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Abstract
This paper proposes a novel online evaluation
protocol for Test Time Adaptation (TTA) meth-
ods, which penalizes slower methods by provid-
ing them with fewer samples for adaptation. TTA
methods leverage unlabeled data at test time to
adapt to distribution shifts. Although many effec-
tive methods have been proposed, their impressive
performance usually comes at the cost of signif-
icantly increased computation budgets. Current
evaluation protocols overlook the effect of this
extra computation cost, affecting their real-world
applicability. To address this issue, we propose a
more realistic evaluation protocol for TTA meth-
ods, where data is received in an online fashion
from a constant-speed data stream, thereby ac-
counting for the method’s adaptation speed. We
apply our proposed protocol to benchmark sev-
eral TTA methods on multiple datasets and sce-
narios. Extensive experiments show that, when
accounting for inference speed, simple and fast
approaches can outperform more sophisticated
but slower methods. For example, SHOT from
2020, outperforms the state-of-the-art method
SAR from 2023 in this setting. Our results re-
veal the importance of developing practical TTA
methods that are both accurate and efficient1.

1. Introduction
In recent years, Deep Neural Networks (DNNs) have demon-
strated remarkable success in various tasks (He et al., 2016)
thanks to their ability to learn from large datasets (Deng
et al., 2009). However, a significant limitation of DNNs is
their poor performance when tested on out-of-distribution
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Figure 1: The trend of average error rate using offline
evaluation vs our proposed online evaluation. In the
offline setup, TTA methods demonstrate progress across
time with a decreasing average error rate, e.g. from 68.5%
using AdaBN to 56.2% using SAR. We propose a realistic
evaluation protocol that accounts for the adaptation speed
of TTA methods. Under this protocol, fast methods (e.g.
AdaBN) are unaffected, while slower (but more recent and
sophisticated) methods (e.g. SAR) are penalized.

data, which violates the i.i.d. assumption that the training
and testing data are from the same distribution (Hendrycks
et al., 2021; Hendrycks & Dietterich, 2019; Kar et al.,
2022). Such failure cases are concerning, since distribu-
tion shifts are common in real-world applications, e.g., im-
age corruptions (Hendrycks & Dietterich, 2019), chang-
ing weather conditions (Sakaridis et al., 2021), or security
breaches (Goodfellow et al., 2014).

Test Time Adaptation (TTA) (Saenko et al., 2010; Sun et al.,
2020; Liu et al., 2021) has demonstrated promising results
for solving the above problem. TTA leverages the unlabeled
data that arrives at test time by adapting the forward pass
of pre-trained DNNs according to some proxy task (Liang
et al., 2020; Lee et al., 2013). Though recent methods have
made significant progress at improving accuracy under dis-
tribution shifts (Wang et al., 2020; Niu et al., 2022; Gao
et al., 2022), many of them incur high computational over-
head. For instance, some methods require self-supervised
fine-tuning on the data (Chen et al., 2022), while others
perform a diffusion process per input (Gao et al., 2022).

The computational overhead of TTA methods decreases
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their inference speed, which is a critical property in many
real-world applications that require the TTA method to pro-
duce predictions at the speed of the stream itself. This
property, however, is overlooked in the current evaluation
protocols for TTA methods. In particular, these protocols
assume a setting, which neglects how events constantly un-
fold regardless of the model’s speed, causing the model to
miss incoming samples when it is busy processing previous
ones. For TTA methods that adapt using test data, missing
samples has a direct effect on the method’s accuracy, as it
will have fewer samples for adaptation. That is, the slower
the TTA method, the fewer samples it can leverage for adapt-
ing to the distribution shift. Thus, the current protocol for
evaluating TTA methods is not suitable for assessing their
efficacy in real-world deployment.

In this work, we propose a novel realistic evaluation proto-
col that factors in inference speed to assess the real-world
applicability of TTA methods. Our evaluation protocol is in-
spired by Online Learning (Cai et al., 2021; Shalev-Shwartz
et al., 2012) and mimics real-world scenarios by exposing
all TTA methods to a constant-speed stream of data. In
this setting, the performance of slow TTA methods is in-
trinsically penalized, as the time spent adapting to a sample
may lead to dropped samples that could have been useful
for adaptation. Specifically, our protocol dictates that if
a method gslow is k times slower than the stream, then it
may only use every kth sample for adaptation. In contrast, a
method gfast that is as fast as the stream is allowed to adapt
to every sample. Figure 1 shows the effect of evaluating
several methods under our proposed protocol, where slower
methods (e.g., SAR (Niu14 et al., 2023)) are penalized and
faster but simpler methods become better alternatives (e.g.,
SHOT (Liang et al., 2020) and AdaBN (Li et al., 2016)).

We apply our proposed evaluation protocol to benchmark
several TTA methods on multiple datasets, and provide a
fair assessment of their performance subject to the realistic
consequences of slower inference speeds. Our experimental
results highlight the importance of developing TTA methods
that adapt to distribution shifts with minimal impact on
inference speed. Our contributions are two-fold:

1. We propose a realistic evaluation protocol for TTA
methods that penalizes slower methods by providing
them with fewer samples for adaptation. Our approach
is effective at assessing TTA methods’ efficacy in sce-
narios where data arrives as a constant-speed stream.

2. Following our proposed protocol, we provide a com-
prehensive experimental analysis of 15 TTA methods
evaluated on 3 large-scale datasets under 3 different
evaluation scenarios. These scenarios consider adap-
tation to a single domain and continual adaptation to
several domains. Our analysis shows that, when in-
ference speed is accounted for, simple (but faster) ap-

proaches can benefit from adapting to more data, and
thus outperform more sophisticated (but slower) meth-
ods. Figure 1 demonstrates this for four TTA methods.
We hope our evaluation scheme inspires future TTA
methods to consider inference speed as a critical di-
mension that affects their real-world performance.

2. Related Work
Test Time Adaptation. The Test Time Adaptation (TTA)
setup relaxes the “i.i.d” assumption between the training and
testing distributions (Sun et al., 2020; Boudiaf et al., 2022).
This relaxation is usually attained through a lifelong learning
scheme on all received unlabeled data (Chen et al., 2022;
Gong et al.). Earlier approaches such as TTT (Sun et al.,
2020) and TTT++ (Liu et al., 2021), among others (Torralba
& Efros, 2011; Tzeng et al., 2017), include a self-supervised
loss (Gidaris et al., 2018) during training, which can then
provide an error signal during adaptation. Despite their
effectiveness, such approaches assume having control over
how the model is trained.

Fully Test Time Adaptation. Fully TTA methods are a
subtype of TTA method that adapts at test time by modify-
ing the model’s parameters (Liang et al., 2020; Lee et al.,
2013; Mirza et al., 2022b; Mancini et al., 2018; Kojima
et al., 2022) or its input (Gao et al., 2022) by using the
incoming unlabeled data. Fully TTA methods are practi-
cal, as they avoid assumptions on the training phase of a
given model (Wang et al., 2020; Gao et al., 2022; Iwasawa
& Matsuo, 2021). The first of these approaches adjusts the
statistics of the Batch Normalization (BN) layers (Mirza
et al., 2022a; Schneider et al., 2020; Li et al., 2016). For
example, BN-adaptation (Schneider et al., 2020) leverages
the statistics of the source data as a prior and infers the statis-
tics for every received sample. On the other hand, AdaBN
(Li et al., 2016) discards the statistics of the source domain
and uses the statistics computed on the target domain. In
line with light TTA methods, LAME (Boudiaf et al., 2022)
proposes to only adapt the model’s output by finding the
latent assignments that optimize a manifold-regularized like-
lihood of the data. In this work, we found that such efficient
methods preserve their accuracy under our proposed eval-
uation. While fully TTA methods have been studied in the
context of adversarial domain shifts (Alfarra et al., 2022;
Croce et al., 2022; Pérez et al., 2021), in this work we focus
on the context of natural shifts such as realistic image cor-
ruptions (Hendrycks & Dietterich, 2019; Kar et al., 2022).

