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ABSTRACT

In light of the vulnerability of deep learning models to adversarial samples and the
ensuing security issues, a range of methods, including Adversarial Training (AT) as
a prominent representative, aimed at enhancing model robustness against various
adversarial attacks, have seen rapid development. However, existing methods essen-
tially assist the current state of target model to defend against parameter-oriented
adversarial attacks with explicit or implicit computation burdens, which also suffers
from unstable convergence behavior due to inconsistency of optimization trajecto-
ries. Diverging from previous work, this paper reconsiders the update rule of target
model and corresponding deficiency to defend based on its current state. By intro-
ducing the historical state of the target model as a proxy, which is endowed with
much prior information for defense, we formulate a two-stage update rule, resulting
in a general adversarial defense framework, which we refer to as ‘LAST’ (Learn
from the Past). Besides, we devise a Self Distillation (SD) based defense objective
to constrain the update process of the proxy model without the introduction of
larger teacher models. Experimentally, we demonstrate consistent and significant
performance enhancements by refining a series of single-step and multi-step AT
methods (e.g., up to 9.2% and 20.5% improvement of Robust Accuracy (RA) on
CIFAR10 and CIFAR100 datasets, respectively) across various datasets, backbones
and attack modalities, and validate its ability to enhance training stability and
ameliorate catastrophic overfitting issues meanwhile.

1 INTRODUCTION

Amidst the rapid development of deep learning models and their widespread deployment in real-
world applications (Krizhevsky et al., 2012; Jian et al., 2016), there is a growing recognition of the
vulnerability of these models to the imperceptible adversarial perturbation in input data (Kurakin
et al., 2018; Carlini & Wagner, 2017). The introduction of perturbed adversarial samples can lead to
the model producing specified or alternative erroneous predictions, thus jeopardizing the functionality
of real-world surveillance (Dai et al., 2018), autonomous driving systems (Szegedy et al., 2013), and
giving rise to critical safety concerns. Consequently, the enhancement of model robustness against
adversarial samples generated by various attacks has emerged as a focal research topic in the current
landscape (Papernot et al., 2016; Chen et al., 2020; Latorre et al., 2023).

While various defense methods (Zhang et al., 2019; Dong et al., 2020) have been investigated to
mitigate adversarial attacks, Adversarial Training (AT) (Madry et al., 2017; Shafahi et al., 2019) is
widely acknowledged as among the most efficacious strategies, of which the essence lies in addressing
the min-max optimization problem. Under this Standard AT (SAT) formulation, different adversarial
attacks (Rebuffi et al., 2022; Yuan et al., 2021) could be incorporated to improve the attack process of
the attacked model (i.e., target model), including the single-step attack (Goodfellow et al., 2014) based
and multi-step attack based AT (Madry et al., 2017). As for the defense process, various factors such
as the perturbation sizes and the data quality always lead to the unstable convergence behavior of target
model (Dong et al., 2022). In particular, catastrophic overfitting (Li et al., 2020) refers to significant
performance decrease during the training process when trained with larger perturbation, which
severely limits the robustness improvement of target model when trained under larger perturbation
sizes. On top of that, several lines of works have explored heuristic defense techniques to enhance
the defense process, including introducing additional robust teacher models (Pang et al., 2020) and
designing specialized regularization terms (Andriushchenko & Flammarion, 2020). Whereas, (i) these
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methods essentially introduce additional prior knowledge or design complex learning strategies with
explicit or implicit computation cost (e.g., introducing regularization constraints online or pretrained
teacher models offline). Besides, (ii) they have always spared efforts to assist the current state of
target model itself to defend the parameter-oriented attack, which always suffers from inconsistency
among the historical states, and leads far too easily to unstable convergence behavior.

1.1 CONTRIBUTIONS

In this paper, we do not follow the SAT process to use the target model to directly respond to
the generated adversarial example, and reconsider the update paradigm of defense model from the
perspective of its optimization trajectories. Specifically, we adopt the historical parameter state of the
target model denoted as the proxy model, and design a two-stage update rule to construct a general
adversarial defense framework, termed LAST (Learn from the Past). During the defense process,
we first perform gradient descent to update the proxy model to estimate the next state to defend the
parameter-oriented attack, and then employ the estimated state and current state of target model to
calculate the different unit for update of target model. At the second stage, we update the proxy
model and target model with the current state and differential unit as the update direction, respectively.
Furthermore, we propose a new Self Distillation (SD) based defense objective to regularize the update
process of proxy model without introducing additional teacher models, which effectively alleviates
the catastrophic overfitting problem.

Experimentally, we demonstrate the effectiveness and consistent performance improvement of LAST
framework by improving four single-step and multi-step AT methods based on various datasets and
commonly used backbones, which also verify its ability to stabilize the training and alleviates the
catastrophic overfitting problem. Especially, in Fig. 1, we plot the adversarial loss landscape (Liu
et al., 2020) of four original SAT methods and the corresponding improved versions trained using
PreActResNet18 with ϵ = 8/255. The adversarial loss is calculated with Latk(I+ x⃗ι+ yo⃗), where I
denotes the original image from CIFAR10 dataset, ι⃗ = sgn(∇ILatk(I)) and o⃗ ∼ Rademacher(0, 0.5)
are the sign gradient direction and random direction (x and y are the corresponding linear coefficients).
As it can be observed, the models trained with LAST framework exhibit lower loss, smoother
landscapes and smaller loss gaps within the range of surfaces plotted in the subfigure, which validates
the significant robustness improvement of the proposed adversarial defense framework.
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(a) Fast-AT (b) Fast-AT-GA (c) Fast-BAT (d) PGD-10

Figure 1: The four subfigures visualize the adversarial loss landscape w.r.t. input variations of four
original SAT methods and corresponding improved version with LAST framework. We also report
the gap of maximum and minimum losses within the range of x, y ∈ [−0.25, 0.25]. As it can be
observed evidently, the models trained with LAST framework exhibit lower loss, smoother loss
landscapes along with smaller loss gaps within the perturbation range.

