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ABSTRACT

Model fairness is an essential element for Trustworthy AI. While many techniques
for model fairness have been proposed, most of them assume that the training
and deployment data distributions are identical, which is often not true in practice.
In particular, when the bias between labels and sensitive groups changes, the
group fairness of the trained model is directly influenced and can worsen. We
make two contributions for solving this problem. First, we analytically show that
existing in-processing fair algorithms have fundamental limits in accuracy and
group fairness. We introduce the notion of correlation shifts, which can explicitly
capture the change of the above bias. Second, we propose a novel pre-processing
step that samples the input data to reduce correlation shifts and thus enables the in-
processing approaches to overcome their limitations. We formulate an optimization
problem for adjusting the data ratio among labels and sensitive groups to reflect
the shifted correlation. A key advantage of our approach lies in decoupling the
roles of pre-processing and in-processing approaches: correlation adjustment via
pre-processing and unfairness mitigation on the processed data via in-processing.
Experiments show that our framework effectively improves existing in-processing
fair algorithms w.r.t. accuracy and fairness, both on synthetic and real datasets.

1 INTRODUCTION

Model fairness is becoming indispensable in many artificial intelligence (AI) applications to prevent
discrimination against specific groups such as gender, race, or age (Feldman et al., 2015; Hardt
et al., 2016) or individuals(Dwork et al., 2012a). In this work, we focus on group fairness, and
there are three prominent group fairness approaches: pre-processing, where training data is debiased;
in-processing, where model training is tailored for fairness; and post-processing, where the trained
model’s output is modified to satisfy fairness – see more related works discussed in Sec. 6.

While fairness in-processing approaches are commonly used to mitigate unfairness, most of them
make the limiting assumption that the training and deployment data distributions are the same (Zafar
et al., 2017a; Zhang et al., 2018; Roh et al., 2021). However, the two distributions are usually different,
especially in terms of data biases (Wick et al., 2019; Maity et al., 2021). For example, a recent work
shows that the bias amounts likely differ between previously collected data and recently collected
data (Ding et al., 2021). Moreover, when the data bias changes, the fairness and accuracy of the
trained model are now unpredictable at deployment, as the above assumption is broken.

In this work, we introduce the notion of correlation shifts between the label y and group attribute z in
the data to systematically address the data bias changes. Although several works have been recently
proposed to investigate fair training on different types of distribution shifts, including covariate and
concept shifts (Singh et al., 2021; Mishler & Dalmasso, 2022), they usually do not explicitly consider
bias changes between y and z. In comparison, our correlation shifts enables us to theoretically analyze
how exactly data bias changes affect fair training – see how correlation shift compares with other
types of distribution shifts in Sec. 6.

For fair training under correlation shifts, we first 1) analyze the fundamental accuracy and fair-
ness limits of in-processing approaches with the fixed distribution assumption using the notion of
correlation in the data and then 2) design a novel pre-processing step to boost the performances
of in-processing approaches under the correlation shifts. We show that existing in-processing fair
algorithms are indeed limited by the training distribution and may perform poorly on the deployment
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(a) A high-level workflow under correlation shifts.
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(b) A toy example for illustrating the impact of correlation
shifts (i.e., bias changes) on the trained classifier.

Figure 1: The central axis in the left figure represents the correlation between the label y and sensitive group
attribute z. The correlation of training data is usually higher than that of deployment data. In Sec. 3, we show
that the correlation determines the achievable performance of fair training. Thus, we first run our pre-processing
and then apply existing fair algorithms on the processed data to address the correlation shift and improve the
performances of fair training. Not addressing the correlation shift may result in reduced performance as shown
in the right figure – see details in Sec. 2.

distribution. In particular, a high (y, z)-correlation results in a poor accuracy-fairness tradeoff for
any fair training. Therefore, as most in-processing fair algorithms assume identical training and
deployment distributions, there is no guarantee their performances on the training data carry over to
the deployment data. Based on the theoretical analysis, we propose a pre-processing step for reducing
the shifted correlation by taking samples of (y, z)-classes. Using a possible range of the shifted
correlations, we solve an optimization problem that finds the new data ratio among (y, z)-classes
to adjust the correlation for the shift, which gives in-processing approaches a better opportunity to
perform well. The new data is then used as the input of any fair algorithm.

A key advantage of our framework is the decoupling of pre-processing and in-processing for unfair-
ness mitigation where the pre-processing adjusts the correlation while the in-processing performs the
rest of the unfairness mitigation, as described in Figure 1a. We note that our pre-processing aims to
boost the performances of in-processing approaches based on our theoretical analysis, whereas exist-
ing pre-processing approaches for fairness simply remove the bias in the data and are not designed to
explicitly benefit the in-processing approaches – see Sec. 5.1 for details. Our framework thus takes
the best of both worlds of pre- and in-processings where (1) pre-processing solves the data problems,
and (2) in-processing performs its best on the improved data. Our framework is not only useful for
improving the fairness of a single metric, but can also be extended to support multiple metrics.

In our experiments, we verify our theoretical results and demonstrate how our framework outperforms
state-of-the-art pre-processing and in-processing baselines. Experiments on both synthetic and
real-world datasets (COMPAS (Angwin et al., 2016) and AdultCensus (Kohavi, 1996)) show that
our framework effectively improves the accuracy and fairness performances of the state-of-the-art
in-processing approaches (Zafar et al., 2017a; Zhang et al., 2018; Roh et al., 2021) under correlation
shifts. Also, our framework performs better than two-step baselines that first run an existing pre-
processing approach (Kamiran & Calders, 2011) and then an in-processing approach. We also show
that our framework is still beneficial when we do not know the exact range of the shifted correlations.
Summary of Contributions (1) We introduce the notion of correlation shifts, which is important
to connect the data bias changes and behaviors of fair training. (2) Using the notion of correlation, we
theoretically show that existing in-processing fair algorithms are limited by the training distribution
and may perform poorly on the deployment distribution. (3) We propose a novel pre-processing step
to boost the performances of fair in-processing approaches. (4) We demonstrate that our framework
effectively improves the performances of the state-of-the-art fair algorithms under correlation shifts.

2 LIMITATIONS OF FAIR TRAINING WITH FIXED DISTRIBUTION ASSUMPTION

Most in-processing approaches for fairness assume that the training and deployment distributions are
the same, which means that they assume the same level of bias as well. However, data bias may shift
over time as confirmed by recent studies (Wick et al., 2019; Maity et al., 2021; Ding et al., 2021),
which means that the deployment data may actually have a different bias than the training data.

In fair training, the data bias reflects the relationship between a label y and sensitive group attribute z.
For example, if all positive labels are in the same group, the data can be considered highly biased.
Conversely, if the labels are randomly assigned to all groups, the data can be considered unbiased.

A bias change in the deployment data may have an adverse affect on a trained model’s performance.
Figure 1b shows a toy example that illustrates how a fair classifier’s performance is affected by a
bias change during deployment. Here, the bias can be expressed via correlation, and we discuss their
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relationship in Sec. 3. The training distribution is biased, where Group 2 has more positive labels than
Group 1. On the other hand, in the deployment distribution, the bias decreases as the positive labels
are equally distributed for each group. Suppose we train a fair classifier on the training data as shown
on the left side where the DP fairness is perfect (i.e., Pr(ŷ=1) are the same for the groups), but the
accuracy is not as a result. On the deployment data, the DP worsens while the accuracy still remains
imperfect. The underlying problem is that the classifier was trained with a different bias in mind.

In the next section, we formalize the notion of bias change and provide a theoretical analysis and
simulation results that explain the above observations with the following notation and fairness metrics.

Notation & Fairness Metrics Let θ be the model weights, x ∈ X be the input feature to the model,
y ∈ Y be the true label, and ŷ ∈ Y be the predicted label where ŷ is a function of (x, θ). Let z ∈ Z be
a sensitive group attribute, e.g., gender or race. We assume a binary setting (Y = Z = {0, 1}). We
focus on the prominent group fairness metrics, demographic parity (DP) (Feldman et al., 2015) and
equalized odds (EO) (Hardt et al., 2016), where DP is achieved when the positive prediction rates are
the same for the groups (i.e., Pr(ŷ=1|z=1)=Pr(ŷ=1|z=0)) and EO is achieved when the label-wise
accuracies are the same for the groups (i.e., Pr(ŷ=y|y=y, z=1)=Pr(ŷ=y|y=y, z=0),∀y ∈ {0, 1}).

3 FAIR TRAINING UNDER CORRELATION SHIFTS

To systematically study the effects of data bias changes, we first analyze the achievable performances
of fair training via a correlation between y and z that can be used to explicitly measure data bias
regarding sensitive groups (Sec. 3.1) and discuss the limitations of fair in-processings when this
correlation shifts (Sec. 3.2). We define correlation as follows:

(y, z)-correlation Data bias can be represented via the correlation between the label y and the
sensitive group attribute z, where the correlation represents a statistical relationship between two
random variables. We thus define (y, z)-correlation using Pearson’s correlation coefficient (Rodgers
& Nicewander, 1988) ρyz = Cov(y,z)

σ(y)σ(z) , which is known to effectively capture biases in real-world
scenarios. Here, Cov(·) is the covariance, and σ(·) is the standard deviation. As we assume y and z
are binary, we can express ρyz as follows (Cohen & Cohen, 1975):

ρyz =
Pr(y = 1, z = 1)Pr(y = 0, z = 0)− Pr(y = 1, z = 0)Pr(y = 0, z = 1)√

Pr(y = 1)Pr(y = 0)Pr(z = 1)Pr(z = 0)
.

3.1 ACHIEVABLE PERFORMANCE ANALYSIS VIA CORRELATION

We identify the fundamental accuracy and fairness limits of fair training based on the (y, z)-correlation
of the data. We first analyze the most common case of improving the fairness w.r.t. a single fairness
metric. We then extend our analysis to the more complicated case of improving the fairness w.r.t.
multiple metrics, which is important for capturing various social contexts, but has been seldom
studied in the literature. In both cases, we show that the (y, z)-correlation determines the achievable
performance of fair training.

CASE 1 – Fair Training w.r.t. a Single Metric When improving group fairness, fair training is
known to face an accuracy-fairness tradeoff, where the accuracy is sacrificed to make the model
fairer. Recently, Menon & Williamson (2018) investigate that the accuracy-fairness tradeoff w.r.t.
demographic parity is affected by how much y and z are aligned in the data. For example, if the y
and z values are identical for all examples, achieving high fairness may require low accuracy. In
contrast, if y and z are randomly set, fairness and accuracy can be achieved together. The following
proposition shows this previous work’s result.

Proposition 1 (From Menon & Williamson (2018)). (Informal) When a model is trained w.r.t.
demographic parity, a high alignment between y and z leads to a worse accuracy-fairness tradeoff.

For our purposes, we infer a similar relationship using (y, z)-correlation based on Proposition 1. The
following lemma makes a connection between the (y, z)-correlation and the conditional probabilities
of y given z under some conditions.
Lemma 2. If the marginal probabilities of y and z (i.e., Pr(y = y) and Pr(z = z)) remain the same,
the (y, z)-correlation ρyz is proportional to the difference between the conditional probabilities of y
given different z values (i.e., Pr(y = 1|z = 1)− Pr(y = 1|z = 0)).
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The proof for Lemma 2 can be found in Sec. A.1. By applying Lemma 2 to Proposition 1, we
can infer that the (y, z)-correlation also determines the accuracy-fairness tradeoff under certain
conditions. According to the previous work (Menon & Williamson, 2018), alignment is defined
as how many examples in each group have a specific label. We can thus measure alignment as
Pr(y = y|z = 1) + Pr(y = y′|z = 0) where y ̸= y′ and y, y′ ∈ {0, 1}. Then, we can convert this
term into the difference between the conditional probabilities of y given different z values, which
is used in Lemma 2 – see details in Sec. A.2. As a result, we derive the following corollary, which
shows that the (y, z)-correlation determines the achievable accuracy-fairness tradeoff.
Corollary 3. When a model is trained w.r.t. demographic parity, and the marginal probabilities of y
and z remain the same, the achievable accuracy-fairness tradeoff of the model is determined by the
(y, z)-correlation. The higher the correlation, the worse the accuracy-fairness tradeoff.
Remark 4. We can relax the assumption that marginal probabilities are fixed in Corollary 3. When
the marginal probabilities of y and z change up to γy and γz, respectively, Corollary 3 can be
generalized as follows: the achievable accuracy-fairness tradeoff is determined by ρy,z · η, where ρy,z

is the (y, z)-correlation and η ∈ [
√

Pr(y=1)−γy−(Pr(y=1)+γy)
2

Pr(z=1)+γz−(Pr(z=1)−γz)2
,
√

Pr(y=1)+γy−(Pr(y=1)−γy)
2

Pr(z=1)−γz−(Pr(z=1)+γz)2
]. Thus,

the higher the ρy,z · η, the worse the accuracy-fairness tradeoff. In our framework, we actually allow
the marginal probabilities of y and z to change up to γy and γz – see details in Sec. 4.1.