Another line of work aims at adapting to distribution shifts
by minimizing entropy. For instance, SHOT (Liang et al.,
2020) adapts the feature extractor to minimize the entropy
of individual predictions; while maximizing the entropy of
the predicted classes. TENT (Wang et al., 2020) updates
the learnable parameters of the BN layers to minimize the
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Figure 2: Inference under the current and realistic evaluation protocols. The current evaluation setting (left) assumes
that the incoming batches of stream S can wait until the adaptation process of a TTA method g finishes. This assumption is
untenable in a real-time deployment scenario. Our proposed realistic evaluation (right) simulates a more realistic scenario
where S reveals data at a constant speed. In this setup, slower TTA methods will adapt to a smaller portion of the stream.
The remaining part of the stream will be predicted without adaptation by employing the most recent adapted model. We
refer to the most recent adapted model as fθt+1 , with t denoting the time when the last sample was adapted to by g. When g
is still adapting to a sample, the incoming sample is fed to fθt+1 to produce predictions.

entropy of predictions. EATA (Niu et al., 2022) combines
TENT with an active selection of reliable and non-redundant
samples from the target domain and an anti-forgetting
loss (Kirkpatrick et al., 2017). Further, SAR (Niu14 et al.,
2023) equips TENT with an active sampling scheme that
filters samples with noisy gradients.

Other works use data-augmentation at test time (Ashukha
et al., 2020). For example, MEMO (Zhang et al., 2021)
adapts model parameters to minimize the entropy over a
sample and multiple augmentations of it. CoTTA (Wang
et al., 2022) uses augmentations to generate reliable pseudo-
labels and then peform distillation. Finally, DDA (Gao
et al., 2022) proposes to leverage a diffusion model (Ho
et al., 2020) to restore corrupted inputs back to the source
data distribution. These methods require multiple forward
passes through the network or a diffusion model, leading to
slower inference speeds.

3. Methodology
In this section, we present our proposed Realistic TTA evalu-
ation protocol. We first describe the current TTA evaluation
protocol and its limitations Then, we introduce our Realistic
TTA evaluation protocol, which addresses the shortcomings
of the offline protocol.

3.1. Current Protocol

TTA considers the practical setup, in which trained models
are deployed in a target domain that exhibits distribution
shifts to which they must adapt. Let fθ : X → Y be a clas-
sifier, parameterized by θ, that predicts the label y ∈ Y for a
given input x ∈ X . Before test time, fθ is assumed to have

been trained on the dataset Dtrain ⊂ X ×Y . At test time, i.e.
when executing TTA, fθ is presented with a stream of data
S, sampled from X , with potentially multiple distribution
shifts w.r.t. Dtrain. Under this setup, a TTA method is a
function g(θ, x) that sequentially adapts the model’s param-
eters θ and/or the input x to enhance the performance under
distributions shifts. Currently, TTA methods are evaluated
in an offline setting.

Formally, the Current TTA evaluation protocol simulates
the interaction between the stream S and the TTA method
g, at each time step t ∈ {0, 1, . . . ,∞}, as follows:

Curr.1 S reveals a sample xt.

Curr.2 g adapts xt to x̂t, θt to θ̂t, generates prediction ŷt,
and updates parameters θt+1 = αθt + (1− α)θ̂t.2

Note that all existing TTA methods can be modeled using
this framework. For example, TENT (Wang et al., 2020)
adapts network parameters to minimize entropy with α = 0,
while leaving inputs unchanged, i.e. x̂t = xt and θt+1 = θ̂t.
DDA (Gao et al., 2022) adapts inputs via a diffusion process
while preserving network parameters with α = 1, i.e. x̂t =
x̂t and θt+1 = θt. CoTTA (Wang et al., 2022) applies
knowledge distillation, and updates network parameters
with an exponential moving average, i.e. setting 0 < α < 1.

Shortcomings of the Current TTA protocol. In the current
protocol, the performance of a TTA method g is measured
by comparing the ground truth labels yt with the predic-
tions after adaptation ŷt. An evaluation based only on this
measure implicitly assumes that the stream is not constant

2Note that some methods abstain from adapting either xt or θt.
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speed, but rather waits for g to adapt to xt (Curr.2) before
revealing the next batch xt+1 (Curr.1). Figure 2 provides
an illustration of this situation. This assumption results in
the offline protocol favoring slower TTA methods, as the
method’s performance is agnostic to its inference speed.
However, in practical applications where the test data ar-
rives at a constant speed, the offline protocol is not suitable
for assessing a method’s performance. Next, we propose a
remedy for this shortcoming.

3.2. Realistic Online Evaluation Protocol

We propose a realistic evaluation of TTA methods that
explicitly considers the relation between the speed of the
method and the speed at which the stream reveals new data.
This setup is more realistic, as it intrinsically penalizes the
performance of slower TTA methods: long times spent in
adaptation result in fewer samples to adapt to.

A crucial aspect of our realistic TTA protocol is accounting
for the implications of simulating a constant speed data
stream S. For instance, consider a stream S that reveals
data at a constant rate r samples per second. If a method
gfast adapts to samples at speed r, then gfast will be able to
adapt to every sample. On the other hand, if gslow adapts
to samples at a speed r/2, then gslow will skip every other
sample. We formalize the notion of the relation between
the speed of the stream and the speed of a method g as
the “relative adaptation speed of g”. This quantity, denoted
by C(g) ∈ N, is simply the integer ratio of the speed of S
to the speed of g. For instance, in the previous example,
C(gfast) = 1, meaning gfast adjusts as fast as S reveals data,
while C(gslow) = 2, indicating S reveals its second batch
while gslow is still adapting to the first one.

Without loss of generality, we assume that fθ runs in real-
time, i.e. that its speed is equal to r, and thus C(fθ) = 1.
This assumption allows us to suppose that the samples that
are not processed by g can be processed by fθ. Under
this setup, we define our realistic protocol by introducing
the relative adaptation speed C(g) into the offline protocol.
In particular, we simulate g’s availability by conditionally
performing the adaptation step (Curr.2), depending on C(g).
In this manner, g is only permitted to adapt when its previous
adaptation step has finished. Formally, the realistic TTA
evaluation protocol simulates the interaction between the
constant speed stream S and the TTA method g, at each
time step t ∈ {0, 1, . . . ,∞}, as follows:

RTTA 1 S reveals a sample xt.

RTTA 2 If (t mod C(g)) = 0, then g adapts xt to x̂t, θt
to θ̂t, generates a prediction ŷt, and updates pa-
rameters via θt+1 ← αθt + (1− α)θ̂t.
Otherwise, fθt generates a prediction ŷt.

Table 1: Average C(g(xt)). We report the average relative
adaptation speed C(g) for 5 TTA methods. The higher C(g)
is, the smaller the portion of data to which g adapts is.

Method AdaBN TENT TTAC-NQ MEMO DDA

C(g) 1 3 12 54 810

Here, “mod” represents the modulo operation. The above
protocol assesses the performance of TTA methods by fac-
toring in their speed. As such, faster methods are granted
more adaptation steps and, conversely, slower methods are
granted fewer (see Figure 2). Note that explicitly modeling
the relative adaptation speeds allows us to evaluate TTA
methods under different adaptation speeds by setting C(g)
to arbitrary values. For instance, note that our realistic proto-
col recovers the original offline protocol by setting C(g) = 1
for all methods. Next, we explain the calculation of C(g)
for our realistic protocol.