We summarize our main contributions as follows.

1. As one of the most significant features, this paper stands as the first of its kind to revisit the
defense update rule of SAT process and its deficiency from the perspective of its optimization
trajectories, which also emphasizes the importance of the historical states of target model to
help defend against the parameter-oriented adversarial attack.

2. By introducing the historical state of the target model as its proxy, we construct a simple
but much effective two-stage adversarial defense framework, named LAST, endowed with
great potential to serve as an alternative of SAT and consistently improve existing methods
to boost robustness with almost no additional cost.
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3. Based on the proxy model, we design a SD defense objective to constrain the learning
process of proxy model without requirements of pretrained teacher models. The new defense
objective (along with the new update rule) could be flexibly integrated into SAT methods to
stabilize the training process and alleviate the catastrophic overfitting problem.

4. We implement the LAST framework based on various SAT methods, and verify its consistent
performance improvement (e.g., up to 9.2% and 20.5% increase of RA compared with
PGD-AT under AutoAttack (ϵ = 16.255) on CIFAR10 and CIFAR100 datasets, respectively)
with different backbones, datasets, attack modalities, and also demonstrate its ability to
enhance training stability and ameliorate overfitting issues.

More detailed related works on the adversarial attack and defense could be found in Appendix. A.1.
In Sec. 2, we first review the SAT process, and then proposed our LAST framework along with the
Self Distillation (SD) defense objective. Note that we also provide comprehensive analysis on the
effectiveness of LAST framework and differences from previous techniques in Sec. 2.4. In Sec. 3,
we conduct extensive experiments and analyze the training convergence behavior by consistently
improving various SAT methods. The detailed hyperparamater settings and descriptions of baselines
could be found in Appendix A.2. Last but not least, we provide ablation studies and more comparative
results in Appendix A.3 and A.4.

2 A PROXY BASED TWO-STAGE ADVERSARIAL DEFENSE FRAMEWORK

In this section, we first review the general formulation about the SAT process. Based on its deficiency
during the defense process, we propose to introduce the historical state of target model as its proxy,
and construct a proxy-based two-stage adversarial defense framework. Furthermore, a new self
distillation based defense objective without introducing any additional pretrained teacher models is
proposed to stabilize the training process and alleviate the catastrophic overfitting problem. More
discussion on the proposed update rule of LAST framework is also provided.

2.1 PRELIMINARIES

To enhance the robustness of deep learning model, SAT has been thoroughly evaluated and regarded as
one of the most effective adversarial defense strategies. Generally speaking, SAT could be formulated
as the min-max optimization problem (Madry et al., 2017), where the attack model aims to maximize
the objective by injecting imperceptible adversarial perturbation to the original input, while the
defense model (i.e., target model) optimizes the parameters with gradient descent to stay robust
against the perturbation. The attack and defense objectives for this problem are usually defined as
the same form. Here we first define the training dataset and input data pair as D = {ui,vi}Mi=1, and
denote the target model as Tθ, where θ are parameters of the target model. Then a general-purpose
SAT formulation could be written as follows

min
θ

E{ui,vi}∈D

[
max
δ∈S
Latk

(
Tθ(ui + δ),vi

)]
, (1)

where δ is the perturbation subject to the constraint S = {δ | ∥δ∥ρ ≤ ϵ} with ϵ-toleration ρ norm ,
and Latk denotes the attack objective. Typically, δ is generated by K-step maximization of the attack
objective following

δk+1 ← Πϵ

(
δk +α · sgn∇δLatk(Tθ(ui + δ),vi)

)
, k = 0, 1, · · · ,K − 1. (2)

where Π and sgn are the projection and element-wise sign operation. δ0 is uniformly initialized from
(−ϵ, ϵ). When K is set as K = 1 or K > 1, we could derive two major types of adversarial attacks,
i.e., FGSM and PGD attacks. These perturbation generated online according to the current state of
target model θi is actually parameter-oriented to a great extent. As for the SAT process, the target
model improves its robustness by performing gradient descent according to the attack objective by

θi+1 = θi −∇θLatk
(
Tθ (ui + δK) ,vi

)
. (3)

In this paper, we do not focus on the adversarial attack process of this min-max optimization
problem, but turn our foresight to how the target model reacts to these adversarial examples. It
has been discussed (Nakkiran et al., 2021) before that the target model trained with SAT always
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suffers from unstable convergence behavior and even more severe problems such as catastrophic
overfitting phenomenon due to various factors, e.g., the size of target models, the perturbation
radius and data quality causing label noise in the perturbed data pairs. Moreover, the sgn operation
and constraint of input images (i.e., [0, 1]) also introduce much bias to the gradient-based defense
of target model. From this perspective, when faced with adversarial examples w.r.t. the current
state of target model, it is always too hard for the target model to capture the attack modality and
the correspondence between δK and θi. On top of that, updating θi along the gradient descent
direction of Latk

(
Tθ

(
ui + δK

)
,vi

)
based on this generated parameter-oriented perturbation in

Eq. (3), unintentionally leads to significant inconsistency among the optimization trajectories, i.e.,
{· · · ,θi − θi−1,θi+1 − θi, · · · }, and exacerbates the unstable training process meanwhile.