Figure 2: Simulation results of accuracy-unfairness (left:
DP and right: DP & EO) performances of various classi-
fiers on two synthetic datasets that have low and high (y,
z)-correlations. Each blue dot (red cross) indicates a single
classifier’s performance on the low (high) correlation data.
The lower the unfairness value, the better. For each dataset,
we generate enough classifiers to show the full range of pos-
sible performances. As a result, low correlation enables
classifiers to attain better accuracy-fairness tradeoffs (i.e.,
close to the bottom right), regardless of supporting single
or multiple fairness metrics. Also, the optimal classifiers
trained on high correlation data (black stars) have suboptimal
performances on the low correlation data (black squares).

Simulation We now confirm our theoret-
ical observations via a simulation – see de-
tails on the setting in Sec. B.1. The left plot
in Figure 2 shows the accuracy-unfairness
performances of classifiers on two synthetic
datasets with low and high correlations
when using DP for measuring fairness (the
plot on the right will be explained later).
We measure unfairness where a lower value
indicates better fairness (i.e., perfectly fair
when the value is 0) – see the exact metrics
in Sec. 5. We generate various synthetic
classifiers on the two datasets to show the
full range of possible model performances.
The blue dots (red crosses) are the classi-
fiers on the dataset with low (high) corre-
lation. As a result, low correlation results
in better accuracy-fairness tradeoffs (i.e.,
close to the bottom right). We will discuss
the black stars and squares in Sec. 3.2.
Remark 5. We note that Corollary 3 does not necessarily apply for equalized odds (EO), which is
achieved when the accuracies conditioned on the true label are the same for the groups. In theory, a
perfect classifier can achieve perfect fairness w.r.t. EO, so the (y, z)-correlation does not determine
the limits of the accuracy-fairness tradeoff w.r.t. EO. However, classifiers are not perfect in practice,
and we empirically observe that higher (y, z)-correlation leads to a worse accuracy-fairness tradeoff
w.r.t. EO as well – see the empirical results in Sec. B.2.

CASE 2 – Fair Training w.r.t. Multiple Metrics Beyond the single metric scenario, we now extend
our analysis to support multiple fairness metrics together. Although supporting multiple metrics
is necessary to address fairness under various social contexts, most fairness works do not address
this problem. A major challenge is that group fairness metrics are known to be mutually exclusive,
which means that these metrics cannot be perfectly satisfied together, unless the data is completely
unbiased (Barocas et al., 2019; Kleinberg et al., 2017). Interestingly, our (y, z)-correlation provides an
opportunity to support multiple fairness metrics together as much as possible in a principled fashion.
We focus on supporting two metrics and leave the support of more metrics as future work.

We first analyze when a model can improve both demographic parity (DP) and equalized odds
(EO) to get hints on the relationship between the (y, z)-correlation and improving fairness w.r.t.
two metrics. Here, we focus on the ε-fairness of both metrics, which is a relaxed version
of perfect fairness (Barocas et al., 2019), where ε indicates the unfairness level of the model.
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For example, we can define ε-DP as |Pr(ŷ = 1|z = 1) − Pr(ŷ = 1|z = 0)| ≤ ε and ε-EO as
|Pr(ŷ = y|y = y, z = 1)− Pr(ŷ = y|y = y, z = 0)| ≤ ε. Note that ε ∈ [0, 1] and a lower ε means
higher fairness. The following proposition shows when a model can achieve both ε-DP and ε-EO.

Proposition 6 (ε-DP & ε-EO). Let a model achieve both ε-DP and ε-EO. Then, the fol-
lowing inequality holds: |Pr(y = y|z = z) − Pr(y = y|z = z′)| |Pr(ŷ = y|y = y, z = z) −
Pr(ŷ = y|y = y′, z = z)| ≤ 2ε, y ̸= y′, z ̸= z′, y, y′, z, z′ ∈ {0, 1}.
The proof for Proposition 6 can be found in Sec. A.3. Here, the achievable fairness level ε is affected
by the data bias, which is represented by the difference between the conditional probabilities of
y given z (i.e., |Pr(y = y|z = z) − Pr(y = y|z = z′)|). For example, if the data is highly biased,
a model cannot achieve high fairness (i.e., low ε) unless the second term on the left side (i.e.,
|Pr(ŷ = y|y = y′, z = z)−Pr(ŷ = y|y = y, z = z)|) decreases. However, the second term is related
to the accuracy, where lowering it to zero causes the model to make random predictions or predictions
that are all the same. Thus, Lemma 2 and Proposition 6 give the following corollary.

Corollary 7. When a model is trained w.r.t. both DP and EO, and the marginal probabilities of y
and z do not change, the achievable fairness of the model is determined by the (y, z)-correlation if
the accuracy does not change. The higher the correlation, the lower the achievable fairness.

Similar to the single-metric case, we confirm the theoretical result of supporting multiple metrics via
the simulation in the right plot in Figure. 2. Again, we observe that low correlation enables classifiers
to attain better accuracy-fairness tradeoffs. We also leave discussions for improving fairness w.r.t.
another prominent metric called predictive parity (PP) (Berk et al., 2021) together with DP and EO in
Secs. A.4 (ε-PP and ε-DP) and A.5 (ε-EO and ε-PP).

3.2 EFFECTS OF CORRELATION SHIFTS

As the performance ranges of fair training are different according to the data correlation, a fair
classifier learned on some training data does not necessarily have optimal performance on deployment
data with a different correlation. We say there is a correlation shift between two data distributions D1

and D2 when |ρD1
yz −ρD2

yz | ≠ 0, where ρDi
yz indicates the (y, z)-correlation of Di. Here, the correlation

shift reflects the bias change between data distributions.

We revisit our previous simulation in Figure 2 that helps to understand how the correlation shifts
affect fair training. We consider a correlation shift from a training distribution with high correlation
to a deployment distribution with low correlation. We start from a few optimal classifiers trained on
the high-correlated data, which are denoted as black stars. These classifiers unfortunately have subop-
timal performances on the low-correlation deployment data (black squares). Hence, in-processing
approaches that assume the same training and deployment data distributions lose the chance of
achieving better fairness and accuracy in the deployment distribution under correlation shifts.

Based on our theoretical and simulation results, we design a pre-processing approach using (y, z)-
correlation as a tuning knob to give existing in-processing approaches a better opportunity to achieve
maximum accuracy and fairness performances in the following section.

4 FRAMEWORK

To improve the performance of fair training in the presence of correlation shifts, we propose a novel
fair training framework that consists of two main parts: applying a pre-processing approach for
reflecting the shifted correlation and utilizing any existing in-processing algorithms for fair training on
top of the improved data. We first design an optimization problem for finding a new data distribution
that follows the shifted correlation by adjusting the (y, z)-class ratios. Then, we explain our overall
training process and extensions to support similar distributions. We note that our framework implicitly
assumes that the distribution of input feature x does not change drastically – see details in Sec. A.6.

4.1 OPTIMIZATION

We design an optimization that finds the best (y, z)-class ratios given a (y, z)-correlation ρyz by using
Lemma 2, which shows that ρyz is proportional to the conditional probability difference under some
assumptions. Note that the conditional probability can be written using the class weights. Let the
original data ratio of each (y=y, z=z)-class be wy=y,z=y. Let the new data ratio be w′

y=y,z=y, which
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is required to satisfy the shifted correlation of the deployment data. Note that
∑

∀y,zw
′
y=y,z=z = 1.

Also, let c be the correlation constant that is the difference between the conditional probabilities
of y given z in the deployment data. Let [α, β] be the range of the correlation constant c (i.e.,
c ∈ [α, β]). The range may be known in advance or constructed by using distribution estimation
techniques (Huang et al., 2006; Zhang et al., 2013) for computing the shifted correlation and
generating a range using its confidence interval. We use a relaxed version of the assumption in
Lemma 2 where the marginal probabilities of y and z can change by up to γy and γz, respectively,
as discussed in Remark 4. With these conditions, we set up a problem whose goal is to minimize
the squared differences between the original and new data ratios to help reduce the information
loss, similar to other pre-processing approaches (Zemel et al., 2013; Quadrianto et al., 2019):

min
w′

∑
∀y,z

(wy=y,z=z − w′
y=y,z=z)

2

s.t. α ≤
w′

y=1,z=1

w′
y=1,z=1 + w′

y=0,z=1

−
w′

y=1,z=0

w′
y=1,z=0 + w′

y=0,z=0

≤ β,

|(w′
y=1,z=1 + w′

y=1,z=0)− Prtrain(y = 1)| ≤ γy, |(w′
y=1,z=1 + w′

y=0,z=1)− Prtrain(z = 1)| ≤ γz,∑
∀y,z

w′
y=y,z=z = 1, 0 ≤ w′

y=y,z=z ≤ 1, ∀y ∈ {0, 1}, z ∈ {0, 1}

where Prtrain(y = 1)=wy=1,z=1+wy=1,z=0 and Prtrain(z = 1) = wy=1,z=1+wy=0,z=1. Note that
when we know the exact shifted correlation value (i.e., α = β = c), the first constraint can be
rewritten as w′

y=1,z=1/(w
′
y=1,z=1 + w′

y=0,z=1)− w′
y=1,z=0/(w

′
y=1,z=0 + w′

y=0,z=0) = c.

The above optimization is a non-convex quadratically constrained quadratic problem (non-convex
QCQP), where the objective is quadratic, and the first constraint is non-convex quadratic. However,
the non-convex QCQP is known to be hard to solve (d’Aspremont & Boyd, 2003). Thus, we apply
the semidefinite (SDP) relaxation, which is one of the convex relaxations known to give a reasonable
lower bound of the optimal value of the original non-convex QCQP (Park & Boyd, 2017):

min
X,x

Tr(XP0) + qT0 x

s.t. Tr(XPα) ≥ 0, Tr(XPβ) ≤ 0,

|qT2 x− Prtrain(y = 1)| ≤ γy, |qT3 x− Prtrain(z = 1)| ≤ γz, qT4 x = 1, 0 ≤ xi ≤ 1 ∀i,
[
X x
xT 1

]
⪰ 0

where Tr(·) is the trace, X = xxT , x = [x1 x2 x3 x4]
T

=
[
w′

1,1 w′
1,0 w′

0,1 w′
0,0

]T
,

q0=−2 [w1,1 w1,0 w0,1 w0,0]
T , q2= [1 0 1 0]

T , q3= [1 1 0 0]
T , q4= [1 1 1 1]

T ,

P0 = diag(1) , Pα =

[
0 −α/2 0 (1−α)/2

−α/2 0 (−1−α)/2 0
0 (−1−α)/2 0 −α/2

(1−α)/2 0 −α/2 0

]
, and Pβ =

[
0 −β/2 0 (1−β)/2

−β/2 0 (−1−β)/2 0
0 (−1−β)/2 0 −β/2

(1−β)/2 0 −β/2 0

]
.

Details on the conversion are in Sec. A.7. Since the above SDP relaxation problem is now convex,
we can solve it using convex optimization solvers (e.g., CVXPY (Diamond & Boyd, 2016)).