Online computation of C(g). In practice, estimating the
relative adaptation speed C(g) can be a noisy process. The
noise in this estimation essentially comes from two factors:
hardware and input dependence. Hardware-induced noise
applies to all methods, while input dependence applies to
methods like ETA (Niu et al., 2022) which, upon receiving
an input, may optionally abstain from adapting to it. This
noise means that C(g) potentially varies across iterations.

Our protocol accounts for this variability by conducting an
online computation of C(g) on each revealed input. That
is, instead of using a fixed value of C(g) at each itera-
tion t, our protocol rather uses C (g(xt)). Formally, if
we let R (g(x)) denote the speed at which g processes
x, then the relative adaptation speed of g at x is defined
as C (g(xt)) = ⌈r/R(g(x))⌉, where the ceiling function ac-
counts for the stream’s discrete-time nature. Note that since
we assumed C(fθ) = 1, then R (fθ(x)) = r. We report the
empirical behavior of this online computation of C (g(xt))
for various TTA methods in Table 1, and leave the rest of
the methods and the computation details to the Appendix.
Next, we leverage our Realistic TTA protocol to conduct a
comprehensive empirical study of several TTA methods.

4. Experiments
We follow prior art (Wang et al., 2020; Niu14 et al., 2023;
Gao et al., 2022) and focus on the task of image classifica-
tion. In all our experiments, we assume that fθ is a ResNet-
50-BN3 (He et al., 2016) trained on ImageNet (Deng et al.,
2009) (pretrained weights obtained from torchvision).
We further assume that the stream S reveals batches of size

3SAR demonstrated the superiority of using batch independent
normalization layers under batch size of 1. We leave this ablation
to the Appendix along with experiments on other architectures.
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Table 2: Episodic Error Rate on ImageNet-C. We report the error rate of different TTA methods on ImageNet-C
benchmark under both the realistic and the current setup. A lower error rate indicates a better TTA method. The highlighted
numbers indicate a better performance per method across setups. Episodic means the model will adapt to one corruption at
a time. The model is reset back to the base model when moving to the next corruption. The current setup is merely the
reproduction of every method. The first sub-table corresponds to methods that do not incur any or few extra computations,
i.e. C(g) = 1. We show that methods generally perform worse in the realistic setup. The more computationally complex the
TTA method is, the less data it will adapt to, and the worse is its performance.

Noise Blur Weather DigitalMethod Realistic gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg. ∆

Source ✓ 97.8 97.1 98.1 82.1 90.2 85.2 77.5 83.1 76.7 75.6 41.1 94.6 83.0 79.4 68.4 82.0 -
AdaBN ✓ 84.9 84.3 84.3 85.0 84.7 73.6 61.1 65.8 66.9 52.1 34.8 83.3 56.1 51.1 60.3 68.5 -
LAME ✓ 98.3 97.6 98.6 82.4 90.9 86.1 78.1 84.5 77.5 77.3 41.4 94.8 84.8 80.0 68.9 82.7 -
BN ✓ 84.6 83.9 83.8 80.1 80.2 71.7 60.4 65.4 65.2 51.6 34.6 76.3 54.4 49.7 59.2 66.7 -

✗ 73.4 70.2 73.0 76.6 75.5 59.8 53.8 54.2 63.4 44.7 35.5 79.3 46.9 43.2 49.7 59.9SHOT
✓ 73.6 69.0 71.1 74.6 74.8 60.0 52.9 54.1 61.3 44.1 34.1 77.8 46.8 43.1 49.2 59.1 (-0.8)

✗ 71.3 69.4 70.2 72.0 72.9 58.7 50.7 52.8 58.8 42.7 32.7 73.3 45.5 41.5 47.7 57.3TENT
✓ 75.7 78.3 75.2 76.3 77.3 64.6 55.6 57.3 61.4 45.9 33.5 77.1 50.1 44.2 51.4 61.6 (+4.3)

✗ 69.5 69.7 69.0 71.2 71.7 58.1 50.5 52.9 57.9 42.7 32.7 62.9 45.5 41.6 47.8 56.2SAR
✓ 79.4 78.5 78.1 79.9 79.3 67.5 56.1 60.5 63.1 47.4 34.0 75.3 51.7 46.6 53.8 63.4 (+7.2)

✗ 78.4 77.8 77.2 80.5 79.1 64.0 53.3 57.8 60.7 44.1 32.9 73.1 48.6 42.3 52.6 61.5CoTTA
✓ 82.9 81.6 81.9 87.4 85.6 75.6 61.1 63.1 64.9 49.9 34.8 91.2 54.0 48.8 56.6 68.0 (+6.5)

✗ 71.3 70.3 70.8 82.1 77.4 63.9 53.9 49.9 55.5 43.9 32.8 81.4 43.7 41.1 46.7 59.0TTAC-NQ
✓ 79.4 75.7 78.9 86.6 86.2 77.1 61.8 58.8 62.4 51.5 34.4 88.5 52.1 49.1 55.5 66.5 (+7.5)

✗ 65.5 62.4 63.5 66.6 67.2 52.0 47.3 48.2 54.1 39.9 32.1 55.0 42.3 39.2 44.8 52.0EATA
✓ 69.3 67.1 69.2 71.1 71.7 57.5 49.9 51.9 57.4 42.4 32.6 60.7 45.1 41.4 47.4 55.6 (+3.6)

✗ 92.5 91.3 91.0 84.0 87.0 79.3 72.4 74.6 71.3 67.9 39.0 89.0 76.2 67.0 62.4 76.3MEMO
✓ 97.7 97.0 98.0 82.1 90.1 85.1 77.4 83.0 76.6 75.4 41.0 94.5 82.9 79.2 68.2 81.9 (+5.6)

✗ 58.6 57.8 59.0 87.0 81.6 76.6 65.9 67.9 66.7 64.0 40.0 92.2 52.2 46.6 49.9 64.4DDA
✓ 97.8 97.0 98.1 82.1 90.2 85.2 77.5 83.1 76.7 75.6 41.1 94.6 83.0 79.4 68.3 82.0 (+17.6)

644, except for MEMO (Zhang et al., 2021), which pre-
dicts on single images to incentivize prediction consistency
over an input and its augmentations. Regarding datasets,
we follow earlier works (Wang et al., 2020; Niu14 et al.,
2023; Niu et al., 2022; Gao et al., 2022; Zhang et al., 2021),
and thus evaluate on the ImageNet-C dataset (Hendrycks
& Dietterich, 2019) with a corruption level of 5 for all 15
corruptions. We further extend our evaluation and consider
CIFAR10-C, ImageNet-R (Hendrycks et al., 2021), and the
more recent ImageNet-3DCC (Kar et al., 2022), which lever-
ages depth estimates to construct more spatially-consistent
corruptions.