From this new perspective to understand the update rule of SAT, several lines of works have been
made, explicitly or implicitly, to modify the process of updating target models, i.e., adding reg-
ularization terms to optimize new forms of defense objectives (Andriushchenko & Flammarion,
2020), introducing pretrained teacher model to correct the labels for supervision (Dong et al., 2022),
estimations of hyper gradient through Bilevel Optimization(BLO) reformulation (Zhang et al., 2022).
To summarize, (i) these methods have spared efforts to reconsider the influence of training data,
forms of defense objective and coupled relationship of SAT formulation to introduce extra prior
or design complex learning strategies along with additional computation cost (increased runtime
online or offline). Besides, (ii) they follow the commonly used criterion to assist the current state of
target model θi itself to defend the adversarial perturbation δK , which is ineffective to maintain the
consistency among the optimization trajectories, and easily causes unstable convergence behavior.
Therefore, we pose the following inquiry: is there a more effective response of the target model to
the parameter-oriented attacks? In the next subsection, we reconsider the update rule of defense
model from the perspective of its optimization trajectories, and proposed to reuse the historical state
of the target model to construct a new adversarial defense framework.

2.2 ENHANCE ROBUSTNESS WITH THE LAST FRAMEWORK
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Figure 2: We illustrate the heat map of input gradient w.r.t. u and uadv = u + δK , where δK is
generated by attacking Tθ with PGD-10, ϵ = 8/255. The three columns of subfigure (b), (c), (e) and
(f) correspond to the input gradient for three channels normalized to [0, 1]. It can be observed that the
input gradients of Pω exhibit less growth of loss (i.e., (c)→ (f)) and generates more salient input
gradient w.r.t. uadv around the shape of the horse compare with Tθ (i.e., (b)→ (e)).

As it is summarized before, the perturbation is generated according to the current state of the target
model parameters throughout the attack process, which makes the attack parameter-oriented in
essence. To verify this hypothesis, we first generate the adversarial example, i.e., uadv = u+ δK ,
where δK targets at the best model trained with early stopping, denoted as Tθ. Then we use proxy
model to represent the historical state of target model Tθ , denoted as Pω , and use xadv to attack both
Tθ and Pω . Generally speaking, Tθ obtained with early stopping has definitely stronger robustness
than Pω . In Fig. 2, we illustrate the heatmap of input gradient to analyze how the target model and
its proxy model react to uadv. The input gradient of an image represents how sensitive the model is
to changes in the pixel values of this image (Chan et al., 2020), and the output of robustly trained
model will generate salient input gradients which resemble the clean image. When faced with the
parameter-oriented attack, it is shown in subfigure (e) that the output of Tθ is seriously degraded and
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no longer produce salient input gradient in each channel. In comparison, Pω is more robust against
this parameter-oriented adversarial example and has salient gradient around these pixels which matter
most to the model decision in subfigure (f).

Therefore, although the target model shows great vulnerability to this perturbation, the historical
states of the target model and its gradient information is inaccessible to the attack model, and is of
great value to provide prior information for the adversarial defense. Furthermore, this hypothesis
could also be essentially verified by the phenomenon that the target model consistently exhibits
superior performance when subjected to transfer-based black-box attacks compared to white-box
attacks of equivalent intensity.

Inspired by this principle, we make the first attempt to introduce the historical states of target model
to estimate better response to the parameter-oriented attack w.r.t. the current state of target model.
In detail, we first define the last state of target model as its proxy, i.e., ωi = θi−1, i = 1, · · · ,M,
where ω0 is initialized using θ0. In the following, we use Ldef to represent the defense objective.
During the attack process, we adopt the same scheme as SAT to generate the adversarial perturbation,
i.e., δK . As for the defense strategy, we first perform gradient descent with Pω according to
Ldef(Pω(ui + δK),vi) to estimate the next state of target model, which could be described as

ω̃ = ωi − β · ∇ωLdef
(
Pωi

(ui + δK), vi

)
, (4)

where β denotes the learning rate of Pω . Then we employ ω̃ and current state of target model (i.e.,
θi) to calculate the differential unit Gθ as the update direction, which is denoted as Gθ = θi − ω̃. For
the second stage, we update ωi to record the current state of target model, and then perform gradient
descent of θi with Gθ . The whole adversarial defense framework including the attack and two-stage
defense update rule is described in Alg. 1. The step size of θi, i.e., γ, will be discussed further in
Sec 2.4. This new update rule is supposed to generated better response which is more robust to defend
against this parameter-oriented attack. In the next subsection, we introduce constraints to the update
of proxy model to estimate ω̃ inspired by the self distillation idea which helps stabilize the training
and alleviate the catastrophic overfitting problem.

Algorithm 1 The Proposed LAST Framework
Input: Training epochs J ,M batches of data pairs (ui, vi), attack iteration K, target model Tθ

parameterized by θ, and proxy model Pω parameterized by ω, perturbation range ϵ.
1: // Initialize the proxy model Pω .
2: ω0 = θ0.
3: for j = 0→ J − 1 do
4: for i = 0→M− 1 do
5: Initialize δ0.
6: // Generate the perturbation with target model Tθ.
7: for k = 0→ K − 1 do
8: δk+1 = δk +α · sgn

(
∇δLatk(Tθi

(ui + δk), vi)
)
. (α denotes the attack step size)

9: δk+1 = max
[
min(δk+1, ϵ),−ϵ

]
.

