considerable extent in that we evaluate GCON on the same tasks (MCut,
MClique and MDS), using datasets drawn from identical distributions, i.e. RB [38] and BA [2]
graphs generated with identical parameters; we also use their GFN model and several of the baselines
from their study as methods to compare against in our study. Gurobi results in Tables 1 and 2 are
as reported in Zhang et al. [41], while we evaluate all H & SSL baselines on our synthetic datasets
using identical data splits across multiple seeds. We adapted the Greedy and MFA methods from
Anneal [30] for MClique and MDS, while implementing them ourselves for MCut, since it was a
problem not considered in Sun et al. [30].

We additionally provide a brief discussion on differences between our results and those in Zhang et al.
[41] to allow for better interpretability of our results.

• We observed that model depth is particularly important for GNN-based methods on MCut
and MDS, as we see our deeper GNN variants Erdős-large and Anneal-large outperform their

15



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

shallower counterparts significantly. We conjecture that Zhang et al. [41] did not evaluate
on deeper variants of ERDŐS/ANNEAL on MCut, which may explain why these methods
underperform in their paper. On the other hand, MClique did not benefit substantially from
model depth, where the large and base models performed very similarly. Shallow models
particularly struggled on MDS, and exhibited extreme variance across runs.

• Annealing was less helpful in our case than suggested in Sun et al. [30] and Zhang et al. [41]
on MClique. This is likely due to the fact that we were able to optimize Erdős’ GNN better, as
both Erdős and Anneal results converged to values similar to those corresponding to Anneal
in Zhang et al. [41]. We also noted that Erdős’ and Anneal were difficult to tune for MDS in
general, and fell well short of the results presented in Zhang et al. [41]. This applied to MClique
as well, albeit to a lesser extent. We believe their implementation of Erdős’ GNN is based on
Sun et al. [30], which diverge significantly from that of Karalias and Loukas [18], e.g. does not
use masking. For consistency across all tasks, we modeled our implementation on Karalias and
Loukas [18]; but note that the Sun et al. [30] implementation performed marginally better for
MClique (though still significantly worse than GCON).

• Heuristic results were very consistent with those in Zhang et al. [41] for MClique and MDS,
but our MFA implementation for MCut was seemingly more powerful than theirs – while the
Greedy results were similar (with a 0.5% drop on BA-small and 0.7% rise on BA-large), our
MFA results improved over theirs by 2.2% and 3.4% respectively. While we do not think these
differences make any substantial difference, we still report them for completeness, particularly
as we do not have access to the exact implementations nor parameters used in their work.

16



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

C Timing studies
We also performed a set of timing experiments to provide an overview of the scalability of the GCON
layer compared to ScatteringClique and GCN, two GNN layers benchmarked against in this study.
Using the configurations denoted in Table 4, we ran our framework on 500 test graphs for each
dataset. We see that even when the considered datasets are identical, as in the case of MCut and
MDS (both tasks use the BA datasets), both the duration and scalability of the test runs are largely
dependent on the task-specific decoder: The MCut decoder is faster than the MDS decoder across all
three models; perhaps more remarkably, while the MCut decoder scales very well from BA-small to
BA-large, the runtimes for the MDS decoder increase by 1000+% for all models between the two
datasets. This implies that for GNN-based neural solvers, larger efficiency gains are likely to be made
by focusing on optimizing the decoder architectures than the GNN layers themselves.

Decoder scalability aside, our GCON layer maintains similar runtimes with ScatteringClique and
GCN across all experiments, indicating the overall scalability of the GCON model. We note that
there is some overhead associated with our filters and attention mechanism such that GCN remains
the fastest model in most cases, one exception is MDS on BA-large where our layer is faster than
both baselines.

Table 5: Timing comparison of GCON, ScatteringClique and GCN on Small and Large datasets for
the MCut and MClique tasks. The times are based on test datasets of 500 graphs.