Our experiments compare the performance of the base-
line model fθ (without test time adaptation) against 15
state-of-the-art TTA methods published in top-tier venues
(e.g., CVPR, NeurIPS, and ICLR) between 2017 and 2023.
In particular, we consider: BN (Schneider et al., 2020) and
AdaBN (Li et al., 2016), which adjust the statistics of the
batch normalization layers; SHOT (Liang et al., 2020) and
SHOT-IM (Liang et al., 2020), which fine-tune the feature
extractor to maximize mutual information; entropy mini-
mization approaches such as TENT (Wang et al., 2020),

4This batch size is recommended by most baselines (Wang
et al., 2020; Niu et al., 2022)

ETA (Niu et al., 2022) (a more efficient version of TENT),
and SAR (Niu14 et al., 2023), which trains the learnable
parameters of the batch normalization layers; distillation
approaches, such as CoTTA (Wang et al., 2022), Pseudo
Labeling (PL) (Lee et al., 2013), and the very recent and
efficient LAME (Boudiaf et al., 2022); EATA (Niu et al.,
2022) and TTAC (Su et al., 2022) that assume access to
the source training data; data-dependent approaches such
as MEMO (Zhang et al., 2021) and the diffusion-based
method DDA (Gao et al., 2022). For all methods, we use
their official implementation with their recommended hyper-
parameters. We report our experimental results on a subset
of 12 baselines, while leaving ETA, SHOT-IM, and PL to
the appendix due to space constraints and their similarity to
SHOT and EATA.

As mentioned in Section 3.2 , our protocol performs an
online computation of the relative adaptation speed of g.
In particular, for each batch revealed by the stream, we
compute C (g(x)). Then, if C(g(xi)) = k, all the samples
{xi+1, xi+2, . . . , xi+k} are processed by fθi without adap-
tation. Otherwise, if C(g(xi)) = 1, then these samples are
processed by g. For methods that accumulate parameter
updates such as TENT (Wang et al., 2020), fθi is the most
recent updated model g(fθi−1). We report all our main re-
sults as the average across three seeds, and leave the detailed
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(a) Current Continual TTA.
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(b) Realistic Continual TTA.

Figure 3: Continual Error Rate on ImageNet-C. We report the continual error rate of several TTA methods on ImageNet-C
benchmark under both realistic and current setups. A lower error rate indicates a better TTA method. Continual evaluation
means the corruptions are presented in a sequence without resetting the model in between. We choose the same order as
presented along the x-axis; starting with brightness and ending with clean validation set. In the current setup, we observe an
increasing trend for SHOT, TENT, and TTAC-NQ. This is hypothesized to be due to overfitting on the early distribution
shifts. This behavior is mitigated in the realistic setup due to adapting to fewer batches. EATA and SAR perform equally
well in both realistic and current continual setups due to sample rejection. We report the standard deviation across 3 seeds.

analysis to the Appendix. Throughout the experiments, we
refer to our realistic evaluation protocol as “realistic/on-
line”, and refer to the current protocol as “current/offline”.
Next, we evaluate all methods on four different scenarios:
(i) when domain shifts happen in an episodic manner, (ii)
when domain shifts happen continually, i.e. one after the
other, (iii) when the stream speed varies, (iii) when domain
shifts happen continually with label correlation; practical
evaluation (Yuan et al., 2023) ,and (v) when the baseline
fθ is unavailable for evaluating the samples skipped by the
TTA method g (left for the appendix).

4.1. Episodic Evaluation of TTA

First, we consider an episodic evaluation of domain shifts,
whereby S contains a single domain (e.g. one corruption)
from ImageNet-C. We analyze this simple and most com-
mon setup to assess the performance of TTA methods under
real-time evaluation. We report the error rates on all corrup-
tions in Table 2 and the average error rate across corruptions.
We summarize the insights as follows:

(i) The performance of TTA methods often degrades
significantly under the realistic setup. Most methods
induce a significant computational overhead, which prevents
them from adapting to every sample from the test stream.
For example, the error rate increases by 7.5% for TTAC-
NQ and 4.3% for TENT, where C(gTTAC-NQ) = 12 and
C(gTENT) = 3 (see Table 1). That is, TENT adapts to one-
third of the batches revealed by the stream, while TTAC-NQ

adapts to one every twelve batches.

(ii) Very efficient methods, with C(g) = 1, such as LAME
and BN, do not lose in performance. Evaluating such
methods in offline or realistic setups is inconsequential, as
their adaptation incurs negligible additional computation
(since they adapt during the forward pass (Li et al., 2016;
Schneider et al., 2020) or by adjusting the logits (Boudiaf
et al., 2022) at a speed that pales in comparison to that of
the stream). Interestingly, in our realistic evaluation, the
simple BN (published in 2020) with an average error rate
of 66.7% outperforms more recent and advanced methods
such as SAR (published in 2023) by 1.7%. Furthermore,
AdaBN (published in 2017) significantly outperforms the
very recent diffusion-based DDA by a notable 13%.

(iii) Data-dependent approaches, such as MEMO and
DDA, are extremely inefficient. Despite the independence
of MEMO and DDA on batch size, they incur a massive
computational burden. For instance, C(gMEMO) = 54 and
C(gDDA) = 810. Thus, both methods will be busy adapting
for considerable portions of the stream, leaving most predic-
tions to the non-adapted classifier. This phenomenon is the
reason behind the reported performance of these methods
being so close to that of fθ (i.e. around 82%). This result
calls for future research to focus on increasing the efficiency
of data-dependent adaptation methods.

(iv) Sample rejection-oriented methods can perform well
under the realistic protocol. EATA adapts efficiently due
to its fast sample rejection algorithm, which relies solely on
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the forward pass to admit samples for adaptation. EATA’s
low error rate of 55.6%, combined with a small performance
drop of less than 4%, positions it as the top performer under
the realistic evaluation protocol on ImageNet-C. On the
other hand, SAR does not benefit from sample rejection.
SAR’s performance drop of 7.5% is due to its dependence
on gradients for sample rejection, which reduces its speed.

(v) SHOT benefits from the realistic protocol. Interest-
ingly, we found that SHOT (and SHOT-IM in the Appendix),
a fine-tuning-based approach, benefits from our realistic
evaluation. In particular, we found that SHOT’s error rate
decreases by 2% on fog corruption and by 0.8% on average.
This observation could suggest that SHOT could potentially
improve performance by disposing of fine-tuning on every
batch. It is also worth mentioning that, under our realis-
tic evaluation, SHOT (introduced in 2020) outperforms all
methods except EATA.

(vi) Performance changes are consistent across corrup-
tions. Note that all methods that are somewhat efficient can
improve the source model across all corruptions, in both the
offline and realistic setups. Furthermore, the performance
changes when comparing the offline and realistic setups are
consistent across all corruptions. This finding suggests that
the performance of these methods is independent of the do-
main shift being considered. We further test this hypothesis
by benchmarking these methods on two other datasets with
other types of domain shifts in Section 4.4.

4.2. Continual Evaluation of TTA

Next, we analyze the more challenging continual setup, fol-
lowing (Wang et al., 2022; Niu et al., 2022). In particular,
we construct the stream S by concatenating all corruptions
from ImageNet-C. That is, we adapt TTA methods continu-
ally on all corruptions followed by the clean validation set,
without ever resetting the network weights. We introduce
the notion of realistic adaptation to the continual setup to
study the effects of a constant stream speed on the bench-
mark. We report results in Figure 3 for both the offline and
realistic protocols, where the horizontal-axis shows how cor-
ruptions are ordered in the stream. We limit the experiments
in this section to six TTA methods (SHOT, TENT, TTAC-
NQ, COTTA, EATA, and SAR), and leave the remaining
details for the Appendix. We observe:

(i) Methods that do not perform sample rejection (SHOT,
TENT, TTAC) scale poorly in the offline-continual setup.
This phenomenon can be attributed to these methods over-
fitting to early distributions. However, methods that do
perform sample rejection (SAR and EATA) do not overfit as
easily to corruptions, and can thus adapt to the rest of the
stream. Even worse, such methods tend to even significantly
degrade the performance on clean data.
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Figure 4: Average Error Rate on ImageNet-C Under
Slower Stream Speeds. We report the average error rate for
several TTA methods on ImageNet-C under slower stream
speeds. In our proposed realistic model evaluation, the
stream speed r is normalized by the time needed for a for-
ward pass using the base model. We evaluate different TTA
methods under a stream with speed ηr with η ∈ (0, 1]. An
η = 1/16 means the stream is 16 times slower than the
forward pass of the base model. We report the standard
deviation across 3 different random seeds. Different TTA
methods degrade differently when varying η.