10: end for
11: // Stage 1: Estimate update direction of θi to defend.
12: ω̃ = ωi − β · ∇ωLdef

(
Pωi

(ui + δK), vi

)
. (β denotes the learning rate of Pω)

13: Gθ = θi − ω̃. (Compute the differential unit Gθ)
14: // Stage 2: Update ωi and θi sequentially.
15: ωi+1 = θi.
16: θi+1 = θi − γ · Gθ. (γ denotes the learning rate of Tθ)
17: end for
18: end for

2.3 SELF DISTILLATION BASED DEFENSE OBJECTIVE

Based on the introduced proxy model, which captures the historical states to introduce prior infor-
mation for defense (Step 12 in Alg. 1), we further delve into the defense objective to constrain the
learning process of proxy model and alleviate the overfitting problem. As it is shown in Fig. 2,
although Tθ is less sensitive to the adversarial attack targeted at θ, the perturbation still deteriorates
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the output of Tθ(uadv) which may lead to misclassification. Whereas, the direct output of target
model, which refers to the soft targets in Knowledge Distillation (KD) (Li, 2018), also reflects which
part the target model concerns about. When faced with the clean image and adversarial perturbation,
the proxy model is supposed to generate outputs that have more similar distributions. Unlike these
methods generating supervised soft targets with a larger teacher model, we propose to constrain
the estimation of ω̃ with the distance between soft targets of clean image and the corresponding
adversarial image. Here we denote the temperature as τ , then the proposed defense objective could
be written as follows

Ldef = (1− µ) · Latk
(
Pω(uadv),v

)
+ µ · LKL

(
Pω(uadv)/τ ,Pω(u)/τ

)
, (5)

where µ ∈ [0, 1) is the distillation coefficient to balance two loss terms, and LKL denotes the
Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) to measure the distance between two
distributions of the soft targets. In this way, the proxy model is supposed to behave as consistently as
possible when faced with clean or adversarial examples and generate correct classification results
meanwhile. Moreover, the introduced defense objective supervises the learning process of proxy
model without introducing (larger) pretrained teacher models or additional updates of models, thus
can be flexibly integrated to the proposed algorithmic framework in Alg. 1 at the least computational
cost. In the experimental part, we demonstrate the effectiveness of LAST framework along with the
SD defense objective which stabilizes the training and alleviates the catastrophic overfitting problem.

2.4 DISCUSSION ON THE PROXY BASED UPDATE RULE

Here we provide more discussion and different perspectives to analyze the effectiveness of the
introduced proxy model and two-stage update rule. With a simple substitution and deformation to
Step. 16, we could derive θi+1 − θi = −γ · Gθ = γ · (ω̃ − θi), where γ denotes the learning rate
of Tθ. It can be observed that the historical sequences of θi is always constrained by the estimation
of distance between ω̃ and θi, both of which is derived from θi−1. Assume that the target model
of the critical state unexpectedly diverges, Eq. (4) could estimate ω̃ which is more robust against
this parameter-oriented perturbation to assist the updates of θi. This update rule is supposed to
improve the consistency between adjacent states of the target model as the target model converges,
i.e., {· · · ,θi − θi−1,θi+1 − θi, · · · }.
Besides, we could describe the update format as θi+1 = (1 − γ) · θi + γ · ω̃, where ω̃ serve as
estimated response generated by θi−1 to defend the adversarial example targeted at θi. On top of that,
γ is the aggregation coefficient to balance the influence of responses to historical attacks and current
attacks. The format of this update rule is similar to these momentum based optimizers (Sutskever
et al., 2013) to some extent, which refer to the accumulation of historical gradients to perform gradient
descent. Furthermore, we could also find evidence to demonstrate the effectiveness of this update rule
from other techniques such as Stochastic Weight Averaging (SWA) (Izmailov et al., 2018), which
smoothes the weights by averaging multiple checkpoints along the training process. This technique
have been demonstrated to be effective to find flatter solutions than SGD, and applied in various
applications (Athiwaratkun et al., 2018; Yang et al., 2019). Specifically, the weights of SWA are
simply accumulated by the exponential weighted average of the historical weights. In comparison, the
new update rule combines the response of proxy model to the parameter-oriented attack, which bridge
the historical states and current states to improve consistency among the optimization trajectories
and introduce extra prior for defense. Therefore, the introduced proxy model is of great significance
and cannot be simply replaced by using momentum-like optimizers or the stochastic averaging of
weights by the SWA technique.

3 EXPERIMENTS

In this section, we first demonstrate the robustness improvement of LAST framework based on
popular single-step and multi-step methods in two subsections, respectively. We also compare the
loss landscape and convergence behavior of test robust loss, and RA to verify its stronger stability
and defense capability against larger adversarial perturbation. Finally, we also analyze the defense
performance of the proposed framework under transfer-based black box attacks. Note that we provide
the basic experimental settings for different AT methods, datasets and models used for robustness
evaluation in Appendix A.2 due to limited space. And more ablation results of hyperparameters and
full results are provided in Sec. A.3 and Sec. A.4.
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3.1 EVALUATION WITH SINGLE-STEP AT METHODS

Table 1: We report the SA and RA of Fast-AT, Fast-AT-GA and Fast-BAT under PGD attack (PGD-10
and PGD-50) and AutoAttack. We use m±n to denote the mean SA (i.e., m) with standard deviation
(i.e., n) by running all the algorithms with 3 random seeds.