4.2 OVERALL TRAINING Algorithm 1: Fair Training under Correlation Shifts
Input: training data D, original ratio wy,z,

correlation range [α, β], thresholds γy
and γz, in-processing algorithm f

w′
y,z = SDPsolver(wy,z, α, β, γy, γz)

dj ← w′
y=y,z=z/wy=y,z=z,

∀j ∈ I(y,z),∀(y, z) ∈ Y× Z
d = {di}i=1,...,n

(Optional) d =
MinDistChange(D,wy,z, w

′
y,z)

Draw new data D′ from D via weighted
sampling w.r.t. d

θ← initial model parameters
for each epoch do: Update θ based on f on D′

Output :θ

We present the overall process for fair training under
correlation shifts in Algorithm 1. The algorithm includes
two main parts: pre-processing for reflecting the shifted
correlation and in-processing for fair training on top of the
improved data. We first find the new (y, z)-class ratio wy,z
based on the SDP relaxation of our optimization, which
can be solved using convex optimization solvers (e.g.,
CVXPY). We then calculate the sample-wise weights to
ensure that the sample weight sum in each (y=y, z=z)-
class is wy=y,z=z · n, where n is the total number of
samples in the original training data. Within each (y=y,
z=z)-class, all samples have the same weight. We then
draw new data D′ from the original training data via weighted sampling according to the sample-wise
weights. Finally, we train a model using an in-processing fair algorithm f on D′.

In addition, using an optional step (MinDistChange), we can address the scenario where the
pre-processing should minimally change the original training data, which is sometimes preferred in
other applications (Kamiran & Calders, 2011). Details on this extension are in Sec. A.8.
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5 EXPERIMENTS

We perform experiments to evaluate our framework. We use logistic regression in all experiments.
We evaluate the models on separate test datasets and repeat all experiments with five different random
seeds. We use CVXPY as a convex optimization solver. More detailed settings are in Sec. B.3.
Fairness metrics We focus on two prominent group fairness metrics: demographic parity
(DP) (Feldman et al., 2015) and equalized odds (EO) (Hardt et al., 2016). We measure
the fairness disparities (i.e., unfairness) among sensitive groups as follows: DP disparity =
maxz∈Z |Pr(ŷ = 1|z = z)−Pr(ŷ = 1)| and EO disparity = maxz∈Z,y∈Y |Pr(ŷ = y|z = z, y = y)−
Pr(ŷ = y|y = y)|. When measuring the unfairness w.r.t. both DP and EO, we take the maximum of
both disparities (i.e., max(DP disp., EO disp.)). Note that lower disparity means better fairness.
Datasets We use a total of three datasets for training: one synthetic dataset and two real-world
benchmark datasets. We generate the synthetic dataset using a method similar to Zafar et al. (2017a).
The synthetic training dataset has 2,000 samples and consists of two non-sensitive attributes (x1, x2),
one sensitive attribute z, and one label attribute y – see details in Sec. B.3. We also utilize two real
datasets: ProPublica COMPAS (Angwin et al., 2016) consists of 5,278 samples, and its labels indicate
recidivism; AdultCensus (Kohavi, 1996) has 43,131 samples, and its labels indicate a person’s annual
income. We use gender as the sensitive attribute.

To construct test data representing the deployment distribution with shifted correlation (ctest), we use
three methods: (1) re-sampling data within each (y, z)-class in the original test data, (2) modifying
the z values while fixing the x and y distributions in the original test data (see details in Sec. B.3),
and (3) utilizing a newly-collected data, where we train on the AdultCensus dataset (Kohavi, 1996),
but test on a recent version of this dataset called ACSIncome (Ding et al., 2021).
Baselines We compare our framework with three types of baselines: (1) vanilla (non-fair) training
using logistic regression, (2) in-processing-only training, and (3) two-step training that first runs
an existing pre-processing algorithm and then an in-processing algorithm. For in-processing-only
training, we use the following three approaches: Fairness Constraints (FC) (Zafar et al., 2017a;b),
which adds an unfairness penalty term to the loss function; Adversarial Debiasing (AD) (Zhang et al.,
2018), which adversarially trains a classifier with a fairness discriminator; and FairBatch (FB) (Roh
et al., 2021), which adaptively adjusts batch ratios among groups to improve fairness. When we
run in-processing approaches for multiple fairness metrics, we naturally extend each approach by
combining the fairness constraints for different metrics – see details in Sec. B.3. For two-step training,
we use a pre-processing algorithm called Reweighing (RW) (Kamiran & Calders, 2011) to debias
the training data before running the above in-processing algorithms, where RW balances the data
amounts across groups. We thus run the in-processing algorithms on the less-biased data by RW.
Hyperparameters We consider three scenarios of knowing the range of the correlation constant
c in the test data. As discussed in Sec. 4.1, one can infer this range using distribution estimation
techniques (Huang et al., 2006; Zhang et al., 2013), which gives a confidence interval that can be used
as the correlation constant range [α, β]. (1) In Secs. 5.1 and 5.2, we assume that the range indicates
the exact ctest value (i.e., α=β=ctest). (2) In Sec. B.10, we assume that the range is ctest ± x%. (3) In
Sec. 5.3, we assume that the range is incorrect. We set both γy and γz to 0.1, which is a larger value
than the actual marginal probability changes in the test data. We also test for the values of 0.2 and
0.3, and the overall trends remain the same. The in-processings’ hyperparameters are in Sec. B.3.

5.1 ACCURACY AND FAIRNESS

We first compare the accuracy and fairness performances of our framework with baselines on the
synthetic and COMPAS datasets in Table 1 – see many more results in Appendix B, including the
AdultCensus experiments (Sec. B.4), which show similar results. The test data has lower correlation
than the training data. LR in the first row shows vanilla training without any fairness technique.
Other baselines are clustered based on three in-processing approaches: FC, AD, and FB. For each
in-processing approach X, applying our pre-processing (denoted as Ours + X) generally shows better
fairness while achieving comparable or even better accuracies, either when supporting only DP or both
DP and EO. The in-processing-only baselines mostly show worse fairness and accuracies compared
to applying our approach, because the in-processing-only baselines are trained with different biases
from test data distribution in mind. The baselines of applying RW before in-processing generally do
not achieve high fairness compared to ours. The reason is that existing pre-processing approaches like
RW simply mitigate data bias as much as possible, which is not always beneficial for the in-processing.
In comparison, our approach takes a more principled approach by adjusting the bias according to
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Table 1: Performances on the synthetic and COMPAS test datasets w.r.t. a single metric (DP) and multiple
metrics (DP & EO). The test datasets are constructed via re-sampling from the original distribution. The
correlation constant c of the test data is 50% of that of the training data. We compare our framework with three
types of baselines: (1) non-fair training: LR; (2) in-processing-only training: FC, AD, and FB; (3) two-step
training: RW (Kamiran & Calders, 2011) + in-processings. In the last row, we also show the performances of an
in-processing algorithm (FB) trained on the test distribution, which can be considered as the upper bounds.

Synthetic COMPAS

Single (DP) Multiple (DP & EO) Single (DP) Multiple (DP & EO)

Method Acc. Unfair. Acc. Unfair. Acc. Unfair. Acc. Unfair.

LR .865 ± .000 .173 ± .000 .865 ± .000 .173 ± .000 .660 ± .000 .129 ± .000 .660 ± .000 .225 ± .000

FC (Zafar et al., 2017a;b) .778 ± .011 .038 ± .013 .853 ± .001 .075 ± .002 .656 ± .004 .050 ± .021 .654 ± .007 .137 ± .034
RW+FC .848 ± .004 .079 ± .003 .848 ± .004 .082 ± .002 .654 ± .004 .068 ± .039 .651 ± .010 .124 ± .031
Ours+FC .849 ± .002 .034 ± .004 .851 ± .005 .060 ± .003 .657 ± .008 .037 ± .021 .652 ± .020 .106 ± .038
AD (Zhang et al., 2018) .762 ± .016 .032 ± .011 .821 ± .004 .068 ± .003 .655 ± .003 .054 ± .015 .661 ± .005 .111 ± .035
RW+AD .845 ± .002 .087 ± .006 .847 ± .003 .084 ± .005 .657 ± .005 .092 ± .022 .655 ± .007 .145 ± .056
Ours+AD .814 ± .011 .017 ± .006 .842 ± .009 .054 ± .008 .650 ± .003 .045 ± .008 .664 ± .006 .117 ± .039

FB (Roh et al., 2021) .821 ± .000 .048 ± .000 .849 ± .001 .091 ± .005 .647 ± .001 .038 ± .013 .650 ± .002 .187 ± .019
RW+FB .859 ± .002 .055 ± .003 .855 ± .001 .071 ± .008 .653 ± .003 .094 ± .016 .652 ± .003 .197 ± .020
Ours+FB .836 ± .001 .003 ± .001 .852 ± .004 .058 ± .001 .648 ± .004 .027 ± .001 .657 ± .004 .130 ± .014
FB on test dist. (upper bound) .838 ± .002 .003 ± .002 .859 ± .002 .058 ± .004 .659 ± .001 .012 ± .008 .664 ± .001 .095 ± .014

the correlation shift with the purpose of improving the in-processing performance. As a result, ours
enables the in-processing approaches to be closer to optimal performances (last row). In Sec. B.5, we
show that the pre-processed data by our algorithm is more aligned with the true test distribution than
the original training data in terms of (y, z)-correlation and Wasserstein distance.

We observe similar results when using the two other test settings explained above. One is to modify
the z values while fixing the x and y distributions using the synthetic dataset (Sec. B.6). The other is
to use two income datasets collected in the 1990s (i.e., AdultCensus) and 2010s (i.e., ACSIncome)
for training and testing, respectively, where they have different (y, z)-correlation values (Sec. B.7).

In addition, we enrich the experimental results by 1) presenting accuracy and fairness trade-off curves
of the in-processing-only baseline and our approach (Sec. B.8) and 2) showing the effects of the
optional step in Algorithm 1 (Sec. B.9), which finds possibly-different sample weights within each
(y, z)-class to minimize the overall distribution change between the training and pre-processed data.

5.2 VARYING THE CORRELATION OF THE TEST DATA

We compare the algorithm performances when varying the correlation of the test data. Figure 3a
shows the accuracy and fairness performances of FB and Ours+FB. As the test data’s correlation
constant c varies from 10% to 70% of the training data’s correlation constant, our pre-processing
improves the accuracy and fairness of the in-processing algorithm. Interestingly, when the correlation
of the test data differs significantly from the training data (i.e., close to 10%), the in-processing-only
baseline (FB) shows worse fairness. We suspect that the baseline is mitigating a different type of bias
than that of the test data. On the other hand, our pre-processing successfully enables the in-processing
algorithm to achieve high fairness and accuracy (e.g., for a 10% test corr., the unfairness decreases
from 0.108 to 0.003). In addition, we vary the correlation from 110% to 150% in Sec. B.11 where we
show how our pre-processing enables in-processing to achieve high fairness.

5.3 HANDLING UNKNOWN CORRELATIONS

We also evaluate our approach when the exact shifted correlation is unknown with two scenarios:
1) misspecifying the correlation in the algorithm and 2) giving a range of correlation shifts to the
algorithm. [Scenario 1] We first consider when the shifted correlation is incorrectly specified. We
set α = β = cspecified, where cspecified ̸= ctest. Figure 3b shows the performances of FB and Ours+FB
when the true correlation of the test data is 60% correlation of the training data. Ours improves the
in-processing-only baseline’s accuracy for the entire range of considered correlations and improves
fairness when the specified correlation is higher than 30%. Hence, our approach is still beneficial
when the estimation error is within 10%. [Scenario 2] In Sec. B.10, we also run our approach with
a range of correlation shifts, which can be inferred by distribution estimation techniques (Huang
et al., 2006; Zhang et al., 2013). We expand the [α, β] range to be [ctest−x%, ctest+x%] instead of
a constant value. As a result, there are two takeaways: 1) our framework successfully boosts the
in-processing-only baseline performances when the [α, β] range is reasonable, and 2) even if we do
not have any information about the correlation shift, our framework performs at least as well as the
in-processing-only baselines.
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(a) Varying the correlation of the test data.