(ii) In the realistic-continual setup, methods that do not
perform sample rejection benefit from skipping adapta-
tion on some batches, and become competitive with the
methods that perform sample rejection. That is, while
skipping parts of the stream deteriorated the performance of
such methods in the episodic evaluation , this skipping actu-
ally helped in preventing these methods from over-fitting in
the continual setup.

4.3. Stream Speed Analysis

In the previous experiments, we normalized the stream
speed to be the same as that of fθ’s forward pass. That is,
we assumed that the rate r at which S reveals new batches is
equal to R (fθ(x)). However, some applications may enjoy
a slower stream, giving TTA methods more time to adapt
to samples. To explore this scenario, we vary the speed at
which the stream reveals new data. In particular, let the
new stream rate be η r with η ∈ (0, 1]. Hence, as η → 0,
the stream slows down and allows methods to adapt to all
samples. Conversely, as η → 1, the stream speeds up, and
at η = 1 we recover our realistic evaluation protocol.

We experiment with the stream speed by setting η ∈
{1/16, 1/8, 1/4, 1/2, 1}, and evaluate five representative TTA
methods (SHOT, TENT, TTAC-NQ, SAR, and EATA) in
the episodic setup . Figure 4 summarizes our results by
reporting the average error rate across all corruptions. We
next list our observations:

(i) The performance of TTA methods varies widely. For

7



Evaluation of Test-Time Adaptation Under Computational Time Constraints

Table 3: Episodic Error Rate on ImageNet-C with ViT. We report the error rate of three baselines (Source, Tent, SAR) on
the 15 different corruptions on ImageNet-C when the backbone is ViT architecture pretrained on ImageNet. We observe that
while generally better backbones yield smaller error rate, expensive methods perform worse under our realistic evaluation.
The more expensive the method is (e.g. SAR compared to Tent), the more performance reduction it suffers.

Noise Blur Weather DigitalMethod Realistic gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg. ∆

Source ✓ 90.5 93.3 91.8 71.0 76.6 66.1 72.9 84.1 73.5 52.8 45.3 55.9 69.5 55.5 52.2 70.1 -

✗ 69.9 95.9 68.9 55.8 62.0 52.3 57.9 57.2 53.6 41.8 28.9 40.7 59.1 39.7 42.0 55.0Tent
✓ 80.7 88.9 81.0 63.0 69.5 58.3 64.9 65.8 59.7 47.7 33.2 47.3 64.6 45.1 46.4 61.1 (-6.1)

✗ 55.5 56.9 55.1 47.5 50.4 44.3 48.7 42.4 47.3 33.6 25.4 35.6 44.8 33.5 36.4 43.8SAR
✓ 70.0 72.5 69.4 56.6 63.4 54.0 60.0 56.4 53.5 43.0 30.5 43.3 58.7 41.5 43.8 54.5 (-10.7)

example, TTAC-NQ starts degrading faster (at η = 1/16)
due to its slow adaptation speed. For other methods, the
η at which they degrade varies. For instance, while TENT
has a higher error rate than SAR in slow streams (η ≤ 1/8),
TENT outperforms SAR in the regime of faster streams
η ≤ 1/4. Interestingly, SHOT (Liang et al., 2020) ranks
the worst at η ≤ 1/8, then ranks second when η ≥ 1/2,
becoming a viable alternative. At last, the order of different
methods significantly changes depending on the speed of
the stream. For example, SAR changes from being second
best at η ≤ 1/8 to third at η = 1/4 and then to fifth (i.e.
second worst) at η ≥ 1/2.

(ii) EATA provides a good trade-off between speed and
performance. In fact, EATA gives the best overall perfor-
mance (lowest error rate) independent of the stream’s speed.
This virtue is attributable to EATA’s combination of good
performance and adaptation speed based on efficient sample
rejection. Results on other datasets are in the Appendix.

4.4. Results on Other Benchmarks and Architectures

We extend our evaluation protocol to cover ImageNet-
3DCC (Kar et al., 2022) and ImageNet-R (Hendrycks
et al., 2021) datasets and ResNet-18 (results in the ap-
pendix) and ViT (Kolesnikov et al., 2021) architectures.
ImageNet-R contains rendition versions of ImageNet span-
ning 200 classes. ImageNet-3DCC constructs more
spatially-consistent corruptions than ImageNet-C by lever-
aging depth estimates. For ViT, we conduct episodic evalu-
ation on ImageNet-C in a similar setup to Section 4.1 and
report the results in Table 3 for the non-adapted model, Tent,
and SAR. For ImageNet-R and ImageNet-3DCC, we fix
the architecture to ResNet-50 and experiment on the entire
datasets and set the severity level to 5 in ImageNet-3DCC.
Due to the space constraint, we limit our experiments to
the episodic evaluation, and leave other results and analyses
to the Appendix. We evaluate the effectiveness of 10 TTA
methods in Table 4, where we report the average error rate
across all corruptions.

We observe that our results are consistent across all con-

Table 4: Average Error Rate on ImageNet-R and
ImageNet-3DCC. We report the average error rate of dif-
ferent TTA methods on ImageNet-R and ImageNet-3DCC
under both the realistic and current setups. A lower error
rate indicates a better TTA method. The highlighted num-
bers indicate a better performance per method across setups.
We observe that methods generally perform worse in the
more realistic realistic setup. The conclusions are consistent
with what we observed on ImageNet-C (Table 2).

Method ImageNet-R ImageNet-3DCC
Current Realistic ∆ Current Realistic ∆

Source 63.8 63.8 - 73.9 73.9 -
AdaBN 60.6 60.6 0 72.1 72.1 0
BN 60.0 60.0 0 70.5 70.5 0
LAME 60.5 60.5 0 72.1 72.1 0

SHOT 70.3 62.6 (+7.7) 69.2 67.0 (+2.2)
TENT 58.1 59.1 (-1.0) 64.5 66.8 (-2.3)
SAR 57.5 59.6 (-2.1) 63.5 71.4 (-7.9)
CoTTA 57.3 61.5 (-4.5) 66.4 75.6 (-9.2)

EATA 55.7 57.1 (-1.4) 60.9 63.1 (-2.2)
TTAC-NQ 59.2 60.8 (-1.6) 65.7 73.6 (-7.9)

sidered datasets and architectures. Similar to our results
in Table 2, the more computationally involved SAR de-
grades more than Tent when leveraging ViT architecture.
Regarding other datasets, we find that simple methods that
adapt during the forward pass are unaffected by the realis-
tic setup. All the other methods, except SHOT, experience
degradation in their results on both datasets. We observe
again that, on these two datasets, while SHOT actually ben-
efits from the realistic evaluation, EATA remains the best
alternative on both ImageNet-R and ImageNet-3DCC.

4.5. Evaluation under Practical TTA

Recently, (Yuan et al., 2023) extended the continual test-
time adaptation evaluation to include label-imbalances;
known as Practical Test-Time Adaptation (PTTA) setup.
In this setting, the stream not only reveals a continual se-
quence of distribution shifts, but also the revealed batches
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Table 5: Episodic Error Rate on CIFAR10-C under Practical Evaluation (Yuan et al., 2023). We report the error rate
of two baselines (Source, RoTTA (Yuan et al., 2023)) on the 15 different corruptions on CIFAR10-C when the backbone
is ResNet-18. We observe that under our computational constrained evaluation, the only method tailored to this setting;
RoTTA, performs worse than the non-adapted baseline.