CIFAR-10 dataset, PARN-18 trained with ϵ = 8/255

Method PGD-10 (%) PGD-50 (%)
ϵ = 8/255 ϵ = 16/255 ϵ = 8/255 ϵ = 16/255

Fast-AT 47.03±0.29 13.79±0.15 44.94±0.52 8.85±0.20

LF-AT(Ours) 47.17±0.15 14.48±0.23 45.50±0.04 9.89±0.14

Fast-AT-GA 48.30±0.13 16.36±0.14 46.63±0.33 11.12±0.12

LF-AT-GA (Ours) 48.60±0.06 17.52±0.02 47.25±0.09 12.63±0.17

Fast-BAT 50.42±0.36 18.29±0.18 49.07±0.39 13.31±0.16

LF-BAT (Ours) 50.65±0.19 19.73±0.05 49.66±0.20 15.25±0.20

Method SA (%) AutoAttack (%) Time
ϵ = 8/255 ϵ = 16/255 (Sec/ Iteration)

Fast-AT 83.56±0.06 41.80±0.68 7.32±0.27 5.543× 10−2

LF-AT (Ours) 81.70±0.15 42.11±0.19 8.13±0.20 5.719× 10−2

Fast-AT-GA 81.00±0.59 43.17±0.21 9.04±0.18 1.632× 10−1

LF-AT-GA (Ours) 79.18±0.13 43.31±0.23 10.22±0.05 1.643× 10−1

Fast-BAT 82.01±0.04 45.51±0.44 10.98±0.19 1.644× 10−1

LF-BAT (Ours) 79.72±0.14 45.54±0.27 12.23±0.27 1.656× 10−1

In this subsection, we first evaluate the Standard Accuracy (SA) and RA of Fast-AT, Fast-AT-GA,
Fast-BAT and our improved versions trained on the CIFAR10 dataset using PARN-18 backbone with
ϵ = 8/255 in Tab. 1. It can be observed that the LAST framework shows consistent performance
improvement of RA on PGD-10, PGD-50 and AutoAttack. In particular, the target models trained
with LAST framework are significantly more robust when faced with unknown adversarial attacks
of larger perturbation size (test with ϵ = 16/255). Furthermore, we evaluate the average runtime of
SAT methods and our improve ones for each iteration. It can be observed that improving existing AT
methods with our framework only slightly increases the runtime, which demonstrates its potential to
serve as an alternative of SAT with almost no additional computation cost. Besides, the adversarial
landscapes in the subfigure (a)-(c) of Fig. 1 also show that combining our update rule will generate
smoother adversarial loss surfaces with the smaller loss gap, which make the model stay more robust
when faced with adversarial input under different perturbation sizes and noise levels.

Table 2: Illustrating the SA and RA of Fast-AT, Fast-AT-GA and Fast-BAT under PGD attack (PGD-
10 and PGD-50) and AutoAttack on CIFAR100 dataset. We use ↑ to report the average improvement
of RA by running all the algorithms with 3 random seeds. More detailed results with standard
deviations can be found in Tab. 5.

CIFAR-100 dataset, PARN-18 trained with ϵ = 8/255

Method SA (%) PGD-10 (%) PGD-50 (%) AutoAttack (%)
ϵ = 8/255 ϵ = 16/255 ϵ = 8/255 ϵ = 16/255 ϵ = 16/255

Fast-AT 55.087 24.330 7.430 23.533 5.520 4.153
LF-AT (Ours) 50.817 25.190↑0.86 9.003↑1.57 24.373↑0.84 7.497↑1.98 5.443↑1.29

Fast-AT-GA 53.253 25.660 8.603 24.853 6.836 5.320
LF-AT-GA (Ours) 48.220 25.887↑0.23 10.277↑1.67 25.433↑0.58 8.813↑1.97 6.270↑0.95

Fast-BAT 42.793 22.603 8.920 22.059 7.813 5.807
LF-BAT (Ours) 42.460 23.153↑0.55 9.840↑0.92 22.783↑0.72 8.740↑0.93 6.103↑0.30
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In Tab. 2, we also compare the performance of these methods with our LAST framework trained
on the CIFAR100 dataset, and report the average improvement of these methods by combining the
LAST framework. Note that we calculate the mean RA and its standard deviation by running different
methods with different random seeds on both CIFAR10 and CIFAR100 datasets. As it is shown,
our framework exhibits the capacity to consistently enhance existing methods on the larger dataset.
Besides, we also implement these methods and our LAST framework based on the larger WRN-34-10
backbone, and the detailed results could be found in Tab. 4.

Furthermore, in Fig. 3, we focus on the catastrophic overfitting phenomenon when faced with
stronger adversaries by setting ϵ = 16/255. It can be observed that the robustness of Fast-AT drops
significantly during the training process, and its loss landscape (obtained with the best model by early
stopping) shows violent fluctuations influence by the injected perturbation and random noise. When
we implement Fast-AT under the LAST framework together with SD objective, the update direction
are continuously corrected by the proxy model and prior information of soft targets, which finally
leads to more stable convergence behavior, performance boost and also smoother loss landscape.
More ablation results without the proposed SD objective can be found in the Appendix.

x

y

x

y

(a) Robust Loss and Accuracy (b) Adversarial Loss Landscape

Figure 3: Subfigure (a) illustrates the convergence behavior of test loss and RA for Fast-AT and
ours on CIFAR10 dataset under PGD-10 attack with ϵ = 16/255. In Subfigure (b), we compare the
adversarial loss landscape for Fast-AT and our improved version for comparison. Note that we follow
the method described in Fig. 1 with larger scale of linear coefficients x, y ∈ [−0.5, 0.5].

3.2 EVALUATION WITH MULTI-STEP AT METHODS

Table 3: We report the SA and RA of PGD-AT(-10) and our improved version under PGD attack
(PGD-10 and PGD-50) and AutoAttack on CIFAR10 and CIFAR100 dataset by running both methods
with 3 random seeds. More detailed results with standard deviation could be found in Tab. 6.