Model Small Large % Increase (s)
MCut – BA MCut – BA

GCON 0:22 0:27 22.73
ScatteringClique 0:18 0:19 5.56
GCN 0:14 0:14 0.00

MDS – BA MDS – BA
GCON 1:15 11:24 812.00
ScatteringClique 1:11 14:52 1156.34
GCN 1:14 13:36 1002.70

MClique – RB MClique – RB
GCON 4:09 4:57 19.28
ScatteringClique 4:06 4:21 6.10
GCN 3:13 4:04 26.42

17



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

D Generalization study
We also present a brief study on the transferability of our GCON architecture. As every graph-CO
problem in our study has a corresponding small and large benchmark dataset, we trained a GCON
model on each, and tested the respective models on the other dataset (e.g. for MCut, we trained a
GCON on BA-small and tested it on BA-large, and vice versa), and measured the percentage change
in performance compared to the in-distribution case (e.g. GCON both trained and tested on BA-small).
We repeated the study for GFN and Erdős-large as well for comparison. Our results are presented in
Table 6, while Table 7 shows average changes across several groupings such as type of generalization
and generalization per graph-CO problem.

Both GCON and GFN prove to be quite transferable across all our benchmarks, with less than 6%
average drop in performance for GCON and only a 2% drop for GFN. Nevertheless, the generaliz-
ability patterns of the two methods are considerably different. GCON is consistently better when
generalizing from small to large datasets while it struggles more in the opposite direction; these trends
are completely reversed for GFN, which does not exhibit any negative transfer when generalizing
from large to small. When looking at individual CO problems, GCON is particularly robust on MCut
in both directions while GFN is more robust for MClique and MDS. Erdős-large is on par with both
methods on MCut and MClique, but is vastly inferior with huge performance drops in MDS. We note
that despite the marginal drops, GCON still comfortably outperforms most in-distribution baselines
even in the transfer learning setting.

Table 6: Generalization results between small and large graphs for GCON and GFN across all tasks.
Average of three runs listed.

Task Model Train Data Test Data Base Perf. Transfer Perf. % Change

MCut GFN BA-large BA-small 700.23 704.99 0.68%
MCut GCON BA-large BA-small 727.09 723.45 -0.50%
MCut ERDŐS-large BA-large BA-small 720.04 664.82 -7.67%

MCut GFN BA-small BA-large 2826.64 2569.44 -9.10%
MCut GCON BA-small BA-large 2961.19 2951.18 -0.34%
MCut ERDŐS-large BA-small BA-large 2881.48 2895.51 0.49%

MClique GFN RB-large RB-small 16.22 16.26 0.25%
MClique GCON RB-large RB-small 15.87 13.62 -14.17%
MClique ERDŐS-large RB-large RB-small 13.21 13.00 -1.56%

MClique GFN RB-small RB-large 31.73 30.16 -4.95%
MClique GCON RB-small RB-large 29.46 28.57 -3.01%
MClique ERDŐS-large RB-small RB-large 23.91 26.27 9.85%

MDS GFN BA-large BA-small 29.14 29.13 0.02%
MDS GCON BA-large BA-small 30.26 33.89 -11.99%
MDS ERDŐS-large BA-large BA-small 32.48 46.82 -44.14%

MDS GFN BA-small BA-large 113.77 112.89 0.77%
MDS GCON BA-small BA-large 113.47 118.70 -4.60%
MDS ERDŐS-large BA-small BA-large 134.39 362.68 -169.87%

Table 7: Aggregated % performance changes reported in Table 6 for GCON and GFN.

Group GFN GCON ERDŐS-large
Overall -2.05% -5.77% -35.48%

Small→ Large -4.42% -2.65% -53.18%
Large→ Small 0.32% -8.89% -17.79%

MCut -4.21% -0.42% -3.59%
MClique -2.35% -8.59% 4.15%

MDS 0.40% -8.30% -107.01%

18



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

E MIP formulations
MCut

Maximize
∑

(i,j)∈E xi + xj − 2xixj

subject to xi ∈ {0, 1} ∀i ∈ V

MClique

Maximize
∑

i∈V xi

subject to xi + xj ≤ 1 ∀(i, j) /∈ E,
xi ∈ {0, 1} ∀i ∈ V

MDS

Minimize
∑

i∈V xi

subject to xi +
∑

j∈N (i) xj ≥ 1 ∀i ∈ V,
xi ∈ {0, 1} ∀i ∈ V

F Greedy heuristic algorithms

Algorithm 1 Heuristic algorithm for MCut, inspired by Kernighan and Lin [20]