Noise Blur Weather DigitalMethod Realistic gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg. ∆

Source ✓ 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5 -

✗ 36.9 34.9 45.8 16.6 44.2 19.9 16.53 21.6 22.4 18.8 9.8 20.6 28.4 27.1 34.5 26.5RoTTA
✓ 55.0 54.4 63.2 43.3 62.3 43.7 43.5 44.8 47.7 43.4 35.3 41.8 54.0 47.7 54.6 49.0 (-22.5)

have significant label imbalances. To combat this combined
challenge, the work of (Yuan et al., 2023) proposed to lever-
age a balanced memory bank for adaptation. In this section,
we extend our computational constrained evaluation to the
PTTA setup and compare RoTTA (Yuan et al., 2023) with a
non-adapted model on CIFAR10-C benchmark.

Table 5 summarizes the results. We observe that while
RoTTA indeed reduces the error rate under the PTTA setup
on CIFAR10-C (17% below the non-adapted model), our
realistic evaluation uncovers its computational limitation.
We found that RoTTA’s error rate increases by over 22%
surpassing the error rate of the non-adapted model. Note
that RoTTA stores samples from the stream in a memory
bank then adapts the model on sampled samples from the
memory bank. Thus, the slower the adaptation of RoTTA,
the less diverse the samples in the memory bank, hindering
its adaptation.

4.6. Effect of Hyper-parameter Tuning

The performance of different TTA methods heavily depends
on their hyper-parameter settings (Zhao et al., 2023). Here,
we assess the impact of our proposed evaluation on TTA
methods when tuning their hyperparameters. For that regard,
we conduct hyper parameter search for Tent (as a fundamen-
tal baseline) and experiment with different learning rates
(the only hyper-parameter for Tent).

Table 6 summarizes the results under episodic evaluation
for 4 different corruptions on ImageNet-C. We observe that
while conducting hyper-parameter search indeed improves
the performance of TENT, its error rate increases under
our realistic evaluation across all hyperparameters. That
is, while conducting hyper-parameter search might indeed
result in a better performance for TTA methods, the insights
obtained through our proposed evaluation scheme remains
consistent: more efficient TTA methods will have a smaller
performance drop under the realistic evaluation.

5. Conclusions
In this work, we find that the performance of Test Time
Adaptation (TTA) methods can vary depending on the con-

Table 6: Effect of our evaluation under hyperparameter
tuning. We report the error rate for Tent under different
learning rates under both the current and our proposed real-
istic evaluation. While carefully tuning the learning rate for
Tent results in a better performance, our realistic evaluation
causes a performance drop under all learning rates.

lr Realistic gauss. motion fog pixel. Avg. ∆

✗ 74.1 63.3 44.7 43.5 56.4
1× 10−4

✓ 79.7 69.0 47.8 46.8 60.8 (-4.4)

✗ 71.1 59.7 43.1 41.9 53.9
2× 10−4

✓ 77.6 66.1 46.0 45.0 58.7 (-4.7)

✗ 69.6 58.1 42.4 41.1 52.8
3× 10−4

✓ 74.9 64.0 45.0 44.0 57.0 (-4.2)

✗ 68.8 57.1 42.0 40.8 52.2
4× 10−4

✓ 73.7 62.3 44.5 43.2 55.9 (-3.7)

text in which they are used. In the episodic evaluation,
the efficiency of the method is the most important factor,
with more efficient methods like AdaBN and BN showing
consistent performance, while data-dependent approaches
suffer. Sample rejection methods generally perform well,
and fine-tuning approaches such as SHOT can even improve
when adapting to fewer samples. In the continual evalua-
tion, methods that do not perform sample rejection scale
poorly in the offline-continual setup but benefit from skip-
ping adaptation on some batches in the realistic-continual
setup. Furthermore, our stream speed analysis shows that
the performance of TTA methods can vary widely at differ-
ent speeds. Our findings are consistent across corruptions
and multiple datasets. They can help researchers and practi-
tioners to better understand the strengths and weaknesses of
different TTA methods, and to choose the most appropriate
method for their specific use case.
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A. Methodology
A.1. Online Computation of C(g)

Section 3.2 discussed the online evaluation protocol of
TTA methods. Here, we give more details on the calcu-
lation of C(g), the relative adaptation speed of g, during
our online evaluation. First, we set R (g(x)) as the time
recording function for g to perform a forward pass for a
single batch. To ensure a reliable time calculation, we exe-
cute torch.cuda.synchronize() before starting the
timer and before ending it. This ensures all GPU operations
are finished for the moment time is computed. To alleviate
hardware dependence, we also calculate R(fθ(x)) for each
evaluation step computing the relative adaptation complex-
ity. It is worth mentioning that C(g) for SHOT, EATA, SAR,
and COTTA are [3, 3, 8, 103] on average, respectively.

B. Experiments
B.1. Episodic Evaluation of TTA

SHOT, PL, and ETA For completeness, we report the
results on 3 baselines: Pseudo Label (Lee et al., 2013),
SHOT-IM (Liang et al., 2020), and ETA (Niu et al., 2022)
in Table 7. We follow the same setup as in the main paper.
Our results are consistent with the findings of Section 4.1
and Table 2. In particular, SHOT-IM improves its perfor-
mance under the online evaluation, similar to SHOT. Further,
the performance of ETA and PL degrades under the online
evaluation due to the additional computational burden. Nev-
ertheless, ETA is similar to EATA in providing the best
tradeoff between additional computational requirements and
performance improvements.

SAR with GN We equip our results to include ResNet50
with Group Normalization (GN) layers, following (Niu14

Figure 5: C(g) computation across iterations. We report
our online calculations for the relative adaptation speed of g,
C(g), for SAR, SHOT, EATA, and TENT throughout a full
evaluation episode. We observe that, overall, C(g) has a
stable behavior throughout evaluation iterations.

et al., 2023). We report the results in Table 7, where we
observe that: (i) Under a relatively large batch size (64),
ResNet50 with GN underperforms ResNet50 with Batch
Normalization. In fact, the average error rate for SAR in-
creases from 56.2% to 65.8%. (ii) The online evaluation
penalizes SAR in both architecture choices with a perfor-
mance degradation of 3.6% under the GN-based ResNet.
Finally, it is worth mentioning that SAR with GN layers
attains a similar performance under a batch size of 1.

Ablating Batch Sizes In the experiments section, we fixed
the batch size to 64 following the recommendations of ear-
lier works (Wang et al., 2020; Niu et al., 2022). Here, we
investigate the effect of our proposed online evaluation un-
der different choices of batch sizes. To that end, we vary
the batch size in {1, 16, 32, 128}, and report the results in
Figure 6. We draw the following observations:

Table 7: Episodic Error Rate on ImageNet-C. We report the error rate of different TTA methods on the ImageNet-C
benchmark under both the online and offline setups. A lower error rate indicates a better TTA method. The highlighted
numbers indicate a better performance per method across setups. Episodic means the model will adapt to one corruption
at a time. The model is reset back to the base model when moving to the next corruption. The offline setup is merely the
reproduction of every method. We show that methods generally perform worse in the more realistic online setup. The
more computationally complex the TTA method is, the less data it will adapt to, and the worse its performance. SAR-GN
represents SAR when deployed on ResNet50 with Group Normalization (GN) layers, following (Niu14 et al., 2023).