CIFAR-10 dataset, PARN-18 trained with ϵ = 8/255

Method SA (%) PGD-10 (%) PGD-50 (%) AutoAttack (%)
ϵ = 8/255 ϵ = 16/255 ϵ = 8/255 ϵ = 16/255 ϵ = 16/255

PGD-AT 81.948 51.923 20.310 50.757 15.677 13.093
LPGD-AT (Ours) 82.17 53.230↑1.31 22.203↑1.89 52.137↑1.38 17.587↑1.91 14.297↑1.20

CIFAR-100 dataset, PARN-18 trained with ϵ = 8/255

Method SA (%) PGD-10 (%) PGD-50 (%) AutoAttack (%)
ϵ = 8/255 ϵ = 16/255 ϵ = 8/255 ϵ = 16/255 ϵ = 16/255

PGD-AT 49.457 25.837 9.980 25.377 8.749 6.667
LPGD-AT (Ours) 48.150 31.267↑5.43 14.903↑4.92 30.857↑5.48 13.573↑4.83 8.033↑1.37

To demonstrate that the LAST framework consistently and universally enhances established ap-
proaches, we extend the framework to the stronger PGD base AT methods. In Tab. 3, we present the
test results of PGD-10 based AT (denoted as PGD-AT) and the improved method by LAST framework
(denoted as LPGD-AT). It can be obviously seen that LPGD-AT shows significant better performance
compared to the original SAT trained with PGD-10, and even slightly improves the SA on CIFAR 10
dataset. When we train both methods on CIFAR100 dataset, LPGD-AT achieves a substantial leap in
performance compared with PGD-10 based AT. We attribute the reason why the LAST framework
achieves more significant improvement on PGD (9.2% and 20.5% improvement in the last column
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of Tab. 3) to the fact that the correspondence between the target model and this parameter-specific
adversarial attack obtained by using multi-step attack steps is more difficult to characterize, thus
the consistency between the update sequences of SAT will be worse, which makes the performance
improvement of our method even more significant.

Besides, It can be observed in subfigure (d) of Fig. 1 that the loss landscape of our model trained
with LAST framework has been rendered smoother, accompanied by a reduced disparity between
its highest and lowest values. In addition, we compare the convergence behavior of robust loss and
RA for PGD-AT and our LPGD-AT on both CIFAR10 and CIFAR100 datasets in Fig. 4. As it is
illustrated, by improving the consistency among the historical states of model parameters, LPGD-AT
exhibits more stable convergence behavior of both robust loss and accuracy, and finally gains higher
performance after performing the multi-step learning rate decay twice.

Figure 4: The first two subfigures compare the convergence behavior of test robust loss and RA
trained with PGD-AT and LAST both trained with ϵ = 8/255 on CIFAR10 dataset, while the left two
subfigures illustrate the convergence behavior of same metrics trained on CIFAR100 dataset. The
black dashed line denotes the epoch where multi-step learning rate decays.

3.3 EVALUATION OF GENERALIZATION PERFORMANCE

(a) SAT methods (b) LAST (Ours)

Figure 5: We visualize the heatmap of four SAT methods
including Fast-AT, Fast-AT-GA, Fast-BAT, PGD-AT (i.e.,
2-step PGD-AT) and their improved version under transfer-
based PGD-10 attack on CIFAR10 dataset.

Last but not least, we also conduct anal-
ysis about the robustness of defense
against black-box attacks for thorough
evaluation. Practically, we plot the
heatmaps of RA for different SAT meth-
ods against the transfer-based black-box
adversarial attacks on CIFAR10 dataset
under PGD-10 attack with ϵ = 8/255 in
Fig. 5. Note that the source model cor-
responds to the surrogate model used to
generate the adversarial perturbation to
attack the target models. We use F-AT
and LF-AT to denote Fast-At and the im-
proved version with LAST framework,
and other methods follow the similar ab-
breviations. It is shown that adversarial
attacks generated based on the source models trained by LAST are more difficult to defend for stan-
dard model, and both original AT methods and our improved ones perform better under transfer-based
attacks than white-box attacks.

4 CONCLUSION

In this study, we addressed the vulnerability of deep learning models to adversarial attacks particularly
focusing on the SAT methods. Firstly, we revisit the model update process based on its optimization
trajectory and introduce the historical state as proxy model, leading to the development of the novel
LAST framework. We also propose the SD defense objective that doesn’t rely on large pretrained
teacher models. Through extensive experiments, we demonstrated LAST’s consistent performance
improvements across datasets, backbones, and attack scenarios, along with its ability to enhance
training stability.
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A APPENDIX

We first present an overview of the pertinent literature concerning adversarial attacks and adversarial
defense strategies in Appendix A.1. Then we provide detailed experimental settings including
the datasets, backbones, evaluation metrics, baselines and training details in Appendix A.2. In
Appendix A.3, we conduct the ablation study to investigate the influence of the proposed SD
defense objective and configurations of specific hyperparameters for the LAST framework. Then
we implement the above methods based on the larger WRN-34-10 structure, and provide more
detailed results about the evaluation of original AT methods and our proposed framework with mean
RA and standard deviation in Appendix A.4. Note that we provide part of the training code in the
supplementary materials, and the full repository will be released later upon acceptance.

A.1 RELATED WORKS

Adversarial attack. Generally speaking, two branches of adversarial attacks have been well
explored including white-box and black-box attacks (Rebuffi et al., 2022). Here we focus on the
white-box gradient-based adversarial attacks (Yuan et al., 2021), which possess full knowledge
of the internal structure and parameters of the target deep learning model and leverage gradient
information to craft adversarial samples. Specifically, single-step attack methods, e.g. Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2014), generates adversarial examples through a single,
small perturbation of input data to produce erroneous classification results or misleading outputs in a
single step. The single-step attack method could be naturally extended to the multi-step version by
iterative optimization with small step size, e.g., BIM (Kurakin et al., 2018) attack. Then PGD (Madry
et al., 2017) attack improves BIM attack with more attack steps and random initialization of the
perturbation. On top of that, AutoAttack (Croce & Hein, 2020), a specialized framework encompasses
a variety of advanced adversarial attack methods and techniques such as CW (Carlini & Wagner,
2017) and DLR losses, have been wide recognized and used to evaluate the robustness of models.