True corr. = 60% True corr. = 60%

(b) Varying the specified correlation in our algorithm.
Figure 3: Performances of FB and Ours+FB on the synthetic data while (a) varying the correlation of the test
data to have 10% to 70% correlation of the training data and (b) varying the specified correlation in our algorithm
to have 10% to 70% where the true correlation of the test data is 60%.

6 RELATED WORK

As model fairness becomes essential for Trustworthy AI, various fairness techniques have been
proposed to improve group fairness that do not discriminate specific demographics (Barocas et al.,
2019) Usually, the fairness techniques can be categorized into three prominent approaches: pre-,
in-, and post-processings – see their representative works in Sec. C.1. Among the three categories,
in-processing approaches are widely used for fair training due to their high fairness and accuracy
performances, but most of them assume that the training and deployment distributions are the same.

Table 2: Different distribution shifts.
Category Type of Shifts

General
distribution

shifts

covariate shift Pr(x)
label shift Pr(y)

concept shift Pr(y|x)
Fairness
specific
shifts

demographic shift Pr(z)
subpopulation shift Pr(y, z)

correlation shift (ours) Pr(z|y)

Recently, there is an emerging focus on fair training under
data distribution shifts. In Table 2, we summarize various
types of distribution shifts into the following two categories:

General distribution shifts (Singh et al., 2021; Rezaei et al.,
2021; Chen et al., 2022; Mishler & Dalmasso, 2022) fo-
cus on shifts involving the input feature (x) and label (y),
which are widely studied in the traditional machine learning
literature. Here the bias changes between label (y) and group (z) are not explicitly considered.

Fairness-specific shifts (Maity et al., 2021; An et al., 2022; Giguere et al., 2022) handle group (z)
distribution changes, as z is especially correlated with fair training. We note that our work also falls
into this category. A recent study (Maity et al., 2021) theoretically analyzes the behavior of fair
training under a change in bias called subpopulation shifts, where a specific group has fewer positively-
labeled examples during training time compared to deployment time. Another study (Giguere et al.,
2022) designs a new test method to serve a fair model under another data distribution change called
demographic shifts, where the subgroup distribution may change – see an empirical comparison
between this work and ours in Sec. B.12. A recent work (An et al., 2022) proposes a self-training-
based transfer algorithm that requires specific model architecture (e.g., adversary network) to support
data changes, including subpopulation shifts. In comparison, our contribution lies in 1) introducing
the notion of correlation shifts, which is important for explaining with theoretical evidence the
connection between the data bias changes and behaviors of fair training, 2) analyzing the fundamental
performance limits of in-processing approaches in the presence of correlation shifts, and 3) proposing
a pre-processing step based on the theoretical analysis for assisting the existing fairness approaches.
In addition, our framework is general and can support any model architecture and training procedure.
We leave more detailed comparisons in Sec. C.2.

Another line of research is supporting robustness in fair training, including handling noisy
groups (Celis et al., 2021; Wang et al., 2020) or poisoning attacks (Mehrabi et al., 2021; Solans et al.,
2020). Although this direction is not our immediate focus, we do perform preliminary experiments in
Secs. B.13 and B.14 to show some potential to support noisy group attributes or poisoning attack
scenarios. We believe our method can be further extended with other robust training methods.

In addition to group fairness, we discuss other noteworthy fairness definitions including individual
fairness (Dwork et al., 2012a) and causality-based fairness (Kilbertus et al., 2017) in Sec. C.1. We
also explain with a concrete example how our work connects to causality-based fairness in Sec. C.3.

7 CONCLUSION

We addressed the problem of model fairness in the presence of bias changes in the data. We first
introduced the new notion of (y, z)-correlation for capturing bias and analyzed the accuracy and
fairness limitations of existing in-processing approaches in the presence of correlation shifts. We
then proposed a decoupling framework where pre-processing is used to adjust the correlation, and
in-processing is used for unfairness mitigation. The pre-processing step adjusts the data ratio among
(y, z)-classes to reflect the shifted correlation and can optionally minimize the distribution change of
the training data as well. Experiments showed how our pre-processing enables existing in-processing
approaches to achieve high fairness and accuracy under correlation shifts and outperform baselines.
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ETHICS STATEMENT

We believe our work can have a positive societal impact by improving model fairness. In particular,
we anticipate that our work can make existing fairness algorithms more applicable to real-world
scenarios where data bias usually changes. However, one must carefully choose the right fairness
metric to avoid unintended discrimination. To ensure privacy, we do not use any personal identifiers
(e.g., name and date of birth). Also, we do not conduct experiments with human subjects.

REPRODUCIBILITY STATEMENT

To reproduce the experimental results, we describe details on experiments and implementation (e.g.,
models, data preprocessing, hyperparameters, and devices) in Sec. 5 and Sec. B. We also provide
source codes for training and testing in the supplementary.
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A APPENDIX – THEORY

A.1 PROOF FOR LEMMA 2

Continuing from Sec. 3.1, we provide a proof for Lemma 2.

Proof. We denote the Pearson’s correlation coefficient between y and z as ρyz. By definition,
ρyz =

Cov(y,z)
σ(y)σ(z) . For binary y and z, we can rewrite ρyz as follows (Cohen & Cohen, 1975):

ρyz =
Cov(y, z)
σ(y)σ(z)

=
Pr(y = 1, z = 1)Pr(y = 0, z = 0)− Pr(y = 1, z = 0)Pr(y = 0, z = 1)√

Pr(y = 1)Pr(y = 0)Pr(z = 1)Pr(z = 0)

If the marginal probabilities of y and z (i.e., Pr(y = y) and Pr(z = z)) remain the same,

ρyz ∝ Pr(y = 1, z = 1)Pr(y = 0, z = 0)− Pr(y = 1, z = 0)Pr(y = 0, z = 1)

∝ Pr(y = 1, z = 1)

Pr(z = 1)

Pr(y = 0, z = 0)

Pr(z = 0)
− Pr(y = 1, z = 0)

Pr(z = 0)

Pr(y = 0, z = 1)

Pr(z = 1)

= Pr(y = 1|z = 1)Pr(y = 0|z = 0)− Pr(y = 1|z = 0)Pr(y = 0|z = 1)

= Pr(y = 1|z = 1)(1− Pr(y = 1|z = 0))− Pr(y = 1|z = 0)(1− Pr(y = 1|z = 1))

= Pr(y = 1|z = 1)− Pr(y = 1|z = 0)− Pr(y = 1|z = 1)Pr(y = 1|z = 0) + Pr(y = 1|z = 0)Pr(y = 1|z = 1)

= Pr(y = 1|z = 1)− Pr(y = 1|z = 0).

Therefore, if the marginal probabilities of y and z remain the same, the (y, z)-correlation ρyz is
proportional to Pr(y = 1|z = 1)−Pr(y = 1|z = 0), which is the difference between the conditional
probabilities of y given different z values.

A.2 THE ACCURACY-FAIRNESS TRADEOFF WHEN IMPROVING FAIRNESS W.R.T. A SINGLE
METRIC

Continuing from Sec. 3.1, we show that the (y, z)-correlation determines the accuracy-fairness tradeoff
under certain conditions by applying Lemma 2 to Proposition 1.

The previous work (Menon & Williamson, 2018) shows that a higher alignment between y and z
leads to a worse accuracy-fairness tradeoff w.r.t. demographic parity – more details are described in
Proposition 8 in Menon & Williamson (2018). According to the previous work, alignment is defined
as how many examples in each group have a specific label. We can thus measure the alignment as
Pr(y = 1|z = 1) + Pr(y = 0|z = 0). Then, we can rewrite the equation as follows:

alignment = Pr(y = 1|z = 1) + Pr(y = 0|z = 0)

= Pr(y = 1|z = 1) + (1− Pr(y = 1|z = 0))

= 1 + Pr(y = 1|z = 1)− Pr(y = 1|z = 0).

By applying Lemma 2 to the above result, we observe that the alignment between y and z is
proportional to ((y, z)-correlation +1) when the marginal distributions of y and z remain the same.
Therefore, when a model is trained w.r.t. demographic parity and the marginal probabilities of y and
z do not change, a higher (y, z)-correlation results in a worse accuracy-fairness tradeoff.

A.3 ε-DP & ε-EO

Continuing from Sec. 3.1, we provide a proof for Proposition 6.

Proof. A model achieves both ε-DP and ε-EO when the two inequalities |Pr(ŷ = y|z = z) −
Pr(ŷ = y|z = z′)| ≤ ε (i.e., ε-DP) and |Pr(ŷ = y|y = y, z = z) − Pr(ŷ = y|y = y, z = z′)| ≤ ε
(i.e., ε-EO) are satisfied, where y ̸= y′, y, y′ ∈ {0, 1} and z ̸= z′, z, z′ ∈ {0, 1}.
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By combining the law of total probability and ε-DP, we can get the following inequality:

−ε ≤ Pr(ŷ = y|z = z, y = y′) Pr(y = y′|z = z) + Pr(ŷ = y|z = z, y = y) Pr(y = y|z = z)

−Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′) ≤ ε.
(1)

Also, ε-EO can be rewritten as follows:

−ε+ Pr(ŷ = y|z = z′, y = y) ≤ Pr(ŷ = y|z = z, y = y) ≤ ε+ Pr(ŷ = y|z = z′, y = y). (2)

By substituting Eq. 2 to Eq. 1, we can get the following inequality:

(−ε+ Pr(ŷ = y|z = z′, y = y′)) Pr(y = y′|z = z) + (−ε+ Pr(ŷ = y|z = z′, y = y)) Pr(y = y|z = z)

− Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′)

≤ Pr(ŷ = y|z = z, y = y′) Pr(y = y′|z = z) + Pr(ŷ = y|z = z, y = y) Pr(y = y|z = z) (3)

− Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′)

≤ (ε+ Pr(ŷ = y|z = z′, y = y′)) Pr(y = y′|z = z) + (ε+ Pr(ŷ = y|z = z′, y = y)) Pr(y = y|z = z)

− Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′).

By subtracting Eq. 2 from Eq. 3,

− ε+ (−ε+ Pr(ŷ = y|z = z′, y = y′)) Pr(y = y′|z = z) + (−ε+ Pr(ŷ = y|z = z′, y = y)) Pr(y = y|z = z)

− Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′)

≤ 0

≤ ε+ (ε+ Pr(ŷ = y|z = z′, y = y′)) Pr(y = y′|z = z) + (ε+ Pr(ŷ = y|z = z′, y = y)) Pr(y = y|z = z)

− Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′).

By rearranging the terms, we get the followings:

−2ε ≤ (Pr(ŷ = y|z = z′, y = y′)− Pr(ŷ = y|z = z′, y = y))(Pr(y = y′|z = z)− Pr(y = y′|z = z′)) ≤ 2ε

⇒ −2ε ≤ (Pr(ŷ = y|z = z′, y = y′)− Pr(ŷ = y|z = z′, y = y))(1− Pr(y = y|z = z)− 1 + Pr(y = y|z = z′)) ≤ 2ε.

Thus, we get the following inequality, which is in Proposition 6:

|Pr(y = y|z = z)− Pr(y = y|z = z′)| |Pr(ŷ = y|y = y, z = z)− Pr(ŷ = y|y = y′, z = z)| ≤ 2ε.

A.4 ε-PP & ε-DP

Continuing from Sec. 3.1, we consider fair training w.r.t. both predictive parity (PP) and demographic
parity (DP). We can define ε-PP & ε-DP as follows:

−ε ≤ Pr(y = y|ŷ = y, z = 0)− Pr(y = y|ŷ = y, z = 1) ≤ ε (i.e., ε-PP)
−ε ≤ Pr(ŷ = y|z = 0)− Pr(ŷ = y|z = 1) ≤ ε (i.e., ε-DP)

Based on these definitions, we give a proposition for ε-PP and ε-DP:
Proposition 8 (ε-PP & ε-DP). Let a model achieve both ε-PP and ε-DP. Then, the following
inequality holds:

|Pr(y = y, ŷ = y|z = z)− Pr(y = y, ŷ = y|z = z′)|
2Pr(y = y|ŷ = y, z = z) + Pr(ŷ = y|z = z) + Pr(y = y|ŷ = y, z = z′)

≤ ε, z ̸= z′, z, z′ ∈ Z, y ∈ Y.