Noise Blur Weather DigitalMethod Online gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg. ∆

✗ 73.1 69.8 72.0 76.9 75.9 58.5 52.7 53.3 62.2 43.8 34.6 82.6 46.0 42.3 48.9 59.5SHOT-IM
✓ 71.1 68.6 70.7 73.2 73.6 59.1 51.9 52.8 60.5 43.7 33.6 77.3 45.7 42.1 48.6 58.2 (-0.3)

✗ 92.2 92.2 92.8 97.0 89.8 57.7 49.6 50.7 57.1 41.5 32.6 91.1 44.3 40.3 46.6 65.0PL
✓ 90.6 86.3 83.6 93.2 89.7 63.0 51.7 55.0 59.3 43.8 32.9 92.3 47.3 42.4 49.3 65.3 (+0.3)

✗ 64.9 62.7 63.6 66.4 66.3 52.4 47.3 48.2 54.1 40.2 32.2 54.8 42.3 39.2 44.7 52.0ETA
✓ 70.2 67.0 69.6 71.5 71.5 56.9 50.2 51.9 57.0 42.0 32.5 60.5 44.6 40.8 47.1 55.6 (+3.6)

✗ 71.8 69.0 70.3 81.5 81.0 69.6 69.5 57.1 56.6 94.3 29.2 56.0 84.8 51.4 44.7 65.8SAR-GN
✓ 82.0 80.2 82.1 80.2 88.6 78.5 75.1 59.6 53.9 66.9 30.7 63.3 81.3 71.3 47.5 69.4 (+3.6)
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Figure 6: Batch Size Analysis current vs. realistic setups for every method. We assess the performance variation of 12
different TTA methods under varying batch sizes. We experiment with batch sizes in {1, 16, 32, 128}. We do not include the
baseline, MEMO, and DDA, since they are data-dependent approaches and are unaffected by batch size. All TTA methods,
except LAME, are severely affected by smaller batch sizes. Nonetheless, the realistic evaluation degrades the performance
of all methods, except SHOT and SHOT-IM.

(i) Online evaluation improves the performance of SHOT
and SHOT-IM. This result is consistent with the earlier
observations in Table 2. Note that PL shares a similar trend
as well.

(ii) The performance of TTA methods degrades when
switching from offline to online evaluation, regardless of
the batch size. This result is highlighted in COTTA, ETA,
EATA, SAR, TENT, and TTAC-NQ.

(iii) Performance of TTA methods vastly varies when
varying the batch size. This result is consistent with earlier
findings in the literature (Gao et al., 2022; Niu14 et al.,
2023), where most TTA methods fail with small batch sizes.

At last, and to ease comparison across methods, we summa-
rize all the plots for all methods in Figure 7.

Consistency with 3 random seeds. For all of our exper-
iments, we run each experiment with 3 random seeds. In
most of our results, we found out that the standard deviation
of performance across runs is very small. Our results in
Figures 3 and 4 demonstrate this variation in the shaded
area for 5 different TTA methods.

B.2. Continual Evaluation of TTA

We further explore another setup for the continual evalua-
tion of TTA. In particular, we follow (Wang et al., 2022) in
concatenating all corruptions in ImageNet-C with 11 differ-
ent orders. We then report the average performance of each
method across all runs and corruptions in Table 8. We run
each experiment with 3 random seeds, and report our results
with standard deviations. For the remaining implementation
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Figure 7: Summary of batch size analysis: current vs. realistic setups. Left: Current evaluation, i.e.,Section 3.1. Right:
Realistic evaluation,i.e.,Section 3.2. While EATA achieves the lowest error rate under batch sizes ≥ 32, SHOT becomes a
very competitive baseline, outperforming EATA, at a batch size of 128.

Table 8: Continual Error Rate on ImageNet-C. We report the average continual error rate for 11 different corruption
orders, with 3 different seeds, under both the offline and online setups with a corruption severity level of 5. Continual refers
to continually adapting after each corruption without resetting. This metric indicates the model’s capability to learn from
previous corruptions. The offline setup refers to the performance of the model in a continual learning scheme, whereas the
online setup refers to the performance of the model in a continual learning scheme, under our more realistic online setup.
We show that the more complex a method is, the fewer samples it adapts to, achieving better performance in a continual
learning scheme.

Avg. Error (%) COTTA ETA TENT SAR EATA SHOT TTAC-NQ

Offline 65.3± 5.9 56.4± 2.3 84.6± 16.0 59.8± 3.0 56.4± 2.3 88.4± 11.4 81.8± 11.4

Online 69.3± 2.8 57.7± 2.0 65.6± 5.0 60.4± 1.8 57.7± 1.9 78.2± 7.7 65.1± 3.8

details, we follow our setup in main paper. We observe
that, similar to our conclusions in Section 4.2, online eval-
uation helps methods that do not perform sample rejection
(e.g.,TENT). Nonetheless, both ETA and EATA provide the
best trade-off between performance and additional compu-
tational burden.

B.3. Stream Speed Analysis

For completeness, we extend our stream speed analysis
in Section 4.3 to cover the ImageNet-3DCC dataset. We
preserve our experimental setup by varying the stream speed
according to ηr, with η ∈ {1/16, 1/8, 1/4, 1/2, 1. Figure 8
summarizes our results for SHOT, TENT, TTAC-NQ, EATA,
and SAR. We observe similar trends to the ones in Figure 4,
where the performance of different TTA methods varies
widely under different stream speeds. The large relative
adaptation speed of TTAC-NQ degrades its performance
under even slow streams (e.g.,η = 1/8), while SHOT reduces
its error rate under faster streams. Furthermore, EATA is

consistently outperforming all other considered approaches
under different stream speeds.

B.4. Evaluation on Other Benchmarks

We report the error rates on all corruptions of ImageNet-
3DCC (Kar et al., 2022), along with the overall average error
rate, in Table 9. The conclusions we draw for ImageNet-
3DCC (Kar et al., 2022) are very similar to the ones ob-
served on ImageNet-C (Hendrycks & Dietterich, 2019)
(in Section 4.1). We observe that efficient methods, with
C(g) = 1, such as LAME and BN, maintain performance.
Furthermore, the performance of some TTA methods (Wang
et al., 2020; Niu14 et al., 2023; Niu et al., 2022; Wang et al.,
2022) degrades in the online setup, while others that use
pseudo labeling (Lee et al., 2013; Liang et al., 2020) actually
improve. This degradation seems to be directly proportional
to the amount of data a method misses according to its C(g).
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Table 9: Episodic Error Rate on ImageNet-3DCommonCorruptions. We report the error rate of different TTA methods
on ImageNet-3DCC (Kar et al., 2022) benchmark under both the realistic and offline setups. A lower error rate indicates a
better TTA method. The highlighted numbers indicate a better performance per method across setups. Episodic means the
model will adapt to one corruption at a time. The model is reset back to the base model when moving to the next corruption.
The offline setup corresponds to reproducing the reported performance of every method. The first sub-table corresponds to
methods that incur none or few additional computations, i.e.,C(g) = 1. We show that methods generally perform worse in
the more realistic setup. The more computationally complex the TTA method is, the fewer data it will adapt to, and the
worse its performance.