Adversarial defense. Different branches of adversarial defense methods (Zhang et al., 2019; Dong
et al., 2020) have been developed to enhance robustness of deep learning models against attacks,
such as the preprocessing based methods (Liao et al., 2018; Jiao et al., 2023) and training provably
robust networks (Dvijotham et al., 2018; Wong & Kolter, 2018). Among these defense methods,
Adversarial Training (AT) (Madry et al., 2017) is widely recognized to be one of the most effective
strategies. Based on the min-max formulation of Standard AT (SAT), single-step AT methods such as
Fast-AT (Wong et al., 2020) are proposed to implement computation-efficient fast training. Fast-AT-
GA (Andriushchenko & Flammarion, 2020) adopt implicit GA regularization which yields better

12



Under review as a conference paper at ICLR 2024

performance than Fast-AT. In recent works, Fast-BAT (Zhang et al., 2022) incorporates the Implicit
Gradient (IG) to estimate the hyper gradient based on the Bilevel Optimization (BLO) formulation
and obtains the state-of-the-art performance. In addition, PGD based AT methods (Pang et al., 2020)
have been continuously improved by introducing heuristic techniques (Zhang et al., 2020; Carlini
et al., 2022) and prior knowledge (Chen et al., 2020; Dong et al., 2022; Latorre et al., 2023) from
other domains. In this paper, we focus on how these methods assist the target model itself react to the
adversarial attacks based on the SAT process with online or offline computation cost, and propose a
new proxy based adversarial defense framework to boost robustness.

A.2 EXPERIMENTAL SETTING

Datasets, models and metrics. In this paper, we conduct our experiments based on CIFAR10
dataset (Krizhevsky et al., 2009) and the larger CIFAR100 dataset (Krizhevsky et al., 2009), which
are commonly used for AT. As for the network structures, we mainly use the PreActResNet (PARN)-
18 (He et al., 2016) as our backbone, and also implement the WideResNet (WRN)-34-10 (Zagoruyko
& Komodakis, 2016) model to demonstrate the generalization performance of LAST framework
with large-scale network structure. Two widely known adversarial attacks are selected for robustness
evaluation, i.e., PGD and AutoAttack (Croce & Hein, 2020). Specifically, we use PGD-10 and
PGD-50 to represent 10-step PGD attack with 1 restart step and 50-step PGD attack with 10 restart
steps, respectively. We adopt the test Robust Accuracy (RA) as the metric of robust evaluation and
report the average runtime for each iteration within the firs epoch to compare the computation cost of
original AT methods and our improved ones. In particular, we also analyze the convergence behavior
of test robust loss and RA to evaluate the robustness performance and stability of training process.
Note that we report the average performance of the best model trained with early stopping for all the
methods.

Baselines and training details. Since the proposed LAST adversarial defense framework essen-
tially design new updates rule of defense, it has the potential to consistently improve various popular
SAT methods. For the single-step AT methods, we choose Fast-AT (Wong et al., 2020), Fast-AT-
GA (Andriushchenko & Flammarion, 2020) and Fast-BAT (Zhang et al., 2022) as representative SAT
methods. Fast-BAT accesses the second-order gradient with Implicit Gradient (IG) based on BLO
formulation, which represents the state-of-the-art baseline for comparison. As for the multi-step AT
methods, PGD based AT have been widely explored and used for improving robustness with higher
computational cost. Therefore, we choose these four methods to show that the proposed framework
could consistently and universally enhance established SAT approaches. Basically, we follow (Zhang
et al., 2022; Andriushchenko & Flammarion, 2020) to set most common hyperparameters such as the
attack learning rate α for different adversarial attacks. For PARN-18, we train Fast-AT, Fast-AT-GA,
Fast-BAT and PGD-AT(-2) (2-step PGD-AT) for 30 epochs and use cyclic scheduler with maximum
β = 0.2, and train PGD-AT(-10) (10-step PGD-AT) for 200 epochs using multi-step scheduler with
β = 0.1. For WRN-34-10, we train the single-step AT methods for 50 epochs using the same learning
rate schedular with β = 0.1. As for the hyper parameter, we use same β and α as the original AT
methods, and set the aggregation coefficient γ = 0.8. When implementing Fast-AT and our version
under perturbation ϵ = 16/255 in Fig. 6, we set β = 0.1, γ = 0.4, µ = 0.95 and τ = 6.0.

A.3 MORE RESULTS FOR ABLATION STUDY

Ablation results with larger perturbation size. In Fig. 6, we provide more detailed comparative
results of the convergence behavior of test robust loss and RA to demonstrate the effectiveness of
SD objective on CIFAR10 dataset with ϵ = 16/255, which serves as a supplement to Fig. 3. As it
is shown, combining the LAST framework will slow down the collapse of loss and accuracy and
improve the best performance to some extent. When we integrate the LAST framework together with
SD defense objective, the convergence behavior of test robust loss and RA are consistently improved
and leads to boost of robustness. Unless specified otherwise, we only implement the LAST framework
without SD objective to report the performance based on the same configuration of defense objectives
and common hyperparameters.

Ablation results on the influence of aggregation coefficient. In Fig. 7, we further investigate
the influence of hyperparameter unique to our method, the aggregation coefficient γ based on the
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Figure 6: We compare the convergence behavior of Fast-AT, the improved version under LAST
framework with and without SD defense objective (denoted as LF-AT and LF-AT-SD, respectively).

model trained on CIFAR10 dataset, ϵ = 8/255. Specifically, we implement Fast-AT and our LAST
framework without SD defense objective, and report the test robust loss and RA as γ changes. Firstly,
it can be observed that also the improved method converges a bit slower than Fast-AT at the beginning,
it gains lower loss and higher RA as the training proceeds. Secondly, although our methods always
gain better performance than Fast-AT as γ changes, the RA slightly decreases when γ approaches 1
(0.8→ 1.0). Based on the above observation, we set γ = 0.8 for the above quantitative experiments
unless specified otherwise.