1: function MCUTHEURISTIC(V,E) ▷ Input: vertices V , edges E; Output: set of cut edges S
2: (S1, S2)← RANDOMPARTITION(V ) ▷ Randomly partition vertices into two sets
3: for each v ∈ V do ▷ Iteratively optimize the partition
4: c1 ← COUNTEDGES(v, S1, E) ▷ Edges from v to nodes in S1

5: c2 ← COUNTEDGES(v, S2, E) ▷ Edges from v to nodes in S2

6: if v ∈ S1 and c1 > c2 then ▷ Move v to S2 if it improves the cut
7: MOVE(v, S1, S2)
8: else if v ∈ S2 and c2 > c1 then ▷ Move v to S1 if it improves the cut
9: MOVE(v, S2, S1)

10: end if
11: end for
12: S ← {} ▷ Initialize the set of cut edges
13: for each {vi, vj} ∈ E do ▷ Identify edges crossing the cut
14: if (vi ∈ S1 and vj ∈ S2) or (vi ∈ S2 and vj ∈ S1) then
15: ADD({vi, vj}, S)
16: end if
17: end for
18: return S ▷ Return the set of edges in the maximum cut
19: end function

19



Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs

Algorithm 2 Heuristic algorithm for MClique [28], implementation based on Sun et al. [30]

1: function MCLIQUEHEURISTIC(V,E) ▷ Input: vertices V , edges E; Output: clique S
2: S ← {} ▷ Initialize the clique as an empty set
3: vList← SORTBYDEGREE(V,E, descending) ▷ Sort vertices by descending degree
4: for vi ∈ vList do ▷ Iterate through vertices in sorted order
5: if S = {} then ▷ If the clique is empty, start with the first vertex
6: S ← {vi}
7: end if
8: if MAINTAINSCLIQUE(vi, S, E) then ▷ Check if adding vi to S maintains a valid clique
9: ADD(vi, S) ▷ Add vi to the clique

10: end if
11: end for
12: return S ▷ Return the maximum clique found
13: end function

Algorithm 3 Heuristic algorithm for MDS, based on Sun et al. [30]

1: function MDSHEURISTIC(V,A) ▷ Input: vertices V , adjacency matrix A; Output: dominating
set S

2: S ← {} ▷ Initialize the dominating set as empty
3: vList← SORTBYDEGREE(V,A, descending) ▷ Sort vertices by descending degree
4: for vi ∈ vList do ▷ Initialize probability of each node being in the dominating set
5: pi ← 0.5
6: end for
7: for vi ∈ vList do ▷ Initialize probability of node being “uncovered” by the dominating set
8: ui ← (1− pi) ·

∏n
j=1

(
Aij · (1− pj) + (1−Aij)

)
9: end for

10: for vi ∈ vList do ▷ Iterate over sorted vertices
11: potential← 10

1−pi
·
(
ui +

∑
j∈N (i) uj

)
▷ Calculate potential of vi

12: if potential > 1 then ▷ Add vi to the dominating set if potential exceeds threshold
13: ADD(vi, S) ▷ Add vi to dominating set S
14: pi ← 1 ▷ Set probability of vi being in the dominating set to 1
15: ui ← 0 ▷ Mark vi as covered
16: uj ← 0 ∀j ∈ N (i) ▷ Mark neighbors of vi as covered
17: else
18: pi ← 0 ▷ Set vi as non-dominant
19: ui ← ui

1−pi
▷ Adjust uncover probability of vi

20: uj ← uj · (1−Aij) +Aij · uj

1−pi
∀j ▷ Adjust neighbors’ uncover probabilities

21: end if
22: end for
23: return S ▷ Return the dominating set
24: end function

20


	1 Introduction
	2 Background and Related Work
	3 Problem Setup
	4 Methodology
	4.1 Maximum Cut
	4.2 Maximum Clique
	4.3 Minimum Dominating Set

	5 The GCON Architecture
	5.1 The GCON filter bank: Aggregation and Comparison operations
	5.2 Attention over filters
	5.3 Theoretical Analysis

	6 Experiments
	7 Conclusion
	A Further Theoretical Analysis
	A.1 Further details on the baseline architecture min2022can
	A.2 Proof of Theorem 1

	B Experimental setup & hyperparameters
	C Timing studies
	D Generalization study
	E MIP formulations
	F Greedy heuristic algorithms