Depth of field Noise Lighting Weather Video Camera motionMethod Realistic Near focus Far focus Color quant. ISO noise Low light Flash Fog 3D Bit error H.265 ABR H.265 CRF XY-mot. blur Z-mot. blur Avg. ∆

Source ✓ 46.9 55.6 82.5 94.0 71.7 78.7 75.3 88.6 70.6 65.4 82.0 75.3 73.9 -
AdaBN ✓ 45.2 55.0 71.8 76.8 64.1 80.8 75.0 91.8 80.9 76.7 79.1 67.5 72.1 -
LAME ✓ 45.3 55.0 71.9 76.9 64.1 80.8 75.1 91.8 80.9 76.8 79.2 67.6 72.1 -
BN ✓ 43.9 54.3 72.3 76.6 60.9 80.1 72.4 90.9 78.7 73.8 76.9 65.6 70.5 -

PL ✗ 39.8 49.8 65.5 72.6 48.9 79.0 66.1 97.5 92.1 86.2 88.7 57.6 70.3 (-1.6)
✓ 41.0 51.3 66.5 71.5 52.8 77.4 68.1 95.6 86.0 78.7 77.0 59.2 68.7

SHOT ✗ 43.0 53.6 67.1 64.2 51.9 81.1 73.2 97.2 83.5 77.8 77.3 60.1 69.2 (-2.2)
✓ 41.7 51.4 64.4 63.8 51.6 77.5 71.6 95.1 79.9 74.6 73.7 58.5 67.0

SHOT-IM ✗ 42.2 52.7 66.6 63.7 51.0 81.0 72.1 97.0 83.3 77.6 75.6 59.2 68.5 (-1.9)
✓ 41.2 51.2 64.4 63.3 51.3 77.5 70.9 94.9 79.4 74.1 72.3 58.3 66.6

TENT ✗ 39.9 49.6 62.4 62.2 50.7 75.6 68.5 91.6 75.7 70.2 70.4 57.0 64.5 (+2.3)
✓ 41.7 51.4 65.5 67.2 54.7 77.4 70.1 90.7 76.8 71.9 74.0 60.8 66.8

SAR ✗ 40.3 50.0 62.0 61.2 50.6 73.8 65.8 90.1 73.9 68.8 69.1 56.8 63.5 (+6.9)
✓ 44.9 54.7 71.1 75.4 62.6 80.3 73.8 91.7 80.5 76.1 78.6 66.9 71.4

ETA ✗ 38.7 47.9 59.1 56.7 46.8 71.0 62.1 90.6 72.8 67.3 64.7 52.9 60.9 (+2.3)
✓ 39.7 49.3 61.6 60.7 50.0 73.5 65.2 90.3 74.4 69.1 68.8 55.9 63.2

CoTTA ✗ 40.8 50.9 66.3 68.3 54.6 77.2 68.0 90.2 76.4 71.1 73.1 60.4 66.4 (+9.2)
✓ 55.4 63.1 74.1 77.0 64.7 83.4 78.1 93.7 84.0 80.3 81.7 71.9 75.6

TTAC-NQ ✗ 40.7 50.5 61.0 61.1 51.5 72.8 66.6 93.8 81.1 74.7 75.7 59.1 65.7 (+7.9)
✓ 49.9 57.0 69.3 72.3 58.9 79.8 76.3 95.8 86.5 83.0 84.6 69.8 73.6

EATA ✗ 38.6 47.8 59.2 56.6 46.9 71.2 62.2 90.9 72.5 67.4 64.6 52.9 60.9 (+2.2)
✓ 39.8 49.3 61.6 60.5 49.9 73.5 64.8 90.6 73.7 69.1 68.6 55.7 63.1

C. Single Model Evaluation Scheme
In Section 3.2, we assume fθt can generate predictions
whenever g is occupied with adapting to a batch. This setup
assumes the capacity to concurrently deploy two models.
However, this assumption might be unfair to methods with
C(g) = 1, since it allows expensive methods to skip batches
without large penalties. We thus also study the case where
only one model can be deployed.

Studying this setup requires establishing a policy on how
samples missed by the TTA method g are treated. That is,
when g is busy adapting, all skipped samples still must be
predicted without access to fθt . Depending on the applica-
tion, this prediction could leverage prior knowledge about
the problem e.g. temporal correlation across samples, or
the bias of the distribution. In our setup, we consider the
most strict scenario in which, whenever g is busy, a ran-
dom classifier generates predictions for the incoming sam-
ples. This naive design choice results from our evaluation
on ImageNet-based datasets, which contain images whose
classes display no bias nor temporal correlation. We conduct
episodic evaluation, similar to Section 4.1, on ImageNet-C
dataset. We average the error rates per corruption category
(e.g. averaging error rates for gaussian, shot, and impulse
noises) and present the results of this study in Table 10. We
draw the following observation.

Single model evaluation strongly favors methods with
C(g) = 1. We observe that all models that are slower than
the stream are heavily penalized to the point that using
the original pre-trained model becomes a better alternative.
However, methods that can be as fast as the stream, like
AdaBN or BN, become the best alternative due to their
speed. This result encourages more research toward devel-
oping efficient TTA methods that have negligible additional
computational overhead.

D. Results on ResNet18
In our experiments in the main paper, we focused on the stan-
dard ResNet18-architecture, following the common practice
in the literature. Here, and for completeness, we extend our
results to cover the smaller and more efficient ResNet18
architecture. Teble 11 summarizes the episodic evaluation
of 6 TTA methods on ImageNet-C dataset. Similar to our
conclusions in the episodic evaluation section in the main
paper, more expensive adaptation methods degrade more
under our realistic evaluation scheme.
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Table 10: Per Corruption Category Average Error Rate
Using Single Model Evaluation on ImageNet-C. We re-
port the average error rate per corruption category of dif-
ferent TTA methods under single model realistic evaluation
mode on ImageNet-C. Single model mode assumes the de-
ployment of a single model g instead of two under a constant
speed stream S . We assume the most extreme scenario, that
is if a model g is occupied adapting to a batch, the incoming
batch is fed to a random classifier. We observe that the best
TTA methods to use in this scenario are AdaBN (Li et al.,
2016) and BN (Schneider et al., 2020), which simply adapt
the BN statistics.

Method Realistic Noise Blur Weather Digital Avg.

Source ✓ 97.7 83.8 69.1 81.4 82.0
AdaBN ✓ 84.5 76.1 54.9 62.7 68.5
BN ✓ 84.1 73.1 54.2 59.9 66.7

SHOT ✓ 92.6 91.3 87.0 88.5 89.7
TENT ✓ 91.9 89.4 83.0 85.0 87.0
SAR ✓ 95.6 94.0 90.1 91.3 92.6

EATA ✓ 89.4 87.6 82.0 83.2 85.3
TTAC-NQ ✓ 96.6 96.9 96.3 96.4 96.5

Table 11: Evaluating different TTA methods with ResNet-
18 architecture on ImageNet-C. We report the average error
rate across all different types of corruptions (lower is bet-
ter). TTA methods generally perform worse in the more
realistic setup. The more computationally complex the TTA
method is, the less data it will adapt to, and the worse is its
performance.

Method Basic BN SHOT Tent EATA SAR

Current 85.4 70.1 64.4 64.9 59.7 63.8
Realistic 85.4 70.1 64.5 68.3 63.2 69.5

Diff - - 0.1 3.4 3.5 5.7
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Figure 8: Average Error Rate on ImageNet-3DCC Under
Slower Stream Speeds. We report the average error rate
for several TTA methods on ImageNet-3DCC under slower
stream speeds. In our proposed online model evaluation,
the stream speed r is normalized by the time needed for a
forward pass using the base model. We evaluate different
TTA methods under a stream with speed ηr with η ∈ (0, 1].
An η = 1/16 means the stream is 16 times slower than the
forward pass of the base model. We report the standard
deviation across 3 random seeds. Different TTA methods
degrade differently when varying η.
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