Figure 7: Illustration of convergence behavior of Fast-AT and our improved version under LAST
framework without SD defense objective as γ varies.

A.4 COMPLETE EVALUATION RESULTS WITH LARGER MODELS AND DATASETS

Table 4: We report the SA and RA of Fast-AT, Fast-AT-GA, Fast-BAT and the LAST framework
under PGD attack (PGD-10 and PGD-50) and AutoAttack on CIFAR10 dataset using WRN-34-10
structure as the backbone.

CIFAR-10 dataset, WRN-34-10 trained with ϵ = 8/255

Method SA (%)
PGD-10 (%) PGD-50 (%) AutoAttack (%)

ϵ = 8/255 ϵ = 16/255 ϵ = 8/255 ϵ = 16/255 ϵ = 8/255 ϵ = 16/255

Fast-AT 80.00 45.89 17.49 43.65 10.92 41.12 7.80

Fast-AT-GA 78.72 46.82 18.01 45.12 12.31 42.81 9.82

Fast-BAT 79.93 47.87 17.55 46.45 12.41 43.99 10.09

LAST(Ours) 77.88 49.02 19.23 47.94 14.15 45.49 11.87

Results on the WRN-34-10 backbone. To verify the generalization performance of LAST frame-
work, we also report the RA and SA of the above single-step AT methods and the LAST framework
on the larger network structure, i.e., WRN-34-10. Note that we implement our LAST framework
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based on Fast-AT-GA, and run the above methods by setting the random seed as 1. It can be observed
that our LAST framework also gains significant performance improvement on WRN-34-10 under
ϵ = 8/255 and ϵ = 16/255.

Table 5: Illustrating the SA and RA of Fast-AT (F-AT), Fast-AT-GA (F-AT-GA) ,Fast-BAT (F-BAT)
and corresponding improved version under PGD attack (PGD-10 and PGD-50) and AutoAttack on
CIFAR100 dataset. We use m±n to denote the mean SA (i.e., m) with standard deviation (i.e., n).

CIFAR-100 dataset, PARN-18 trained with ϵ = 8/255

Method SA (%)
PGD-10 (%) PGD-50 (%) AutoAttack (%)

ϵ = 8/255 ϵ = 16/255 ϵ = 8/255 ϵ = 16/255 ϵ = 16/255

F-AT 55.087±1.05 24.330±0.71 7.430±0.22 23.533±1.05 5.520±0.07 4.153±0.19

LF-AT 50.817±0.33 25.190±0.07 9.003±0.07 24.373±0.42 7.497±0.09 5.443±0.13

F-AT-GA 53.253±0.27 25.660±0.10 8.603±0.05 24.853±0.06 6.836±0.10 5.320±0.03

LF-AT-GA 48.220±0.32 25.887±0.14 10.277±0.10 25.433±0.23 8.813±0.14 6.270±0.12

F-BAT 42.793±8.42 22.603±3.85 8.920±0.67 22.059±3.24 7.813±0.34 5.807±0.60

LF-BAT 42.460 ±9.73 23.153±5.76 9.840±2.37 22.783±5.56 8.740±1.91 6.103 ±1.45

Full results on CIFAR 10 and CIFAR100 datasets. In addition to Tab. 2 and Tab. 3, we provide
detailed comparative results with the corresponding standard deviation on CIFAR10 and CIFAR100
in Tab. 5 and Tab. 6. Due to space limit, we use F-AT to denote our method implemented based
Fast-AT, and other methods use similar abbreviations. All the results are calculated by running the
training process with three random seeds, since it is found that the performance of Fast-BAT will
make a significant difference using its default seed and other random seeds when trained on the
larger CIFAR100 dataset. As it has been verified before, both single-step and multistep AT methods
improved by the LAST framework shows consistently better defense capability against representative
adversarial attacks under different perturbation sizes.

Table 6: We report the SA and RA of PGD-10 and our improved version (LPGD-10) under PGD
attack (PGD-10 and PGD-50) and AutoAttack on CIFAR10 and CIFAR100 dataset. We use m±n to
denote the mean SA (i.e., m) with standard deviation (i.e., n).

CIFAR-10 dataset, PARN-18 trained with ϵ = 8/255

Method SA (%)
PGD-10 (%) PGD-50 (%) AutoAttack (%)

ϵ = 8/255 ϵ = 16/255 ϵ = 8/255 ϵ = 16/255 ϵ = 16/255

PGD-AT 81.948±0.74 51.923±0.30 20.310±0.75 50.757±0.33 15.677±0.41 13.093±0.43

LPGD-AT 82.187±0.90 53.230±0.20 22.203±0.37 52.137±0.10 17.587±0.57 14.297±0.03

CIFAR-100 dataset, PARN-18 trained with ϵ = 8/255

Method SA (%)
PGD-10 (%) PGD-50 (%) AutoAttack (%)

ϵ = 8/255 ϵ = 16/255 ϵ = 8/255 ϵ = 16/255 ϵ = 16/255

PGD-AT 49.457±0.48 25.837±0.43 9.980±0.43 25.377±0.39 8.749±0.38 6.667±0.23

LPGD-AT 48.150±0.42 31.267±0.53 14.903±0.26 30.857±0.62 13.573±0.52 8.033±0.40
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