Proof. From ε-DP, we get

−ε+ Pr(ŷ = y|z = 1) ≤ Pr(ŷ = y|z = 0) ≤ ε+ Pr(ŷ = y|z = 1). (4)
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From ε-PP, we get

−ε ≤ Pr(ŷ=y|z=0)
Pr(z=0)

Pr(ŷ=y, z=0)

Pr(y=y, ŷ=y, z=0)

Pr(ŷ=y, z=0)
− Pr(ŷ=y|z=1)

Pr(z=1)

Pr(ŷ=y, z=1)

Pr(y=y, ŷ=y, z=1)

Pr(ŷ=y, z=1)
≤ ε.

(5)

By substituting Eq. 4 to Eq. 5, we can get the following inequality:

{−ε+ Pr(ŷ = y|z = 1)} Pr(z = 0)

Pr(ŷ = y, z = 0)

Pr(y = y, ŷ = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|z = 1)

Pr(z = 1)

Pr(ŷ = y, z = 1)

Pr(y = y, ŷ = y, z = 1)

Pr(ŷ = y, z = 1)

≤ Pr(ŷ = y|z = 0)
Pr(z = 0)

Pr(ŷ = y, z = 0)

Pr(y = y, ŷ = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|z = 1)

Pr(z = 1)

Pr(ŷ = y, z = 1)

Pr(y = y, ŷ = y, z = 1)

Pr(ŷ = y, z = 1)
(6)

≤ {ε+ Pr(ŷ = y|z = 1)} Pr(z = 0)

Pr(ŷ = y, z = 0)

Pr(y = y, ŷ = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|z = 1)

Pr(z = 1)

Pr(ŷ = y, z = 1)

Pr(y = y, ŷ = y, z = 1)

Pr(ŷ = y, z = 1)
.

By subtracting Eq. 5 from Eq. 6,

− ε+ {−ε+ Pr(ŷ=y|z=1)} Pr(z = 0)

Pr(ŷ = y, z = 0)

Pr(y = y, ŷ = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ=y|z=1)

Pr(z = 1)

Pr(ŷ = y, z = 1)

Pr(y = y, ŷ = y, z = 1)

Pr(ŷ = y, z = 1)

≤ 0

≤ ε+ {ε+ Pr(ŷ=y|z=1)} Pr(z = 0)

Pr(ŷ = y, z = 0)

Pr(y = y, ŷ = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ=y|z=1)

Pr(z = 1)

Pr(ŷ = y, z = 1)

Pr(y = y, ŷ = y, z = 1)

Pr(ŷ = y, z = 1)
.

By rearranging the terms, we get the following inequality:

− ε · Pr(z = 0)Pr(y = y, ŷ = y, z = 0)

(Pr(ŷ = y, z = 0))2
− ε

≤ Pr(ŷ = y|z = 1){Pr(z = 1)Pr(y = y, ŷ = y, z = 1)

(Pr(ŷ = y, z = 1))2
− Pr(z = 0)Pr(y = y, ŷ = y, z = 0)

(Pr(ŷ = y, z = 0))2
}

≤ ε · Pr(z = 0)Pr(y = y, ŷ = y, z = 0)

(Pr(ŷ = y, z = 0))2
+ ε

which is rewritten as follows:

− ε · Pr(y = y|ŷ = y, z = 0) + Pr(ŷ = y|z = 0)

Pr(ŷ = y|z = 0)

≤ Pr(ŷ = y|z = 1){Pr(y = y|ŷ = y, z = 1)

Pr(ŷ = y|z = 1)
− Pr(y = y|ŷ = y, z = 0)

Pr(ŷ = y|z = 0)
}

≤ ε · Pr(y = y|ŷ = y, z = 0) + Pr(ŷ = y|z = 0)

Pr(ŷ = y|z = 0)
.

By multiplying Pr(ŷ=y|z=0)
Pr(y=y|ŷ=y,z=0)+Pr(ŷ=y|z=0) for all terms in the above inequality, we can get

−ε ≤ Pr(ŷ = y|z = 0)Pr(y = y|ŷ = y, z = 1)− Pr(ŷ = y|z = 1)Pr(y = y|ŷ = y, z = 0)

Pr(y = y|ŷ = y, z = 0) + Pr(ŷ = y|z = 0)
≤ ε.

(7)

Let A = Pr(y = y|ŷ = y, z = 0) + Pr(ŷ = y|z = 0). Since −ε ≤ Pr(ŷ = y|z = 0) −
Pr(ŷ = y|z = 1) ≤ ε (i.e., ε-DP), we can make another inequality from Eq. 7:

(−ε+ Pr(ŷ = y|z = 1))Pr(y = y|ŷ = y, z = 1)− (ε+ Pr(ŷ = y|z = 0))Pr(y = y|ŷ = y, z = 0)

A

≤ Pr(ŷ = y|z = 0)Pr(y = y|ŷ = y, z = 1)− Pr(ŷ = y|z = 1)Pr(y = y|ŷ = y, z = 0)

A
(8)

≤ (ε+ Pr(ŷ = y|z = 1))Pr(y = y|ŷ = y, z = 1)− (−ε+ Pr(ŷ = y|z = 0))Pr(y = y|ŷ = y, z = 0)

A
.
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By subtracting Eq. 7 and Eq. 8,

− ε+
(−ε+ Pr(ŷ = y|z = 1))Pr(y = y|ŷ = y, z = 1)− (ε+ Pr(ŷ = y|z = 0))Pr(y = y|ŷ = y, z = 0)

A
≤ 0

≤ ε+
(ε+ Pr(ŷ = y|z = 1))Pr(y = y|ŷ = y, z = 1)− (−ε+ Pr(ŷ = y|z = 0))Pr(y = y|ŷ = y, z = 0)

A
.

Since Pr(ŷ = y|z = z) Pr(y = y|ŷ = y, z = z) = Pr(y = y, ŷ = y|z = z), we can rewritten the
above inequality as follows:

− ε+
−ε{Pr(y = y|ŷ = y, z = 1) + Pr(y = y|ŷ = y, z = 0)}+ Pr(y = y, ŷ = y|z = 1)− Pr(y = y, ŷ = y|z = 0)

A
≤ 0

≤ ε+
ε{Pr(y = y|ŷ = y, z = 1) + Pr(y = y|ŷ = y, z = 0)}+ Pr(y = y, ŷ = y|z = 1)− Pr(y = y, ŷ = y|z = 0)

A
.

Now, let B=Pr(y = y|ŷ = y, z = 1)+Pr(y = y|ŷ = y, z = 0) and C=Pr(y = y, ŷ = y|z = 1)−
Pr(y = y, ŷ = y|z = 0). Then,

−ε+ 1

A
(−ε ·B + C) ≤ 0 ≤ ε+

1

A
(ε ·B + C).

By arranging the terms,

−ε · (1 + B

A
) +

C

A
≤ 0 ≤ ε · (1 + B

A
) +

C

A

=⇒ −ε ≤ −C
A+B

≤ ε.

Therefore, we can conclude

|Pr(y = y, ŷ = y|z = 0)− Pr(y = y, ŷ = y|z = 1)|
2Pr(y = y|ŷ = y, z = 0) + Pr(ŷ = y|z = 0) + Pr(y = y|ŷ = y, z = 1)

≤ ε.

If we reverse the z values in the derivation, we get the same formula with only the z value changed in
the above expression. As a result, we get the following inequality, which is in Proposition 8:

|Pr(y = y, ŷ = y|z = z)− Pr(y = y, ŷ = y|z = z′)|
2Pr(y = y|ŷ = y, z = z) + Pr(ŷ = y|z = z) + Pr(y = y|ŷ = y, z = z′)

≤ ε, z ̸= z′, z, z′ ∈ Z, y ∈ Y.

Therefore, to make ε = 0, the numerator term |Pr(y = y, ŷ = y|z = z)− Pr(y = y, ŷ = y|z = z′)|
should be zero. When |Pr(y = y, ŷ = y|z = z) − Pr(y = y, ŷ = y|z = z′)| = 0, the following is
satisfied: (y, ŷ) ⊥ z, which implies y ⊥ z and ŷ ⊥ z. Here, y ⊥ z indicates that |Pr(y = y|z = z)−
Pr(y = y|z = z′)| is zero. As a result, perfectly satisfying PP and DP requires the data to be fully
unbiased. We thus suspect that the achievable model fairness w.r.t. both PP and DP is affected by the
(y, z)-correlation.

A.5 ε-EO & ε-PP

Continuing from Sec. 3.1, we consider fair training w.r.t. both equalized odds (EO) and predictive
parity (PP). We can define ε-EO & ε-PP as follows:

−ε ≤ Pr(ŷ = y|y = y, z = 0)− Pr(ŷ = y|y = y, z = 1) ≤ ε (i.e., ε-EO)
−ε ≤ Pr(y = y|ŷ = y, z = 0)− Pr(y = y|ŷ = y, z = 1) ≤ ε (i.e., ε-PP)

Based on these definitions, we give a proposition for ε-EO and ε-PP:
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Proposition 9 (ε-EO & ε-PP). Let a model achieve both ε-EO and ε-PP. Then, the following
inequality holds:

Pr(ŷ=y|y=y, z=z′)

Pr(ŷ=y, z=z) + Pr(y=y, z=z)
· |Pr(y=y)− Pr(y=y|z=z′) · Pr(ŷ=y)

Pr(ŷ=y|z=z′)
| ≤ ε, z ̸= z′, z, z′ ∈ Z, y ∈ Y.

Proof. From ε-EO, we get

−ε+ Pr(ŷ = y|y = y, z = 1) ≤ Pr(ŷ = y|y = y, z = 0) ≤ ε+ Pr(ŷ = y|y = y, z = 1). (9)

From ε-PP, we get

−ε ≤ Pr(ŷ = y|y = y, z = 0)
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
≤ ε.

(10)

By substituting Eq. 9 to Eq. 10, we can get the following inequality:

(−ε+ Pr(ŷ = y|y = y, z = 1))
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)

≤ Pr(ŷ = y|y = y, z = 0)
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
(11)

≤ (ε+ Pr(ŷ = y|y = y, z = 1))
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
.

By subtracting Eq. 10 from Eq. 11,

− ε+ (−ε+ Pr(ŷ = y|y = y, z = 1))
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)

≤ 0

≤ ε+ (ε+ Pr(ŷ = y|y = y, z = 1))
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
.

By rearranging the terms, we get the following inequality:

− ε · Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)

≤ Pr(ŷ = y|y = y, z = 1){Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
}

≤ ε · Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
.

By multiplying Pr(ŷ=y,z=0)
Pr(ŷ=y,z=0)+Pr(y=y,z=0) for all terms in the inequality, we can get

−ε ≤ Pr(ŷ = y, z = 0)Pr(ŷ = y|y = y, z = 1)

Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)
{Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
} ≤ ε

which is rewritten as follows:

−ε ≤ Pr(ŷ = y|y = y, z = 1)

Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)
{Pr(y = y, z = 0)− Pr(ŷ = y, z = 0)

Pr(ŷ = y, z = 1)
· Pr(y = y, z = 1)} ≤ ε.

Since Pr(y = y, z = 0) = Pr(y = y)− Pr(y = y, z = 1) by the total probability law,

−ε ≤ Pr(ŷ=y|y=y, z=1)

Pr(ŷ=y, z=0) + Pr(y=y, z=0)
{Pr(y=y)− Pr(y=y, z=1)− Pr(ŷ=y, z=0)

Pr(ŷ=y, z=1)
· Pr(y=y, z=1)} ≤ ε.
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By arranging the terms,

−ε ≤ Pr(ŷ = y|y = y, z = 1)

Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)
{Pr(y = y)− Pr(y = y, z = 1) · (1 + Pr(ŷ = y, z = 0)

Pr(ŷ = y, z = 1)
)} ≤ ε

⇒ −ε ≤ Pr(ŷ = y|y = y, z = 1)

Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)
{Pr(y = y)− Pr(y = y, z = 1) · Pr(ŷ = y)

Pr(ŷ = y, z = 1)
} ≤ ε.

Therefore, we can conclude
Pr(ŷ = y|y = y, z = 1)

Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)
· |Pr(y = y)− Pr(y = y, z = 1) · Pr(ŷ = y)

Pr(ŷ = y, z = 1)
| ≤ ε.

If we reverse the z values in the derivation, we get the same formula with only the z value changed in
the above expression. As a result, we get the following inequality, which is in Proposition 9:

Pr(ŷ=y|y=y, z=z′)

Pr(ŷ=y, z=z) + Pr(y=y, z=z)
· |Pr(y=y)− Pr(y=y|z=z′) · Pr(ŷ=y)

Pr(ŷ=y|z=z′)
| ≤ ε, z ̸= z′, z, z′ ∈ Z, y ∈ Y.

Therefore, ε = 0 when Pr(y = y) = Pr(y = y|z = z′) and Pr(ŷ = y) = Pr(ŷ = y|z = z′) (i.e.,
y ⊥ z and ŷ ⊥ z). Here, satisfying both y ⊥ z and ŷ ⊥ z is the sufficient condition of perfectly
satisfying EO and PP. Note that y ⊥ z implies that the data is unbiased. We thus suspect that the
achievable model fairness w.r.t. both EO and PP is affected by the (y, z)-correlation.

A.6 ASSUMPTION ON THE DISTRIBUTION OF INPUT FEATURE x

Continuing from Sec. 4, we clarify how we consider the input feature x: our framework (Sec. 4)
implicitly assumes the distribution of x does not change drastically, but we empirically observe that
our framework performs well in the real-world scenario when the x distribution changes (Sec. 5).

Our framework is designed to work best when the x distribution does not change, but does not strictly
require this condition unlike other previous works on fairness-specific shifts (Maity et al., 2021;
Giguere et al., 2022). Specifically, Algorithm 1 uses random sampling w.r.t. the new weights on each
(y, z)-class, so it is desirable that the x distribution conditioned on each (y, z)-class stays the same.
Of course, if the x distribution completely changes, the fairness or accuracy will degrade.

In this paper, we empirically show that our framework indeed performs well in real-world x distribu-
tion shift scenarios. For example, Table 6 in Section B.7 shows the accuracy and fairness performances
when using the two income datasets collected in the 1990s (Kohavi, 1996) (i.e., AdultCensus dataset)
and 2010s (Ding et al., 2021) (i.e., ACSIncome dataset) for training and testing, respectively. Since
the two datasets are collected separately in different periods, both the (y, z)-correlation and the x
distribution can be different between these datasets. Nevertheless, we observe that our framework
successfully improves the accuracy and fairness performances of the in-processing-only baselines.

A.7 SEMIDEFINITE RELAXATION

Continuing from Sec. 4.1, we provide details of the semidefinite relaxation in our optimization.

Recall our original optimization as follows:

min
w′

∑
∀y,z

(wy=y,z=z − w′
y=y,z=z)

2

s.t. α ≤
w′

y=1,z=1

w′
y=1,z=1 + w′

y=0,z=1

−
w′

y=1,z=0

w′
y=1,z=0 + w′

y=0,z=0

≤ β,

|(w′
y=1,z=1 + w′

y=1,z=0)− Prtrain(y = 1)| ≤ γy,

|(w′
y=1,z=1 + w′

y=0,z=1)− Prtrain(z = 1)| ≤ γz,∑
∀y,z

w′
y=y,z=z = 1, 0 ≤ w′

y=y,z=z ≤ 1, ∀y ∈ {0, 1}, z ∈ {0, 1}
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where Prtrain(y = 1)=wy=1,z=1+wy=1,z=0 and Prtrain(z = 1) = wy=1,z=1+wy=0,z=1.

As the above optimization is a non-convex quadratically constrained quadratic problem (non-convex
QCQP), we now apply the semidefinite relaxation (SDP relaxation) (Park & Boyd, 2017). We first
rewrite the above optimization using matrices:

min
x

xTP0x+ qT0 x

s.t. xTPαx ≥ 0, xTPβx ≤ 0,

|qT2 x− Prtrain(y = 1)| ≤ γy,

|qT3 x− Prtrain(z = 1)| ≤ γz

qT4 x = 1, 0 ≤ xi ≤ 1 ∀i

where x = [x1 x2 x3 x4]
T

=
[
w′

1,1 w′
1,0 w′

0,1 w′
0,0

]T
, q0 =

−2 [w1,1 w1,0 w0,1 w0,0]
T , q2 = [1 0 1 0]

T , q3 = [1 1 0 0]
T , q4 = [1 1 1 1]

T ,

P0 = diag(1) , Pα =

[
0 −α/2 0 (1−α)/2

−α/2 0 (−1−α)/2 0
0 (−1−α)/2 0 −α/2

(1−α)/2 0 −α/2 0

]
, and Pβ =

[
0 −β/2 0 (1−β)/2

−β/2 0 (−1−β)/2 0
0 (−1−β)/2 0 −β/2

(1−β)/2 0 −β/2 0

]
.

As xTPx = Tr(P (xxT )), we can get the following optimization:

min
X,x

Tr(XP0) + qT0 x

s.t. Tr(XPα) ≥ 0, Tr(XPβ) ≤ 0

|qT2 x− Prtrain(y = 1)| ≤ γy,

|qT3 x− Prtrain(z = 1)| ≤ γz

qT4 x = 1, 0 ≤ xi ≤ 1 ∀i,
X = xxT

where Tr(·) is the trace and X = xxT .

In the above optimization, the last constraint is non-convex. Thus, we relax the non-convex constraint
X = xxT into X − xxT ⪰ 0, which is convex, and then use a Schur complement (Zhang, 2006) to
get the final SDP form:

min
X,x

Tr(XP0) + qT0 x

s.t. Tr(XPα) ≥ 0, Tr(XPβ) ≤ 0

|qT2 x− Prtrain(y = 1)| ≤ γy,

|qT3 x− Prtrain(z = 1)| ≤ γz

qT4 x = 1, 0 ≤ xi ≤ 1 ∀i,[
X x
xT 1

]
⪰ 0.

When we solve the above SDP relaxation problem using convex optimization solvers, we set

the 5×5-matrix A as the variable so as to indicate
[
X x
xT 1

]
. Then, we get the solution x =

[x1 x2 x3 x4]
T by taking the first four elements of the last vector in the resulting matrix A.

A.8 OPTIONAL STEP FOR MINIMIZING OVERALL DISTRIBUTION CHANGE

Continuing from Sec. 4.2, we explain the details on the optional step in Algorithm 1. We can use the
optional step (MinDistChange) to find non-uniform data sample weights within each (y, z)-class
that minimizes the overall distribution change in terms of the Wasserstein distance (Givens & Shortt,
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1984), rather than using identical weights. In the optional step, we first divide the examples in each
(y=y, z=z)-class into two sets {y=y, z=z, t=0} and {y=y, z=z, t=1} with equal numbers, where t
is a specific feature that can be a criterion for dividing the examples. For example, we can find a
median of a non-sensitive attribute x1 and set t = 0 for an example if the x1 value of the example is
lower than the median of x1. We set t = 1 otherwise. We then make a candidate set of partial weights
w′

y=y,z=z,t=t on each (y=y, z=z, t=t)-class, where
∑

w′
y=y,z=z,t=t = w′

y=y,z=z . Note that we can
extend t beyond the binary setting to find more detailed partial weights. For each partial weight
candidate, we calculate the candidate sample-wise weights (dtmp) to ensure that the sample weight
sum in each (y=y, z=z, t=t)-class is wy=y,z=z,t=t · n, where n is the total number of samples in the
original training data. Then, we draw new data D̃ from the original training data D via weighted
sampling according to dtmp. Then, we calculate the Wasserstein distance between D̃ and D via
an optimal transport technique (Peyré & Cuturi, 2019). As a result, the algorithm returns the final
sample-wise weights (dmin) that result in the closest distribution from the original data.

Algorithm 2: MinDistChange
Input: train data D, original ratio wy,z, new ratio w′

y,z
In each (y=y, z=z)-class, divide the examples into two sets {y=y, z=z, t=0} and {y=y, z=z, t=1}
with equal numbers

partials = [0, 1/m, 2/m, ..., 1]
Wy=y,z=z ← [], ∀(y, z) ∈ Y× Z
for each (y=y, z=z)-class do

for p in partials do
w′

y=y,z=z,t=0 = w′
y=y,z=z · p

w′
y=y,z=z,t=1 = w′

y=y,z=z · (1− p)

Append [w′
y=y,z=z,t=0, w

′
y=y,z=z,t=1] to Wy=y,z=z

candidates←Wy=1,z=1 ×Wy=1,z=0 ×Wy=0,z=1 ×Wy=0,z=0

minD← an initial large value
for partial-weight in candidates do

dj ← w′
y=y,z=z,t=t/(wy=y,z=z · 0.5),∀j ∈ I(y,z,t),∀(y, z, t) ∈ Y× Z× {0, 1}

dtmp = {di}i=1,...,n

Draw data D̃ from D via weighted sampling w.r.t. dtmp

wassD← Calculate the Wasserstein distance between D̃ and D via optimal transport
if wassD < minD then

dmin = dtmp
minD = wassD

Output :dmin

B APPENDIX – EXPERIMENTS

B.1 SIMULATION SETTINGS

Continuing from Sec. 3.1, we explain the details of the simulation. The goal of the simulation is to
confirm our theoretical observations by generating various synthetic classifiers that show the full
range of possible model performances. To this end, we generate 1000 data samples, where each
sample has y and z features. We first set y and z to have a specific correlation. We then generate
various synthetic classifiers to have different predicted labels ŷ by varying the probability Pr(ŷ = 1)
in each (y, z)-class, regardless of the other input features. Note that we do not train actual models
(e.g., logistic regression, SVM). For each synthetic classifier, we measure the accuracy and fairness
performances based on y, z, and the classifier’s ŷ. We repeat the above procedures while varying y
and z to have different correlations. As a result, we get the simulation results in Figure 2 by plotting
all the classifier accuracy and fairness performances within each (y, z)-correlation.
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B.2 EMPIRICAL OBSERVATIONS FOR EQUALIZED ODDS

Continuing from Sec. 3.1, we perform an experiment to observe that higher (y, z)-correlation leads
to a worse accuracy-fairness tradeoff w.r.t. equalized odds (EO) in practice. Figure 4 shows the
accuracy-unfairness performances of the logistic regression model trained using FairBatch (Roh et al.,
2021) to improve EO on two synthetic datasets with low and high (y, z)-correlations. As a result, low
correlation enables classifiers to attain better accuracy-fairness tradeoffs (i.e., close to the bottom
right) w.r.t. EO. This experiment shows that the (y, z)-correlation indeed affects the accuracy-fairness
tradeoff w.r.t. EO in practice.

0.84 0.85 0.86 0.87
Accuracy

0.1

0.2

0.3

U
n

fa
ir

n
e
ss

(E
O

) Low Corr.

High Corr.

Figure 4: Accuracy-unfairness performances of fair training with FairBatch (Roh et al., 2021) on two synthetic
data with different (y, z)-correlations. We measure fairness w.r.t. equalized odds (EO).

B.3 OTHER EXPERIMENTAL SETTINGS

Continuing from Sec. 5, we provide more details on the experimental settings. The batch sizes of
the synthetic, COMPAS, and AdultCensus datasets are 100, 200, and 2000, respectively. For the
synthetic dataset, we use 2000 samples for the training dataset and 1000 samples for the test dataset.
For the real datasets, we split the entire data into 4:1 for the training and test datasets. We set the
learning rate to 0.0005. Our experiments are performed using PyTorch on a Linux server with Intel
Xeon Silver 4210R CPUs and NVIDIA Quadro RTX 8000 GPUs.

We generate the synthetic training dataset with 2,000 samples and consists of two non-sensitive
attributes (x1, x2), one sensitive attribute z, and one label attribute y. Each sample (x1, x2, y)
is drawn from the following Gaussian distributions: (x1, x2)|y = 0 ∼ N ([−2;−2], [10, 1; 1, 3])
and (x1, x2)|y = 1 ∼ N ([2; 2], [5, 1; 1, 5]). For the sensitive attribute z, we generate a biased
distribution: Pr(z = 1) = Pr((x′

1, x′2)|y = 1)/[Pr((x′
1, x′2)|y = 0) + Pr((x′1, x′2)|y = 1)] where

(x′1, x′
2) = (x1 cos(π/4)− x2 sin(π/4), x1 sin(π/4) + x2 cos(π/4)).

When we construct the synthetic test dataset by modifying the z values while fixing the x and
y distributions in the original test data, we change the k value in (x′1, x′2) = (x1 cos(π/k) −
x2 sin(π/k), x1 sin(π/k) + x2 cos(π/k)).

For all in-processing algorithms, we start from a candidate set and use cross-validation on the (pre-
processed) training data to choose the hyperparameters that result in the best fairness while having an
accuracy that best aligns with other results.

To support multiple fairness metrics, we naturally extend each in-processing approach by combining
the fairness constraints for different metrics via a tuning knob that adjusts the importance between
each metric. Here, the fairness constraints are implemented differently in each algorithm. Fairness
Constraints (FC) (Zafar et al., 2017a) adds each unfairness penalty term to the loss function. Thus,
we extend FC by adding multiple penalty terms and adjust the importance between each penalty
term by a tuning knob. Adversarial Debiasing (AD) (Zhang et al., 2018) utilizes a discriminator of
each fairness metric for the adversarial training. Thus, we extend AD by adding multiple fairness
discriminators and adjust the importance between each discriminator by adding a tuning knob in the
classifier’s loss function. FairBatch (FB) (Roh et al., 2021) solves a bilevel optimization that has an
objective for minimizing a fairness disparity according to each fairness metric. Thus, we extend FB
by minimizing the maximum of fairness disparities (e.g., max(DPdisp., EOdisp.)) and adjust the
importance between each disparity using a tuning knob.
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B.4 ACCURACY AND FAIRNESS – ADULTCENSUS

Continuing from Sec. 5.1, we show the results on the AdultCensus dataset. Table 3 shows the accuracy
and fairness performances of the algorithms on the AdultCensus test dataset w.r.t. a single metric
(DP) and multiple metrics (DP & EO). Other setting are identical to Table 1. We observe consistent
results where our framework improves accuracy and fairness of the in-processing-only baselines and
also shows better fairness than the two-step baselines using RW.

Table 3: Performances on the AdultCensus test dataset. Other experimental settings are identical to those in
Table 1.

Single (DP) Multiple (DP & EO)

Method Acc. Unfair. Acc. Unfair.

LR .824 ± .001 .074 ± .002 .824 ± .001 .074 ± .002

FC .805 ± .013 .021 ± .004 .807 ± .013 .078 ± .017
RW+FC .810 ± .004 .020 ± .006 .810 ± .008 .048 ± .013
Ours+FC .820 ± .003 .005 ± .002 .805 ± .014 .033 ± .013
AD .777 ± .022 .007 ± .004 .806 ± .011 .052 ± .004
RW+AD .808 ± .010 .025 ± .007 .800 ± .015 .035 ± .003
Ours+AD .803 ± .009 .007 ± .003 .805 ± .009 .033 ± .003
FB .825 ± .002 .017 ± .001 .826 ± .001 .049 ± .001
RW+FB .818 ± .008 .020 ± .005 .817 ± .008 .071 ± .010
Ours+FB .824 ± .001 .008 ± .003 .826 ± .003 .037 ± .012

B.5 HOW THE PRE-PROCESSED DATA ALIGNS WITH THE TRUE TEST DATA

Continuing from Sec. 5.1, we also show that the pre-processed data distribution (Dpre) by our
algorithm is more aligned with the true test distribution (Dtest) compared to the original training
distribution (Dtrain), in terms of (y, z)-correlation and Wasserstein distance. We calculate the second-
order Wasserstein distance via an optimal transport technique (Peyré & Cuturi, 2019) on the synthetic
data. We experiment on three degrees on shifts and make two observations in Table 4: 1) the
correlations of Dpre and Dtest are indeed more similar relative to Dtrain and 2) the Wasserstein distance
between Dpre and Dtest is lower than between Dtrain and Dtest. Both observations confirm that the
reweighed data aligns well with the test data.

As our method improves the alignment between Dpre and Dtest, the in-processing algorithms trained
on Dpre (i.e., ours + in-processing algorithms) show high accuracy and fairness performances on
Dtest, as shown in Sec. 5.

Table 4: Alignment between data distributions. We use the synthetic data.

Level of correlation shift in ctest

Severe Normal No shift

ctrain (correlation in Dtrain) 0.3591 0.3591 0.3591
cpre (correlation in Dpre) 0.0359 0.1796 0.3590
ctest (correlation in Dtest) 0.0360 0.1800 0.3591

Wass. dist. between Dtrain and Dtest 0.7966 0.6807 0.4399
Wass. dist. between Dtrain and Dtest 0.6257 0.6022 0.4399

B.6 ACCURACY AND FAIRNESS – OTHER TEST DATA CONSTRUCTION: SYNTHETIC DATA

Continuing from Sec. 5.1, we compare the algorithm performances when using a different method to
construct the test dataset of the synthetic-data experiment. Table 5 shows the accuracy and fairness
performances on the synthetic dataset when constructing the test dataset by modifying z directly.
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Table 5: Performances on the synthetic test dataset. The test dataset is constructed via modifying the z values of
the original distribution. Other settings are identical to those in Table 1.

Single (DP) Multiple (DP & EO)

Method Acc. Unfair. Acc. Unfair.

LR .871 ± .000 .138 ± .000 .871 ± .000 .138 ± .000

FC .805 ± .006 .040 ± .005 .830 ± .001 .119 ± .003
RW+FC .847 ± .005 .047 ± .007 .852 ± .005 .053 ± .004
Ours+FC .831 ± .003 .005 ± .004 .854 ± .004 .052 ± .002
AD .792 ± .012 .048 ± .009 .815 ± .008 .133 ± .006
RW+AD .836 ± .010 .042 ± .008 .849 ± .004 .054 ± .004
Ours+AD .820 ± .006 .005 ± .003 .847 ± .002 .057 ± .007

FB .804 ± .001 .051 ± .002 .831 ± .001 .128 ± .002
RW+FB .844 ± .004 .036 ± .003 .853 ± .005 .057 ± .011
Ours+FB .824 ± .002 .015 ± .002 .854 ± .003 .054 ± .003

We again generate the synthetic dataset using a method similar to Zafar et al. (2017a). The synthetic
dataset consists of two non-sensitive attributes (x1, x2), one sensitive attribute z, and one label at-
tribute y. Each sample (x1, x2, y) is drawn from the following Gaussian distributions: (x1, x2)|y =
0 ∼ N ([−2;−2], [10, 1; 1, 3]) and (x1, x2)|y = 1 ∼ N ([2; 2], [5, 1; 1, 5]). For the sensitive at-
tribute z, we generate a biased distribution: Pr(z = 1) = Pr((x′1, x′

2)|y = 1)/[Pr((x′1, x′2)|y = 0) +
Pr((x′1, x′2)|y = 1)] where (x′1, x′2) = (x1 cos(π/k)−x2 sin(π/k), x1 sin(π/k)+x2 cos(π/k)). For
the training dataset, we set k to 4. We then change the k value to generate the test dataset with 50%
of the training data correlation.

As a result, we observe consistent results where our framework improves the accuracy and fairness
performances of the in-processing-only baselines and generally shows better fairness than the two-step
baselines using RW.

B.7 ACCURACY AND FAIRNESS – OTHER TEST DATA CONSTRUCTION: REAL DATA

Continuing from Sec. 5.1, we compare the algorithm performances when using a different method to
construct the test dataset of the real-data experiment. Table 6 shows the accuracy and fairness perfor-
mances when using the two income datasets collected in the 1990s (Kohavi, 1996) (i.e., AdultCensus
dataset used in Sec. B.4) and 2010s (Ding et al., 2021) for training and testing, respectively. Here, the
1990s and 2010s datasets have the different (y, z)-correlation values 0.214 and 0.150, respectively.
In addition, the input feature x distribution also slightly shifted, as shown in Figure 5. As a result,
we observe consistent results in Table 6 where our framework improves the accuracy and fairness
performances of the in-processing-only baselines.
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Figure 5: Principal component analysis (PCA) results on the input feature x of the two US income datasets:
AdultCensus (Kohavi, 1996) and ACSIncome (Ding et al., 2021). Here, the distributions of the principal
components on input feature x are different in the two datasets.
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Table 6: Model performances on the ACSIncome test data (Ding et al., 2021) collected in the 2010s. The
models are trained on the AdultCensus data (Kohavi, 1996) collected in the 1990s. Both datasets have labels that
indicate each person’s annual income.

Single (DP)

Method Acc. Unfair.

FC .646 ± .013 .104 ± .015
Ours+FC .652 ± .015 .090 ± .017

AD .637 ± .031 .137 ± .037
Ours+AD .644 ± .024 .060 ± .039

FB .643 ± .007 .128 ± .021
Ours+FB .670 ± .004 .098 ± .002

FB on test dist. (upper bound) .704 ± .007 .044 ± .035

B.8 ACCURACY AND FAIRNESS – TRADEOFF CURVES

Continuing from Sec. 5.1, we provide the accuracy-fairness disparity (DP) trade-off curves of
FairBatch (FB) and Ours+FB on the the synthetic data in Figure 6. Our framework shows a better
accuracy-fairness tradeoff compared to the in-processing approach (FB). FB shows an “inversed”
curve, as it is trained with wrong biases in mind.

0.82 0.83 0.84 0.85
Accuracy

0.000

0.025

0.050

0.075

0.100

U
n

fa
ir

n
e
ss

(D
P

) FB

Ours+FB

Figure 6: Accuracy-fairness disparity trade-off curves of FB and Ours+FB on the synthetic data.

B.9 USING THE OPTIONAL STEP

Continuing from Sec. 5.1, we show the results of when using the optional step using
MinDistChange in Algorithm 1. This step finds possibly-different data sample weights within
each (y, z)-class to minimize the overall distribution change between the training and pre-processed
data. Figure 7 shows the Wasserstein distances between the original training data and pre-processed
data when our algorithm uses either the basic or optional step, and the correlation constant c ranges
from 10% to 70% of the training data’s correlation. As a result, the optional step generally reduces
the Wasserstein distance between the training and pre-processed data distributions, especially for
smaller c values. In addition, Table 7 shows the performances on the synthetic test dataset when
our algorithm uses either the basic step (Ours) or the optional step (Ours+Optional). As a result,
when using the new data from the optional step as an input of the in-processing approaches, the final
classifier’s accuracy and fairness are not sacrificed much compared to using data from the basic step,
while minimally changing the data distribution.
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Figure 7: Wasserstein distances between the original training data and pre-processed data when our algorithm
uses either the basic step or the optional step, while varying the target correlation to have 10% to 70% correlation
of the training data.
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Table 7: Performances on the synthetic test dataset. Other settings are identical to those in Table 1.

Single (DP)

Method Acc. Unfair.

Ours+FC .849 ± .002 .034 ± .004
Ours+Optional+FC .830 ± .003 .027 ± .005

Ours+AD .814 ± .011 .017 ± .006
Ours+Optional+AD .808 ± .007 .014 ± .006

Ours+FB .836 ± .001 .003 ± .001
Ours+Optional+FB .842 ± .002 .010 ± .004

B.10 SETTING THE CORRELATION RANGE TO cTEST ± x%

Continuing from Sec. 5.2, we evaluate our approach when [α, β] = [ctest − x%, ctest + x%]. Figure 8
shows the accuracy and fairness performances of FB and Ours+FB, while varying the correlation
constant c of the test data. Here, we set the specified correlation range in our algorithm to [α, β] =
[ctest − x%, ctest + x%], where x ∈ {10, 50, 100}. When x = 10%, we observe similar trends
as in Figure 3a, where our framework improves the accuracy and fairness performances of the
in-processing-only baselines. When x = 100% (i.e., the worst-case setting of [α, β]), the accuracy
and fairness performances of our framework converge to the in-processing-only baselines. When
x = 50%, the performances of our framework are in between those of when x = 10% and x = 100%.
There are two takeaways: 1) our framework successfully boosts the in-processing-only baseline
performances when the [α, β] range is reasonable, and 2) even if we do not have any information about
the correlation shift, our framework performs at least as well as the in-processing-only baselines.

Figure 8: Performances of FB and Ours+FB on the synthetic data while varying the correlation of the test data
ctest to have 10% to 70% correlation of the training data. We set the specified correlation range in our algorithm
to [α, β] = [ctest − x%, ctest + x%], where x ∈ {10, 50, 100}.

B.11 VARYING THE CORRELATION OF THE TEST DATA: MORE BIASES

Continuing from Sec. 5.2, we vary the correlation of the test data to have more biases than the training
data. Figure 9 shows the accuracy and fairness performances of FB and Ours+FB, while varying the
correlation constant c of the test data up to 150%. When the correlation increases more than 100% of
that of the training data, the in-processing-only baseline (FB) cannot improve fairness because the
training data does not capture the bias level in the test data. Hence, the in-processing-only baseline
cannot be used in applications that require high fairness. On the other hand, our pre-processing
enables the in-processing approach to achieve the high fairness that it may need, with some accuracy
degradation.

B.12 EMPIRICAL COMPARISON WITH GIGUERE ET AL. (2022)

Continuing from Sec. 6, we add a new baseline called Shifty(Giguere et al., 2022), which focuses
on the distribution shift most relevant to ours. Shifty first trains candidate models on the training
data and selects only the models showing high fairness in the shifted deployment data. To give a
favorable condition to Shifty, we assume that Shifty knows the exact test distribution. Table 8 shows
the accuracy and fairness performances of the in-processing-only baseline FairBatch, Shifty, and
our framework w.r.t. a single metric (DP) and multiple metrics (DP & EO) in the synthetic and
COMPAS datasets used in Table 1. As a result, both ours and Shifty improve the fairness of the
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Figure 9: Performances of FB and Ours+FB on the synthetic data while varying the correlation of the test data to
have 10% to 150% correlation of the training data.

Table 8: Performances on the synthetic test dataset. We compare in-processing-only baseline FairBatch (Roh
et al., 2021), Shifty (Giguere et al., 2022), and our framework. Other settings are identical to those in Table 1.

Synthetic COMPAS

Single (DP) Multiple (DP & EO) Single (DP) Multiple (DP & EO)

Method Acc. Unfair. Acc. Unfair. Acc. Unfair. Acc. Unfair.

FB (Roh et al., 2021) .821 ± .000 .048 ± .000 .849 ± .001 .091 ± .005 .647 ± .001 .038 ± .013 .650 ± .002 .187 ± .019
FB + Shifty .838 ± .001 .024 ± .008 .844 ± .003 .063 ± .008 .647 ± .001 .029 ± .001 .649 ± .002 .162 ± .025
Ours+FB .836 ± .001 .003 ± .001 .852 ± .004 .058 ± .001 .648 ± .004 .027 ± .001 .657 ± .004 .130 ± .014

in-processing-only baseline, but ours shows better fairness than Shifty while achieving similar or
higher accuracy. The reason is that Shifty is selecting the final model among the candidates that
were already trained on the original training data, whereas ours trains a new model on the improved
(pre-processed) data.

B.13 SUPPORTING NOISY GROUP ATTRIBUTES

Continuing from Sec. 6, we evaluate the performance of our method on increasingly noisy data and
observe that our method can potentially be extended to the noisy group scenario.

We perform a new experiment, where 10–50% of the group information in the training data is
randomly flipped. Table 9 shows the accuracy and fairness performances of the in-processing-only
baseline FairBatch (FB) and our framework (Ours+FB) w.r.t. demographic parity (DP). Here, FB
cannot achieve high fairness performance (i.e., low DP disp.), as the group distribution in the training
data is different from that in the test data. In comparison, our framework enables FB to achieve
relatively high fairness at the expense of some accuracy degradation.

We note that these results are preliminary and only show that our method has some potential to
support noisy group attributes, and we believe there is plenty of room for improvement. In particular,
we believe our method can be further extended with other robust training methods like (Shen &
Sanghavi, 2019).

Table 9: Performances on the synthetic test dataset when the group information in the training data is randomly
flipped. We train the algorithms w.r.t. demographic parity (DP).

10% flipping 30% flipping 50% flipping

Method Acc. Unfair.
(DP) Acc. Unfair.

(DP) Acc. Unfair.
(DP)

FB 0.818 0.087 0.864 0.165 0.883 0.250
Ours + FB 0.808 0.069 0.823 0.101 0.838 0.142

B.14 SUPPORTING POISONING ATTACK SCENARIO

Continuing from Sec. 6, we evaluate the performance of our method on poisoned data and observe
that our method can potentially be extended to the poisoning attack scenario.

We perform a new experiment using one of the poisoning attack methods for fair training (Roh et al.,
2020), where 10% of the training labels of a specific group are flipped so as to maximize the accuracy
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degradation. Table 10 shows the accuracy and fairness performances of the in-processing-only
baseline FairBatch (FB) and our framework w.r.t. demographic parity (DP) on the poisoned data;
we also report FB on the clean data, which can be considered as the upper-bound performance.
Here, when achieving similar fairness, our framework improves the accuracy of FB on the poisoned
data. We suspect that, while our pre-processing reduces the correlation shift between training and
deployment data, the effect of the poisoning attack is also mitigated.

We note that these results are preliminary and only show that our method has some potential to
support the poisoning attack scenario, and we believe there is plenty of room for improvement.

Table 10: Performances on the synthetic test dataset when 10% of the training labels are poisoned (Roh et al.,
2020). We train the algorithms w.r.t. demographic parity (DP).

Method Acc. Unfair. (DP)

FB 0.699 0.026
Ours + FB 0.721 0.024

FB on the clean data (upper bound) 0.773 0.023

C APPENDIX – MORE RELATED WORK

C.1 TRADITIONAL MODEL FAIRNESS

As model fairness becomes essential for Trustworthy AI, various fairness definitions have been
proposed to reflect legal and social requirements (Narayanan, 2018). Among the definitions, we focus
on group fairness, which aims to not discriminate specific groups. There are three prominent group
fairness metrics: demographic parity (Feldman et al., 2015), equalized odds (Hardt et al., 2016), and
predictive parity (Berk et al., 2021). To support the fairness metrics, various fairness techniques
have been proposed, which can be categorized into three prominent approaches: (1) pre-processing
approaches (Kamiran & Calders, 2011; Zemel et al., 2013; Feldman et al., 2015; du Pin Calmon
et al., 2017; Choi et al., 2020; Jiang & Nachum, 2020), which debias, reweight, or generate training
data, (2) in-processing approaches (Zafar et al., 2017a;b; Agarwal et al., 2018; Zhang et al., 2018;
Cotter et al., 2019; Roh et al., 2020; 2021), which modify model training itself for fairness, and (3)
post-processing approaches (Kamiran et al., 2012; Hardt et al., 2016; Pleiss et al., 2017; Chzhen
et al., 2019), which manipulate only the model outputs without changing the training inside. Among
the three categories, in-processing approaches are widely used for unfairness mitigation, but most of
them assume that the training and deployment data distributions are the same.

Another line of research is to support multiple fairness metrics (Thomas et al., 2019; Zhao et al.,
2020). Thomas et al. (2019) proposes a fairness testing framework that can support multiple metrics.
Zhao et al. (2020) shows that EO can be achieved while preserving the original DP. In comparison,
we analyze when a model can achieve both ε-DP and ε-EO.

Beyond group fairness, there are other noteworthy fairness definitions including individual fair-
ness (Dwork et al., 2012b), which aims to give similar predictions to similar individuals, and
causality-based fairness (Kilbertus et al., 2017; Kusner et al., 2017; Zhang & Bareinboim, 2018),
which aims to improve fairness by understanding the causal relationship between attributes. Extending
our analysis and framework to these definitions is an interesting future work.

C.2 FAIRNESS UNDER DATA DISTRIBUTION SHIFTS

Continuing from Sec. 6, we further compare our work with the previous studies on data distribution
shifts. The following paragraphs contain detailed discussions of the two categories of distribution
shifts: general distribution shifts and fairness-specific shifts.

Among the general distribution shifts (i.e., covariate, label, and concept shifts in Table 2), the concept
shift is the most relevant definition to the correlation shift. As shown in Table 2 of Sec. 6, the
correlation and concept shifts focus on Pr(z|y) and Pr(y|x), respectively. As the concept shifts
consider the distribution changes of the label (y) and input feature (x), this type of shift can implicitly
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describe the correlation shifts when the input feature contains the group attribute (z). However, a
unique characteristic of the correlation shifts is to explicitly capture the bias changes between y and
z, where z is especially relevant to fair training. Thus, the notion of correlation shifts enables us to
analyze the behavior of fair training when the bias changes.

In addition, the key difference between the correlation shift and the other fairness-specific shifts
(subpopulation and demographic shifts) is that the other shifts are defined under specific assumptions
on the data distribution, which are not required in our correlation shift definition. Here are the
assumptions in the subpopulation and demographic shifts:
• The subpopulation shift (Maity et al., 2021) assumes that the loss expectations w.r.t. input feature

X and label Y of training and deployment distributions are the same (i.e., Etrain[(h(x), y)|z = z] =
Etest[(h(x), y)|z = z], where E indicates the expectation). Thus, as discussed in the related work
section, a major example of subpopulation shifts is when a specific group has fewer positively-
labeled examples during training time compared to deployment time, while the distributions of the
x and y attributes remain the same.

• Similarly, the demographic shift (Giguere et al., 2022) assumes that the joint probabilities of x and
y on the training and deployment distributions are identical (i.e., Prtrain(x = x, y = y|z = z) =
Prtest(x = x, y = y|z = z)). This assumption is similar to the assumption of the subpopulation
shift, but the difference is whether the loss values of the model are explicitly considered or not.

The above assumptions are used in the theoretical analyses of the previous works (Maity et al., 2021;
Giguere et al., 2022). In comparison, our theoretical analyses in Sec. 3 of using correlation shifts
are not limited by any additional assumptions, and we show that the achievable performances of fair
training are determined by the (y, z)-correlation.

C.3 CONNECTION TO CAUSALITY-BASED FAIRNESS

Continuing from Sec. 6, we discuss how our work can be connected with causality-based fairness. To
this end, we give a concrete example to show the correlation shifts when the sensitive group attribute
itself is a confounder, one of the important roles of attributes in causality-based fairness.

We consider a car insurance example, where the goal is to predict future accident rates from the past
driving record: suppose that input feature x is the past driving record, label y is the future accident
rate, and sensitive attribute z is the race.

Then, the structural causality graph between them would look like: z→ (x, y) and x→ y, i.e., z being
a confounder (Figure 10). The arrows from z to x and y could be due to (a) different socialization
and driving behavior formation process that partially depends on racial identity and (b) another
unobserved mediator such as where they live in, etc. In this example where z is a confounder, it is
clear that z and y are correlated.

We expect this confounding effect to change over time. This will make the sensitive attribute z either
a stronger or weaker confounding factor, which impacts the correlation between y and z.

x y

z

Past 
driving record

Future 
accident rate

Race

Figure 10: A causality graph for the car insurance example in Sec. C.3.
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